

Contents

List of Symbols : 5

Introduction : 6

The 3DMAGGS Code Structure : 9

3DMAGGS INPUT and OUTPUT : 15

Volume Grid Initialization : 15

Volume Grid Clustering Control : 16

Freezing Forcing Function Corrections : 22

Grid Point Movement Optimization : 22

External Cell Size Speci�cation : 25

Forcing Function Output : 27

GRIDGEN Interface : 29

Grid Quality Parameter Calculation Tool : 38

Example Problem : 40

Comparisons to GRIDGEN3D and 3DGRAPE : 46

Conclusion : 49

References : 57

Appendix A: Input File to PREMAGGS : 59

Appendix B: File 10 Data for 3DMAGGS Comparison to GRIDGEN3D 61

Appendix C: File 16 Data for 3DMAGGS Comparison to GRIDGEN3D : : : : 63

Appendix D: UNIX script for 3DMAGGS on CRAY-II : 65

Appendix E: Input Information to 3DVOLCHK : 66

1

Appendix F: Input File Data for GRIDGEN3D : 67

Appendix G: File 10 Data for 3DMAGGS Comparison to 3DGRAPE 68

Appendix H: File 10 Data for 3DGRAPE : 70

2

Abstract

As the size and complexity of three dimensional volume grids increases, there is a

growing need for fast and e�cient 3D volumetric elliptic grid solvers. Present day solvers

are not necessarily memory bound, but limited by computational speed. In addition,

current solvers do not have all the capabilities such as interior volume grid clustering

control, viscous grid clustering at the wall of a con�guration, truncation error limiters and

convergence optimization residing in one code. A new volume grid generator, 3DMAGGS

(Three Dimensional Multi-block Advanced Grid Generation System), which is based on

the 3DGRAPE1 code written by Reese L. Sorenson at NASA Ames Research Center,

has evolved to meet these needs. The system encompasses di�erent options for a variety

of volume grid generation needs.

The 3DMAGGS code proves to be the fastest volumetric elliptic grid generator avail-

able to the public domain sector and o�ers many of the capabilities of GRIDGEN3D.2

3DMAGGS utilizes the vectorized code 3DGRAPE for computational speed while adding

state-of-the-art volume grid controls. Overall, 3DMAGGS is at least 18 times faster than

GRIDGEN3D's anti-biasing routines, with state-of-the-art grid control capabilities acti-

vated and still as fast as its parent version of 3DGRAPE.

This is a manual for the usage of 3DMAGGS and consists of �ve sections. They

include the motivations and usage, a GRIDGEN interface, a grid quality analysis tool, a

sample case for verifying correct operation of the code and a comparison section to both

3DGRAPE and GRIDGEN3D. Since it was derived from 3DGRAPE, this paper should

be used in conjunction with the 3DGRAPE manual. With this in mind, it is strongly

recommended that the 3DGRAPE manual be consulted on 3DGRAPE type options and

usage.

3

Acknowledgments

The authors would like to acknowledge Dr. Jamshid S. Abolhassani. Discussions with

Dr. Abolhassani have been most helpful in understanding the intricacies of volume grid

generation and implement state-of-the-art techniques into 3DMAGGS.

4

List of Symbols

Symbol Description
abc Exponential decay rate for a block/face in 3DMAGGS and 3DGRAPE.
A Area of a face of one volumetric cell.
AR Aspect ratio of a volumetric cell.
EXPO Exponential decay rate for a grid block system in GRIDGEN3D.
ORTHO�� Orthogonality function of intersecting grid lines in the

�=constant parametric plane.
ORTHO�� Orthogonality function of intersecting grid lines in the

�=constant parametric plane.
ORTHO�� Orthogonality function of intersecting grid lines in the

�=constant parametric plane.
P Forcing function in physical space that is in the direction of the

�rst parametric index.
Q Forcing function in physical space that is in the direction of the

second parametric index.
R Forcing function in physical space that is in the direction of the

third parametric index.
� Soni blending coe�cient in � direction.
� Soni blending coe�cient in � direction.
 Face number used in �le name construction.
� Block number used in �le name construction.
� Percentage of a function's contribution of a neighboring surface grid point to a

surface interior grid point.
� First parametric index of the computational domain.
� Second parametric index of the computational domain.
� Third parametric index of the computational domain.
! Relaxation parameter.
�i Percentage of a function's contribution of an edge point to a surface

interior grid point.
��� Angle of intersecting grid lines in the �=constant parametric plane.
��� Angle of intersecting grid lines in the �=constant parametric plane.
��� Angle of intersecting grid lines in the �=constant parametric plane.
�s Distance from a surface grid point to the next volume interior grid point.
� Parametric space forcing function in the direction of �.
	 Parametric space forcing function in the direction of �.

 Parametric space forcing function in the direction of �.
~r� Vector matrix of [X Y Z]T representing the �rst derivative of

position in the � direction.
~r� Vector matrix of [X Y Z]T representing the �rst derivative of

position in the � direction.
~r� Vector matrix of [X Y Z]T representing the �rst derivative of

position in the � direction.

5

Introduction

Two publicly available grid generation packages have been created for the construction

of large structured volume grids, over the past 20 years. The EAGLE3 code has proven to be

successful and versatile when constructing surface and volume grids for missiles and similar

con�gurations. The EAGLE code was originally designed for the CRAY-XMP and relied on

extensive external �le \I/O" usage. When ported to state-of-the-art supercomputers such as

the CRAY-YMP series, this code's structure is responsible for excessively large CPU time

requirements when generating grids requiring 1-4 million grid points.

The GRIDGEN3D2code works well with large and small numbers of grid point volumes

but is only �rst order accurate in boundary condition formulations. GRIDGEN3D was

designed to run on a CRAY-XMP with limited memory, employing very little vectorization.

Although it is faster than EAGLE, GRIDGEN3D is still slow and cumbersome to operate.

GRIDGEN3D does not take complete advantage of supercomputer technology. Furthermore,

both EAGLE and GRIDGEN3D lack the application of cell sizes at a boundary based on

apriori CFD calculations and both codes use mathematical relationships to calculate these

cell sizes.

To make use of current supercomputing technology and current grid generation tech-

niques, a task was undertaken to create a fast and e�cient solver. Instead of generating a

complete new code, an existing solver, the 3DGRAPE code created by Reese L. Sorenson

at NASA Ames Research Center, was chosen as the starting point. This code was modi�ed

to include state-of-the-art volumetric grid controls. The 3DMAGGS code is an extension of

3DGRAPE, but has been given a new name to di�erentiate the nuances of the improvements.

6

The 3DGRAPE code was chosen speci�cally due to ease of control deck generation as well

as its e�ciency. This version of 3DGRAPE runs at approximately 6.5 micro-seconds per

iteration per grid point.

The 3DGRAPE code embodies the modularity required for future development, which

facilitated the development of 3DMAGGS. Little di�culty was encountered in the linking of

necessary routines. The 3DMAGGS code extends the capabilities of the 3DGRAPE code to

include:

[1] Initialization via three dimensional trans-�nite interpolation (3DTFI).4

[2] Thomas & Middleco� Volume grid clustering controls5(TMCs).

[3] Hybrid controls of Sorenson and Thomas & Middleco�.6

[4] Optimized grid point movement.

[5] Incorporation of an outside source de�nition for the cell-size speci�cation �s,

for calculating Poisson forcing function controls. This is done through a �le, residing

outside of 3DMAGGS.

[6] Truncation-error limiting due to low precision machines.

The 3DMAGGS code does not employ a Graphical User Interface, since it is intended to be

a batch volume grid generator. With little e�ort 3DMAGGS could be incorporated into the

GRAPEVINE7 code, the interactive version of 3DGRAPE.

Finally, 3DGRAPE was chosen because the �rst derivatives are second order accurate.

With this added accuracy, surface contours become more pronounced in the grid volume

7

near the con�guration's surface. The resulting grids tend to better model the ow near the

wall.

To accompany the 3DMAGGS code, two other support codes have been created. The

�rst code is the conversion program from GRIDGEN2D to 3DMAGGS, named PREMAGGS.

PREMAGGS utilizes the boundary conditions �le ([�le].bnda) and the surface grid distribu-

tions �le ([�le].mlga) required by GRIDGEN3D to generate the input decks for 3DMAGGS.

The code uses a limited number of inputs from the user to generate all command controls

for the 3DMAGGS code including the following:

[1] Automatic conversion of the forcing function decay rates from a block face with orthog-

onality controls activated.

[2] Generation of all necessary batch process �les and input �les for executing 3DMAGGS.

[3] Re-assigning the limits to the parameter statement in 3DMAGGS for e�cient use of

available memory.

[4] The calculation of the cell size speci�cation for the elliptic solver via the Local ARc-

length Cell Sizing (LARCS8) as well as the two dimensional trans-�nite interpolation

(2DTFI)4 methods for calculating the Poisson forcing function controls.

The availability of the PREMAGGS code enables the user to opt for a more e�cient three

dimensional volume grid generator. PREMAGGS enables the use of GRIDGEN2D as a

surface modeler/grid generator to de�ne the distributions on non-matching faces of a multi-

block grid system.

The second support code is 3DVOLCHK. This program has been created to evaluate the

8

quality of the volume grid generated by the 3DMAGGS program. This code will locate any

negative volumes, as well as output �ve grid quality measures. These measures include cell

volume, aspect ratio, and three skewness factors for each point. The skewness factor is a

number between zero and 1, a skewness factor of 1.0 (100%) represents total orthogonality

and the factor can decrease to 0.0 (i.e., 0% orthogonality).

This paper consists of �ve sections. The �rst section describes the capabilities added

to 3DGRAPE, the input formats and the e�ects of each modi�cation. The second section

is a description of the PREMAGGS code, including input and output. The usage of the

3DVOLCHK code and its inputs and outputs make up the third section, which also includes

an explanation of the output variables. Section four is comprised of a simple case to verify

the correct operation of the code, and the �fth section contains comparisons to GRIDGEN3D

as well as 3DGRAPE.

The 3DMAGGS Code Structure

The source code of 3DMAGGS contains 60 subroutines, 8 of which enable the added

capabilities. Figure 1 is a series of charts describing the routines used inside the 3DMAGGS

code, where the lower-case italicized ones required modi�cation or are added routines. The

following 3DGRAPE routines were modi�ed as follows:

[1] FIXINIT: has a new counter which returns the number of points read.

The number is used to determine if the entire face was \read-in-�xed" for use

with the 3DTFI initialization option.

9

(see fig.
b)

INTERP1 INTERP2 INTERP3

FREEZF THAWF

(see fig.
d)

(see fig.
c)

SPHIO

BOUNDARY

PLABD

PLASUB

CYLBD

CYLSUB

AXBD

AXSUB

ELIPBD

ELIPSUB

MATBD

WRITEIT

SPHIO

SPHBOX

SPHCHK

SPHSUB

LOWERINIT

NEWINIT
INTERP

SPHCHK

SPHSUB

main program

input

restart solve
tm

tfi2dtfi3d

tminit3d

(a) Main program and subroutine structure.

NORMST

LIGHT

FIXINIT

PLAINIT

CYLINIT

AXINIT

PNTINIT

MATINIT

CHKMAT SPHERE

ELIPSUB

ELIPINIT

INPUT

LOWER

blnkfl15

(b) Input subroutine structure and associated routines.

Figure 1: 3DMAGGS code structure and routines employed for 3D volume grid
generation.

10

DERIVS

FREEZF

EXPRLS

LOWER

solve

rhsf1

rhsf2

rhsf3

rhsf4

rhsf5

rhsf6

poif1 poif2 poif3 poif4 poif5 poif6

tmdiff

(c) Solve subroutine structure and associated routines.

LIGHT

FIXINIT

PLAINIT

CYLINIT

AXINIT

PNTINIT

MATINIT

CHKMAT

ELIPSUB

ELIPINIT

LOWER

NORMST

restart

blnkfl15

(d) Restart subroutine structure and associated routines.

Figure 1: 3DMAGGS code structure and routines employed for 3D volume grid
generation.(concluded)

11

[2] INPUT: now uses a blank �lter for �le names to prevent the opening of �les

with trailing or leading blanks.

[3] MAIN: embodies the new TMCs routines, called once at the beginning of each

iteration part, where appropriate.

[4] POIF[1-6]: routines now have the added option of assigning the �s based

on read in values from an external �le. The read will occur once in the beginning

of the iteration cycles.

[5] RHSF[1-6]: routines now have the block numbers and iteration part number sent to

them to be used to determine if the new values for P, Q and R need to be

di�erenced with the TMCs for the hybrid controls.

[6] SOLVE: has the grid-point movement optimization added to the vectorized loop,

with the option not to change the current block and the resetting of the face P, Q and

R via the di�erencing of TMCs for the hybrid controls. This routine now returns

the limits of the optimized relaxation parameter to the main program.

In addition, the following routines were added to 3DGRAPE to extend its capabilities:

[1] BLNKFL15: returns a given �le name, consisting of 15 characters, with all

blanks removed.

[2] LARCS: is an alternate code used for distributing a function on the edges

of a surface onto the interior of that surface using the LARCS8 method.

[3] TCPLT: writes out the TMCs calculated by the TM routine for each calculation

or re-calculation of the TMCs for use with TECPLOTTM9

.

12

[4] TFI2D: distributes a function on the edges of a surface based on two- dimensional

trans-�nite interpolation (2DTFI), using Soni's blending coe�cients.

[5] TFI3D: initializes the volume grid of a block based on all 6 boundary faces

providing that all faces were \read-in-�xed."

[6] TM: calculates the TMCs in parametric space, converts them to the physical

domain and uses TFI2D to distribute them throughout the volume.

[7] TMDIFF: di�erences the TMCs on a per face basis to formulate the hybrid

controls with Sorenson's orthogonality. This is done before and after the

block is elliptically solved for one iteration.

[8] TMINIT3D: initializes the forcing functions on the faces to those calculated

for the TMCs, providing a better initial guess for the orthogonality forcing

functions.

The 3DMAGGS code has the same characteristics as 3DGRAPE for execution on a work-

station as well as a super computer such as the CRAY. Refer to the 3DGRAPE manual for

the conversion betweenmachines. However, the 3DMAGGS code does have 6 additional com-

mon blocks and 4 more parameters in the parameter statement. The additional parameters

can be found in Table 1.

13

Table 1. Parametric Limits.

Parameter: Supplied Meaning:

Value:

imx 200 Maximum number of grid points in the � direction.

jmx 100 Maximum number of grid points in the � direction.

kmx 100 Maximum number of grid points in the � direction.

ijkmx 200 Maximum vector length of any of the three directions (�,�,�).

The extensions to 3DGRAPE found in 3DMAGGS have increased CPU memory require-

ments by 170% while decreasing the run time by a factor of 5. As stated, the 3DMAGGS

code has the same input and output �les as 3DGRAPE. Therefore, refer to the 3DGRAPE

manual for the structure of these �les.

14

3DMAGGS INPUT and OUTPUT

Input to 3DMAGGS is very similar to the 3DGRAPE code. Only the modi�cations made

to the input decks for initial start and restart of the elliptic solver are outlined. In order to

be consistent with the capabilities added to the 3DGRAPE to make 3DMAGGS, this section

of the document is broken down to six components. Each part discusses the operation of

one new capability, along with the e�ects of exercising the option.

Volume Grid Initialization

The code has the capability of generating the initial volume grid via the original 3DGRAPE

method using linear, equal spacing distributions between each opposing face or through three

dimensional trans-�nite Interpolation (3DTFI). Speci�cation of the method to be used is on

the line following the relaxation parameter. Its construct can be found in Table 2.

Table 2. Volume Grid Initialization Instruction Format.

Line Field Column Datum

no.: no.: nos.: type: Description:

1 1-15 k \initialization="

2 16-27 c either \keep-default" or \trans-�nite"

3 28-39 k \-iterations="

4 40-42 i Number of iterations needed for optimization of initial grid

initialization=keep-default-iterations= 0

initialization=trans-finite-iterations= 20

Placing the string, \trans-�nite" in columns 16-27, instructs the 3DMAGGS code to

15

construct the volume grid via 3DTFI. The 3DTFI code is based on volume optimization4

of arc-length distributions from each de�ned boundary. This technique requires a number

of iterations to be utilized, and this number is speci�ed in columns 40-42. Typically, the

technique requires 16 to 20 iterations to obtain optimized grid distributions but, it can be

user speci�ed.

The initialization, via the 3DTFI option, requires that all faces are read in as �xed.

All matching face boundaries can still be read in as �xed, but, as the solver progresses,

the original matching face will change. A better original distribution of the grid is used

as the starting point of the elliptic solution. Current studies have shown that by using

this method those faces with orthogonality speci�ed have grid line distributions closer to

orthogonality. The number of iterations used by the solver to obtain the correct forcing

functions for enforcing orthogonality can be reduced by 75%. This reduction in itself tends

to make the convergence of the solution quicker.

Volume Grid Clustering Control

Volume grid clustering controls are made possible by using the Thomas and Middleco�

forcing functions. There are two places in the control deck where volume interior control

functions can be speci�ed. First, there is global control available in the line(s) specifying

the number of iterations and orthogonality control for those number of iterations. The new

construct of this line is illustrated in Table 3.

16

Table 3. Thomas & Middleco� Global Clustering Controls Instruction Format.

Line Field Column Datum

no.: no.: nos.: type: Description:

1 1-11 k \iterations="

2 12-14 i number of iterations in this part

3 15-23 k \-control="

4 24-25 c global switch on control, either \ye", \no", or \fz"

5 26-38 k \-coarse/�ne"

6 39-42 c \coar" or \�ne"

7 43-61 k \-thomas-middleco�="

8 62-68 c \none", \initial", \only", or \hybrid"

iterations=100-control=no-coarse/fine=coar-thomas-middlecoff=none

iterations=100-control=ye-coarse/fine=fine-thomas-middlecoff=initial

iterations=100-control=ye-coarse/fine=fine-thomas-middlecoff=only

iterations=100-control=ye-coarse/fine=fine-thomas-middlecoff=hybrid

The four options available for this type of control allow the user to globally set the type

of resulting forcing functions used by the elliptic solver. The e�ects of each are as follows:

[1] \none" - Thomas and Middleco� controls are disabled for entire set of iterations.

[2] \initial" - Thomas and Middleco� controls are calculated only to initialize the

elliptic solver forcing functions. Thus, the solver does not start with

the forcing functions set to zero. Rather, they start with a \best guess".

17

[3] \only" - Thomas and Middleco� forcing functions are used to generate

the volume grid with no guarantee of orthogonality on any boundary.

[4] \hybrid" - Thomas and Middleco� controls in conjunction with the Sorenson

orthogonality control at a boundary are used to generate the volume grid

utilizing a background forcing function technique.6 In this case, the grid exhibits the

volume grid clustering controls as well as having orthogonality at a speci�ed

boundary or boundaries.

Interior volume-grid-clustering controls are calculated only once, at the beginning of each

iteration sequence, where the Thomas and Middleco� controls are activated. The Thomas

and Middleco� controls are smoothed utilizing a weighted averaging algorithm, equation 1.

This smoothing is continued for 5 cycles with ! equal to .2, in equation 2, to increase the

window of inuence. The larger window of inuence simply adds dependence of a point's

control function value on adjacent points. The larger window of inuence for smoothing

reduces the e�ects of discontinuities on the six de�ning surfaces, preventing those e�ects

from a�ecting the interior grid clustering.

P 0(�; �) =
1

7
(�1P (� + 1; �) + �2P (� � 1; �) + �3P (�; � + 1) + �4P (�; � � 1) + 4P (�; �)) (1)

P (�; �) = P 0(�; �)(1� !) + P (�; �) (2)

18

where,

�j = 1:0�
�sjP4
i=1�si

(3a)

and for j=1 (corresponds to �),

�s1 =
q
(x(� + 1; �)� x(�; �))2 + (y(� + 1; �)� y(�; �))2 + (z(� + 1; �)� z(�; �))2 (3b)

The forcing functions are interpolated onto the interior volume using a modi�ed two-

dimensional trans-�nite interpolation (2DTFI) method. The interpolation method uses 50%

of the sum from the �rst four terms and neglects the corner point corrections (equation 4),

maintaining edge and corner values on the parametric surface.

P (�; �) =
1

2
(�1P (�min; �) + �2P (�max; �) + �3P (�; �min) + �4P (�; �max)) (4a)

where,

�1 = 1:0 � � (4b)

�2 = � (4c)

�3 = 1:0 � � (4d)

�4 = � (4e)

(4f)

19

and,

� =
t1(�) + s1(�)(t2(�) � t1(�))

1:0 � (s2(�) � s1(�))(t2(�) � t1(�))
(4g)

� =
s1(�) + t1(�)(s2(�) � s1(�))

1:0 � (s2(�) � s1(�))(t2(�) � t1(�))
(4h)

The \s" and \t" are the normalized arc lengths along the � and � directions. The \1" and

\2" designate the minimum or maximum values of the respective parametric coordinates.

The change in the 2DTFI equation was implemented because if the forcing functions at the

corner points were di�erent than the trends in the middle of the edges, resulting interpolated

forcing functions are ampli�ed on the interior. The di�ering trends are typically due to

cell spacing gradients and surface curvature at the corners. By using the modi�ed 2DTFI

equations with Soni's4 blending coe�cients, better behaved forcing functions will result.

In addition to the global control command line, the TMCs can be activated or deactivated

by block for an entire run of multiple iteration sets. For blocks where the TMC's are not

necessarily needed, the use of the control functions can be eliminated without a�ecting other

surrounding blocks. This command is found in the last line of the \block" information

section and before any face information is de�ned (Table 4).

20

Table 4. Thomas & Middleco� Local Clustering Controls Instruction Format.

Line Field Column Datum

no.: no.: nos.: type: Description:

1 1-18 k \thomas-middleco�="

2 19-20 c local Thomas & middleco� clustering controls, either \ye" or \no"

3 21-35 k \iterate-block="

4 36-37 c local control on solving individual block, either \ye" or \no"

thomas-middlecoff=ye-iterate-block=ye

thomas-middlecoff=no-iterate-block=ye

thomas-middlecoff=ye-iterate-block=no

thomas-middlecoff=no-iterate-block=no

In columns 19-20, the string \ye" or \no" tells the elliptic solver whether or not to utilize

the Thomas and Middleco� controls for this block. By deactivating the TMC's with a \no",

the solver is prevented from using any form of the TMC's. This does not a�ect the operation

on the rest of the blocks. In addition to the local Thomas and Middleco� controls, the option

to let the elliptic solver run this block is also available within the control line. In columns

36-37, the \ye" instructs the program to solve the elliptic equations with the de�ned controls.

A \no" in this �eld would tell the solver to completely ignore this block. Because this line

is located once in each block, the local controls hold for all parts of the iteration schedule.

21

Freezing Forcing Function Corrections

Users of grid generation and Computational Fluid Dynamics (CFD) codes are switching

from the super computers like the CRAY to modern and e�cient workstations. While these

fast workstations provide speed, the users are �nding the reduced precision from 64 bit to

32 bit precision induces problems due to truncation error. With grid generation, the forcing

functions necessary to enforce orthogonality end up being determined before the grid-point

movement has a chance to converge. To counteract this problem, the option of freezing the

updates to the control functions has been added to 3DMAGGS. The option is located in the

\iterations" line of the control deck as illustrated in Table 4.

Placing the \fz" in columns 24-25 instructs the solver to set the relaxation parameter to

the update of the forcing functions in the solver to zero. This means the forcing functions are

still calculated, but their values will not change. The routines are vectorized enough to be

executed quickly with insigni�cant impact on performance. The grid-point movement is the

only quantity allowed to change. The use of this option gives the user an improved control

on grid-point convergence, leading towards a better solution when using 32-bit hardware.

Grid Point Movement Optimization

As stated in the 3DGRAPE document, the code uses a PSOR method. The document

states that this method does vectorize well, but the relaxation parameter is user de�ned and

�xed for the entire grid generation process. In order to enhance convergence, the method

in 3DMAGGS employs the same PSOR, but the relaxation factor can be determined by

Ehrilch's10 method. The implementation is simple because there was no change to the

relaxation parameter command line as illustrated in Table 5.

22

Table 5. Grid Point Movement Optimization Instruction Format.

Line Field Column Datum

no.: no.: nos.: type: Description:

1 1-17 k \relaxation-parameter="

2 18-29 c/f \keep-default", +! or -! relaxation factor

3 30-54 k \-forcing-function-output="

4 55-56 c \ye" or \no"

relaxation-param=keep-default

relaxation-param=0.3500000000

relaxation-param=-.7500000000

To activate the optimization, input a negative number for the relaxation parameter. This

number is the percentage of the optimum the user wishes. The recommended percentage

is 75% (-.75) because full optimization tends to make the solver unstable. The method of

3DGRAPE is retained in the speci�cation of the relaxation parameter by using a positive

number or \keep-default".

The vectorization algorithm employed in 3DMAGGS only uses those points that are

surrounding the point in the vector, not the points directly before and after (Figure 2).

The open points are not used because of the increased magnitudes of eigenvalues in the

vectorized direction. The previous point is already at the next solution in time. So, if the

relaxation parameter is calculated at the next consecutive point based on the previous point,

the optimum relaxation parameter would be consistently one solution ahead of the previous

point. The points along the vector are neglected when calculating the optimum relaxation

23

Array
Vector

+ ξ

+ η

+ ζ

not used in calculation
used in calculation

Figure 2: Grid points used in the calculation of the optimum relaxation parameter.

24

parameter. Although the PSOR is still used, the optimum relaxation parameter provides for

a rapidly converged solution.

External Cell Size Speci�cation

To calculate the forcing functions for orthogonality control in the elliptic equations, a

cell size (�s) has to be speci�ed. The cell size represents the distance to the �rst point from

a volume block face boundary. Although the 3DGRAPE code o�ers two ways to enter or

calculate the cell size, there is not enough exibility for complex block faces. The 3DMAGGS

code incorporates a \ag" in the cell size speci�cation of the face de�nition line, as illustrated

in Table 6, to read these values from an external �le.

25

Table 6. External Cell Size Speci�cation Instruction Format.

Line Field Column Datum

no.: no.: nos.: type: Description:

1 1-5 k \face"

2 6 i face number

3 7-16 k \-sections="

4 17-18 i number of sections comprising the face

5 19-26 k \-normal="

6 27-38 c/f \uncontrolled", \n-i-stations", cell height or \<peripheral>"

7 39-43 k \-abc="

8 44-55 c/f \keep-default" or stretching parameter

9 56-68 k \-light/tight="

10 69-70 c \ye" or \no"

face-2-sections= 1-normal=uncontrolled-abc=keep-default-light/tight=no

face-2-sections= 1-normal=123456789.12-abc=keep-default-light/tight=no

face-2-sections= 1-normal=<peripheral>-abc=keep-default-light/tight=no

The location of the cell size \ag" to 3DMAGGS is in �eld 6 and is given as \<peripheral>".

3DMAGGS looks for a �le containing the necessary cell sizes for each point on the block

face. This �le has a naming construct to make them unique to 3DMAGGS. The �le names

take on the form:

DSIBLK �[�]F.DAT

26

where,

�[�] represents the block number for the system

and represents the face number of the speci�ed block,

which follows 3DGRAPE conventions.

If block 3, face 4 is to have an orthogonality boundary condition under this method, the

�le would be named DSIBLK3F4.DAT. Because some blocking strategies utilize more than

9 blocks, the second optional � is a legal construct. Note that this method allows for the

generation of as many blocks as the user desires. The user must provide the correct naming

convention if any other methods are used besides the one outlined in PREMAGGS.

Utilizing this format, an outside program can be used to generate the cell sizes necessary

for the calculation of the orthogonality controls. These cell sizes can be computed or ex-

tracted from a given CFD solution enabling apriori information to be incorporated into the

volume grid. This form of cell size speci�cation gives the user more exibility in grid-point

clustering and volume-grid structure.

Forcing Function Output

Due to the methods used in the interpolation of forcing functions, it became apparent

that the user may wish to view these values calculated for volume control. An output

\ag" was added to 3DMAGGS to output a TECPLOTTM ASCII formatted �le of the

forcing functions. These forcing functions will only be written when the controls of Thomas

and Middleco� are formulated. The option, illustrated in Table 5, outputs three di�erent

TECPLOTTM �les. All �les end the same way. They are con�gured such that the block

number and the most current version of the �le are in the �le name. The beginning �le name

27

is one of the following:

[1] \initPQR" - Initial derivatives calculated and interpolated onto the six de�ning

faces of the grid block. This �le also contains the parametric space forcing

functions for those faces where they are directly calculable.

[2] \smthPQR" - Parametric space forcing functions after being smoothed with a weighted

averaging algorithm.

[3] \fnlPQR" - Final forcing functions used on the de�ning six grid block faces, converted

to physical space.

The �le naming conventions account for multiple versions of the same �le. For example,

if block 12 was being written for a second time and there were 8 previous �le names for block

12 after initialization, the initial forcing function data will be in \initPQRb12f10.dat". The

number after \b" represents the block number, and the number after \f" is the �le's version

number. The creation of new �les will be added in a consecutive order. Any pre-existing

�les will not be overwritten. The user must be sure the number of versions of a �le do not

exceed 99, because 3DMAGGS will stop if no more �le versions are available. TECPLOTTM

can then be used to evaluate the magnitudes and to understand the forcing functions and

their e�ects.

28

GRIDGEN Interface

In order to use the 3DMAGGS code, just as the 3DGRAPE code, a de�nition of the

con�guration's surface is needed. To make 3DMAGGS a complete system, a volume grid

block and 2D parametric block-face grid generator are required. To provide this information,

PREMAGGS, an interface code, was created to link GRIDGEN2D to 3DMAGGS.

The PREMAGGS code uses its own input �le and GRIDGEN3D input data to generate

the 3DMAGGS control decks. Other data required to run 3DMAGGS are provided by

PREMAGGS, including:

[1] UNIX shell scripts for 3DMAGGS and 3DVOLCHK.

[2] Generation of 3DMAGGS control decks (�les 10, 11 and 16).

[3] �s cell sizing for Sorenson forcing function controls

using either 2DTFI or LARCS.

[4] Source code re-dimensioning of 3DMAGGS.

The PREMAGGS input �le has the form shown in Table 7.

29

Table 7. GRIDGEN to 3DMAGGS Interface Input File.

***** PRE 3DMAGGS CONTROL FILE *****

Working directory of 3DGRAPE runs (a) :/scr/salter/wood/sc1/

FLAGS ctd,face,dsi,3dj,3dg,3dv (6i2): 0 0 0 0 1 0

Job Control Deck for Cray or SGI (a) :cray

Configuration name (a) :Straight Cone #1 for UPS Study

Default file name prefix (a) :sc1

Block Information file (*.bnda) (a) :sc1.bnda

Face Information file (*.mlga) (a) :sc1.mlga

Number of iteration sequences (i2) :04

Number Global Coarse (0) Thomas

of Iterations Control Fine(1) & Middlecoff

000 0 1 0
100 0 1 1
100 1 1 2
300 1 1 3

Relaxation parameter (f12.6):-0.7

Decay rates for each block/face (f12.6):6.0

Block Face Decay Rate

Number Number Factor

1 1 -1.00
1 2 0.20
1 3 0.35
1 4 0.35
1 5 0.30
1 6 0.35

Sorenson init (1); 3DTFI (2) (f12.6): 2.

Orthogonality Control (f12.6): 6.

Block Face Interp. Interp. Blending Normalized

Number Number indx1->3 indx2->4 Function Arc Lengths

1 1 2 2 0 1
1 2 1 1 3 1
1 3 1 1 1 1
1 4 1 1 1 1
1 5 1 1 3 1
1 6 2 2 2 1

The �le is read with formatted FORTRAN statements for those line containing the colons

\:" and the rest of the information is read with free formats. Two header lines are used for

understanding the input �le for the iteration control sequences, orthogonality decay rates

and the calculation type for determining cell size. These header lines are expected and will

30

be read as 80 column character strings. The description of each line is tabulated in Table 8.

31

Table 8. Description of PREMAGGS Input File.

Line # Format Description

1-2 (a) Header for the �le.

3 (41x,a) Directory to �nd all data, including the source codes.

Note: If the directory has a � in front of it, the script

written will be for a C-Shell, as opposed to

the default Bourne Shell.

4 (41x,6i2) Control ags for the types of data to be produced:

Flag # Description

1 Control deck generation.

2 File 11 construction for \read-in-�xed" data.

3 Cell size calculation.

4 3DMAGGS UNIX script generation.

5 3DMAGGS re-dimensioned based on grid dimensions.

6 3DVOLCHK re-dimensioned.

5 (41x,a) Type of machine 3DMAGGS will use.

6 (41x,a) First comment line in the 3DMAGGS control deck, typically

used to label the control �le for clarity.

32

Table 8. Description of PREMAGGS Input File. (cont.)

Line # Format Description

7 (41x,a) Default name of GRIDGEN and 3DMAGGS �les.

8 (41x,a) Truncated GRIDBLOCK ascii �le name.

9 (41x,a) GRIDGEN2D block face grid de�nitions.

10 (41x,i2) Number of iteration sequences to be run in the \newstart" control deck.

10a (a) Header for columns of following data.

10b-? (*) Number of iterations, activation of orthogonality controls

(1->YES/0->NO), coarse or �ne solution, and type of Thomas and

Middleco� activation for a given sequence. The latter option and

the speci�ed 4 type:

Option # Description

0 No TMC's are to be used or calculated.

1 TMC's used as initial guesses for P, Q & R.

2 Only TMC's are used for forcing functions.

3 Hybrid Control of Sorenson and TMC's.

11 (41x,f12.6) Relaxation Parameter for solver. A negative number is that percentage of

the optimum value. A positive number is a constant to be used.

33

Table 8. Description of PREMAGGS Input File. (cont.)

Line # Format Description

12 (41x,f12.6) Decay rate speci�cation for the forcing functions. A negative number

denotes the default. The default in the \newstart" deck is

\keep-default". The default in the \restart" deck is the conversion

from GRIDGEN to 3DMAGGS using the absolute value of the decay rate

read as the value of the EXPO variable (equation 5), illustrated later.

Otherwise a positive number is the number of block/face

combinations that will use lines 12a-?.

12a (a) First line header for columns of following data.

12b-? (*) Grid block number, face number and decay rate to be used to

exponentially decay the orthogonality controls into the volume.

A negative number for the decay rate denotes 3DGRAPE's default for the

speci�ed block/face combination.

13 (41x,f12.6) Volume grid initialization through Sorenson's method (#1), or optimized

3DTFI (#2).

14 (41x,f12.6) Cell height control of each block/face combination. If the number is

negative, the TEAM nomenclature and options within GRIDGEN, are

used. In this case, only pole boundaries and matching faces have no

control. All other face types will have orthogonality. If this number

is positive, it represents the number of block/face combinations with

controls to be speci�ed in the following format:

34

Table 8. Description of PREMAGGS Input File. (concluded)

Line # Format Description

14a (a) First line header for columns of following data.

14b (a) Second line header for columns of following data.

14c-? (*) Block number, face number, type of interpolations for adjoining opposing faces

(Figure 3) Linear (1), Elliptic (2), Hyperbolic blending of both opposing pairs,

and use of normalized arc lengths for interpolations for each block/face

combination.

NOTE: The computed cell heights/sizes are based on the LARCS method and each

block/face combination will have a di�erent �le name, as mentioned in the

External Cell Size Speci�cation section of this paper. The PREMAGGS

code outputs three �les for each block/face combination, one for 3DMAGGS

which utilizes the LARCS method, an alternate �le that uses

two-dimensional trans-�nite interpolation where \t�" is substituted

for \dsi" in the �le name convention and a third with a \.tcp" extension

that is input to TECPLOTTM to look at the cell sizes speci�ed on

a per point basis, as well as other LARCS parameters.

As mentioned in the description of the PREMAGGS input �le, the default decay rate for

the restart deck is the decay rate used by 3DMAGGS that emulates GRIDGEN3D's. This

decay rate is easily determined by equating the method used by each code for a given face,

35

ζ=Constant
Faces 5 & 6
Pair #1: 3 → 4

Pair #2: 1 → 2

ξ=Constant
Faces 1 & 2

Face Nomenclature

Pair #1: 5 → 6

Pair #2: 3 → 4

η=Constant
Faces 3 & 4

3

1
2

4
5

6

Pair #1: 5 → 6

Pair #2: 1 → 2

Opposing Face Nomenclature for LARCS Blending

ξ

η

ζ

Figure 3: Opposing Face Nomenclature.

36

such as �min (equation 5).

Pface�min
e
�abcface�min

(��1)
= Pface�min

e
�EXPO

��1

�max�1 (5)

Canceling the forcing function term, and taking the natural log of both sides results in

equation 6.

abc(� � 1) = EXPO
� � 1

�max � 1
(6)

Again, canceling the (� � 1), and substituting the EXPO in terms of \abc" yield the con-

version between GRIDGEN3D and 3DMAGGS, equation 7.

EXPO = abc(�max � 1) (7)

For the PREMAGGS input, the user must specify a negative EXPO value to use the GRID-

GEN3D to 3DMAGGS conversion. For GRIDGEN3D, the default EXPO is 6.

Although the �le seems involved and an added step, the PREMAGGS code provides

a lot of exibility in the grid-generation process. The transition between GRIDGEN and

3DMAGGS is smooth and e�cient. This transition also enables the user to generate large

grids easily and e�ciently.

37

Grid Quality Parameter Calculation Tool

The second support code for the 3DMAGGS code is 3DVOLCHK. This program is de-

signed to work with the data set from 3DMAGGS output, as well as any PLOT3D format

�le. The code has the same requirement on index/face nomenclature as 3DGRAPE. The

3DVOLCHK program calculates the volume of each cell, the cell's aspect ratio and three

skewness parameters.

In order for 3DVOLCHK to calculate the above values, two speci�c elements are neces-

sary. The user must provide the PLOT3D �le name and notation of whether the PLOT3D

�le contains a single or multiple block grid. From this information, a \q" �le, utilizing the

name of the input volume grid �le, is output. 3DVOLCHK incorporates the base name of

the PLOT3D �le to create an output �le name.

The output \q" �le then contains each cell's volume, the aspect ratio and the three skew-

ness parameters, in this order. The volume is calculated by decomposing a hexahedron, to

account for a cell's curvature.11 The aspect ratio of each cell is then calculated by equation 8.

AR =
6X
i=1

Ai

6V
2

3

(8)

Each area is calculated from the cross products of the vectors tangent to a given face, as in

equation 9.

A�=constantface =
1

2
k~r� �~r�k (9)

Finally, the skewness of the grid lines can be determined by standard dot products. For

example, looking at the plane where � is constant, skewness of grid lines are determined by

38

calculating the arc-cosine of the dot product for vectors ~r� and ~r� (equation 10.)

��� = cos�1 [
~r� �~r�q

(~r� �~r�)(~r� �~r�)
] (10)

For the plane where � is constant, equation 11 is used. And for the plane where � is constant,

equation 12 is used.

��� = cos�1 [
~r� �~r�q

(~r� �~r�)(~r� �~r�)
] (11)

��� = cos�1 [
~r� �~r�q

(~r� �~r�)(~r� �~r�)
] (12)

The skewness data written last in the \q" �le, measures from zero to one, a skewness factor

of 1.0 (100%) represents total orthogonality and the factor can decrease to 0.0 (i.e., 0%

orthogonality). Equations 10, 11 and 12 are normalized by using equations 13, 14 and 15,

to obtain the measures written.

ORTHO�� = 1 �
j
�

2
� ���j
�

2

(13)

ORTHO�� = 1 �
j
�

2
� ���j
�

2

(14)

ORTHO�� = 1 �
j
�

2
� ���j
�

2

(15)

The above measures were generated speci�cally due to the cosine function. The function

produces a scale that has two places of no orthogonality and only one location of true

orthogonality. Using the above formulation, the orthogonality exists at a value near one,

and no orthogonality exists at zero. Orthogonality parameters become more meaningful and

39

easier to interpret.

From these parameters, the quality of the volume grid can be determined easily. Grid

quality can be evaluated at the users discretion by utilizing 3DVOLCHK. There is no re-

quirement to operate the entire 3DMAGGS code just to obtain grid quality information.

Although there are some volume quality analysis tools available in visualizing software such

as the Flow Analysis Software Tool12(FAST), 3DVOLCHK adds the capability of employing

TECPLOTTM to view volume grids and quality parameters.

Example Problem

This portion of the manual has been included to enable the user to get a feel for the

correct operation of the 3DMAGGS code along with its support codes PREMAGGS and

3DVOLCHK. The section consists of one example that extensively illustrates the full use of

options added to 3DMAGGS.

The example used for all three codes is a sphere-cone-cylinder-cone con�guration with

an elliptical cross-section, Figure 4. This con�guration was constructed using a quasi-

axisymmetric grid generator. The con�guration's dimensions are shown in Figure 5.

The method of volume grid generation typically used in conjunction with the 3DMAGGS

code is the following:

[1] Construct or obtain the surface of a con�guration.

[2] Load the surface geometry de�nition into GRIDBLOCK of the GRIDGEN code.

[3] Construct the grid-blocking structure to be used, as well as setting CFD boundary

conditions and face-matching de�nitions.

40

X

Y Z

Figure 4: Example Sphere-Cone-Cylinder-Cone con�guration.

41

3.0"

5.517"

11.391"

16.550"

34.171"

7.732"

21.732"

28.732"

25°

40°

Figure 5: Scaled drawing of example con�guration.

42

[4] Load the GRIDBLOCK output into GRIDGEN2D and create all de�ning faces of the

grid-block structure. Note, there are six faces for each block.

[5] Output the face grid distributions (also referred to face de�nitions) and the boundary

conditions to load into the GRIDGEN3D code.

[6] Set up the input �le for PREMAGGS and run it with the input [�le].bnda and [�le].mlga

�les usually read by GRIDGEN3D.

[7] Compile, link and execute the 3DMAGGS code for the geometry to convergence or until

the grid structure meets the needs of the user.

[8] Execute the 3DVOLCHK code to evaluate grid quality, and to determine if further

iterations with the 3DMAGGS code is necessary.

The user may have to repeat the last 6 steps of the above method to obtain good grid

distributions, or better parametric dimensional limits.

For the sample case, the face de�nitions, illustrated in Figure 6, were set up so the

methods used for matching block boundaries were accounted and easily obtainable from

the elliptic solver. Then the PREMAGGS input was set up, shown in A of the Appendix.

PREMAGGS then generated the input decks used for the operation of 3DMAGGS and the

UNIX scripts, shown in Appendix B, C, D and E.

By viewing the input, based on PREMAGGS assumptions, the matching boundary will

have orthogonality activated. The 3DMAGGS code, in conjunction with the operation of

the Thomas and Middleco� controls, does not handle matching faces very well. This arises

from the Thomas and Middleco� controls calculated once at the beginning of each iteration

43

X

Y Z

Block: FOREBlock: AFT

Figure 6: Block face de�nitions for the Example case with � limit faces and � = 1 face of
AFT block not shown, for clarity.

44

group. Due to the methods used for matching boundaries, the surface that is shared by

both blocks will be di�erent than the one used to originally formulate the Thomas and

Middleco� controls. This di�erence in surface tends to cause instability in 3DMAGGS and

can be extreme enough to prevent convergence. For matching boundaries, the orthogonality

is activated. The decay rate of the forcing function from that face onto the interior of the

volume grid is extremely fast. This causes little e�ect of the orthogonality but does result

in a reasonable slope continuity across a matching boundary.

For the example case, Figure 7 illustrates the convergence of the root-mean squared

residual grid-point movement, and Figure 8 shows the elliptic solver residuals, both on a per

iteration basis. Just as expected, the solution proceeds smoothly towards convergence. One

special point to note is that, in the beginning of the solution, the root mean squared grid-

point movement oscillates very little. This is indicative of starting the solution at a guess

determined by Thomas and Middleco�, as opposed to stating the forcing function terms at

zero. This e�ect combined with the grid lines tending to be more indicative of the �nal grid,

through the use of 3DTFI initialization, tends to make the 3DMAGGS solver more stable

and faster.

3DMAGGS does not handle matching boundaries with the Thomas and Middleco� con-

trols activated. This problem can be alleviated by using orthogonality at the matching

boundary, with a rapid decay rate of the required forcing functions, onto the interior of the

grid. Utilizing 3DMAGGS for the volumetric grid generation is not only faster but can give

the user the necessary control to enable the formation of the Thomas and Middleco� controls

to be computed once.

45

Comparisons to GRIDGEN3D and 3DGRAPE

A primary motivation for extending the capabilities of 3DGRAPE to 3DMAGGS was the

lethargy of GRIDGEN3D in elliptic volume grid generation. At the time of 3DMAGGS' con-

ception, several complex aerodynamic con�gurations were being studied, and GRIDGEN3D

was unable to deliver a usable volume grid e�ciently. The e�ciency was also e�ected by

the lack of state-of-the-art controls within the 3DGRAPE code. Hence, the state-of-the-art

volumetric grid-generation controls of GRIDGEN3D were incorporated into the most e�-

cient available elliptic solver, 3DGRAPE. This section illustrates the advantages of using

3DMAGGS over both 3DGRAPE and GRIDGEN3D by comparing to the example case in

this document.

For GRIDGEN3D, the boundary conditions used in the comparison were:

[1] The matching face boundary was set to have orthogonality in both blocks.

[2] Orthogonality was imposed on the symmetry planes, the exit plane and the con�gura-

tion's wall.

[3] Thomas and Middleco� controls were set at the beginning of the solution.

[4] An optimum relaxation factor of 75% was used for grid point movement.

[5] Default decay rates were applied to all boundaries with orthogonality activated, ex-

cept the matching boundary. This capability is not available in GRIDGEN3D, so an

EXPO was chosen to be more indicative of the grid point clustering on boundaries with

orthogonality activated.

[6] 1000 iterations were to be performed.

46

Under these conditions, the results from using GRIDGEN3D (input in Appendix F) and

3DMAGGS, Figure 9 illustrates the convergence of the root mean squared residual grid

point movement to the iteration. While both seem to perform similarly, they are di�erent

in execution time (see Figure 10).

Inspecting the GRIDGEN3D output, the circled regions in Figure 10, illustrate an im-

portant di�erence between 3DMAGGS and GRIDGEN3D. GRIDGEN3D does not save the

elliptic solver forcing functions or residuals for a restart. GRIDGEN3D tries to recalculate

the controls at each restart. 40% of the time necessary to obtain a converged solution could

be lost by GRIDGEN3D. Due to capabilities in restart and execution time, 3DMAGGS is a

more e�cient solver.

To remain consistent with GRIDGEN3D, similar matching boundary conditions were

set, as noted earlier. The matching boundary shown in Figure 11, in GRIDGEN3D tends

to produce a wave-type phenomenon in the grid. This wave-like structure arises from the

lack of source-term controls within GRIDGEN3D. By comparison, 3DMAGGS produces a

slope-continuous transition across the boundary.

Source-term decay in 3DMAGGS from a surface with activated orthogonality is di�erent

than GRIDGEN3D. The 3DMAGGS code uses a unique value for the rate of decay per grid

point from a surface of orthogonality and is illustrated in equation 16.

P = Pface�min
e
�abcface�min

(��1)
+ Pface�max

e
�abcface�max

(�max��)

+Pface�min
e
�abcface�min

(��1) + Pface�max
e�abcface�max

(�max��)

+Pface�min
e
�abcface�min

(��1)
+ Pface�max

e
�abcface�max

(�max��) (16)

47

The \abc" is a user speci�ed or default decay rate on a per face basis. By utilizing this

formulation, greater control is available for near-boundary grid clustering. By comparison,

GRIDGEN3D uses parametric limits in the formulation and a constant decay rate per entire

grid block system (equation 17).

P = Pface�min
e
�EXPO

��1

�max�1 + Pface�max
e
�EXPO

�max��

�max�1

+Pface�min
e
�EXPO

��1

�max�1 + Pface�max
e
�EXPO

�max��

�max�1

+Pface�min
e
�EXPO

��1

�max�1 + Pface�max
e
�EXPO

�max��

�max�1 (17)

3DMAGGS eliminates any biasing in the formulation of non-zero source terms for orthog-

onality control. A face, whose parametrically orthogonal direction has a larger number of

points relative to surrounding faces, will not necessarily be the dominant controlling force

for the volume grid appearance. Thus, 3DMAGGS provides the user with a greater degree

of control over the forcing function controls on the boundary and interior volume grid, as

compared to GRIDGEN3D.

GRIDGEN3D o�ers only one other capability not o�ered by 3DMAGGS, the Fixed-

Grid computation. This capability exists primarily to smooth the results of algebraic grid

generation. To account for the lack of a Fixed-Grid capability in 3DMAGGS, the controls

over the forcing functions are more numerous than GRIDGEN3D. These controls include

the determination of the decay rate of forcing functions into the interior of a volume grid.

The e�ective smoothing of Thomas and Middleco� controls at the time of their formulation,

reduces \kinked" grid production. Hence, with the use of small relaxation parameters for

grid-point movement and with a larger variety of grid clustering controls, 3DMAGGS does

48

not need the Fixed-Grid controls.

In comparison with 3DGRAPE (input in Appendix G and H), the optimization, the

3DTFI initialization, and the initial guess of source terms based on Thomas and Middleco�

controls a�ord better convergence of 3DMAGGS over 3DGRAPE (Figure 12). With the

Thomas and Middleco� controls deactivated for the volumetric control, the 3DMAGGS

code uses available grid generation time e�ciently. This e�ciency is due to the grid points

being moved based on their optimum relaxation as opposed to some �xed relaxation rate.

With the state-of-the-art capabilities of 3DMAGGS, time to convergence is still maintained

(Figure 13).

Conclusion

In summary, the 3DMAGGS code is more versatile and robust than GRIDGEN3D and

3DGRAPE. The extensions to 3DGRAPE found in 3DMAGGS o�er a larger variety of

elliptic solver enhancements without sacri�cing execution time. These extensions provide

precision to the user for controlling both volumetric and near surface grid clustering. The

robust nature of 3DMAGGS over GRIDGEN3D, as well as faster execution of the code,

results in a reduction in time and resources spent on grid generation.

49

0 200 400 600 800 1000
10-5

10-4

10-3

10-2

10-1

100

Convergence History
3DMAGGS Example Computation

Grid Point Movement vs. Iteration Number

G
ri

d
P

o
in

t M
o

ve
m

en
t (

in
ch

e
s)

Iteration Number

Aft Block Maximum

Fore Block RMS

Aft Block RMS

Fore Block Maximum

Figure 7: 3DMAGGS convergence history of grid point movement per iteration.

50

0 200 400 600 800 1000
10-3

10-2

10-1

100

101

102

103

104

Convergence History
3DMAGGS Example Computation

Iteration Number

Magnitude of RHS Terms vs. Iteration Number

M
a

gn
itu

d
e

 o
f R

H
S

 T
e

rm
s

Fore Block RMS

Aft Block RMS

Aft Block Maximum

Fore Block Maximum

Figure 8: 3DMAGGS convergence history of elliptic solver's Right Hand Side terms per
iteration.

51

0 200 400 600 800 1000
10-5

10-4

10-3

10-2

10-1

Aft Block (3DMAGGS)

Fore Block (3DMAGGS)

Aft Block (GRIDGEN3D)

Fore Block (GRIDGEN3D)

3DMAGGS to GRIDGEN3D Comparison
Convergence History

R
e

si
du

a
l R

M
S

Residual RMS vs. Iteration Number

Iteration Number

Figure 9: Comparison of 3DMAGGS and GRIDGEN3D convergence history per iteration.

52

0.0000E0 5.0000E3 1.0000E4 1.5000E4
10-5

10-4

10-3

10-2

10-1

Aft Block (3DMAGGS)

Fore Block (3DMAGGS)

Aft Block (GRIDGEN3D)

Fore Block (GRIDGEN3D)

3DMAGGS to GRIDGEN3D Comparison
Convergence History

Residual RMS vs. CRAY-II CPU Time

R
e

si
du

a
l R

M
S

Time (seconds)

GRIDGEN3D restarts

Residual

Residual

Residual

Residual

Figure 10: Comparison of 3DMAGGS and GRIDGEN3D convergence history per second.

53

3DMAGGS GRIDGEN3D

(a) 3D solver inuence of volume grid.

3DMAGGS GRIDGEN3D

(b) Expanded view of actual boundary.

Figure 11: Comparison of 3DMAGGS and GRIDGEN3D matching boundary conditions.

54

0 200 400 600 800 1000
10-5

10-4

10-3

10-2

10-1

Convergence History
3DGRAPE to 3DMAGGS Comparison

Residual RMS Movement vs. Iteration Number

Iteration Number

R
e

si
d

u
al

 M
o

ve
m

en
t (

in
ch

e
s) Fore Block (3DGRAPE)

Aft Block (3DMAGGS)

Fore Block (3DMAGGS)

Aft Block (3DGRAPE)

Figure 12: Comparison of 3DMAGGS and 3DGRAPE convergence history in iterations.

55

0 500 1000 1500 2000 2500
10-5

10-4

10-3

10-2

10-1

Convergence History
3DGRAPE to 3DMAGGS Comparison

R
e

si
d

u
al

 M
o

ve
m

en
t (

in
ch

e
s) Fore Block (3DGRAPE)

Aft Block (3DMAGGS)

Fore Block (3DMAGGS)

Aft Block (3DGRAPE)

Residual RMS Movement vs. CRAY-II CPU Time

CPU Time (seconds)

Figure 13: Comparison of 3DMAGGS and 3DGRAPE convergence history in CPU time.

56

References

1R. L. Sorenson, \The 3DGRAPE Book: Theory, Users' Manual, Examples," NASA TM

102224, July 1989.

2J. P. Steinbrenner, J. R. Chawner, and C. L. Fouts, \The GRIDGEN 3D Multiple Block

Grid Generation System," Wright Research and Development Center Report WRDC{TR{

90{3022, October 1989.

3J. F. Thompson, \A Composite Grid Generation Code for General 3D Regions-the

EAGLE Code," AIAA Journal, vol. 26, pp. 1{10, March 1988.

4B. K. Soni, \Two{ and Three{Dimensional Grid Generation for Internal Flow Applica-

tions of Computational Fluid Dynamics," AIAA Paper 85{1526, 1985.

5P. D. Thomas and J. F. Middleco�, \Direct Control of the Grid Point Distribution in

Meshes Generated by Elliptic Equations," AIAA Journal, vol. 18, pp. 652{656, June 1979.

6J. P. Steinbrenner, J. R. Chawner, and D. A. Anderson, \Enhancements to the GRID-

GEN System for Increased User E�ciency and Grid Quality," AIAA Paper 92{0662, January

1992.

7R. L. Sorenson and K. McCann, \GRAPEVINE: Grids About Anything by Poisson's

Equation in a Visually Interactive Networking Environment," NASA Conference Publication

3143, April 1992.

8S. J. Alter and K. J. Weilmuenster, \Cell Volume Control at a Surface for Three-

Dimensional Grid Generation Packages," in Software Systems for Surface Modeling and Grid

Generation (R. E. Smith, ed.), vol. CP-3143, pp. 273{298, NASA, 1992.

9I. Amtec Engineering, \Tecplot: version 5 User's Manual," Amtec Engineering publica-

57

tion V5.0/92-14, January 1992.

10L. W. Ehrlich, \An Ad Hoc SOR Method," Journal of Computational Physics, vol. 44,

pp. 31{45, March 1981.

11W. Kordulla and M. Vinokur, \E�cient Computation of Volume in Flow Predictions,"

AIAA Journal, vol. 21, pp. 917{918, June 1983.

12P. P. Walatka, J. Clucas, R. K. McCabe, T. Plessel, and R. Potter, FAST User Guide.

Mountain View, CA.: NASA Ames Research Center, �rst ed., 1992.

58

Appendix A

Input File to PREMAGGS

***** PRE 3DMAGGS CONTROL FILE *****

Working directory of 3DGRAPE runs (a) :/scr/salter/3dmaggs/ex/

FLAGS ctd,face,dsi,3dj,3dg,3dv (6i2): 0 1 1 0 0 1

Job Control Deck for Cray or SGI (a) :cray

Configuration name (a) :CONE for test case of 3DMAGGS

Default file name prefix (a) :exn

Block Information file (*.bnda) (a) :exn.bnda

Face Information file (*.mlga) (a) :exn.mlga

Number of iteration sequences (i2) :01

Number Global Coarse (0) Thomas

of Iterations Control Fine(1) & Middlecoff

400 1 1 3

Relaxation parameter (f12.6): 1.

Block Face Decay Rate

Number Number Factor

1 1 2.00
1 2 -1.00
1 3 0.35
1 4 0.35
1 5 0.30
1 6 0.35
2 1 -1.00
2 2 2.00
2 3 0.35
2 4 0.35
2 5 0.30
2 6 0.35

Decay rates for each block/face (f12.6):-1.

Sorenson init (1); 3DTFI (2) (f12.6): 2.

Orthogonality Control (f12.6): 8.

59

Block Face Interp. Interp. Blending Normalized

Number Number indx1->3 indx2->4 Function Arc Lengths

1 1 2 2 3 1
1 2 1 1 3 1
1 3 1 1 1 1
1 4 1 1 1 1
1 5 1 1 3 1
1 6 2 2 3 1
2 1 2 2 0 1
2 2 1 1 3 1
2 3 1 1 1 1
2 4 1 1 1 1
2 5 1 1 3 1
2 6 2 2 3 1

60

Appendix B

File 10 Data for Sample 3DMAGGS Comparison to

GRIDGEN3D
run-comment CONE for test case of 3DMAGGS

run-comment Initialization file

number-of-blocks= 2-number-of-parts-in-iteration-schedule= 1

iterations=999-control=ye-coarse/fine=fine-thomas-middlecoff=hybrid

filename-11-input=exn1.face -filename-12-output=

filename-14-grid-output=exn1-1.vol -form=plot3d

write-for-restart=ye-filename-15-output=exn1.res

relaxation-param=-.7500000000-forcing-function-output=no

initialization=trans-finite-iterations= 16

block- 1-comment aft

dimension-j= 31-dimension-k= 31-dimension-l= 61

handedness=r-initcond=l-cart/sph=cartesian

thomas-middlecoff=ye-iterate-block=ye

face-1-sections= 1-normal=<peripheral>-abc=2.0000000000-light/tight=no

read-in-fixed-xyz-k-from- 1-to- 31-l-from- 1-to- 61

face-2-sections= 1-normal=<peripheral>-abc=keep-default-light/tight=no

read-in-fixed-xyz-k-from- 1-to- 31-l-from- 1-to- 61

face-3-sections= 1-normal=<peripheral>-abc=0.3500000000-light/tight=no

read-in-fixed-xyz-j-from- 1-to- 31-l-from- 1-to- 61

face-4-sections= 1-normal=<peripheral>-abc=0.3500000000-light/tight=no

read-in-fixed-xyz-j-from- 1-to- 31-l-from- 1-to- 61

face-5-sections= 1-normal=<peripheral>-abc=0.3000000000-light/tight=no

read-in-fixed-xyz-j-from- 1-to- 31-k-from- 1-to- 31

face-6-sections= 1-normal=<peripheral>-abc=0.3500000000-light/tight=no

read-in-fixed-xyz-j-from- 1-to- 31-k-from- 1-to- 31

61

block- 2-comment foremid

dimension-j= 71-dimension-k= 31-dimension-l= 61

handedness=r-initcond=l-cart/sph=cartesian

thomas-middlecoff=ye-iterate-block=ye

face-1-sections= 1-normal=uncontrolled-abc=keep-default-light/tight=no

read-in-fixed-xyz-k-from- 1-to- 31-l-from- 1-to- 61

face-2-sections= 1-normal=<peripheral>-abc=2.0000000000-light/tight=no

read-in-fixed-xyz-k-from- 1-to- 31-l-from- 1-to- 61

face-3-sections= 1-normal=<peripheral>-abc=0.3500000000-light/tight=no

read-in-fixed-xyz-j-from- 1-to- 71-l-from- 1-to- 61

face-4-sections= 1-normal=<peripheral>-abc=0.3500000000-light/tight=no

read-in-fixed-xyz-j-from- 1-to- 71-l-from- 1-to- 61

face-5-sections= 1-normal=<peripheral>-abc=0.3000000000-light/tight=no

read-in-fixed-xyz-j-from- 1-to- 71-k-from- 1-to- 31

face-6-sections= 1-normal=<peripheral>-abc=0.3500000000-light/tight=no

read-in-fixed-xyz-j-from- 1-to- 71-k-from- 1-to- 31

62

Appendix C

File 16 Data for Sample 3DMAGGS Comparison to

GRIDGEN3D
run-comment CONE for test case of 3DMAGGS

run-comment Restart file

filename-17-input=exn1.res

number-of-parts-in-iteration-schedule= 1

iterations=400-control=ye-coarse/fine=fine-thomas-middlecoff=hybrid

filename-11-input=exn1.face -filename-12-output=

filename-14-grid-output=exn2.vol -form=plot3d

write-for-restart=ye-filename-15-output=exn2.res

relaxation-param=keep-default-forcing-function-output=no

block- 1-comment aft

thomas-middlecoff=ye-iterate-block=ye

face-1-sections= 1-normal=<peripheral>-abc=2.0000000000-light/tight=no

read-in-fixed-xyz-k-from- 1-to- 31-l-from- 1-to- 61

face-2-sections= 1-normal=<peripheral>-abc=keep-default-light/tight=no

read-in-fixed-xyz-k-from- 1-to- 31-l-from- 1-to- 61

face-3-sections= 1-normal=<peripheral>-abc=0.3500000000-light/tight=no

read-in-fixed-xyz-j-from- 1-to- 31-l-from- 1-to- 61

face-4-sections= 1-normal=<peripheral>-abc=0.3500000000-light/tight=no

read-in-fixed-xyz-j-from- 1-to- 31-l-from- 1-to- 61

face-5-sections= 1-normal=<peripheral>-abc=0.3000000000-light/tight=no

read-in-fixed-xyz-j-from- 1-to- 31-k-from- 1-to- 31

face-6-sections= 1-normal=<peripheral>-abc=0.3500000000-light/tight=no

read-in-fixed-xyz-j-from- 1-to- 31-k-from- 1-to- 31

63

block- 2-comment foremid

thomas-middlecoff=ye-iterate-block=ye

face-1-sections= 1-normal=uncontrolled-abc=keep-default-light/tight=no

read-in-fixed-xyz-k-from- 1-to- 31-l-from- 1-to- 61

face-2-sections= 1-normal=<peripheral>-abc=2.0000000000-light/tight=no

read-in-fixed-xyz-k-from- 1-to- 31-l-from- 1-to- 61

face-3-sections= 1-normal=<peripheral>-abc=0.3500000000-light/tight=no

read-in-fixed-xyz-j-from- 1-to- 71-l-from- 1-to- 61

face-4-sections= 1-normal=<peripheral>-abc=0.3500000000-light/tight=no

read-in-fixed-xyz-j-from- 1-to- 71-l-from- 1-to- 61

face-5-sections= 1-normal=<peripheral>-abc=0.3000000000-light/tight=no

read-in-fixed-xyz-j-from- 1-to- 71-k-from- 1-to- 31

face-6-sections= 1-normal=<peripheral>-abc=0.3500000000-light/tight=no

read-in-fixed-xyz-j-from- 1-to- 71-k-from- 1-to- 31

64

Appendix D

UNIX script for 3DMAGGS on CRAY-II

user=login pw=nobusiness # username and password on cray

qsub-r 3dmaggs # request name

qsub-o 3dmaggs1.out # output file name

qsub-lt 3600 # time limit

qsub-lm 8mw # memory limit

qsub-eo # send stderr to stdout

qsub-s /bin/csh # use a c shell

#

#

Job file to execute 3DMAGGS

#

##

The user should only change the input &

output files below this line. Remember

this is a BETA release of 3DMAGGS!

##

#

#

#.......change to working directory

cd /scr/salter/3dmaggs/ex/

#

#.......issue the 3dmaggs execution command

#

time ./3dgs < 3dg1s.inp >> 3dg1s.out

#

#.......check volume grid for negative volumes.

#

./3dvchk < 3dv1.inp >> 3dg1s.out

65

Appendix E

Input Information to 3DVOLCHK

exn1.vol

s

66

Appendix F

Input File Data for GRIDGEN3D

$assem

iassem = 1,

fnboci = 'exn0.bnda',

fnsurf = 'exn.mlga',

pathtmp = '/tmp',

fnvoli = 'exn0.vol',

$end

$init

initial = 2*2,

$end

$ellip

maxit = 200,

relax = .5,-.7,

icon = 2*2,

igrape(1,1) = 2,

igrape(1,2) = 2,

igrape(1,3) = 2,

igrape(1,4) = 1,

igrape(1,5) = 2,

igrape(1,6) = 2,

igrape(2,1) = 2,

igrape(2,2) = 2,

igrape(2,3) = 0,

igrape(2,4) = 2,

igrape(2,5) = 2,

igrape(2,6) = 2,

expo = 24,

imulti = 0,

ivec = 1,

$end

$out

iwrite = 1,

ivue = -1,

istyle = 2,

iflo = 0,

iasc = 0,

fnboco = 'exn0.bnda',

fnvolo = 'exn1.vol',

fnvue = 'exn1.vue',

fnflo = 'exn1.flo',

$end

67

Appendix G

File 10 Data for Sample 3DMAGGS Comparison to

3DGRAPE
run-comment CONE for test case of 3DMAGGS

run-comment initialization file; comparison to 3dgrape

number-of-blocks= 2-number-of-parts-in-iteration-schedule= 1

iterations=999-control=ye-coarse/fine=fine-thomas-middlecoff=initial

filename-11-input=exn1.face -filename-12-output=

filename-14-grid-output=exn1-4.vol -form=plot3d

write-for-restart=ye-filename-15-output=exn1.res

relaxation-param= -.7000000-forcing-function-output=no

initialization=trans-finite-iterations= 16

block- 1-comment aft

dimension-j= 31-dimension-k= 31-dimension-l= 61

handedness=r-initcond=l-cart/sph=cartesian

thomas-middlecoff=ye-iterate-block=ye

face-1-sections= 1-normal=<peripheral>-abc=2.0000000000-light/tight=no

read-in-fixed-xyz-k-from- 1-to- 31-l-from- 1-to- 61

face-2-sections= 1-normal=<peripheral>-abc=keep-default-light/tight=no

read-in-fixed-xyz-k-from- 1-to- 31-l-from- 1-to- 61

face-3-sections= 1-normal=<peripheral>-abc=0.3500000000-light/tight=no

read-in-fixed-xyz-j-from- 1-to- 31-l-from- 1-to- 61

face-4-sections= 1-normal=<peripheral>-abc=0.3500000000-light/tight=no

read-in-fixed-xyz-j-from- 1-to- 31-l-from- 1-to- 61

face-5-sections= 1-normal=<peripheral>-abc=0.3000000000-light/tight=no

read-in-fixed-xyz-j-from- 1-to- 31-k-from- 1-to- 31

face-6-sections= 1-normal=<peripheral>-abc=0.3500000000-light/tight=no

read-in-fixed-xyz-j-from- 1-to- 31-k-from- 1-to- 31

68

block- 2-comment foremid

dimension-j= 71-dimension-k= 31-dimension-l= 61

handedness=r-initcond=l-cart/sph=cartesian

thomas-middlecoff=ye-iterate-block=ye

face-1-sections= 1-normal=uncontrolled-abc=keep-default-light/tight=no

read-in-fixed-xyz-k-from- 1-to- 31-l-from- 1-to- 61

face-2-sections= 1-normal=<peripheral>-abc=2.0000000000-light/tight=no

read-in-fixed-xyz-k-from- 1-to- 31-l-from- 1-to- 61

face-3-sections= 1-normal=<peripheral>-abc=0.3500000000-light/tight=no

read-in-fixed-xyz-j-from- 1-to- 71-l-from- 1-to- 61

face-4-sections= 1-normal=<peripheral>-abc=0.3500000000-light/tight=no

read-in-fixed-xyz-j-from- 1-to- 71-l-from- 1-to- 61

face-5-sections= 1-normal=<peripheral>-abc=0.3000000000-light/tight=no

read-in-fixed-xyz-j-from- 1-to- 71-k-from- 1-to- 31

face-6-sections= 1-normal=<peripheral>-abc=0.3500000000-light/tight=no

read-in-fixed-xyz-j-from- 1-to- 71-k-from- 1-to- 31

69

Appendix H

File 10 Data for 3DGRAPE
run-comment CONE for test case of 3DGRAPE

run-comment initialization file

number-of-blocks= 2-number-of-parts-in-iteration-schedule= 1

iterations=999-control=ye-coarse/fine=fine-thomas-middlecoff=none

filename-11-input=exn1.face -filename-12-output=

filename-14-grid-output=exn1-3.vol -form=plot3d

write-for-restart=ye-filename-15-output=exn1-3.res

relaxation-param=keep-default-forcing-function-output=no

initialization=keep-default-iterations= 0

block- 1-comment aft

dimension-j= 31-dimension-k= 31-dimension-l= 61

handedness=r-initcond=l-cart/sph=cartesian

thomas-middlecoff=no-iterate-block=ye

face-1-sections= 1-normal=<peripheral>-abc=2.0000000000-light/tight=no

read-in-fixed-xyz-k-from- 1-to- 31-l-from- 1-to- 61

face-2-sections= 1-normal=<peripheral>-abc=keep-default-light/tight=no

read-in-fixed-xyz-k-from- 1-to- 31-l-from- 1-to- 61

face-3-sections= 1-normal=<peripheral>-abc=0.3500000000-light/tight=no

read-in-fixed-xyz-j-from- 1-to- 31-l-from- 1-to- 61

face-4-sections= 1-normal=<peripheral>-abc=0.3500000000-light/tight=no

read-in-fixed-xyz-j-from- 1-to- 31-l-from- 1-to- 61

face-5-sections= 1-normal=<peripheral>-abc=0.3000000000-light/tight=no

read-in-fixed-xyz-j-from- 1-to- 31-k-from- 1-to- 31

face-6-sections= 1-normal=<peripheral>-abc=0.3500000000-light/tight=no

read-in-fixed-xyz-j-from- 1-to- 31-k-from- 1-to- 31

70

block- 2-comment foremid

dimension-j= 71-dimension-k= 31-dimension-l= 61

handedness=r-initcond=l-cart/sph=cartesian

thomas-middlecoff=no-iterate-block=ye

face-1-sections= 1-normal=uncontrolled-abc=keep-default-light/tight=no

read-in-fixed-xyz-k-from- 1-to- 31-l-from- 1-to- 61

face-2-sections= 1-normal=<peripheral>-abc=2.0000000000-light/tight=no

read-in-fixed-xyz-k-from- 1-to- 31-l-from- 1-to- 61

face-3-sections= 1-normal=<peripheral>-abc=0.3500000000-light/tight=no

read-in-fixed-xyz-j-from- 1-to- 71-l-from- 1-to- 61

face-4-sections= 1-normal=<peripheral>-abc=0.3500000000-light/tight=no

read-in-fixed-xyz-j-from- 1-to- 71-l-from- 1-to- 61

face-5-sections= 1-normal=<peripheral>-abc=0.3000000000-light/tight=no

read-in-fixed-xyz-j-from- 1-to- 71-k-from- 1-to- 31

face-6-sections= 1-normal=<peripheral>-abc=0.3500000000-light/tight=no

read-in-fixed-xyz-j-from- 1-to- 71-k-from- 1-to- 31

71

