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1 Introduction

During this period of performance (January 1, 1092 - December 31, 1092) we have accomplished the inves-

tigation of the following tasks:

a. Application of the Non-finear Force-free Field (NLFF) Model to study the active region evolution.

b. Coronal dynamical responses due to emerging flux including the transition region.

c. Loss of MHD equilibrium due to footpoint motions.

d. Two-dimensional MHD global coronal model: steady-state streamers.

The detailed description of these studies are included in the following sections:

2 Applications of the Non-Linear Force-Free Field (NLFF) Model

to Study the Active Region Evolution

Since tlle publication of tile first version of our extrapolation scheme (Wu et al. 1990), called "Progressive

Extension Method (PEM)", further modification was niade on the regularization-like technique. This new

regularization-like technique can be summarized as follows: the expression for averaging given by Eqs. (3.5)

and (3.6) of the paper by Wu et al. 1990 is modified as follows:

The regularization-like solution for the magnetic field vector, B:._ becomes

/_.j = (1 - 7)Bi.j + "Y/_,.j (1)

where /_.j is the same as Eq. (3.5) from the Wu et al. (1990) paper and

= (2)

with %, being arbitrary and to be determined by a trial and error method until the solution converges and

<,= (3)

By setting our goals on 7(z,,_) and 70, a is determined.

Using this modified technique, we performed a number of significant tests by using a complicated an-

alytical nonlinear force-free solution (Low and Lou, 1990) as the input to the numerical model. Figure 1
shows a top view of the field fines generated by: (a) an analytical solution (Low and Lou, 1990), and (b) a

numerical solution obtained from extrapolation. Figure 2 shows three-dimensional field fines corresponding

to the solutions given in Figure 1. These results clearly demonstrate that the PEM (Wu et aL

1900) is a reasonable method to obtain nonlinear force-free fields by using vector field data in
the photosphere. The accuracy of the extrapolation can be shown as a function of height. It is recognized

from these results that the height of the extrapolation is about one tenth of the horizontal boundary which

is typically about 30,000- 50,000 kin.
We then applied this NLFF nmdel to extrapolate the magnetic field configuration using the measured

photospheric vector field at Beljing Observatory on 1989 March 9 and 11 to demonstrate the capability of this

model. In order to show the validity of this NLFF model, we also show the computed potential field using

the present algorithm to compare with the Schmidt's potential field model. This result is shown in Figure

3 (for 1989 March 10 at 0600 UT) which indicates that the results obtained from the present algorithm are
identical to the classical Schmidt's model.

Figure 4 shows the nonlinear force-free extrapolation for 1989 March 10 (0600 UT) and 11 (0226 UT)

respectively. From these results, we notice that, (i) the differences between the potential field and the NLFF

models are significant. That is, the magnetic field structure represented by the NLFF model is believed to

more closely resemble the realistic situation as shown in Figure 5. We clearly notice from Figure 5 that the

loop structures revealed by the NLFF model closely resembled the H-a observations which the potential field
model cannot show.
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Figure 1: CompaIison between (a) the analytical solution and (b) extrapolated solution using an_i_r'._[

data (i.e. data generated by solution given in (a)).
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Figure 2: Three*dimensional representation of field lines obtained by analytical solution (a) and numerical

model (b) corresponding to the solution given in Figure I



1989 March
Schmidt Potential Field

,_ , 2_ _

i0 0600 UT

_LFF Model Potential Field

; '" ":-_-_......

Figure 3: Comparison of NLFF Model and Potential solutions. Photospheric vector maguetograph measure-

ments are shown by the sohd (outward) and dashed (inward polarity) contours.
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Figure 4: Simulated temporal evolution of NLFF Model solution over a period of about 20 hours. The

dashed and solid contours are the photospheric vector magnetograph measurements.



3 Coronal Dynamical Responses Due to Emerging Flux Includ-

ing the Transition Region

From the observations, it is inferred that the additional magnetic energy stored in the solar atmosphere very

likely results from flux emergence from the sub-photospheric layer. It is difficult to model this physics because
the characteristics of this part of the solar atmosphere (i.e. photosphere/chroluosphere, transition region and

\

corona) have several order-of-magnitude variations in density, pressure and plasma beta (i.e. 13 = (_)),

hence little progress has been made up to now. Recently, Wu et aI. (1992) developed a self-consistent MHD

model to address this problem. A more realistic energy equation was used in order to construct this model.

This energy equation, which includes wave heating, radiative cooling, thermal conduction and joule heating,

is given as:
0p j2
.... G., cn + = 0 (4)Ot + (V • V)p+-yp(V • V + ('r - 1)(V • Q a

where, p = pressure, I_ = plasma flow velocity vector, Q = thermal conduction, J = electric current, G ..... I,

= wave heating, Lf,,a = radiative cooling, V = specific heat ratio and o" = electrical conductivity.
The other equations (i.e. continuity, momentum and the Maxwell equations) are identical to those used

before (Wn et al. 1983b). The numerical method used for this study is the modified ICED-ALE (huplicit-

Continuous-Eulerian-Difference-Mesh-Arbitrary-Lagrangian-Eulerian) method given by Wu et al. (1991b).

The reason for choosing this method is because the Eulerian difference scheme usually used has a linfitation

on the grid size which becomes impractical when the spatial gradient becomes too large. A brief description

of the numerical results obtained from this model is given as follows: Figure 6 shows the steady-state density,

temperature, pressure and plasma beta distribution from the surface through the temperature mininmm up

to the lower corona (--- 3500 kin) together with grid distribution at 50 s after introduction of emerging

magnetic flux. These results are equivalent to the empirical model of the Harvard-Smithsonian model. Our
next objective was to demonstrate that this model can be used to study the momentum and energy transport

from the solar interior to the corona and thereby, to investigate the physical mechanism of coronal heating

and solar wind acceleration. To accomplish this objective we introduced an emerging flux at the lower

boundary and computed the evolutionary state of the plasma properties, velocity and magnetic field. The

initial state is shown in Figure 6. Figures 7 and 8 show the evolutionary results for velocity, temperature,

density, pressure, and magnetic field lines at time 500 s and 1000, after introduction of emerging flux. From

these prelinfinary results, we found the following features (i.e. a paper is currently in preparation and the

results were presented at the AAS/SPD Meeting June 6-11, 1992):

i. The emerging flux leads to the formation of a current sheet at the interface of the old and new magnetic

fields and to its propagation upward toward the corona;

ii. The induced plasma flow oscillates vertically at the Brunt-Vaisala frequency with a period of 240 s.;

iii. Also, we showed that there is no oscillation when the gravity (unrealistically) is ignored.;

iv. The maximum downward flow (_ 2Okras -1) occurs in the neighborhood of the legs of the magnetic

loop which is a typically observed feature.

4 Loss of MHD Equilibrium Due to Footpoint Motions: A

Three-Dimensional, Time-Dependent MHD Simulation Model

Recently Sudan (1991) has demonstrated the phenomena of "loss of equilibrium" by using a set of reduced

incompressible MHD equations. We have used a newly developed three-dimensional, time-dependent, com-

pressible MttD simulation model (Sun and Wu, 1992) to denmnstrate similar results. Parker (1972, 1981),

in a long series of papers spanning ahnost two decades, has claimed that the coronal magnetic field, evolving
in response to smooth continuous photospheric footpoint motions, will not be able to achieve a smooth,

force-force equilibrium; instead, the field develops tangential discontinuties. It has been thought that these



_ -_ .... 5c,rce Free Fields ot [5 March _989 015IUT

A

Potential Fields at 15 March 1989 0151 UT

Figure 5. Comparison between the magnetic loop structures seen by [-t-a filtergrams and magnetic

loops derived by the NLFF model as well as the potential field model; (a) the magnetic fields structure
derived by the model at 1989 Marcil 15 at 0315 UT overlay on the H-c_ picture. (b) the magnetic fields

structure derived by the potential field model at _.989 _Iarch 15 at 0315 UT. Note the regions indicated

by A and B. [t is easy to recognize that the potential field model failed to match the H-c_ picture
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discontinuties could lead to enhanced dissipation in current sheets and, moreover, could provide the energy

release responsible for coronal heating (i.e. x-ray emissions as observed).
Our simulation for the loss of MHD equilibrium due to footpoint motion is based on a three-dhnensional,

time-dependent, compressible MHD model using a new NICE (Nimble Implicit-Continuous-Eulerian) scheme

(Sun, 1991; Sun and Wu, 1992). The results of the simulation shown in Figure 9 are explained as follows:
The sequence of panels, with projected field lines onto the x-z plane, shows that, up to about t,,,_,, (this
"maxinmnl time" is deduced from an analytical solution when the force-free solution reaches the critical

state), tile numerical results closely follow the analytical equilibrium sequence. After (t .... _.) the field lines
start to oscillate with a maximum velocity reaching an amplitude of about 50kms-1. This result suggests

that "loss of equilibrium" has occurred. Since we are using the ideal MHD equations, no reconnection can

take place, and an eruption is not to be expected with the infinite amount of overlying flux. This resembles
the real situation for a small arcade of loops embedded in a large active region. With an estimated coronal

magnetic Reynolds number of about 1012 , and with the numerical results giving no indication of strong

current concentrations, indeed no significant reconnection can occur on a time-scale of up to 100 Alfven

scale times (the duration of the simulation). Therefore, the conversion of magnetic energy into MHD wave

energy may be the only efficient method that is available to shed excess free energy and, thus, for heating
the corona. Details of this study are described by Marten, Sun and Wu (1992).

5 Two-Dimensional MHD Global Coronal Model: Steady State

Streamers

In this subject, we have made some progress since we first constructed a streamer model (Steinolfson,

Suess and Wu, 1982). Our motivation to revisit this problem was to extend the outer boundary farther

away from the Sun (i.e. _35 solar radii) and to gain the experience necessary for development of a three-
dimensional model. Another motivation to develop such a model is the simulation of streamers in support of

the Ultraviolet Coronagraph and Spectroheliograph (UVCS) and the Large Angle Spectrometric Coronagraph

(LASCO) instruments on the Solar Heliospheric Observatory (SoHO). These instruments will be able to

measure the temperature, density, and flow velocity vector in the corona. With model calculations, it will be

possible, for example, to infer the magnetic vector. The results of the present study _re presented by Wang

e_ al. (1992a,b) and Noci et al. (1992). We shall briefly summarize some of the highlights in the following

paragraph.
Figure 10 shows the steady state magnetic field lines for four cases: (a) Dipolar/3o - 0.5, (b) Quadrupole,

/3 = 0.5, (c) Hexapole,/3 = 0.5, and (d) Dipole,/3 = 0.2. The relaxation times allowed to reach these equilibria

are: (a) 22.22 hrs., (b) 16.7 hrs., (c) 18.06 hrs., and (d) 19.44 hrs. respectively, where/3 is evaluated at the
equator of the solar surface. In each plot, four dashed lines are labelled "A, B, C, or D". These show the
radial directions used for plotting the variables versus radius in each case. Thus, the/3 --" 0.5 quadrupole

plots will have variables versus radius at the pole (B), at the edge of the polar region (A), through the

mid-latitude streamer (D), and in the equatorial open region (C). The dashed lines are along the direction

of the grid. Since there is no grid point either exactly on the equator or exactly at the pole, these lines are

slightly offset from those positions. The plasma parameters, radial velocity and total magnetic field strength,

are presented in a pre-print (Wang, Wu, Suess and Poletto, 1992b) which is included in the Appendix.
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Figure 9: Numerical simulation of the evolution of the magnetic field in projection on the z - z plane, which

is perpendicular to the z - _ photospheric plane.
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Abstract. \Ve describe a two-dimensional time-dependent, numeMeal, ma_¢tohydrodynarruc model

for the determination of the physical properties of coronal streamers fro the top of the transition

zone (/%.-., = I) to 15 R.._-,. Four examples are given: for dipole, quaarupole, and hexapole initial

field topologies. Vhe computed parameters are density, temperature, velocity, and magnetic field. In

addition to the propemes of the solutions, their accuracy is discussed. We use the model as the basis

for a general discussion of the way nounclary conditions are spemfied in this and similar simulations.

1. Introduction

We present results from a recently-developed numerical model of coronal struc-

ture. The immediate reasons for a new model were to extend the outer boundary,
farther from the Sun and to gain the experience necessary for devel6pment of a

three-dimensional model. A result of this process has been a close examination of "

the physical details of the solution and how they depend on the way the boundary.._..
conditions are specified. An immediate application will be the simulation of stream-

ers in support of the Ultraviolet Coronagraph and Spectroheliograph (U'VCS)and

the Large Angle Spectrometric Coronagraph (LASCO) on the Solar Heliospheric :

Observatory (Solid). These instruments will be able to measure the temperature,.

density., and flow vector in the corona. With model calculations, it will be possible.
for example, to estimate the magnetic field vector.

Numerical models of coronal structure have been published sporadically, at

long inter_'als, over the past twenty years. The first (Pneuman and Kopp, 1971)

demonstrated the feasibility of such models, treating isothermal flow and arriving
at the solution by iterating on the electrical currents. However. a more efficient-

and flexible method is to consider an initial-boundary value problem in which

the steady state is found holding the boundary conditions constant and allowing.

the solution to relax in time from an essentially arbitrary initial state. Steinolfsom

Suess, and Wu (1982) applied this later technique to the analysis of a polytropic "

dipole configuration for a range of plasma 3 (ratio of internal pressure to mag-

Solar Physics 000: I-I 7. 1993.

(_) 1993 Kluwer Academic Publishers. Printed m Be�glum.

_ =

a

GR 201018146 Grafikon: PIPS No. 32919

solah362.:ex - Date: March !0, 1993 Time: 9:06
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netio pressureL Steinoifson 1i989, 199t_ ana Guo er ,J. ',i992_ have used this

steady-state soiution as the basis for studying coronal mass ejections and streamer

evolution with shear, which can be simulated using a nearly identical numerical
model. Details of the numerical schemes and results can be found in the referenced

publications.

We revisited this problem for the reasons mentioned above. However, we also

consider that such complex numerical models are rarely without problems or uncer-

tainties. When the models are used for analysis of data and for predictions, the only

reliable validation is to develop an independent model and compare the results.

Even when both (or all) models are fundamentally correct, this process generally

leads to new or deeper understanding of the problem. In the present case, this is

precisely what has happened. \Ve have gained a better insight into the physical

basis of the criteria which should be adopted in specifying boundary conditions.

The results from this constitute an important part of the present study.
The physical and numerical simulation is described in Section 2. Section 3

details numerical models of dipole, quadrupole, and hexapole magnetic fields.

Section 4 is a discussion of numerical precision of the solution and the boundary

conditions, putting the discussion into context with earlier models so far as is

possible. Section 5 contains our summary, and conclusions.

-". ":5 "

2. The Physical and Numerical Simulation

We assume axisymmetric, single fluid, polytropic, time-dependent ideal magneto-

hydrodynamic flow and perform the calculation in a meridional plane defined by

the rotauonal symmetry axis of the magnetic field. The coordinates are (r. _, o)

with ¢ being the ignorable coordinate. For the magnetic field boundary condition,

we take the radial field component at the lower boundary to be that given by a

vacuum dipole, quadrupole, or hexapole potential magnetic field. The flow there-

fore has reflective symmetry across the equator and the calculation need be done
in only one quadrant. The equations of motion that describe this flow are:

i:)p PrO 2pv, Pro cot O "

"_-+ (pt,_ - \r__L./-_ '= r r . - (la)

Or, Or. 13oOBo - i Op _-_'1" 0w,, B0 OB,
-gT+ ,TJ',,W o o8 -

r z r #pr

cOvo avo B, OBo _'o B, OB, iap B, Bo c_vo
-- = -- _ + = (to)
Ot + _'" /dr tzp Or i:)0 " #pr /dO pr /dO #or r

OB,
= I(c_Bo - voB_)cotO.

rOt ,? ( v, Be - , :,B, )O0 r

(lb)

(ld)

._ ='-,.4,fi,zr- _ -

-- £, .- .

!
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_Bo ,?_ 1 _ --_._"c,-
Ot ,:_r(r.',Ba - ::B,) = .....r ;Ba - t'aB,_ . .. _ _le)

r

Op Ov, 8p "_ Ovo :"P "_ _'ocorOV7"". " (1 tON +  POT + N + .... +r O0 r

The dependent variables are the den_, p, the pressure, p, the radial and

meridional velocities, _'_ and v0, and the radial and meridional magnetic fields,

B_ and Bo. The constants 3/, z, G, 7, and /z are the solar mass, gravitational

constant, the polytropic index and the magnetic permeability.

These equations are soh, ed in a computational domain extending from the Sun

(1 /:to_) to 15 Ro, from the pole to the equator. It is assumed that meridional flow

is zero at the pole and equator. The grid is divided so that there are 37 gridpoints

in the radial direction and 22 gridpoints in the meridional direction, with the radial

_rid size slowly increasing with radius. The meridional grid is divided so that
poiints lie equi-distant on either side of 0 = 0 and 0 = 90", at 0 = -2.2,5 °,

2.25 °, 6.75 ° ..... 87.75 °, 92.25 °. The algorithm adopted here is the Full-Implicit

Continuous Eulerian tFICE'I scheme describedbv Hu_and .Wu-(1984-). For-time

stepping a second-order accurate towar__l--differencing scheme is used, With the
step size being of the same order-_-_ven bv the Courant condition because the

magnetic field is calculated exeticitlv. Smoothing is used when gradients become

_oo large, i.e.. at shocks (which do not occur here). At the inner bounda.r3,, the

flow is subsonic and sub-Alfvdnic so that two of the six independent variables are

calculated using compatibility relations (Hu and Wu, 1984). A brief summary, of

the compatibility conditions for the present model is given in the Appendix_ along

with details on how the boundary, values and conditions are applied..We choose

to specify the radial and meridional magnetic fields, temperature; and density, The

radial and meridional flow speeds are computed from compatibility relations (i.e.,

Equations (A. I) and (A.2)). At the outer boundary., the flow is restricted to being

both supersonic and super-Alfvdnic. In this case, all variables at that boundary can

be calculated by simple linear extrapolation from the first (or first two) grfd points

inside the boundary. In this study, we did not perform the compadson between

the present boundary conditions and conventional boundary, conditions. However,

in a recent study by Sun (1991), it was shown that the statement of the boundary

conditions in the Appendix eliminates the spurious waves generated by boundary.

disturbances and which can cause num_encal instability: ......... & - -' ".'-': _-'
We start with an essentialtv_initial staleiliad a-gITd'_the flow to relax in time while

holding the boundary values/constant. In the present case the initial flow field is

a polytropic, hydrodynamic solution to the steady-state radial flow equation of:

motion (e.g., Parker, I963) superimposed on a potential magnetic field. That this

is neither a self-consistent nor stable solution to the steady-state MHD equations
is irrelevant since the flow is allowed to evolve in time under the control of the

equations of motion. ..__ The main concerns are that the numerical solution
be stable and of sufffciefit accuracy to define the physically interesting aspects of

the solution, and that the relaxation proceed long enough that an acceptably close

° .- .
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approximation to me steady <t.... has been r,.ach,._,. \x& address these issues _nefiv
in Section 4.

3. Detailed Results from Four Specific .Models

We report here on four specific models. The results are grouped first according
to the way in which the physical variables are plotted (i.e., either versus radius

or versus polar angle) and second according to which of the four examples the
plot is for. In these four examples, three magnetic field geometries are used: a

dipole, a quadrupole, and a hexapole; the scalar potentials are therefore p_:oponional

to F2 (cos_). P3 (cosS), and /9., (cos8), respectively, where P,_ (cost9) is the-

Legendre polynomial of degree n. There are two dimensionless free parameters:

the polytropie index, -_, and the plasma, 3. We use "Y= 1.05 in all cases. 3 = 0.5

for all three field geometries, and. in addition, do a dipole calculation for 3 = 0.2.

[n these case. 3 is evaluated at l.O/_..--, at the equator, where the field strength is

1.67 G both for 3 = 0.5 and 3 = 0.2. For the high 3 cases, the base temperature
and density are 1.8 x 106 K and 2.25 x 10_ cm -_. For the low d case, they are

1.44 x 106 K and 5.61 x l07 cm -3. The three magnetic field geometries naturally

lead to a single equatorial streamer, a mid-latitude streamer, and both an equatorial

and a mid-latitude streamer for the dipole quadrupole and hexapole, respectively.
Results from the four examp!es will be referred to as follows:
(a) Dipole, 3 = 0.5". -""

(b) Quadrupole, 3"= 0.5,
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(c) Hexapoie. J =,0.3.

¢,d) Dipole, J = 0.2.

The initial state temperature, density,, and velocity profiles are shown in Figure 1.

The temperature curves appear irregular due to the small change in temperature

over the relatively large radial range - a consequence of the potytropic index being

near unity. Only three significant figures were retained after the calculation so what

is seen here is roundoff error in the plotted results rather than in the computed
results.

The final, steady-state magnetic field geometries for the four cases are shown in

Figure 2. Here is seen the well-known property that the flow is nearly radial beyond

3-4 R,_. The flow is field-aligned everywhere and field lines which cross the outer

boundary reach to _o. The streamers are those volumes which are magnetically

closed (i.e., the field lines return to the surface of the Sun) and it is evident that

relatively small volumes in the streamers remain magnetically closed in comparison
to the initial state where all field lines were closed. These closed volumes are

surrounded by a low density shell but, as will be shown below, the densities in the

large coronal hole-like open regions are otherwise only slightly lower than in the

streamers. In each panel of Figure 2, four dashed lines are shown and labelled A,

B, C. or O. These lines indicate the radial directions used below to plot variables
versus radius.

The physical times allowea for the reiaxation in these four e xBmples were:
(a) 22.22 hours for the J = 0.5_dipole: tb) 16.67 hours for the 3 =;(J_55quadrupole:

(c) 18.06 hours for the J = 0.5',hexapole; (d) 19.44 hours for the J = 0.2 dipole.
These times are determined [_# how long it takes for any fluctuation to be advected

out through the outer boundary of the solution domain. This in turn depends on how

large the flow speed is and whether the fluctuations represent inward propagating

waves. In general, the times listed above are the minimum required for a stationary

fluctuation (i.e., non-propagating in the solar wind frame) to be advected from

1/7.0 to 15/_ at a typical flow speed in the open regions. This sometimes leads to

small residuals in the relaxation near the outer boundary at 15/?-e, but the solutions

inside 7/l.o that are shown here are quite steady. This is another point that will be
reviewed in Section 4,

Figures 3 and 4 are plots of density and radial velocity versus radius. The plots

are made in the directions indicated in Figure 2 so that, for example, in each panel
of Figure 3 the density is plotted in the four directions A, B, C, and D indicated

in the corresponding panel of Figure 2. In both of Figures 3 and 4, the four panels

corresponding to the four panels in Figure 2 are clearly labeled. The density profiles

have been divided by their corresponding initial state tt = 0) profiles from Figure 1

because the density changes by several orders of magnitude between the Sun and

15/_. The plots here extend only to 7 R_ because there is no new information

contained outside this radius - the flow is already supersonic and essentially radial.

Turning briefly to each figure individually, we begin by noting that a density
enhancement is indicated by values grater'[bonnily, and vice versa. The density

T

• ... ..

. .k .
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Solar Radii _'

Fig. 3. Density as a function oradius. Each panel is for the corresponding case in Fibre 2.'as -_

labelled. Th,e._rves are plotted alon_ the directions shown in Fieure 2. For example, the four curves
for the d = b.5_exapole labelled (A_B, C. DL an: along the fou_directions sho....nm the third panel ',.
of Figure 2 a'Kdlabelled in the same manner. Each curve has been divided by the initial profile (see
Figure 1), A density enhancement is indicated by values greater than unity, and vice versa. The "

density concentrations in the streamers are clearly visible, generally being on the order of 25% to ,

50% above the initial state. :,

?

J

concentrations in the streamers here are cteartv visible, eenemltv bein_ on tile order

of 25% to 50% above the initial state. ['he base denslty f_r the J "=(0._ases is close

to that reported by Allen (1955) for the base of the quiet corona and the density

profile shown here has generally the right behavior for streamers - as shown by_.

curves CXar cases (a), (c), and (d), and curve D in case (b). Curve D for case (a),
the d =_)dipole, is an example of the density deficit on the flank of a streamer

that is typical of the results for all the examples. In contrast, the density in the "-

centers of the open regions (curve B in all cases, curve C in case (b), and curve D

in case (c)) is little different from the initial state, being only slightly smaller. This

is only surprising when comparison is made to coronal hole observations (Munro

,/
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Fig. 4, Radial velocity as a function of radius. Each panel is for the corresponding case in Figure 2,
The curves are plotted along the directions shown in Figure 2. as in Figure 3. The velocity inside the
streamers is seen to be essentially zero.

and Jackson. 1977) wherein the density was reported to be more than an order of

magnitude less than in streamers. This difference is a natural consequence of the

properties of a polytropic model and the choice we have made for the boundary.

conditions on temperature and density - that they be independent of polar angle.

The choice leads to both the high density shown here and the low flow speeds

shown below on open field lines, irrespective of the open streamline geometry.

To model true coronal hole flow_ wifi'i_ polytropic gas would require at least an

elevated temperature in the open re_'6ns and probably also a lower density at the

base (Suess et el., 1977; Suess. 1979).

The radial velocity is shown in Figure 4, at the positions indicated in Figure 2.

As described above, and as is generally the case in polytropic models, the flow

speed in the open regions is similar to the undisturbed initial flow speed shown

in Figure I. In the streamer, the flow speed is essentially zero and it is reduced

.F -
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,_n the adjacent open fie!d lines due. agparentty, to the strongly inclined flow

direction more than to ffeomem,'. _Ene nonzero outtiow above streamers (e.g., at

R -" 7.14 R,_ ,at the equator of ihe 3 =f),_dipole)refers to the open field region /
above the streamer s cusp. The 3 = 0.2=_ipole is the most extreme example of

this - and the flow speed is nearly identical to the initial speed everywhere except
on closed field lines, directly above the center of the streamer, and on the highly

inclined field lines immediately adjacent to the streamer- where the difference is
still rather small.

We do not plot the temperature since, due to the polytropic index being 1.05,

it varies by only a few percent throughout the computation domain. However,

this is an 'effective temperature' because a polytropic ener_ equation with a

polytropic index of 1.05 is equivalent to a large amount of energy being added to

the flow, Nowhere is the form of this energy specified, nor what the conversion and

dissipation mechanisms are. However, it has been shown that a polytropic index

on the order 1.05 is required to reproduce observations of coronal densities (Suess
et at., 1977). : .....

Finally, the magnetically open regions, although euqivalent to coronal hole

flows, do not simulate coronal holes because the flow speeds are far too small.

To obtain reasonable flow speeds in this model it would be necessary, to have

the temperature ,.'arv across the base of the open region - which is well within

the capability of the model. Such a variation has been shown to reproduce aii

the known propemes of coronal hole flow and lead to accurate simulations of the

geomeuy, with the effective temperature being larger in the center of the hole than

at the edge tSuess et aI., 1977). In contrast to the open regions, the densities in the

closed regions are similar to obser_,ed streamer densities and we feel this model is .,_

therefore a good approximation to streamer geometry. The temperature must still - r_c_,_
be qualified as an effective temperature, but can be usedf0rfi_jagnnstic tyarp0ses in .
combination with planned observations on SoHO/UVCS.

Some of the results ,cn_'_;b6-Better viewed and more easily understood when , _ _/_ _dl
plotted versus polar angte"_ii different heliocentric distances, than ve_v___radius at _-_'¢'')
constant polar angles. Such plots are shown for the _rffdial velocity, and .......

(_l),u) V Ir.,.l) _'r

total field strength in Figures 5, 6, and 7, respectively.----'- __a _'dl,,(_ )
Fi__e 5 shows the density drop adjacent,tlie--_eamer. In the panel for the

8 -_O._ipole, this drop is quite large, well resolved, and leads into the density
enhancement inside the equatonat streamer. The only place this does not occur
is at the base - where the density is held constant. The width of the density tr_,'f')

enhancement in the streamer decreases with height, just as the width of the streamer.....- .
itself decreases with height (e.g., Figure 2). Essentially the same th'in[s s_eh-_or the /

,3 = 0.2 dipole wiht the following quantitative differences: (i) The streamer is much

higher and wider. (ii) The density depletion on the flanks has a smaller amplitude.

These differences ar_e_,,e primary reason we conclude that solar streamers are better

described by a ,J _.6_.5 lasma than by a ;J = 0.2 plasma. Qualitatively, a similar
result is found for the quadrupole and hexapole. However. it is obvious that the

ORIGIr_L PAOE IS

OF POOR QUALITY



I0

9E

?

..7_"

-._

a 5_
[

4E

_,. H. WANG ET .XL.

Dipole,3eLa=0.5 :

i.oo R .,
4

1.70_R _
!

4._o _7.14

]

0 3G 60 90

Quadru._ole.Beta=0.5 !
: _ -;

; 1.o0 R i
I

I

0 30 60 90

Hexapole,Beta=0._5

: t.OO R _ ,

Dipole,Beta=0.2
1.00 K '

]

! I.:o R _ ! . R •

>_ _._R { 2.30 R
_ - i 3.10 '
. ; 3.1o R,..I _ _ It ._ca 6 5:

5" I 4 ..

1 "4 3t ..... .--2::
0 30 60 90 0 30 60 90 : :. .... :--

Polar Angle (degrees) Polar AnKle (degree,,) -.:.. _ ":7":_:_.d_::?"'_

Fig. 5. Density versus polar angle, between the pole (0 °) and the equator (900). Each of-the curves:-,'_- £_ ¢ C/_',_
islabelledaccordingtotheheliocentricdistanceitrefersto,'l'T_thecurves labelled 1.70R indicate.-

thedensityat L70 R_ heliocentricradius.The densityatthc'E'_aseisconstantand so thecurves there

are flat.Above the base.thereisa smalldensityenhancement in the streamer (ca.5% to-50%) and ::

a troughin densityattheedge of the streamer.In the middle of theopen region,the densityisvery,
closeto what itwas in theinitialstate(seealsoFigure 3).The reason itisnot small isthat'we have

used constanttemperatureand densityatthebase.To produce a truecoronalhole-likeprofilewould

have required at least an increase in the temperature at the base of the open region _Suess ct al.,
1977).

hexapole is only marginally resolved with the present grid density - there is really

only one meridional grid point inside the mid-latitude streamer at any given height.i
The radial velocity in Figure 6 drops precipitously from the magnetically open .

region to the inside of the streamer. That the velocity is not identically zero inside

the streamer is a result of numeric_nTand is a measure of this numerical
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' 3[artifact in the F'ICE scheme• For e:_am_te, at 1.70 R._ in the '3 = d_pole, the

velocity drops from ca. 60 km s - _J_ hardly above the noise level in the plots and the

associated kinetic energy is too small to affect the dynamics of the solution. Such

'slippage' will, nevertheless, occur in all numerical solutions. At larger heights

(e.g., 4.90 and 7.I4/?_._) there is small, but finite flew near and in the neutral sheet

dividing regions of opposite magnetic polarity. This is qualitatively like what is

observed in the solar wind in the interplanetary medium. The _ = 0.2 dipole again

exhibits properties unlike the Sun in the sense that the very low flow speeds inside

the streamer seem to still exist even at 7.14/_ - far outside the observed extent
of closed streamers.

Figure 7 shows the variation of the total magnetic field strength, (B_ + Bo)l/2,

across the streamers. The most interesting thing to note in these plots is the enhance-

ment in total field strength on the flanks of the streamers. This is what 'confines'

the streamers. The field strength for the :3 = 0.2 dipole is seen to vary smoothly,

with little distinct evidence of the streamer. This is just another indication that the

presence of the plasma has had little effect on the field geometry, in this low-J case.

J

4. Accuracy and Stability of Calculations

This numerical model has been found to be weakly subject to the Courant condition

on size of time step. Therefore, the size of the time step decreases as the largest

values of the temperature and magnetic field increase - along with the maximum

sound and Alfv6n speeds anywhere in the grid. Counteracting this, the higher

characteristic speeds lead to a somewhat faster relaxation time. However, generally

shorter time steps are required for smaller/3 calculations. The flow speed also-

plays an impo_ant rote in determining the relaxation time to a steady state - the .:

initial state is a disequilibrium configuration. This imbalance must have time to be

advected from the base through the outer boundary. The physical time this takes can -.:

be estimated by taking a typical (but small) value for the flow speed and caculating

how long it would take the plasma to flow at this speed from the base tO the outer
boundary. For example, at 150 km s- I, to 15 Re, this takes 18 hours (relaxation

- . .-.

times we have used here are given in Figure 1).. -." :-

A second consideration is gridpoint resolution. The grid used in these examples
is 4.5 ° in latitude and about 0.24 Re in radius near the base - increasing slowly

with radius. This is sufficient to adequately resolve the geometry and flow on the

scale shown in Figure 2. However, if finer scale information is required in, for

example, the core of the streamers, a denser grid would be required.

Always a serious consideration in these time-dependent, non-Cartesian MHD :

calculations is the conservation of magnetic flux - that V" • B = 0 is maintained

at all times. The condition is maintained here through accurate differencing rather

than a self-correcting scheme. No anomalous acceleration due to errors in flux

conservation is apparent in the results. The numerical scheme is pressure-based so

it is limited by stability to large and moderate _ values (e.g., _3 > 0.I) - which

_ --- a22r
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Fig. 6. Radial velocity versus polarangle, between the pole and the equator. Each curve, plotted
for different heliocentric distance, is labelled in the same manner as in Figure 5. The velocity "in
the magnetically closed regions is essentially zero. The reason it is not identically zero_is that there --.
is a small amount of nume_c,al diffusion - quite small as indicated by the velocity being less than
I0 km s-' inside the _ -0--(_.5ipole streamer at 2.30 P,,_.

turns out to be the same restriction for maintaining _" B = 0 to the required

degree.

Finally, the enemy equation :-

reduces to v. _'(p/p_ ) = 0 when a steady state is reached, which means that (p/p'_)
is then a streamline constant. This becomes an analytic test of the achievement of a

-.- .: .7r:
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Each curve, plotted for different heliocenmc distance, is labelled in the same manner as in Figure 5.
The field in the vicinity of the current sheet above the cusp in the streamers has a gready reduced
amplitude, as would be expected. The effect is amplified above the mid-latitude streamers.

steady-state solution in our case. The boundary values ofp and p are the same at all

latitudes. Therefore, (pip't) = 0 has the same value everywhere in the computation

regime as it has on the boundary, if a steady state has been reached. We have checked

this for the cases shown in Figure 2 and find that for the dipole and quadrupole it is

constant to within a maximum of 1% and for the hexapole it is constant to within a

maximum of 4% (average values over the whole grid are less than 1% in all cases).

5. Discussion

The new feature of this model, with respect to analogous simulations, is the exten-

sion of the outer boundary to 15/_c,. This is not a conceptual advance, but this and

° - -

• Wi._-----.m.-

• _-_._ -. : _ ..

*.--=...-L i :

__ -, f

.÷_>): ?>2i>.
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x

the stability and raggedness of the code make it very. useful for simulating realistic

coronal conditions. We present new results for quadrupole and hexpoie fields, with

their accompanying mid-latitude streamers and open magnetic field regions. The
Alfvfin speed ranged between 800 km s- t and a few tens of km s- t. This is lower

than is believed appropriate for the corona (Suess, 1988), but we expect our model ___,,.,-.t,a.,.,t ; ,,d)will now enable simulations with higher Alfv6n speeds ....... _ " " ....

When comparing our results to those of Steinolfson, S_s_, -and Wu (1982;
henceforth referred to as SSW), an interestin_ifference becomes .....
apparent. In the present calculation, we have-held the density and temperature

constant at the base, allowing the velocity (and, hence, the mass flux) to 'float'

with time in accordance with the compatbility relations determining the velocity -
from the solution inside the computational domain. In contrast, SSW hold the -

temperature and velocity constant at the base and allow the density to change

according to the compatibility relationships. SSW determine the location of the
streamer by locatingclb'_ field lines and allowing the velocity to decrease to zero
at the feet of these-fie_lines. A consequence is that inside the streamer, the final -., -

density is considerably higher than the initial density and this is the primary, reason
for the quantitative differences between their results and ours. -

There is an important consequence of this difference in boundary conditions

between SSW and the present calculation: the plasma 3 is computed using the

temperature, density, and magnetic field at the equator and at I 1_._. This is invariant

in the present calculation, but in SSW this number is different in the final, steady

state than at the beginning: there 3 was computed using the initial values. Therefore,

in SSW in the steady-state solution is actually larger than stated for each example

they did. Thus, our calculation for a dipole with _3 = 0.2 (case (d)) corresponds to . ...... -

cases for/3 < 0,Lha_2.W_. We feet that the way we have done the analysis mo_

closely corresponds to what occurs and what is physically known for the Stln and ": _iii_S;ii:.: ;'_.

therefore leads to a more precise definition of the problem. So, we conclude that the..

present study has demonstrated a preferable treatment of the boundary condlrions_

in comparison to earlier calculations. ._C'_'_ d _re_) " .
A consequence o/_e precise examples we have ohe in cases (a) through (d),--.-.

with constant temperature and density, is the flow "g-_ed_dehs_ty in the.-:"
magnetically open regions - in comparison to what is believed to be the case

in solar coronal holes. This is a natural consequence of using a polytropic gas .......

in which the flow speed is strongly dependent on base temperature. It also does
not reflect suggestions from analysis of Skylab data that densities at the base of

coronal holes may be a factor of two smaller than at the base of streamers (G. Noci,

private communication). In a continuation of this study, we will produce models " " "

with varying temperature and density at the base. The variation in temperature

will, because it is an 'effective temperature', reflect a difference in energy balance ......
and distribution between the base of coronal holes and streamers instead of a true ---

temperature difference. :
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Appendix. The Inner Boundary Conditions According to the Projected

Normal Characteristic Method; a 2D Case , ,.._c. /

The inner boundary conditions are obtained according .tothe" r_ethod of projected
characteristics (Nakagawa, Hu, and Wu, 19873 with:_r.FICE algorithm (Hu and
Wu, 1984). For the two-dimensional case, the Alfv6nic mode does not exist, there-

fore, there are six eigenvalues. These six eigenvalues lead to six projected normal

characteristics and to six compatibiliity equations (see Wang, 1992; for deriva-

tion). At the inner boundary., since v, > 0 and v, < V,, VI, the characteristics

dr/dr = v, - _ and dr�dr = v, - V! are towards the lower boundary from interior

(i.e., outgoing) and need to be considered. There are four incoming characteristics

(v,, v, ÷ Vs, v, + Vr, and one that is degenerate because of the model symmetries),

so four variables can be specified at the boundary. Two other variables need to be

calculated from related compatibility equations. We choose the values of B,, t3o,

p, and T to be specified, leaving two quantities (i.e., v, and vo) to be computed

according to following compatibility equations:

Or, V,B_ + VIC-

at  v,D(vf-

Ovo V,(v_ - V?)B_ - VI(V _ - V],)C_

ot v, v;:)B,So

with the corresponding variables simplified in two dimensions as follows:

P
.1

a" = 7RT,

b = (B 2,+ 8zo)
)

P

V] = _e-' + b2 + [(a'- + b2): - 4aZb_]l/'-:

V,2 = la" + b2 + [(e 2 + b'-)'- - 4eZb_] t/'- ,

Or,. (gt,o

(A:I)

(£,2)"
-o:..

--.. .

(A.3) -"

(A.4)

(A.5)

(A.6)

(A.7)

_:_'_.__-:::9:
; ._'g,._..=--, .....
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r I"
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F ;"

(A.g)
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--_.,

-'_Z,

r.

(A.9)

Since the ideal MHD equations have been used, flow is parallel to the magnetic
field lines. Thus we determine Bo from the relation B_vo = v_Bo; :-
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