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1 Introduction

During this period of performance (January 1, 1992 - December 31, 1992) we have accomplished the inves-
tigation of the following tasks:

a. Application of the Non-linear Force-free Field (NLFF) Model to study the active region evolution.
b. Coronal dynamical responses due to emerging flux including the transition region.
c. Loss of MHD equilibrium due to footpoint motions.

d. Two-dimensional MHD global coronal model: steady-state streamers.

The detailed description of these studies are included in the following sections:

2 Applications of the Non-Linear Force-Free Field (NLFF) Model
to Study the Active Region Evolution

Since the publication of the first version of our extrapolation scheme (Wu et al. 1990), called "Progressive
Extension Method (PEM)”, further modification was made on the regularization-like technique. This new
regularization-like technique can be summarized as follows: the expression for averaging given by Eqgs. (3.5)
and (3.6) of the paper by Wu et al. 1990 is modified as follows:

The regularization-like solution for the magnetic field vector, B:J becomes

B,; =(1-7)Bi; +7B:; (1)
where B; ; is the same as Eq. (3.5) from the Wu et al. (1990) paper and

7(1) = 'YOezp[a(z/zmaz )] (2)

with 7, being arbitrary and to be determined by a trial and error method until the solution converges and

a= ln('Y(zmax)/‘YO) - (3)

By setting our goals on Y(zmaez) and vo, a is determined.

Using this modified technique, we performed a number of significant tests by using a complicated an-
alytical nonlinear force-free solution (Low and Lou, 1990) as the input to the numerical model. Figure 1
shows a top view of the field lines generated by: (a) an analytical solution (Low and Lou, 1990), and (b} a
numerical solution obtained from extrapolation. Figure 2 shows three-dimensional field lines corresponding
to the solutions given in Figure 1. These results clearly demonstrate that the PEM (Wu et al.
1990) is a reasonable method to obtain nonlinear force-free fields by using vector field data in
the photosphere. The accuracy of the extrapolation can be shown as a function of height. It is recognized
from these results that the height of the extrapolation is about one tenth of the horizontal boundary which
is typically about 30,000 - 50,000 km.

We then applied this NLFF model to extrapolate the magnetic field configuration using the measured
photospheric vector field at Beijing Observatory on 1989 March 9 and 11 to demonstrate the capability of this
model. In order to show the validity of this NLFF model, we also show the computed potential field using
the present algorithm to compare with the Schmidt’s potential field model. This result is shown in Figure
3 (for 1989 March 10 at 0600 UT) which indicates that the results obtained from the present algorithm are
identical to the classical Schmidt’s model.

Figure 4 shows the nonlinear force-free extrapolation for 1989 March 10 (0600 UT) and 11 (0226 UT)
respectively. From these results, we notice that, (i) the differences between the potential field and the NLFF
models are significant. That is, the magnetic field structure represented by the NLFF model is believed to
more closely resemble the realistic situation as shown in Figure 5. We clearly notice from Figure 5 that the
loop structures revealed by the NLFF model closely resembled the H-« observations which the potential field
model cannot show.
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(a) (b) .

Figure 1: Comparison between (a) the analytical solution and (b) extrapolated solution using analytical
data (i.e. data generated by solution given in (a))

{b)

Figure 2: Three-dimensional representation of field lines obtained by analytical solution (a) and numerical
model (b) corresponding to the solution given in Figure 1
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Figure 3: Comparison of NLFF Model and Potential solutions. Photospheric vector magnetograph measure-

ments are shown by the solid (outward) and dashed (inward polarity) contours.
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Figure 4: Simulated temporal evolution of NLFF Model solution over a period of about 20 hours. The
dashed and solid contours are the photospheric vector magnetograph measurements.



3 Coronal Dynamical Responses Due to Emerging Flux Includ-
ing the Transition Region

From the observations, it is inferred that the additional magnetic energy stored in the solar atmosphere very
likely results from flux emergence from the sub-photospheric layer. It is difficult to model this physics because
the characteristics of this part of the solar atmosphere (i.e. photosphere/chromosphere, transition region and

corona) have several order-of-magnitude variations in density, pressure and plasma beta (i.e. § = (1—6%‘5’*1)) ,

hence little progress has been made up to now. Recently, Wu et al. (1992) developed a self-consistent MHD
model to address this problem. A more realistic energy equation was used in order to construct this model.
This energy equation, which includes wave heating, radiative cooling, thermal conduction and joule heating,

is given as:
2

%‘ + (V.‘V)P'*"YP(V -V +(r-1)V-Q - ia— — Gmech + Lraa) =0 (4)
wlhere, p = pressure, V= plasma flow velocity vector, (5 = thermal conduction, J = electric current, G,,.cn
= wave heating, L,,q = radiative cooling, ¥ = specific heat ratio and ¢ = electrical conductivity.

The other equations (i.e. continuity, momentum and the Maxwell equations) are identical to those used
before (Wu et al. 1983b). The numerical method used for this study is the modified ICED-ALE (Implicit-
Continuous-Eulerian-Difference- Mesh- Arbitrary-Lagrangian-Eulerian) method given by Wu et al. (1991b).
The reason for choosing this method is because the Eulerian difference scheme usually used has a limitation
on the grid size which becomes impractical when the spatial gradient becomes too large. A brief description
of the numerical results obtained from this model is given as follows: Figure 6 shows the steady-state density,
temperature, pressure and plasma beta distribution from the surface through the temperature minimum up
to the lower corona (~ 3500 km) together with grid distribution at 50 s after introduction of emerging
magnetic flux. These results are equivalent to the empirical model of the Harvard-Smithsonian model. Our
next objective was to demonstrate that this model can be used to study the momentum and energy transport
from the solar interior to the corona and thereby, to investigate the physical mechanism of coronal heating
and solar wind acceleration. To accomplish this objective we introduced an emerging flux at the lower
boundary and computed the evolutionary state of the plasma properties, velocity and magnetic field. The
initial state is shown in Figure 6. Figures 7 and 8 show the evolutionary results for velocity, temperature,
density, pressure, and magnetic field lines at time 500 s and 1000, after introduction of emerging flux. From
these preliminary results, we found the following features (i.e. a paper is currently in preparation and the
results were presented at the AAS/SPD Meeting June 6-11, 1992):

i. The emerging flux leads to the formation of a current sheet at the interface of the old and new magnetic
fields and to its propagation upward toward the corona;

ii. The induced plasma flow oscillates vertically at the Brunt-Vaisala frequency with a period of 240 s.;
iii. Also, we showed that there is no oscillation when the gravity (unrealistically) is ignored.;

iv. The maximum downward flow (~ 20kms~!) occurs in the neighborhood of the legs of the magnetic
loop which is a typically observed feature.

4 Loss of MHD Equilibrium Due to Footpoint Motions: A
Three-Dimensional, Time-Dependent MHD Simulation Model

Recently Sudan (1991) has demonstrated the phenomena of "loss of equilibrium” by using a set of reduced
incompressible MHD equations. We have used a newly developed three-dimensional, time-dependent, com-
pressible MHD simulation model (Sun and Wu, 1992) to demonstrate similar results. Parker (1972, 1981),
in a long series of papers spanning almost two decades, has claimed that the coronal magnetic field, evolving
in response to smooth continuous photospheric footpoint motions, will not be able to achieve a smooth,
force-force equilibrium; instead, the field develops tangential discontinuties. It has been thought that these

e 5.



won-liinaar Force Tree fields at 13 March 1989 O151UT

Figure 5. Comparison between the magnetic loop structures seen by H-a filtergrams and magnetic
loops derived by the NLFF model as well as the potential field model; (a) the magnetic fields structure
derived by the model at 1989 March 15 at 0315 UT overiay on the H-a picture. {b) the magnetic fields
structure derived by the potentiai field model at 1989 March 15 at 0315 UT. Note the regions indicated
by A and B. It is easy to recognize that the potential field model failed to match the H-a picture
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discontinuties could lead to enhanced dissipation in current sheets and, moreover, could provide the energy
release responsible for coronal heating (i.e. x-ray emissions as observed).

Our simulation for the loss of MHD equilibrium due to footpoint motion is based on a three-dimensional,
time-dependent, compressible MHD model using a new NICE (Nimble Implicit-Continuous-Eulerian) scheme
(Sun, 1991; Sun and Wu, 1992). The results of the simulation shown in Figure 9 are explained as follows:
The sequence of panels, with projected field lines onto the x-z plane, shows that, up to about t;., (this
» maximum time” is deduced from an analytical solution when the force-free solution reaches the critical
state), the numerical results closely follow the analytical equilibrium sequence. After (tnqaz) the field lines
start to oscillate with a maximum velocity reaching an amplitude of about 50kms~!. This result suggesis
that "loss of equilibrium” has occurred. Since we are using the ideal MHD equations, no reconnection can
take place, and an eruption is not to be expected with the infinite amount of overlying flux. This resembles
the real situation for a small arcade of loops embedded in a large active region. With an estimated coronal
magnetic Reynolds number of about 10'?, and with the numerical results giving no indication of strong
current concentrations, indeed no significant reconnection can occur on a time-scale of up to 100 Alfven
scale times (the duration of the simulation). Therefore, the conversion of magnetic energy into MHD wave
energy may be the ouly efficient method that is available to shed excess free energy and, thus, for heating
the corona. Details of this study are described by Marten, Sun and Wu (1992).

5 Two-Dimensional MHD Global Coronal Model: Steady State
Streamers

In this subject, we have made some progress since we first constructed a streamer model (Steinolfson,
Suess and Wu, 1982). Our motivation to revisit this problem was to extend the outer boundary farther
away from the Sun (i.e. ~35 solar radii) and to gain the experience necessary for development of a three-
dimensional model. Another motivation to develop such a model is the simulation of streamers in support of
the Ultraviolet Coronagraph and Spectroheliograph (UVCS) and the Large Angle Spectrometric Coronagraph
(LASCO) instruments on the Solar Heliospheric Observatory (SoHO). These instruments will be able to
measure the temperature, density, and flow velocity vector in the corona. With model calculations, it will be
possible, for example, to infer the magnetic vector. The results of the present study are presented by Wang
et al. (1992a,b) and Noci et al. (1992). We shall briefly summarize some of the highlights in the following
paragraph.

Figure 10 shows the steady state magnetic field lines for four cases: (a) Dipolar 3, = 0.5, (b) Quadrupole,
3 = 0.5, (c) Hexapole, 3 = 0.5, and (d) Dipole, 3 = 0.2. The relaxation times allowed to reach these equilibria
are: (a) 22.22 hrs., (b) 16.7 hrs., (c) 18.06 hrs., and (d) 19.44 hrs. respectively, where 3 is evaluated at the
equator of the solar surface. In each plot, four dashed lines are labelled "A, B, C, or D”. These show the
radial directions used for plotting the variables versus radius in each case. Thus, the 8 = 0.5 quadrupole
plots will have variables versus radius at the pole (B), at the edge of the polar region (A), through the
mid-latitude streamer (D), and in the equatorial open region (C). The dashed lines are along the direction
of the grid. Since there is no grid point either exactly on the equator or exactly at the pole, these lines are
slightly offset from those positions. The plasma parameters, radial velocity and total magnetic field strength,
are presented in a pre-print (Wang, Wu, Suess and Poletto, 1992b) which is included in the Appendix.

/0



Magnetic Field Line Projection on the X-Z Plane
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Figure 9: Numerical simulation of the evolution of the magnetic field in projection on the z — = plane, which
is perpendicular to the £ — y photospheric plane.
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A TWO-DIMENSIONAL MHD GLOBAL CCRONAL MODEL:
STEADY-STATE STREAMERS

A.-H. WANG, S§. T. WU
Center for Space Plasma and Aeronomic Research and Depariment of Mechanical Engineering,
The Universirv of Alabama in Huntsvitle, Hunisviile. AL 35899, U.S.A.

S. T. SUESS
Space Science Lab. £552. NASA Marshaii Space Fiight Center. Huntsviile, AL 35812, LS. A.

and
G. POLETTO

Osservarorio Astrofisico di Arcerri, 30125 Firenze, ltaly

(Recci\'éd 4 August. 1992 in revised form 22 February, 1997)

Abstract. We describe a two-dimensional time-depandent. numerical. magnetohydrodvnamic model
for the determination of the physical propenies of coronal streamers fro the top of the transition
zone (R = 1) 1o 15 R.. Four examples are given: for dipole. quadrupole. and hexapoie initial
field topologies. The computed parameters are density. temperature. velocity. and magnetic feld. In
addition 1o the properues of the soiutions. their accuracy is discussed. We use the model as the basis
for a generat discussion of the way noundary conditions are specified in this and similar simuiations.

1. Introduction

We present resuits from a recentiv-developed numerical model of coronal struc-
ture. The immediate reasons for a new model were to extend the outer boundary
farther from the Sun and to gain the experience necessary for development of a

three-dimensional model. A result of this process has been a close examination of

the physical details of the solution and how they depend on the way the boundary

conditions are specified. An immediate application will be the simulation of stream- -

ers in support of the Ultraviolet Coronagraph and Spectroheliograph (UVCS) and

the Large Angle Spectrometric Coronagraph (LASCO) on the Solar Heliospher’xc'— :

Observatory (SoHO). These instruments will be able to measure the terhperature, .
density, and flow vector in the corona. With mode! calculations, it Wlll be possible,
for example, to estimate the magnetic field vector. :
Numerical models of coronal structure have been published <porad1calI\ at
long intervais, over the past twenty years. The first (Pneuman and Kopp, 1971)
demonstrated the feasibility of such models, treating isothermal flow and arriving

at the solution by iterating on the electrical currents. However, a more efficient-

and flexible method is to consider an initial-boundary value problem in which

the steady state is found holding the boundary conditions constant and allowing

the solution to relax in time from an essentially arbitrary initial state. Steinoifson;

Suess, and Wu (1982) applied this later technique to the analysis of a polytropic -

dipole configuration for a range of plasma J (ratio of internal pressure to mag-

Solar Physics 000: 1-17. 1993,
© 1993 Kluwer Academic Publishers. Printed in Belgium.
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netic pressure). Steinoifson (1989, 1991) and Guo et 2. 11992) have used this
steady-state solution as the basis for studving coronal mass ejections and streamer
evolution with shear, which can be simulated using a nearly identical numerical
model. Detaiis of the numerical schemes and results can be found in the referenced
publications.

We revisited this problem for the reasons mentioned above. However, we also
consider that such compiex numerical models are rarely without problems or uncer-
tainties. When the models are used for anaiysis of data and for predictions, the only o
reliable validation is to develop an independent model and compare the resuits. C
Even when both (or all) models are fundamentally correct, this process generaily
leads to new or deeper understanding of the problem. In the present case, this is D
precisely what has happened. We have gained a better insight into the physical )
basis of the criteria which should be adopted in specifying boundary conditions.
The resuits from this constitute an important part of the present study.

The physical and numerical simulation is described in Section 2. Section 3
details numerical models of dipole. quadrupole, and hexapole magnetic fields.
Section 4 is a discussion of numerical precision of the solution and the boundary
conditions. putting the discussion into context with earlier models so far as is
possible. Section 3 contains our summary and conclusions.

2. The Physicai and Numericai Simulation

e assume axisymmetric. single fluid. polytropic. time-dependent ideal magneto-
hydrodynamic dow and perform the calcuiation in a meridional plane defined by
the rotational symmetry axis of the magnetic field. The coordinates are (r. 4, o)
with ¢ being the ignorable coordinate. For the magnetic field boundary condition,
we take the radial field component at the lower boundary to be that given by a
vacuum dipole. quadrupole. or hexapole potential magnetic field. The flow there-
fore has reflective symmetry across the equator and the calculation need be done
in only one quadrant. The equations of motion that describe this flow are:

_/i‘-% ( ,-b;’:- ) —+ _,‘):'/ E;- (;'J:‘ :

d J WY 7 2pv. o =
,—p+f—(p1',)=(et—o\'=—ﬂ-p—lgcott). - 7 (la)
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avr L Dv,. } Be dBa o i dp _ i—;/ J’U?\ B@ aBr _ e v "_
ot T ar  up dr— pdr .y —HQ@ ppr 90 AC }_

My 2 B2 .
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T rooper - -
a.ﬂ + v,a.ﬂ 595 A —B'——QB' + l?—p = BrBa_ tevg . (1¢)
at ar  up Or 98~ ppr 06 pr a6 upr T
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The dependent variables are the densit)’r./p, the pressure, p, the radial and
meridional velocities. v, and vs, and the radial and meridional magnetic fields,
B. and By. The constants M, G, v, and u are the solar mass, gravitational
constant. the poiytropic index and the magnetic permeability.

These equations are solved in a computational domain extending from the Sun
(1 Ra)to 15 R, from the pole to the equator. It is assumed that meridional flow
is zero at the pole and equator. The grid is divided so that there are 37 gridpoints
in the radial direction and 22 gridpoints in the meridional direction, with the radial
grid size slowly increasing with radius. The meridional grid is divided so that
poiints lie equi-distant on either side of § = 0 and 4 = 90°, at 8 = -2.25°,
2.25°,6.75°, .., 87.75°,92.25°. The algorithm adopted here is the Full-Implicit
Continuous Eulenan (FICE) scheme described by Hu and . Wu-(1984). Fortime
stepping a second-order accurate toward“ dxfferencma scheme is used, with the
step size being of the same order 3§ given by the Courant condition because the
magnetic field is calculated explicitlv. Smoothing is used when gradients become
t00 large, 1.z.. at shocks (which do not occur here). At the inner boundarv, the
flow 1s subsonic and sub-Alfvénic so that two of the six independent variables are
calculated using compauibility relations (Hu and Wu, 1984). A brief summary of
the compatibility conditions ror the present model is given in the Appendix. along
with details on how the boundary values and conditions are applied. We choose

to specify the radial and meridional magnetic fields, temperature, and density, The .

radial and meridional flow speeds are computed from compatibility relations (i.e:,

Equations (A.1) and (A.2)). At the outer boundary, the flow is restricted to being
both supersonic and super-Alfvénic. In this case, all variables at that boundary can .

be calculated by simple linear extrapolation from the first (or first two) grid points
inside the boundary. In this study, we did not perform the comparison between

the present boundary conditions and conventional boundary conditions. However,

in a recent study by Sun (1991), it was shown that the statement of the boundary
conditions in the Appendix eliminates the spurious waves generated by boundarv
disturbances and which can cause numerical instability. _ ..— sz o “7Er
We start with an essentially initial state “and allow the flow to relax in time whlie
holding the boundary values” constant. In the present case the initial flow field is

a polytropic, hydrodynamic solution to the steady-state radial flow equation of -

motion (e.g., Parker, [963) superimposed on a potential magnetic fieid. That this

is neither a self-consistent nor stable solution to the steady-state MHD equations -
is irrelevant since the flow is allowed to evolve in time under the control of the

equations of motion. The Tpam The main concems are that the numerical solution
be stable and of sufficient accuracy to define the physically interesting aspects of
the solution, and that the relaxation proceed long enough that an acceptably close
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Fig. 1. Density. temperature. and velocity profiles in radius that were used for the initial {(t=0)
state in the relaxation. On the left are the proiiles for the 3 = ? as=s and on the right are the
profiles for the J = 0.2 case. Note that. exceot for the velocity scTles, the scales differ between the
‘wo panels. Because the polytropic index is near unitv. temperature changes siowly with radius and
the irreguianties in the temperature orotiles should be interpreted as noise.

IDProximation 1o the steady state has been reached. We address these issues brieriv
in Section 4.

3. Detailed Results from Four Specific Models

We report here on four specific models. The results are grouped first according
to the way in which the physical variables are plotted (i.e., either versus radius
or versus polar angle) and second according to which of the four examples the
plot is for. In these four examples, three magnetic field geometries are used: a
dipole, aquadrupole, and a hexapole; the scalar potentials are therefore proportional

to Py (cosd). Py (cosd), and P, (cos8), respectively, where P, (cosd) is the-

Legendre polynomial of degree n. There are two dimensionless free parameters:
the polytropic index. v, and the plasma, J. We use v = 1.05 in all cases, 3 = 0.5
for ail three field geomerries. and. in addition. do a dipole calculation for 3 = 0.2.
[n these case, J is evaluated at 1.0 R at the equator. where the field strength is
1.67 G both for 3 = 0.5 and 3 = 0.2. For the high J cases, the base temperature
and density are 1.8 x 105 K and 2.25 x 10% cm 3. For the low 3 case. they are
[.44 x 106 K and 5.61 x 107 cm~3. The three magnetic field geometries naturaily
lead to a single equarorial streamer, a mid-latitude streamer. and both an equatorial
and a mid-latitude streamer for the dipole quadrupole and hexapole, respectively.

Resuits from the four examples w1ll be referred to as follows:

(a) Dipole, 3 =0.5. -~

(b) Quadrupole, J = 0.5..

~N
Temperature/10-~6 (K)

‘0.8
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A TWO-DIMENSIONAL MHD GLOBAL CORONAL MODEL: STEADY-STATE STREAMERS :

{¢) Hexapoie, J =:0.3..

(d) Dipole, 5 =0.2.~

The initial state temperature. density, and velocity profiles are shown in Figure .
The temperature curves appear irregular due to the smail change in temperature
over the relatively large radial range - a consequence of the polytropic index being
near unity. Only three significant figures were retained after the calculation so what
is seen here is roundoff error in the plotted results rather than in the computed
results,

The final, steady-state magnetic field geometries for the four cases are shown in
Figure 2. Here s seen the weil-known property that the flow is nearly radial bevond
34 R;. The flow is field-aligned everywhere and field lines which cross the outer
boundary reach to 0. The streamers are those volumes which are magnetically
closed (i.e., the fieid lines retumn to the surface of the Sun) and it is evident that
relatively small volumes in the streamers remain magnetically closed in comparison
to the initial state where all field lines were closed. These closed volumes are
surrounded by a low density shell but. as will be shown below. the densities in the
large coronal hole-like open regions are otherwise only slightly lower than in the
streamers. [n each panel of Figure 2. four dashed lines are shown and labelled A,
B. C. or D. These lines indicate the radial directions used below to plot variables
versus radius.

The physical times allowed for the relaxation in these four exampies were:
(a)22.22 hours for the 3 = D.gfdipoie: tb) 16.67 hours for the J3 =?-O\.;\quadrupole:
(c) 18.06 hours for the J ='O’:i‘,hexapolc; (d) 19.44 hours for the 3 = 0.2 dipole.
These times are determined by how long it takes for any fluctuation to be advected L
out through the outer boundary of the solution domain. This in turn depends on how
large the flow speed is and whether the fluctuations represent inward propagating -
waves. In general, the times listed above are the minimum required for a stationary
fluctuation (i.e., non-propagating in the solar wind frame) to be advected from )
l Ry 10 15 Ry atatypical flow speed in the open regions. This sometimes leads to B
small residuals in the relaxation near the outer boundary at 15 R, but the solutions ‘
inside 7 R that are shown here are quite steady. This is another point that will be
reviewed in Section 4.

Figures 3 and 4 are plots of density and radial velocity versus radius. The plots
are made in the directions indicated in Figure 2 so that, for example, in each panel
of Figure 3 the density is plotted in the four directions A, B, C, and D indicated
in the corresponding panel of Figure 2. In both of Figures 3 and 4, the four panels
corresponding to the four paneis in Figure 2 are clearly labeled. The density profiles
have been divided by their corresponding initial state (¢ = 0) profiles from Figure |
because the density changes by several orders of magnitude between the Sun and
15 Rg. The plots here extend only to 7 Ry because there is no new information .
contained outside this radius - the flow is already supersonic and essentially radial. )

Tuming briefly to each figure individually, we begin by noting that a density i
enhancement is indicated by values grater'tha unity, and vice versa. The density i‘\ \(‘6'

1o
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A TWO-DIMENSIONAL MHD GLOBAL CORONAL MODEL: STEADY-STATE STREAMERS N
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Fig. 3. Density as a function oradius. Each panei is for the corresponding case in Figure 2.’:15‘ -
labelled. Thecyrves are plotted along the directions shown in Figure 2. For example. the four curves /
for the J = 0.5 hexapoie labetled (A. B, C. D), are along the four directions shown in the third panel -

of Figure 2 37id labelled in the same manner. Each curve has been divided by the initial prorile (see
Figure 1). A density enhancement is indicated by values greater than unity. and vice versa. The

density concentrations in the streamers are clearly visibie. generally being on the order of 25% to -
30% above the initial state.

concentrations in the streamers here are clearly visible, generally being on the order

of 25% to 50% above the initial state. The base density for the J ={0.5tases 1s close /
to that reported by Allen (1955) for the base of the quiet corona and the density
profile shown here has generally the right behavior for streamers — as shown by
curves C_far cases (a), (c), and (d), and curve D in case (b). Curve D for case (@),
the 3 =\Q.5/dipole, is an example of the density deficit on the flank of a streamer -
that is typical of the results for all the examples. In contrast, the density in the -
centers of the open regions (curve B in all cases, curve C in case (b), and curve D
in case (c)) is little different from the initial state, being only slightly smaller. This .
is only surprising when comparison is made to coronal hole observations tMunro
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Fig. 4. Radial velocity as a function of radius. Each panel is for the corresponding case in Figure 2.
The curves are plotted along the directions shown in Figure 2. as in Figure 3. The velocity inside the
streamers is seen to be essentially zero.

and Jackson. 1977) wherein the density was reported to be more than an order of
magnitude less than in streamers. This difference is a naturai consequence of the
properties of a polytropic model and the choice we have made for the boundary

conditions on temperature and density - that they be independent of polar angle.

The choice leads to both the high density shown nere and the low flow speeds
shown below on open field lines, irrespective of the open streamline geometry.
To model true coronal hole flowr wiht-a polytropic gas would require at least an
elevated temperature in the open residns and probably also a lower density at the
base (Suess et al., 1977; Suess. 1979).

The radial velocity is shown in Figure 4, at the positions indicated in Figure 2.
As described above, and as is generally the case in polytropic models, the flow
speed in the open regions is similar to the undisturbed initial flow speed shown
in Figure 1. In the streamer. the flow speed is essentially zero and it is reduced



A TWO-DIMENSIONAL MHD GLOBAL CORONAL MODEL: 3TEADY-STATE STREAMERS )

on the adjacent open field lines due. apparently. to the strongly inclined fdow
direction more than to geometry. The nonzero outtiow above streamers (e.g g., at
f1=7.14 R, at the equator of the 3 = 0.3)dipole) refers to the open field region
above the streamer’s cusp. The 3 = 0.Zdipole is the most extreme exampie of
this — and the flow speed is nearly identical to the initial speed everywhere except
on closed field lines. directly above the center of the streamer. and on the highly
inclined field lines immediately adjacent to the streamer — where the difference is
still rather smail.

We do not plot the temperature since, due to the polytropic index being 1.05.
it varies by only a few percent throughout the computation domain. However,
this is an effective temperature’ because a polytropic energy equation with a
polytropic index of 1.05 is equivalent to a large amount of energy being added to
the flow. Nowhere is the form of this energy specified. nor what the conversion and
dissipation mechanisms are. However, it has been shown that a polytropic index
on the order 1.05 is required to reproduce observations of coronal densities (Suess
et al., 1977).

Finaily, the magnetically open regions. although cugivalent to coronal hole
Hows, do not simulate coronal holes because the fiow speeds are far too smail.

-

To obtain reasonable flow speeds in this model it would be necessary to have .

the temperature vary across the base of the open region — which is well within
the capability of the model. Such a variation has been shown to reproduce ail
the known properues of coronal hole flow and lead to accurate simulations of the
geometry, with the effective temperature being larger in the center of the hole than
atthe edge (Suess et al., 1977). In contrast to the openregions, the densities in the
closed regions are similar to observed streamer densities and we feel this model is
therefore a good approximation to streamer geometry. The temperature must still
be qualified as an effective temperawre, but can be used for diagnostic purposes in
combination with planned observations on SoHO/UVCS.

Some of the results cna bé better viewed and more easily understood when

. )

L] (dd)

plotted versus polar anc}e’at different heliocentric distances, than versus radius at-—= fBtas. /

constant polar angles. Such plots are shown for the dnesity; radial velocity, and
total field strength in Figures 3. 6, and 7, respectively.—

Figure 5 shows the density drop adjacent-the streamer. In the panel for the
3 =0.5 dipole. this drop is quite large, well resolved, and leads into the density
cnhancement nside the equatonai streamer. The only place this does not occur
is at the base — where the density is held constant. The width of the density

A
enhancement in the streamer decreases with height, just as the width of the streamer— 7 “,‘

itself decreases with height (e.g .. Figure 2). Essentially the same thin is séen for the
4 = 0.2dipole wiht the followmc quantitative differences: (i) The streameris much
higher and wider. (i) The density depletion on the flanks has a smaller amplitude.

These differences are the primary reason we conclude that solar streamers are better
descnbed by a 3 .5 plasma than by a 3 = 0.2 plasma. Qualitatively, a similar
result is found for the quadrupole and hexapole. However, it is obvious that the
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Fig. 5. Density versus polar angle, between the pole (0°) and the equator (90°). Each of the curves. - ﬂtu < ( u HU
is labelled according 1o the heliocentric distance it refers 10, TRiS>the curves labelled 1.70 R indicate. - s
the density at 1.70 R heliocentric radius. The density at th&Fase is constant and so the curves there B

are flat. Above the base, there is a small density enhancement in the streamer (ca. 5% to 50%) and" -

a rough in density at the edge of the streamer. In the middle of the open region, the density is very

close 1o what it was in the initial staie (see also Figure 3). The reason it is not small is that we nave

used constant temperature and density at the base. To produce a true coronal hole-like profile would

have required at teast an increase in the temperature at the base of the open region (Suess et al.,
1977).

hexapole is only marginally resolved with the present grid density — there is really
only one meridional grid point inside the mid-latitude streamer at any given height.
The radial veloclty in Figure 6 drops precipitously from the magnetically open T
region to the inside of the streamer. That the velocity is not identically zero inside
the streamer is a result of numerical’ dxffusm‘and is a measure of this numerical
\ é

Sree ey
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A TWO-DIMENSIONAL MHD GLOBAL CORONAL MODEL: STZADY-STATE STREAMERS I

artifact in the FICE scheme. For example, at 1.70 R in the 3 —fi@dipole. the 7
velocity drops from ca. 60 km s ~ ¥/is hardly above the noise level in the plots and the
associated kinetic energy is too smail to arfect the dynamics of the solution. Such
‘slippage’ will, nevertheless, occur in all numerical solutions. At larger heights

(e.g., 4.90 and 7.14 Ry) there is small, but finite low near and in the neutral sheet
dividing regions of opposite magnetic polarity. This is qualitatively like what is
observed in the solar wind in the interpianetary medium. The 8 = 0.2 dipole again
exhibits properties unlike the Sun in the sense that the very low flow speeds inside

the streamer seem to still exist even at 7.14 Ry - far outside the observed extent

of closed streamers.

Figure 7 shows the variation of the total magnetic field strength, (B2 + B3)!/2,
across the streamers. The most interesting thing to note in these plots is the enhance-
ment in total field strength on the flanks of the streamers. This is what ‘confines’
the streamers. The field strength for the 3 = 0.2 dipole is seen to vary smoothly,
with little distinct evidence of the streamer. This is just another indication that the
presence of the plasma has had little effect on the field geometry in this low-J case.

4. Accuracy and Stability of Calculations

This numerical model has been found to be weakly subject to the Courant condition
on size of time step. Therefore, the size of the time step decreases as the largest
values of the temperature and magnetic field increase — along with the maximum
sound and Alfvén speeds anywhere in the grid. Counteracting this, the higher
characteristic speeds lead to a somewhat faster relaxation time. However, generally
shorter time steps are required for smaller 3 calculations. The flow speed also -
plays an important role in determining the relaxation time to a steady state — the-
initial state is a disequilibrium configuration. This imbalance must have time to be
advected from the base through the outer boundary. The physical time this takes can -
be estimated by taking a typical (but small) value for the flow speed and caculating
how long it would take the plasma to flow at this speed from the base to the outer .
boundary. For example, at 150 km s~', to 15 Ry, this takes 18 hours (relaxation -
times we have used here are given in Figure 1). ST R
A second consideration is gridpoint resolution. The grid used in these examples
is 4.5° in latitude and about 0.24 Ry in radius near the base - increasing siowly
with radius. This is sufficient to adequately resolve the geometry and flow on the
scale shown in Figure 2. However, if finer scale information is required in, for
example, the core of the streamers, a denser grid would be required. . S
Always a serious consideration in these time-dependent, non-Cartesian MHD
calculations is the conservation of magnetic flux — that V- B = 0 is maintained -
at all times. The condition is maintained here through accurate differencing rather -
than a self-correcting scheme. No anomalous acceleration due to errors in flux |
conservation is apparent in the results. The numerical scheme is pressure-based so
it is limited by stability to large and moderate 3 values (e.g., 3 2 0.1) - which
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Fig. 6. Radial velocity versus polar angle, between the pole and the equator. Each curve, plotted

for different heliocentric distance. is labelled in the same manner as in Figure 5. The velocity in ... e
the magnetically closed regions is essentially zero. The reason it is not identically zero is that there' - -

is a small amount of numerical diffusion - quite small as indicated by the velocity being less than

10km s~ inside the 3 =(0.5Mipole streamer at 2.30 Rep.

turns out to be the same restriction for maintaining ¥ - B = 0 to the required
degree. )
Finally, the energy equation : =

(+v9)(3)-o

reducesto v-V(p/p?) = 0 when asteady state is reached, which means that (p/p")
is then a streamline constant. This becomes an analytic test of the achievement of a
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Fig. 7. The total magnetic field ((B? = B87)!/?) versus polar angle, between the pole and the equator.
Each curve, plotted for different heliocentric distance, is labelled in the same manner as in Figure §.
The field in the vicinity of the current sheet above the cusp in the streamers has a greatly reduced
amplitude. as would be expected. The effect is amplified above the mid-latitude streamers.

steady-state solution in our case. The boundary values of p and p are the same at all
latitudes. Therefore, (p/p”) = 0 has the same value everywhere in the computation
regime as it has on the boundary if a steady state has been reached. We have checked
this for the cases shown in Figure 2 and find that for the dipole and quadrupole it is
constant to within a maximum of 1% and for the hexapole it is constant to within a
maximum of 4% (average values over the whole grid are less than 1% in all cases).

5. Discussion

The new feature of this model. with respect to analogous simulations, is the exten-
sion of the outer boundary to 15 Rg. This is not a conceptual advance, but this and
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the stability and ruggedness of the code make it very useful for simuiating realistic
coronai conditions. We present new resuits for quadrupole and hexpoie fields, with
their accompanying mid-latitude streamers and open magnetic field regions. The
Alfvén speed ranged between 800 km s~ and a few tens of km 5. This is lower
than is believed appropriate for the corona (Suess, 1988), but we expect our model fad ,J)
will now enable simulations with higher Alfvén speeds. AL 28T

When comparing our resuits to those of Steinoifson, Suess; and Wu (1982;
henceforth referred to as SSW), an interestin W t difference becomes o
apparent. In the present calculation, we have held the density and temperature
constant at the base, allowing the velocity (and, hence, the mass flux) to ‘float’ ‘_
with time in accordance with the compatbility relations determining the velocity o i
from the solution inside the computational domain. In contrast, SSW hold the ST
temperature and velocity constant at the base and allow the density to change
according to the corggaubxhty relationships. SSW determine the location of the
streamer by locating closé field lines and allowing the velocity to decrease to zero =
at the feet of these field lines. A consequence is that inside the streamer, the final T e
density is considerably higher than the initial density and this is the primary reason '
for the quantitative differences between their results and ours. .

There is an important consequence of this difference in boundary conditions
between SSW and the present calculation: the plasma J is computed using the
temperature, density, and magnetic field at the equator and at | R,. This is invariant
in the present calculation, but in SSW this number is different in the final, steady
state than at the beginning: there 3 was computed using the initial values. Therefore,
in SSW in the steady-state solution is actually larger than stated for each example
they did. Thus, our calculation for a dipole with § = 0.2 (case (d)) corresponds to .. T T
cases for 3 < 0. Lug&WW We feel that the way we have done the analysis more i
closely corresponds to what occurs and what is physically known for the Sun and -*
therefore leads to a more precise definition of the problem. So, we conclude that the . _
present study has demonstrated a preferable treatment of the boundary condmons
in comparison to earlier calculations. fore dlred)

A consequence of the precise examples we have one in cases (a) throu0h (d),--
with constant temperature and density, is the flow Speed-an dhigh'c denslty in the
magnetically open regions - in comparison to what is believed to be the case )
in solar coronai holes. This is a natural consequence of using a polytropic gas -
in which the flow speed is strongly dependent on base temperature. It also does
not reflect suggestions from analysis of Skylab data that densities at the base of
coronal holes may be a factor of two smaller than at the base of streamers (G. Noci,
private communication). In a continuation of this study, we will produce models
with varying temperature and density at the base. The variation in temperature
will, because it is an ‘effective temperature’, reflect a difference in energy balance e

and distribution between the base of coronal holes and streamers instead of a true
temperature difference.
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Appendix. The Inner Boundary Conditions According to the Projected
Normal Characten'stic Method; a 2D Case e i

The inner boundary conditions are obtained according to the method of projected
characteristics (Nakagawa, Hu, and Wu, 1987) with tj;nFICE algorithm (Hu and
Wu, 1984). For the two-dimensional case, the Alfvénic mode does not exist, there-
fore, there are six eigenvalues. These six eigenvalues lead to six projected normal
characteristics and to six compatibiliity equations (see Wang, 1992; for deriva-
tion). At the inner boundary, since v, > 0 and v, < Vi, Vj, the characteristics
dr/dt = v, — V; and dr/dt = v, ~ V are towards the lower boundary from interior
(i.e., outgoing) and need to be considered. There are four incoming characteristics

(vr, vr +V, vy +Vy, and one that is degenerate because of the model symmetries),

so four variables can be specified at the boundary. Two other variables need to be
calculated from related compatibility equations. We choose the values of B,., By,
o, and T 10 be specified, leaving two quantities (i.e., v, and v4) to be computed
according to following compatibility equations:

dv. _ V,B_+V,C_

)

= ‘ (A
gt pV,Vp(V2 - Vf) _ o ¢ )
dvg _ Vi(v - VR)B_ = V;(V} - VA)C- | Ay
E V.Vy(V} - V2)B, B ’ L

with the corresponding variables simplified in two dimensions as follows:

2 S
R=b =l T AR
P L
a* = ¥RT, (A
2 2
b = (B + B37) , (A.5)
o)
1, b) ) 3,211/ 5
V} = 50% + 80+ [(a® + ) - da8]'/2 (A.6)
1 12 3 2,1 2 =
V= -Z-a‘ +b + [(a® + 0*)? - 4a"b;]’/' , (A7)
. v, v
B =p(V} - ViVi(v, -V 3 =~ B, BgVy(v: ~ V)t

ar
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: B
~(VF =V (v - v,)%’l — BeVi{v, ~ Vy )_.’9 f -
i Ov, BGUGV-f" OBy
V= VOVVeo g - -
2 2 T 1 3119
-{pa’(Vf - I/A) T B¢) + B. BanU —'%'-

B.BoVy] 109 _ Bov}9B. _
p r 80 r d6

- {va(sz -V +

_uY f 2oV} -VY) - B} - V}BOUO(B, + By ctg)— o
uvz {p(V', - Vi) - B} ctgh - —”’”"B:vaf_
”V’ v - vty + LB 4 gz vy, Ay =
C- = p(VE - VE)V,(o, - >‘?" - B.BoVy (v, - V) 52~ -
5B,

-(Vi=-V) (@ -V, )——'-BgV (v, = T )87' ‘
2ty L9  BaveVil 0Bs
VA = VOViVes 5 - 09

) . 19 SRR
~{pa®(V} - V) = B) + B, BV, w]-—”—‘*— e
B,BaV;]10p _ Bov}9B.

_ 2 _ 12
ve(Va - Vi) + p r 06 r a8

2% 2 o,
+5L20(V2 - V3) + B - B“”(B +Bo g+ .

Vi +vsBs B, V., ST
+ (V- VY - Bfjetge + DB BT

V.v2 v3ig? . L .
'E%(Vﬁ -V - STBG +pg(Vi = V3)Vig . (A9)

Since the ideal MHD equations have been used, flow is parailel to the magnetic
field lines. Thus we determine By from the relation B,vg = v -Be; o
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