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Semiannual Progress Report

Covers period 1 November 1992 through 30 April 1993

As outlined in our continuation proposal 92-ISI-50R (revised) on contract NCC 2-539, we are (I)

: developing software, including a system manager and a job manager, that will manage available

resources and that will enable programmers to program parallel applications in terms of a virtual

configuration of processors, hiding the mapping to physical nodes; (2) developing communications

routines that support the abstractions implemented in item one; (3) continuing the development of

file and information systems based on the Virtual System Model; and (4) incorporating appropriate

security measures to allow the mechanisms developed in items 1 through 3 to be used on an open

network.

The goal throughout our work is to provide a uniform model that can be applied to both parallel

and distributed systems. We believe that multiprocessor systems should exist in the context of

distributed systems, allowing them to be more easily shared by those that need them. Our work

provides the mechanisms through which nodes on multiprocessors are allocated to jobs running

within the distributed system and the mechanisms through which files needed by those jobs can be

located and accessed.

The Prospero Resource Manager

Conventional techniques for managing resources in parallel systems perform poorly in large dis-

tributed systems. To manage resources in distributed parallel systems, we have developed resource

management tools that manage resources at two levels: allocating system resources to jobs as needed

(a job is a collection of tasks working together), and separately managing the resources assigned

to each job. The Prospero Resource Manager (PRM) presents a uniform and scalable model for

scheduling tasks in parallel and distributed systems. PRM provides the mechanisms through which

nodes on multiprocessors can be allocated to jobs running within an extremely large distributed

system.

The common approach of using a single resource manager to manage all resources in a large system

is not practical. As the system grows, a single resource manager becomes a bottleneck. Even within

large local muhiprocessor systems the number of resources to be managed can adversely affect

performance. As a distributed system scales geographically and administratively, additional prob-

lems arise.

PRM addresses these problem by using multiple resource managers, each controlling a subset of

the resources in the s_/stem, independent of other managers of the same type. The functions of

resource management are distributed across three types of managers: system managers, job man-

agers, and node managers. The complexity of these management roles is reduced because each is

designed to utilize information at an appropriate level of abstraction.

During the reporting period, we continued development of the Prospero Resource Manager (PRM),

software that manages tasks in parallel and distributed systems. We added support for I/O tasks
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allowing remotely executing applications to read and write files on workstations that do not other-

wise export their file systems and we improved the communication mechanisms on which PRM is

implemented. A beta release was distributed to more than 50 Internet sites. A paper describing the

Prospero Resource Manager was prepared, submitted to, and accepted for presentation at the Second

International Symposium on High Performance Distributed Computing and will be presented in

July. A copy of that paper is attached.

In our present configuration the nodes are Sun workstations running SunOS, Hewlett-Packard

workstations running HP-UX, and an Intel 486 personal computer running Mach. Communication

between the job, system, and node managers, and between tasks in a job, is supported by a reliable

delivery protocol ba_d on the user datagram protocol (UDP). To run a parallel application, pro-

grammers link executables for their tasks with the communication library we provide, they create

a job description file, and they invoke the job manager passing it the name of the job description file.

We have used PRM to run the Ocean program from Stanford University's SPLASH benchmark

suite, which studies the role of eddies and boundary currents in influencing large-scale ocean move-

ments by solving a set of partial-differential equations. We started with a message-passing version

of Ocean available for the Connection Machine (CM-5). To port this program to the PRM platform,

we wrote a set of macros and routines to implement the CM-5 communication library functions

using equivalent calls from our own library. The host program from the CM-5 version was incor-

porated into a terminal I/O task and handles interactive input. We are also using PRM to develop a

simulator for large networks of neurons.

Our plans for the next year include continued development of PRM and integration of our resource

management mechanisms with Parallel Virtual Machine (PVM) to allow existing users of PVM to

use PRM without modifying their programs. We hope also to use PRM to make a prototype em-

beddable touchstone multi-processor (built by the EV project at ISI) available to Internet users. We

have started to develop debugging and performance tuning tools for parallel applications. These

tools take advantage of the user level job manager. Work is planned to support suspension and

subsequent migration of tasks.

The Prospero File System and Directory Service

During the reporting period, we continued development of the Prospero File System and Directory

Service, a file system and directory service based on the Virtual System Model. In March 1993,

software supporting Version 5 of the Prospero protocol was released. These changes allow us to

develop and extend additional applications (e.g. document and file system browsers, hypertext

systems) to support Prospero. New access methods have been added to Prospero, including an e-
g

mail method supporting non-real-time access to files available through e-mail requests to designated

electronic mail addresses.

A prototype server supporting NFS access to files named by a Prospero virtual system was imple-

mented. More work is needed to support access to more than one virtual directory. When completed,

this server will allow existing applications to transparently use the Prospero File System without
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relinking.A similarserversupportingfile accessthroughthestackablelayersfile systeminterface
from UCLA is planned.

Wehavebegunintegrationof theProsperoResourceManagerwith theProsperoDirectoryService.
Thisallowsinformationabouttheconfigurationof parallelprogramsto bemaintainedasattributes
of theprogramsthemselves,ratherthanin aseparateconfigurationfile.Thiswill eventuallyallow
parallelapplicationsto beinvokedthesamewaysequentialprogramsare,simply by typing their
name;theconfigurationinformationstoredin thedirectoryentry for theprogramwouldbeusedto
automaticallyinvoketheappropriatejob manager.

Wehavebegunimplementationof theProsperoDataAccess Protocol to support secure retrieval

of data from systems running Prospero. The Prospero Directory Service presently only provides

directory information about files in the Prospero File System. Access to the files is supported

automatically using existing access methods. The Prospero Data Access Protocol will provide a

common protocol for access to local files and gateway access to remote files using alternative access

methods, thus reducing the number of access methods that must be supported by Prospero appli-

cations. A preliminary implementation of the Prospero data access protocol is used by the Prospero

Resource Manager for access to files on workstations that do not otherwise export their file system.

Security for Distributed Systems

During the reporting period, we have continued work to integrate appropriate security mechanisms

into both Prospero and the Prospero Resource Manager. Continued improvements to the beta release

of Version 5 of Kerberos from MIT were made, including support for the forwarding of authenti-

cation credentials, a mechanism that is necessary to securely allow remotely executing tasks to

perform operations with the privileges of the user. These changes were fed back to MIT and were

included in the latest release from MIT.

The widespread use of the computing and information infrastructure we are developing as part of

the DIVIRS project requires an underlying security infrastructure to provide fine-grained access

control mechanisms to protect such resources and accounting mechanisms to manage their use. We

presented a paper at the 13th International Conference on Distributed Computing Systems discuss-

ing the need for such a security infrastructure and describing a possible mechanism to provide it.

A copy of that paper is attached. We have implemented the Prospero Resource Manager and the

Prospero Directory Service so that it can be easily integrated with such a system if it becomes

available. In a separate proposal we have requested funding to develop such security infrastructure.

We have been notified that our proposal for an Augmentation Award for Science and Engineering

Research Training (AASERT) attached to the DIVIRS contract has been selected for funding. This

award will cover the cost of hiring an additional graduate student who will study computer security.

Ari Medvinsky will be starting as an research assistant under that award in June.

to
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APPENDIX A - GLOSSARY

Augmentation Award for Science and Engineering Research Training

Advanced Research Projects Agency

Distributed Virtual Systems

Embeddable Variant

Input/Output

Information Sciences Institute

Massachusetts Institute of Technology

Sun's Network File System

Prospero Resource Manager

Parallel Virtual Machine

University of California, Los Angeles

User Datagram Protocol

University of Southern California

APPENDIX B - PAPERS

The following papers were prepared and accepted for publication during the reporting period. Copies

of the papers are attached to this report.

B. Clifford Neuman and Santosh Rao. Resource Management for Distributed Parallel Systems. In

Proceedings of the 2nd International Symposium on High Performance Distributed Computing.

Spokane, July 1993.

B. Clifford Neuman. Proxy-Based Authorization and Accounting for Distributed Systems. In Pro-

ceedings of the 13th International Conference on Distributed Computing Systems. Pages 283-291.

Pittsburgh, May 1993.
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Abstract

Multiprocessor systems should exist in the the larger

context of distributed systems, allowing multiprocessor

resources to be shared by those that need them. Unfor'

tunately, typical multiprocessor resource management

techniques do not scale to large networks. The Pros-

pero Resource Manager (PRM) is a scalable resource
allocation system that supports the allocation of pro-

cessing resources in large networks and muttiprocessor

systems.

To manage resources in such distributed parallel

systems, PRM employs three types of managers: sys-

tem managers, job managers, and node managers.

There exist multiple independent instances of each type

of manager, reducing bottlenecks. The complexity of

each manager is further reduced because each is de-
signed to utilize information at an appropriate level of
abstraction.

1 Introduction

Conventional techniques for managing resources in

parallel systems perform poorly in large distributed

systems. We believe that multiprocessor systems

should exist in the broader context of distributed sys-

tems, allowing them to be shared by those that need

them. To manage resources in distributed parallel sys-

tems, we have developed prototype resource manage-

ment tools that manage resources at two levels: allo-

cating system resources to jobs as needed (a job is a

collection of tasks working together), and separately
managing the resources assigned to each job.

This paper describes the model and implementa-

tion of these tools which were developed for use by

the Prospero operating system, under development

at the University of Southern California's Informa-

tion Sciences Institute. The Prospero Resource Man-

ager (PRM) presents a uniform and scalable model for

scheduling tasks in parallel and distributed systems.

PRM provides the mechanisms through which nodes

on multiprocessors can be allocated to jobs running

within an extremely large distributed system.

It is our belief that the common approach of using

a single resource manager to manage all resources in

a large system is not practical. As the system to be

managed grows, a single resource manager becomes
a bottleneck. Even within large local multiprocessor

systems the number of resources to be managed can

adversely affect performance. As a distributed system

scales geographically and administratively, additional

problems arise.
PRM addresses these problem by using multiple re-

source managers, each controlling a subset of the re-

sources in the system, independent of other managers

of the same type. The functions of resource manage-

ment are distributed across three types of managers:

system managers, job managers, and node managers.
The complexity of these management roles is reduced

because each is designed to utilize information at an

appropriate level of abstraction.

While the development of PRM was motivated by

the desire to support parallel computing across or-

ganizations in a distributed system, the same tech-

niques can improve the scalability of scheduling mech-

anisms within independent tightly coupled multipro-

cessor systems. The abstractions provided Mso nat-

urally suggest extensions that support fault-tolerant

and real-time applications and debugging and perfor-

mance tuning for parallel programs.

Throughout this paper we use the term node to de-

note a processing element in a multiprocessor system,
or a workstation or other computer whose resources

are made available for running jobs. A job consists o.f

a set of communicating tasks, running on the nodes

allocated to the job. A task consists of one or more

threads of control through an application and the ad-

dress space in which they run.

2 Contemporary approaches

Figure 1 shows the functions involved in the execu-

tion of a parallel application in a distributed environ-

ment. In the first step (1), t'he application is compiled

and installed and information about resource require-

Proceedings of the 2nd Intemational Symposium on High Performance Distributed Computing, Spokane, July 1993.



Program Execution

Program Loading I Comm Libraries

Task to Processor Mapping

Processor Selection/Allocation

Initial Configuration

F!gure 1: Support for distributed execution

ments and available resources are specified by the user

or programmer. This information is used in (2) to se-
lect and allocate nodes on which the program will run.

The tasks are mapped to the allocated nodes in (3) and

the executable modules (the tasks) are loaded onto the

appropriate nodes in (4). The execution of the pro-
gram (5) depends on run-time communication libraries

(also at 4) which in turn use information about the

mapping of tasks to nodes (3).

Locus [10], NEST [1], Sprite [5], and V [13] support
processor allocation, and remote program loading and

execution (2,4,5) to harness the computing power of

lightly loaded nodes. They primarily support sequen-

tial applications where task-to-task communication is
not required. A critical issue for processor allocation

in these systems is the maintenance of the database of

available nodes. In Locus the target node for remote
execution is selected from a list of nodes maintained

in the environment of the initiating process. This ap-

proach is inflexible because the nodes available for re-

mote execution do not change with changing load.

In NEST [1], idle machines advertise their avail-

ability, providing a dynamically changing set of avail-

able nodes; each user's workstation maintains the list
of servers available for remote execution. Locus and

NEST both require the application to maintain infor-
mation about ever)" possible target node, limiting the

size of the pool from which nodes can be drawn. Addi-
tionally, resource allocation decisions in these systems

are made locally by the application without the benefit

of a high level view across jobs. This causes problems

when applications run simultaneously.

Sprite [5] uses a shared file as a centralized database
to track available nodes. Clients select idle nodes from

this file, marking the entry to flag its use. While
this approach appears simple, it requires a solution

to problems related to shared writable files, includ-

ing locking, synchronization and consistency. Fault-

tolerance is also poor since failure of the file server
on which the shared file resides disables the allocation

mechanism completely. This approach does not scale

beyond a few tens of nodes..

Theimer and Lantz experimented with two ap-

proaches for processor allocation in V [13]. In a cen-

tralized approach a central server selects the least

loaded node from a pool of free nodes and allocates

it. Nodes proclaim their availability based on the re-
lationship of the local load to a cutoff" broadcast pe-

riodically by the server. This approach has limited

scalability and poor fault tolerance since the central
server is a critical resource. In the distributed ap-

proach a client multicasts a query to a group of candi-

date machines selecting the responder with the lowest
load. This approach suffers from excessive network

traffic and was found to perform worse than the cen-

tral server approach.

The UCLA Benevolent Bandit Laboratory (BBL)

[6] provides an environment for running parallel ap-
plications on a network of personal computers. Like

the other systems discussed, BBL provides proces-

sor allocation, and remote program loading and ex-

ecution (2,3,4,5), incorporating the notion of a user-

process manager separate from a systemwide resource
manager. While this is an important step towards

scalable resource management techniques, a single re-

source manager will be unable to handle all allocation

requests for a large system.

Parallel Virtual Machine (PVM) [12] and Net-

Express [9] allow users to run parallel applications on

a collection of workstations. In the initial configura-

tion phase, users specify a list of nodes on which they

have started daemon processes. Based on this config-
uration, PVM and NetExpress map a job's tasks to

nodes, load and execute the tasks, and support com-

munication between tasks (3,4,5). There is no support

for high-level resource allocation functions (2) that as-

sign nodes to jobs with the goal of efficient system uti-
lization. All nodes specified by the user are available

to the job whether or not they are already in use by

other jobs.

Efficient management of a pool of processors be-

comes very important when the system scales to large

numbers of nodes, spanning multiple sites. The em-

phasis of the Prospero Resource Manager is the allo-

cation of nodes across and within jobs (2). The job

manager eliminates the need for users to enumerate

all hosts on which their applications might run, while

the system manager efficiently manages the system's

resources. While PRM also supports task mapping,

program loading, and execution (3,4,5), it is the al-

location function (2) that distinguishes it from PVM

and NetExpress. We encourage the integration of the
PRM allocation methods with both packages.

Proceedings of the 2rid International Symposium on High Performance Distributed Computing, Spokane, July 1993.
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Figure 2: Running a job with PRM

3 Scalableresourcemanagement

Users have difficultydealingwith extremely large

systems because, although only a small subset of the

availableresourcesare needed, itisdifficulttoidentify

the resources that are of interestamong the clutter

of those that are not. Today's usersare able to cope

because only a tinyportionofthe world'sresourcesare

availableto them. Managing the world'sresourcesis

a daunting task,but the problem issimplifiedwhen it

isreduced to managing only a subsetof the resources.

We believeitshould be possibleto organize vir'luaI

systemsinwhich resourcesofinterestare readilyacces-

sible,and those of lessinterestare hidden from view.

The organizationof such systems should be based on

the conceptual relationshipbetween resourcesand the

mapping to physicallocationsshould be hidden from

the user. These concepts form the basisof the Vir-

tualSystem Model, a new model for organizing large

distributed systems [8].

To apply the concepts of the Virtual System Model
to the allocation of resources in large systems, we have

chosen to divide the functions of resource management

across three types of managers: the system manager,

the job manager, and the node manager. The system

manager controls a collection of physical resources, al-

locating them to jobs when requested. The job man-

ager is responsible for requesting the resources needed

by a job, and once allocated, assigning them to the

individual tasks in the job. The node manager runs

on each processor in the system, loading and execut-

ing tasks when authorized by the system manager and

requested by the job manager. Each manager makes

scheduling decisions at a different leve] of abstraction,
some concerned -with the high level performance of the

system, and others concentrating on particular jobs.

3.1 The system manager

The fullsetof resourcesthat existin a system will

be managed by a set ofsystem managers. For exam-

ple,one or more system managers might manage the

nodes ina parallelcomputer, or the resourceslocalto

a particularsite.System managers allocatetheirrb-

sourcesacrossjobs as needed. We do not believethat

itispossibletobuilda singlesystem manager toman-

age allresourcesin a largesystem. As the system to

be managed grows,a singlesystem manager would be-

come a bottleneck.To avoid thisproblem, our system

supports multiplesystem managers, each responsible

for a collectionof resources. For example, one sys-

tem manager can be responsibleforthe processorson

a multiprocessorsystem and when necessary for per-

formance or other reasons,multiple system managers

Proceedings of the 2nd International Symposium on High Performance Distributed Computing, Spokane, July 1993.



may exist, each controlling a disjoint subset of the pro-

cessors on the multiprocessor. An independent system

manager might manage the resources available on one
or more workstations.

The system manager is a hierarchical concept. Sev-
eral sets of resources may be managed by different

system managers, with a higher level system manager

responsible for the entire collection. The control of

resources could then be transferred from one system

manager to another as directed by the higher level

manager.

The system manager keeps track of the resources

for which it is responsible, maintaining information
about the characteristics of each resource, whether

it is currently available, and if assigned, the job to

which it is assigned. The system manager responds
to status updates from node managers and resource

requests from job managers. Status updates provide
information needed to make allocation decisions in-

cluding availability and load information. Resource

requests identify the resources required by a job, their
characteristics, as well as connectivity constraints, but

only" in well defined ways. It is possible to extend the

system manager to accept messages from higher level

managers (or other entities) adding or removing re-
sources from its control.

When a resource request is received from a job man-

ager, the system manager determines whether suitable

resources are available as defined by the characteris-

tics specified in the request. If so, the system manager

assigns them to the job, notifies the node managers re-

sponsible for each resource that the resource has been

assigned to a specific job manager, and informs the

job manager of the resources that have been assigned.
If the requested resources are not available the system

manager can, at the job managers option (and sub-

ject to the scheduling policy of the system manager),

assign a subset of the requested resources and�or re-

serve the resources for assignment when they become
available.

3.2 The job manager

Although multiple system managers are necessary
for scalability, the application needs a single point of

contact for requesting resources. In our system, this

point of contact is the job manager. The job man-

ager acts as an agent for the tasks in a job, providing

a single entity from which the tasks will request re-
sources. In this capacity the job manager provides

the abstraction of a virtual system to a job, managing

the resources that have been allocated to a job by the

system managers responsible for each resource. Al-

though it is possible for a job to have more than one

job manager, in most cases only one exists.

The job manager is part of a job and is aware of the

specific requirements and communication patterns of

the tasks it manages. As such, the job manager is bet-

ter able than the system manager to allocate resources

to the individual tasks within a job. This is the same
argument used in favor of user-level thread manage-

ment on shared-memory multiprocessors [2]. In fact,

we allow the job manager to be written by the appli-
cation programmer if specific functionality is required,

though we do not expect this to be a common practice.

We plan to eventually provide alternative job man-

agers to support fauh-tolerant and real-time applica-

tions. Such job managers would add additional re-

quirements to the resources requested from system

managers, and might assign individual tasks to mul-

tiple nodes. Similarly, a job manager is planned that

will collect information needed for debugging and per-

formance tuning. The programmer would then be able
to select job managers tailored to the needs of the ap-

plication or the phase of program development; when

an application is ready for production use, a different

job manager could be substituted.

At the time a job is initiated, the job manager iden-

tifies the job's resource requirements. Using the Pros-

pero Directory Service [7], if available, or a configu-

ration file otherwise, it locates system managers with

jurisdiction over suitable resources and sends alloca-

tion requests. If the system managers respond affir-

matively, the job manager allocates the resources to

the tasks in the job, contacting the node manager for

each resource to initiate the loading of programs onto

the appropriate processors. If the system manager re-

fuses the allocation request, the job manager will try
to identify alternate resources from other system man-

agers. If necessary, the job manager will additionally'

create tasks to handle I/O to the terminal or to files

on the local system.

Once the job has been initiated on the assigned
nodes, the job manager monitors the execution of the

program. During program execution the job manager
responds to requests from the job's tasks for addi-

tional resources, realJocating them from other tasks

or requesting additional resources from suitable sys-
tem managers, In this phase the job manager also

maintains information about the mapping of logical

task identifiers to node identifiers, for use by the com-

munication library,

D

g

B
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3.3 The node manager

The third component of our resource management
suite is the node manager. A node manager runs on
each processor in the system, eventually as part of the
kernel but in the current implementation as a user-

level process. The node manager accepts messages
from the system manager identifying the job managers
that will load and execute programs. When requested
by an authorized job manager, the node manager loads
and executes a program. The node manager notifies
the job manager about events such as the termination
and failure of tasks. The node manager also keeps
the system manager informed about the availability

of the node for assignment. The node manager caches
information needed to direct messages for other tasks
to the node on which the task runs.

3.4 Application invocation

Each program that executes under PRM has asso-
ciated with it information about the virtual system on
which it will run. This information is stored either in

a configuration file or as attributes of the program in
the Prospero Directory Service [7]. When a program
is invoked, a new job manager is created and the job
manager finds a suitable processor or set of proces-

sors by contacting system managers identified by the
virtual system associated with the program.

Figure 2 shows the steps involved in running an ap-
plication using PRM. Our goal is for users to invoke
programs as if they were local to a workstation. When
the program is invoked, a job manager is automati-
cally started on the workstation 1. The job manager
determines the resource requirements of the job and
sends requests to one or more system managers. If
the requested resources are available the system man-
ager informs the node manager responsible for each
resource that the resource has been assigned to a par-
ticular job manager and it returns a list of the assigned
resources to the job manager. The job manager fur-

ther allocates the assigned resources to the job's tasks
then contacts the node manager for each resource to
invoke the application. Upon receipt of a request from
the authorized job manager, each node manager loads
the application task.

During job execution, the job manager responds to
requests from the job's tasks for additional resources

(additional processors for example) and to preemption
and migration requests from the system managers re-
sponsible for the resources in use and, if necessary, at-
tempts to obtain additional resources from other sys-
tem managers. The job manager acts as an agent for

1Though in some cases, it might migrate to smother node.

a) User invokes applivntion program on his workstation.

b) A set of tasks are created. Tasks exocute the program,

commun/cate with each other and perform terminal I/0.

Figure 3: Input/Output using PRM

the user, hiding the details of parallel execution; the
user's environment and shell are maintained on the

workstation and the job manager decides where each
command is to execute, hiding the details from the
user for whom local sequential execution and parallel
execution appear identical.

3.5 Discussion

By separating the job and system manager, the
system manager becomes much simpler. The sys-

tem manager is concerned only with the allocation of
resources between jobs, eliminating application spe-
cific functionality. The job manager is part of a
job, and has more information about the requirements
and communication patterns for the tasks it manages.
Thus, the job manager is in a better position to al-
locate resources to tasks once resources have been al-

located to the job. Because the job manager is part
of the job, it can be customized or even rewritten if
application specific functionality is required.

4 Implementation and performance

The current implementation of the Prospero Re-
source Manager runs on a collection of Sun3, Spare,
and HP9000/700 workstations, connected by a local
or wide-area network. Even though PRM's emphasis
is on resource allocation, we provide an application
programming interface (in the form of macros and
libraries) that provide the user with a programming
and execution environment similar to that on a multi-

computer. Heterogeneous execution environments are
supported; the tasks in a job may execute on differ-
ent processor types, and the set of nodes executing a
job need not share a common filesystem. In the latter
case PRM handles program loading and I/O to shared
files. This is shown in figure 3.

Proceedings of the 2nd International Symposium on High Perfo_nance Distributed Computing, Spokane, July 1993.



[Msg fen (bytes) l 4 J 64 11024 4096'"I 8192]

[Latency (msec)]4.414.6 I 5.9 I 15.7 [ _8.5 ]

Table 1: Effect of message length on latency

Application programs are based on message-passing

and are coded in C. A library is provided with PRM

for sending and receiving tagged messages, broadcast-

ing, and global synchronization. In designing this li-

brary, a layered approach has been used to facilitate

easy integration with low-level communication pro-

tocols. In the present implementation, these library
functions use an Asynchronous Reliable Delivery Pro-

tocol (ARDP) that transmits and receives sequenced

packets over the Internet using UDP. We are currently
implementing a version of the communication library

layered on top of the Mach port mechanism [4]. The

global synchronization and reduction primitives rely

on centrally maintained state information. To the ex-

tent possible, we plan to develop distributed imple-
mentations of these primitives, perhaps building on

the primitives provided by ISIS [3].

PRM's transparent message routing mechanism

frees the programmer from having to explicitly keep
track of task to node mappings. At the appli-

cation level, messages are addressed using task-

identifiers (rids), which are translated to an internet-
address/port pair by the communication library. The

node manager assists tasks in this translation using

a mapping table furnished by the job manager. Such
translations are then cached in the local address space
of the task to reduce address translation overhead for

subsequent communication with the same task.

4,1 Running jobs under PRM

Multiple users may share a common PRM environ-

ment. Once setup, system and node managers run as

server processes. The system manager maintains the

availability status for each node, and allocates avail-

able nodes to jobs when requests are received. De-

pending on options specified at setup, a node manager

may make its processor unconditionally available for

running jobs, or available only within specified time

windows, or when no user is logged onto the work-

station (or a combination of the latter two options).

Node managers notify their system manager of any

changes in node availability.
A user initiates a job by invoking a job manager

process on the workstation, specifying a configuration
file from which resource requirements of the job are

to be read. Typically, this file contains the number

of nodes required to run the job, the number and lo-

Number Message Length

of tasks 4 I 64 I 1024 I 4096 I 8192

4 33.3 34.6 37.8 181.8 342.9

8 68.4 70.0 83.7 347.3 560.6

Table 2: Latencies for broadcast operation (msec)

cation of I/O tasks, the path names for executable
files and the host names of one or more system man-

agers that can potentially satisfy the resource require-
ments. The current implementation requires the user

to write a configuration file for the job. In a future

release, static resource requirements will be generated

by a compiler (possibly with some help from the pro-
grammer) and stored as file attributes. At run time,

the user may override static specifications and specify

runtime requirements as command line arguments to

the job manager.

Terminal and file I/O are handled by two special

tasks created with every job. The job manager sched-

ules these I/O tasks on nodes with local I/O devices.

For example, an I/O task may run on a file-server,
performing file-I/O on behalf of the tasks. The ter-

minal I/O task supports interactive execution. It is

analogous to the host task in the host-node model of

execution. Users can customize this task for job ini-

tialization functions, such as prompting the user for

interactive input and distributing this input to the

appropriate tasks.

4.2 Performance

Table 1 shows the measured average latencies for
synchronous send operations as a function of message

size. Experiments were conducted with a pair of tasks

running on two Sun 4/60 workstations. After an ini-

tial message to obtain the internet-address and port
of the destination from the node manager, the sender

executed a loop, repeatedly sending messages to the

receiver, which sent back an acknowledgment. On the

sender, the total time spent in the loop was measured

using the gettimeofday() system call. The increase
in latency for messages up to 1K bytes is due primarily

to variations in the overhead imposed by the ARDP
library and Unix system calls. Longer messages are

split into 1 K byte chunks and require the processing

of additional packets. We are improving our code to
reduce the overhead imposed by the ARDP library.

Table 2 shows latencies for broadcast operations as

a function of message length and number of tasks.

Broadcast is implemented in two phases. Data is
first transmitted sequentially but asynchronously to

all recipients using send operations. A second series
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of sends provides synchronization, assuring recipients
that all other recipients have received the data. Broad-

cast latencies are of the order of 2n times the latency

of a send operation were n is the number of recipients.

We are also testing our system using real scientific
applications. The Ocean program from the SPLASH

benchmark suite from Stanford University [11] stud-

ies the role of eddies and boundary currents in in-

fluencing large-scale ocean movements by solving a

set of partial-differential equations. We started with

a message-passing version of Ocean available for the

Connection Machine (CM-5). To port this program to

the PRM platform, we wrote a set of macros and rou-

tines to implement the CMMD library functions [14]

using equivalent calls from our own library. The host

program from the CM-5 version was incorporated into

the terminal I/O task'and handles interactive input.
We are also using PRM to develop a simulator for

large networks of neurons.

5 Future directions

The current implementation demonstrates only a

few of the benefits of our resource management model.
The greatest benefit of the model is its flexibility.

The prototype provides a framework within which we

can try experimental solutions to interesting problems,

and upon which interesting tools may be built.

Among our planned experiments are the use of in-

terchangeable scheduling policies by the system man-

ager. Because our model supports multiple system

managers, multiple scheduling policies can be applied

simultaneously to disjoint sets of resources. We also
plan to explore options for hierarchical configuration

and dynamic reconfiguration of the nodes for which a
system manager is responsible.

We plan to extend the job manager to make use

of information such as task memory and I/O require-

ments, and intertask communication graphs to find an

optimal assignment of tasks to nodes. We also plan
to add support for preemptive scheduling across tasks

when insufficient processing resources are available for

the job. As discussed in section 3, we plan to develop

special job managers to Support fault-tolerant and

real-time applications, debugging, and performance

tuning.
We must also extend the node manager to support

suspension of tasks and to allow the job manager to

initiate non-interfering operations on the resources of

the suspended tasks that it manages. In particular

this will allow the migration of a task to an alternate
node. The role of the node manager in 'translating
task identifiers to host addresses would then include

invalidation of stale translations cached by the tasks.

Our communications primitives are still quite

rough. We intend to fine tune the current mecha-
nisms, and where communication between nodes is

possible using high-performance mechanisms specific

to the host system (e.g., within a single multiproces-

sor) we will use those mechanisms. We will also sup-

port execution of user programs originally developed

for other platforms by linking them with the appro-

priate set of communication libraries. The macros for

CMMD library calls in the Ocean program already

represent a step in this direction.
I/0 to files is still a limiting factor for many ap-

plications. This is especially troublesome when the

processors on which an application runs are separated

geographically from the disk on which a file is stored.

The file I/O task plays an important role, supporting
read and write operations to files on computers that

do not export their file system. We are extending this

protocol to support file caching.
Finally, with the ability to run applications on mul-

tiprocessor systems across wide-area networks, secu-

rity will become a critical problem. It is unlikely that
sites would make their resources available to others if

there are no methods for protection. Security mecha-

nisms are needed to control access to remote nodes, to

allow remote tasks to securely retrieve data that might
be stored across a wide-area network, and to account

for the use of processing resources. We plan to incor-
porate further security mechanisms into the software

we develop, concentrating initially on authentication

and authorization mechanisms to be applied when a

request is received by the system and node managers.

6 Conclusions

The growth of a distributed system brings with it

increased complexity for the management of available

resources. While it is possible to manage resources

in different parts of the system separately, such an

approach makes life di_cult for the users and pro-

grammers who must interact with more than one en-

tity to obtain the resources needed by an application.

Unfortunately, centralized management techniques for

parallel systems are not suitable for large distributed

systems either.

The Prospero Resource Manager provides a solu-
tion between the two extremes. An individual man-

ager controls a subset of the resources in the system

independent of other managers of the same type. The

system manager controls resources that are physically
or administratively related. The job manager con-

trois resources that are lo_;ically related, i.e. those
resources needed by a particular job. When resources

are needed, an application requests resources from its
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job manager which in turn requests the resources from

one or more suitable system managers. The resources
obtained are then reallocated across the tasks in the

job. In this capacity the job manager acts as an agent
for the user, presenting the abstraction of a virtual

system.
The current prototype demonstrates the usefulness

of the model and provides a framework within which

we can experiment with different approaches and upon

which interesting tools may be built. Section 5 high-

lighted the flexibility of the model. The true test of
the model will be the extent to which it is employed

in future systems.
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Abstract

Despite recent widespread _lderes! in the secure au-

thel_tication of pri,cipals across computer networks

there has been considerably less diseussiol_ of dis-

tributed mechanisms to support aulhorizalior_ and ac-

coul_ling. By generaliztT_g the aulhel_ltcalion model to
support restricted prol'ies, both authorization and ac-

couoting can be easily supported. This paper presel_ts

the proxy model for authorizatwn and shows how the
model cal_ be used to support a wide rawe of au-

thorization and accou_tin 9 mechanisms. The proxy
mo&l strikes a balaT_ce belweeT_ access-control-list and

capabilily-based mechanisms allowi,g each to be used
where appropriate and allowi_g their" use in combina-

tion. The paper describes how restricted proxies can

b_ supported using existing a_dh_l_liealion m_thods.

This paper presents a unified model for authentica-

tion, authorization, and accounting that is based on

proxies. Section 2 defines the term proxy and briefly

describes how proxies can be supported by existing

authentication mechanisms. The use of proxies for au-

thorization is demonstrated in Section 3. The proxy
model st rikes a balance between access-control-list and

capability-based mechanisms allowing each to be used

where appropriate and allowing their use in combi-
nation. Section 4 discusses the necessary features of a

distributed accounting service and shows how account-

ing fits the model. Section 5 discusses related work on

distributed authorization and accounting. Integration

of the described mechanisms with existing authentica-

tion systems is discussed in Section 6, and Section 7
discusses some of the more useful restrictions that can

be supported. Section 9 draws conclusions.

1 Introduction

The problem of authenlication across computer
networks has received much attention in recent years.

Authentication is often only a step in the process of

authorization or accounting. The goal is to verify that

the individual making a request is authorized to do so,

or to guarantee that the correct individual is charged
for an operation. Despite the close ties among these

problems, little progress has been made in providing

secure, widespread, distributed mechanisms for autho-

rization and accounting. To dale, authorization and

accounting have most oflen been supported locally by
a server, instead of by the use of distributed autho-

rizalion or accotmting services. Such authorization

and accounting services will be critical as the network
is used more and more for electronic commerce and

other applications where clients and servers not previ-

ously known to one another must interact. By gener-

alizing the authentication model to support restricted

proxies, distributed authorization and accounting can

be easily supported.

2 Restricted proxies

A proxy is a token that allows one to operate with

the rights and privileges of the principal that granted

the proxy. Naturally, it must be possible to verify that

a proxy was granted by the principal that it names.

This is an authentication problem. In fact a principal
with the credentials 1 needed to authenticate itself can

often grant a proxy to another principal simply by

passing on those credentials.

hnplementing proxies in this manner has several

shortcomings. First, the proxy can be used by anyone
that gets hold of it. This won't, always be a prob-

lem, but in many cases one should be able to specify

the principal that is to act on one's behalf. Second, a

proxy is all or nothing. The individual who has been

grained the proxy can do anything that the grantor

could do on any service to which the original creden-

tials applied.

] Credentials consist of an encrypted certificate together with
information needed to use the certificate.
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Certificate: [ret_trictioT_,_, Kr,_o_u]9,.,_o_

Proxy-key: KvTo_.y

Figure 1: A restricted proxy"

A reslricted proxy is a proxy' that has had condi-

tions placed on its use. A principal possessing au-
thentication or authorization credentials can generate

a restricted proxy, a new set of credentials which are

more restricted than the original credentials; it. is not

possible to remove restrictions. It. must be possible

for the server to which a restricted proxy" will be pre-

sented (the end-server) to verify that the restrictions

have not been tampered with. Among the restrictions

thai are often specified are thal the proxy may only be

used by a designated principal, or that the operations

that may be performed are to be restricted.

When a principal issues a restricted proxy" to an-

other principal, the second principal is authorized to

perform all operations for which the first principal is
authorized on the server or servers for which the proxy"

is applicable, subject to any restrictions recorded in

the proxy', In the discussion that follows, the grantor

is the principal on whose behalf a proxy allows access.

The grantee is the principal designated to act on behalf

of the grantor. The e_d-serrcr is the server to which
the proxy" must be presented to perform an operation.

The implementation of reslricted proxies relies on

the use of encryption-based authentication of the orig-

inal grantor of the proxy. Either conventional or

public-key cryptography may be used. In this section

I describe the implementation at a high level, inde-

pendent of the authentication nlechanism in use. The

description assumes that the infrastructure needed to

authenticate the original grantor of a proxy is in place

and messages required by the underlying authentica-

tion prolocol (e.g., for key distribution) are omitted
for clarity. These details, which are specific to the un-

derlying authentication mechanism, are described in
Section 6.

A restricted proxy has two parts: 1) a certificate

signed by the grantor establishing the proxy, enumer-

ating any restrictions, and establishing an encryption

(or integrity) key 2 to be used by the end-server to ver-
ify that the proxy was properly issued to the bearer,

and 2) a proxy' key, an encryption (or integrity) key

corresponding to the key" embedded in the certificate,

that will be used by the grantee to prove proper pos-

session of the proxy. Figure 1 shows the contents of a

restricted proxy; square brackets indicate a signature

by ihe principal indicated in the subscript, or under

2Depending on tile authentication mechanisms in use, lifts
key may require addi!ional protection from disclr_surc.

Accounting

Restricted Proxies

Base Authorization Mechanism

Authentication Infrastructure

Figure 2: Relationship of security services

a separate encryption (or integrity) key. When a re-
stricted proxy is transferred from the grantor to the

grantee, care must be taken to protect the proxy' key"
from disclosure.

There are two classes of proxies: bearer proxies and

delegate proxies. A bearer proxy may be used by any-
one. A delegate proxy may only be used by a principal

named in a list of delegates (encoded as a restriction),

or by' someone with a suitable additional proxy issued

by a named delegate.

To present a bearer proxy to an end-server, the

grantee sends the certificate to the server and uses the

proxy" key' to partake in an authentication exchange

with the end-server using the under]ying authentica-
tion mechanism. Usually this exchange involves send-

ing a signed or encrypted timestamp or server chal-

lenge, proving possession of the proxy key.

To present a delegate proxy, the grantee sends the
certificate to the end-server and then authenticates

itself to the end-server under its own identity. The
end-server validates the certificate and verifies that

the client is included in the list of delegates specified

by the proxy.

3 Authorization

Restricted proxies provide the vehicle for imple-

menting a wide range of authorization mechanisms in
distributed systems. In this section I describe sev-

eral such mechanisms and show how they can be sup-

ported. Accounting mechanisms are described in Sec-

t.ion 4 and build upon the authorization mechanisms

described here. Figure 2 shows the relationship of such

mechanisms to restricted proxies and to the authenti-
cation infrastructure on which they depend.
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3.1 Capabilities

A capability can be thought of a_s a bearer proxy

that is restricted to limit the operations that can be

performed and the objects that can be accessed. No
restrictions are placed on the identity of the grantee

who is free to pass the capability to others. When

presented to the end-server, the grantor's rights (as

limited by the restrictions) are available to the bearer.

For example, to create a read capability for a par-

ticular file, a user authorized to read that file requests

a restricted proxy for use at the file server containing

the file (the end-server), but with the restriction that

it. can only be used to read the named file. The ca-

pability is then passed to others who can themselves

pass it on. To use a capability, the bearer presents

it to the file server in place of (or ida addition to) the

bearer's own credentials. If the request is to read the
file named in the capability, the operation is performed

with the rights of the grantor of the proxy.

A capability as described above differs from tradi-

tional capabilities in several ways. One of the most

ilnportant distinctions is that in presenting a capa-

bility (restricted proxy) to the end-server, the bearer
does not send the entire proxy across the network. In-

stead, the bearer sends the certificate part of the proxy

and proves possession by taking part in an authentica-

tion exchange using the proxy key as described earlier.
The result is that an attacker can not obtain such a

capability by tapping the network to observe the pre-

sentation of capabilities by legitimate users.
A second distinction is that, as described above,

a capability allows a restricted impersonation of the

grantor, not direct access to tile named object. This
means that one can revoke a capability by changing

the access rights available to the grantor of the ca-

pability. Such a change would affect all capabilities

that had been issued 1)5' that grantor (as well as any

copies), but not those that had been issued by others.

If the only principal with a priori access to an object
is its owner, this distinction disappears as there can

be only one original grantor.

A final distinction, as implemented on most authen-

tication systems, is that the resulting capability would
have an ex[,iration time. This is a feature. If a non-

expiring capability is desired, the expiration time can
be set suffaciently far in tile future.

3.2 An authorization server

An authorization server implemented using re-

stricted proxies does not directly specie, that a par-

ticular principal is authorized to use a particular ser-

vice or access a particular object. Instead, when

2 1

1. Authenticated authorization request (operation X)

2. [operation X only]R, {Kproxy} Ksession

3. [operation X only]R, authentication using Kproxy

Figure 3: The authorization protocol

requested by an authorized client, the authorization

server grants a restricted proxy allowing the autho-

rized client (the grantee) to act as the authorization

server for the purpose of asserting the client's rights

to access particular objects. The restrictions in the

proxy (in this case a list of authorized actions) are

determined by consulting the authorization server's
database or applying other suitable heuristics.

Figure 3 shows the messages involved when client C
uses authorization server R for authorization to end-

server S. The solid lines represent messages in the au-

thorization protocol. The initial request for autho-

rization is authenticated using the underlying authen-

tication protocol. The authorization credentials (a re-

stricted proxy) returned ida 2 consist of a certificate

and a proxy key. The proxy key is returned protected

from disclosure by enerypting it under the session key

exchanged during authentication with R (encryption

is represented by curl)' braces {}). To use the proxy,

the client presents the proxy to the end-server, par-
taking in an authentication exchange as described in

Section 2. Message 0, the dashed line in the figure,

represents a priori knowledge about the authoriza-
tion credentials needed for server S. This information

might be specified as part of the application protocol,

retrieved from a name server, or obtained from the

end-server directly.

An end-server wishing to use the services of an au-

thorization server would grant full or the maximum

desired access to the aulhorization server (this is de-

scribed in detail in Section 3.5).

3.3 A group server

A group server implemented using restricted prox-

ies grants proxies that delegate the right to assert

mend)ership in a particular group. The protocol is

the same as that for the authorization server in fig-

ure 3; the authorized operation is the assertion of

group membership.
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Certificate: [re_trictio,,_l, NpTox_lJgT..tor

Cerl ificate: [re_trict ion.s2, KpTo_._2]A'_,T,-,,:yl

Certificate: [reslriclio, s3, ]£prory3]Kprory2

Proxy-key: Np_o_.v3

Figure 4: Cascaded proxies

A group server might maintain more than one

group. The name of a group as asserted by the group

server is unique only for a particular group server (or
a small set of servers). As such, a global name of a

group is composed of the name of the group server,

and the name of the group on that server.

It should be possible for the name of a group to

appear in authorization databases anywhere that the

name of any other principal might appear. This might
be on the end-sercer, or in an authorization server, or

even on another group server. An end-server wishir_g

to use a group server would include the nalne of a
group in its authorization database. A client would

obtain a group proxy from the group server and send

it to the end-server when requesting an operation. The

end-server would verify the authenticity" of the proxy

and the identity of the client, and if valid perform the

operat ion.
If the end-server's authorization database is main-

rained by an authorization server, then the client

would present the group proxy to the authorization
server, and if all checks out, the authorization server

would return an authorization proxy to be used by the

client as described in the previous subsection.

3.4 Cascaded authorization

In a paper on cascaded authenticalion [11], Sollins

proposed a method to pass authorization fi'om party
to party when a task involves cascaded operations by

parties that do not completely Irust one another. A

similar mechanism is supported more efficiently by re-

stl'icted proxies.

By its definition, a proxy allows one principal to

perform an operation on behalf of another. An i,ler-

m_dmtc sorter thal has been granted a bearer proxy

can pass that proxy to a subordinate server (the next

server in tli'e pipeline) with additional restrictions ap-

plied. Restrictions are added by signing a new proxy

with the proxy key' f,'om the original proxy. The new

proxy specifies any additional restrictions and a new

proxy key. The certificates from both proxies are pro-

vided to the st)t?ordinate server, but only t:l_lfprofi_ )

key from the final proxy in the chain is provided. Fig-

ure -t shows a chain of proxies that might be provided
to a subordinate server.

Cascaded authorization is a little different for del-

egate proxies. To pass a delegate proxy to a subordi-

nate, an intermediate server provides the subordinate

with the certificate from the original proxy. Because

the intermediate server is explicitly named in the orig-

inal proxy, it also grants the subordinate a new proxy
allowing the subordinate to act as the intermediate

server for the purpose of executing the original proxy.

Instead of signing the new proxy with the proxy key

from the original proxy, it is signed directly by the

intermediate server. An important difference between
the two approaches to cascaded authorization is that

the use of a delegate proxy leaves an audit trail since

the new proxy identifies the intermediate server.
A dislinc! difference between the cascaded authen-

tication approach described by Sollins and the ap-

proach described here is that in Sollins's approach the
end-server has to contact the authentication server to

verify the authenticity of a chain of proxies.

3.5 Access-control-lists and capabilities

By basing authorization on the proxy model, ap-
plication servers can easily combine the benefits of

_ccess-control-lists and capability-based authorization

mochanisnas. Application servers would be designed
to base authorization on a local access-control-list.

Where a capability-based approach is required, the

access-conlrol-list would contain a single entry naming

the principal (perhaps the server itself) authorized to

grant capabilities for server operations.

Similarly, when appropriate tohand off the autho-

rization function to a centrally maintained authoriza-

lion or group server, the name of the authorization

or group server would be added to the local access-
control-list. In fact, if local autonomy is desired, local

users might appear directly in the access-control-list

togetller with the name of an authorization server to

which the function of authorizing remote users has

been assigned.
Since the same access-control-list abstraction

should be used on the authorization servers as on other

servers, access-control-list entries can support an asso-

ciated list of restrictions. On an authorization server,

the restrictions field of a matching access-control-list

entry can t)e copied to the restrictions field of the re-

suiting proxy. These would be in addition to restric-

tions transferred from any proxies presented to the
authorization server or those imposed by the server
itself.

Finally, by supporting compound principal identi-

tiers in access-control-list entries, it becomes possible

to require the concurrence of multiple principals for
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certainoperations.Amongother things,this func-
tionalityallowsoneto specifytlie r{'eedfor bothuser
andhoslcredentialsfor certainoperationsaswellas
theseparationofprivilegesothat a singleusercan't
actalone.Proxy-basedauthorizationallowsauserto
obtainproxiesfrommorethanonegrantorfor apar-
ticularoperation,providingthemechanisnlby which
theuserwouldassertsuchconcurrence.

4 Accounting
Section3showedhowrestrictedproxiessupport,a

widerangeof authorizationmechanisms.Accounting
isclosel>tiedtoauthorization;in fact,thetwoarein-
terdependent.Authorizationdependson accounting
whenaserververifiesthai aclienthasbeenallocated
sufficientresources(e.g,quota)to performanopera-
lion. Conversely, accounting depends on aulhorization
to control the transfer of resources from one account

to anolher.

In our design, accounts are maintained on account-

ing serw_rs. At a mininnnn, each account contains

a unique name, an access-control-list, and a collec-
tion of records, each record specifying a currency and

a balance. Accounting servers support nmltiple cur-

rencies, either monetary (dollars, pounds, or yen) or

resource specific (disk blocks, cpu cycles, or printer

pages). Quotas are implemented by transferring funds

of the appropriate currency o1.1tof an accounl whell the
resource is allocated and transferring the flmds back
when the resource is released. Accounts are identi-

fied as the composition of the principal identifier for

the accounting server and the name of tile accounl Oll

the server. I1 is possible to transfer resources from an
account on one server to one on another.

The transfer of resources can be accomplished

through two distinct mechanisnas. The simplest mech-
anism is used when no guarantee is required t!lat suf-

ficient resources exist.. A principal authorized to debit

an account (the payor) issues a numbered delegate
proxy (a check) authorizing the payee to transfer fimds

from the payer's account to that of the payee. This
check limits the resources that can be transferred, and

the payee transfers up to that limit. If the payor uses

a different accounting server than the payee, the payee

grants its own accounting server a cascaded proxy

(endorsement) for the check allowing the accounting
server to collect, the resources on its behalf. Subse-

quent accounting servers repeat the process until the

payer's accounting server is reached. Once a check is

paid. the accounting server keeps track of the check
number until the expiration time oll the clleck. If,

within that period, another check with the same num-

ber is seen, it is rejected.

C)
E1

()--
check:[ckno,amount,S]C

check @

El: [ckno,amount,S]C [dep clmo to $1]S

E2: [ckno,amount,S]C [dep ckno to $1]S [dep ckno to $2151

Figure 5: Processing a check

Figure .5 shows the messages involved in issuing and

clearing such a check. In the figure, accounting servers

are labeled by Ss. The first message represents a check

signed by C drawn on C's accounting server $2 made

payable to server S. Upon completion of C's request., S

endorses the check and deposits it with its accounting

server in message El. The endorsement is a restricted

proxy that will be used for cascaded authorization. A

restricted endorsement (e.g. for deposit only) is a del-

egate proxy, an unrestricted endorsement is a bearer

proxy.

In this case, C and S do not share the same ac-

counting server, so $1 marks the resources added to

S's account as uncollected, adds its own endorsement

and forwards the check to $2 in message E2. If nec-

essary, such endorsements can be repeated until the

check reaches the client's accounting server, but in this

case only one addit.iona] step is necessary. This dis-
trihuted method for accounting requires out-of-band

naechauisms to deal with checks returned for insuf-

ficient resources, or because they are forged or mis-
drawn, but the same is true in the real world.

The second approach for transferring resources is

used when a server requires a guarantee that sufficient

resources have been allocated to the client, as is often

the case when maintaining quotas. The approach is
analogous to that of a certified check. The client draws

a check and provides the details (the check number,

the part5' to be paid, and the amount) to the account-

ing server. The accounting server places a hold on the

resources and returns an authorization proxy to the

client certifying that the client has sufficient resources
to cover the check. The client presents the authoriza-

lion proxy and the check to the end-server along with

its application request.

Once the requested operation is performed, the end-

server negotiates the check as described earlier. When
the check reaches the client's accounting server, the

accounting server looks for the check in its list. of

: 287

Proceedings of the 13th International Conference on Distributed Computing Systems, Pittsburgh, May 1993.



outstaudingcertifiedchecks,andif found_makesthe
transfer.Cashier'schecksarealsoeasily'supported
b5 thisaccountingmodel;the detailsareleft asall
exercisefor thereader.

5 Related work

This section describes other work that has been

done on authorization and accounting for distributed

systems. Some of the earliest work in the area is found

in Grapevine [2] where end-servers query registration
servers to determine whether a client is a member of

a particular group. A similar approach is employed in
Sun's Yellow Pages where centrally maintained files

such as /ere/group are consuhed for authorization

purposes. In both approaches, the authorization de-
cision remains with the local system. \Vith the dis-

tributed authorization and group services supporled

by restricted proxies, the authorization decision can

be delegated to a remote server.
There have been several proposals concerning for-

warding and delegation of authentication in dis-

tributed systems. Karger [6] proposed a server that

keeps track of special passwords that are established

when a user logs in. These passwords are passed to

other systems which act on the user's behalf for opera-
lions that require the cascaded use of nmltiple servers.
This scheme is not encryption-based, ball relies on se-

cure channels for passing the special passwords. These

channels mlghl be inaplemented on top of an end-to-

end encryption mechanism.

A naechanism that comes close to rest ricted proxies
is the cascaded authentication mechanism described

by Sollins [11] in which restrictions can be added as
credentials are passed from system to system. The

differences between Sollins' approach and proxy-based
cascaded authorization was described in Section 3.4.

The proxy model described by this paper was de-

signed for use in Version .5 of the Kerberos authentica-

tion system. Support for proxies was first included in
the Kerberos protocol specification in mid 1989 [7]. At

about the same time, another mechanisms for delega-

tion was developed as part of the Digital Distributed

System Security Architecture [4, 5]. In the DSSA,

principals generate and sign delegation certificates to

allow intermediate systems to act on their behalf. An

important difference is that in the DSSA, restrictions

are supported only by creating separate principals.

called roles, and by generating a delegation certifi-

cate for one of the roles instead of for the original

principal. The delegation then supports only access

specifically autliorized for that role. The creation of

a new role is cumbersome when delegating on the fly

Certificate: {restrictions, h'p,.ox_ } h'-lg_,_to_

Proxy-key: KT_lo2y

Figure 6: A public-key restricted proxy

or when granting access to individual objects. Roles
can not be used to implement the authorization server

described in Section 3.2.

Functionality similar to that of the authorization

and group services of Sections 3.2 and 3.3 has been

proposed as part of the European Computer Man-
ufacturers Association standard for security in open

systenas [1]. The ECMA standard defines Privilege

Attributed Certificates (PACs) signed by an author-

ity and certifying that the bearer or a named principal

possess certain privileges.
Work is underway for the Open Software Founda-

tion's Distributed Computing Environment that uses

restricted proxies as supported by Kerberos to pass au-

thorizalion information. In particular, they have im-

plemented a privilege attribute server that signs cer-

tificates asserting a principal's unique identifier and

a set of user groups to which the principal belongs.

Plans are in place to extend their mechanism to sup-

port delegation [3].

Surprisingly little attention has been paid to the

issue of accounting in distributed systems. Sentry [9]
lays the groundwork for accounting by describing a
naechanism that would be co-located with an authenti-

cation and authorization server. Although the2,' share
a common mechanism, it seems apparent now that

there is little to be gained by requiring all three ser-

vices to be co-located. Like the accounting mechanism

described here, Sentry pointed out. the need to support

multiple currencies.

Amoeba [8] supports a distributed bank server iden-

tical in purpose to the accounting server based on re-
stricted proxies. The protocol used by Amoeba's bank

server is significantly different, however. In Amoeba,
a client must contact the bank and transfer funds into

the server's account before it contacts the server. The

server will then provide services until the pre-paid
funds have been exhausted. Like the mechanism de-

scribed here, Amoeba supports multiple currencies.

6 Integratiorl with existing systems

It is straightforward to implement restricted prox-

ies using encryption-based authentication mechanisms

based on either public-key or conventional cryptogra-

phy. This section shows how proxies can be imple-

mented with either approach and describes the specific

details of their support in Version 5 of the Kerberos

authentication system.
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6.1 Public-key cryptography
The certificatefor a public-k@;r'ox;'containsa

proxykeygeneratedby thegrantor,theexpiration
timeoftheproxy,andtherestrictionsimposeditsuse.
Theproxykeyembeddedin theproxycertificateisa
publickeyfromapublic/privatekeypair.Theproxy
keyprovidedto thegranteeis theotherkeyfromthat
pair.All fieldsaresignedbyencryptingthemwith the
grantor'sprivatekey.Figure6showsaproxygener-
at.edin thismanner.Thesignedproxyisadditionally
taggedwith thenameof thegrantort.oenablethose
needingto verifytheproxyto selectthecorrectkey.

If theauthenticationsystemis purelypublic-key,
a public-keydigitalsignaturealgorithmcanbeused
in placeof theencryptionsystemandtheencryption
stepwouldbereplacedbythesealingofthecertificate

with a cryptographic checksum. If a hybrid authenti-

cation system is used, where subsequent keys are from

a conventional cryptosystem, then the proxy key is

a conventional key generated by the grantor and tile

proxy key must be additionally encrypted in the public

key of the end-server to protect it from disclosure.

The proxy is returned to the grantee. When the

grantee presents the proxy t.o an end-server, the end-

server decrypts the proxy using tile public key of

the grantor (obtained from an authentication/name

server), verifies the authenticity of tile proxy, accepts

additional authentication from the grantee (either per-

sonal authentication for a delegate proxy or proof that

it know.,_ the proxy key for a bearer proxy), checks
the restrictions, and if ali checks out, performs the

requesled operation.

6.2 Restricted proxies in Kerberos

A proxy implemented using an authentication sys-

tem based on conventional cryptography is identical

t.o that in figure 6 except that the proxy is accompa-

nied by credentials authenticating the grantor to the

end-server. The proxy certificate is encrypted using

the session key generated by an authentication server,

the session key also having been earlier sealed in tile
credentials. The proxy key is a secret key generated

by the grantor. This key is both sealed in the proxy
certificate and securely passed to the grantee. The re-

mainder of this section describes the integration of re-

stricted proxies with Kerberos [12], an authentication
system based on conventional cryptography developed

as part of MIT's Project Athena.

Kerberos credentials are issued 1)5• an authentica-

tion server and presented by a client to prove its iden-
lily to a particular elM-server. Credentials consist of

two parts: a ticket, and a session key. The ticket cola-

tains the name of the authenticated principal and a

session key. It is encrypted using the secret key shared

by the end-server and the Kerberos server. The ses-

sion key is never sent across the network in the clear.

The session key is returned to the client encrypted in

the session key shared by the client and the Kerberos
server.

To prove its identity, a client sends the ticket to the

end-server along with an authenticator which has been

encrypted using the session key. The authenticator

proves that the client actually possesses the session key
included in the ticket. Without this step an attacker
would be able to reuse a ticket that it obtained by

eavesdropping on an earlier exchange.
Kerberos has been in use at MIT since Fall of 1986,

and it. has been used elsewhere since then. Version 5 of

Kerberos [7] is the first major revision of the protocol
since its original release and contains several new fea-

tures important for the practical support, of restricted

proxies. The inclusion of explicit, support for prox-
ies in Version .5 makes their use more transparent to

applications which have already been modified to use
Kerberos.

The Version 5 ticket and authenticator each have

a new field called authorization-data. This field con-

sist s of an arbitrary number of typed sub-fields, each of

which places restrictions on the use of the ticket. The

Kerberos protocol does not specify how the sub-fields

are to be interpreted except to stress that restrictions

must be additive. Each subfield places additional re-

strictions on the use of credenl.ials, never removing

restrict ions or grant ing additional privileges.

When tickets are requested, the requesting princi-

pal can specie' that restrictions be placed on their use.
When new tickets are issued based on existing creden-

tials, restrictions may be added, but not removed. To

add restrictions to an existing ticket., a client gener-

ates an authenticator specifying a proxy key in the

subkey field and specifying additional restrictions in
the aut horization-data field. The ticket and authenti-

cator are treated as the new proxy and provided with

tile new proxy key to the grantee. Once obtained, the

grantee can use such a proxy the same way it uses any
other credentials issued by the authentication system.

6.3 Discussion

Supporting proxies within an authentication mech-

anism has several advantages. Transparency is one ad-

vantage; a second is that the initial authentication of a

user can itself be thought of as the granting of a proxy

and restrictions can be placed on the credentials based

on the characteristics of the initial exchange with the
authentication server.
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Adisadvantageof usingconvent tonal cryptography

to implement proxies is that each proxy' can be used at

only a particular end-server. This is offset by imple-

menting proxies within Kerberos itself since it is possi-

ble to issue a proxy for the Kerberos "ticket-granting"
service. Such a proxy' allows tile grantee to obtain

proxies with identical restrictions for additional end-
servers as needed.

7 Conllnon restrictions

The restrictions field of a proxy' should be inter-

preted as a collection of typed subfields, each type

corresponding to a different restriction. This section
describes several of the more useful restrictions and

some that demonstrate the flexibility of the model.

Additional restrictions are described in [10]. Neither

should be construed as a complete list.

7.1 Grantee

This restriction specifies a list of principals autho-
rized to use a proxy and tim number of principals from

the list needed to exercise the proxy' (usually one). To

use such a proxy' a principal must present the authenti-

cation credentials of a named grant ee, or an additional

proxy granted by a named grantee, to the end-server
along with the proxy. If the grantee restriction is

missing, the proxy is a bearer proxy' and may be used

by anyone possessing it. To exercise a bearer proxy the

bearer nmst take part in an autlmntication exchange

proving possession of the proxy key t]ms preventing an

attacker from using a proxy obtained by eavesdropping
on the network.

7.2 For-use-by-group

The for-use-by-group restriction specifies the list

of groups authorized to use a proxy and the number
of groups from the list required. To use such a proxy,

the bearer presents the proxy" along with additional

proxies from appropriale group servers. One way to

implement separation of privi]ege is to require asser-
tion of membership in nmltiple groups with disjoint
nlelll]wrs,

7.3 Issued-for

The issued-for restriction specifies a list of servers

authorized to accept the proxy, This restriction is im-

portant for public-key proxies which are otherwise ver-

ifiable by and exercisable on all servers.

7.4 Quota

The quota restriction specifies a currency and a

]imil, It ]traits the quantity of a resource thai can be

consumed or obtained, h will most often 1 e found in

a proxy issued by an accounting server

7.5 Authorized

The authorized restriction specifies a complete list

of those objects which may be accessed using the rights

granted by a proxy' and optionally a list of operations

that may be performed on each object.. This restric-
tion usually" appears in proxies used as capabilities.

It also appears in proxies returned by an authoriza-
tion server. There are no constraints on the form of

the object names or the list of operations other than

that the grantor and the end-server must agree. These
fields are to be interpreted by the end-server.

7.6 Group-membership

This restriction specifies that the grantee is a mem-

ber of only the listed groups. It would be included in
a proxy' issued by" a group server to limit the groups to

which one is a member. Without this restriction, the

granteo would be considered a member of all groups

mainl ained by' the group server granting the proxy.

7.7 Accept-once

The aceept-onee restriction tells an end-server

that it is only to accept a proxy' one time. This re-

striction takes an identifier as an argument. Any sub-
sequent proxy' from the same grantor bearing the same

identifier and received by the end-server within the ex-

piration time of the first proxy" is rejected. A real life

example of such an identifier is a check number.

7.8 Limit-restriction

Restrictions that are defined only' for particular

end-servers are sometimes needed. If a proxy" can be
used on a server to which some restrictions do not

apply', lhose restrictions must be associated with the

name of the server to which they" do apply'. This is

accomplished with the limit-restriction restriction
which takes a list. of servers and a list of other restric-

tions. The restrictions embedded within this restric-

tion will be enforced by, the named servers and ignored

by others.

7.9 The propagation of restrictions

Authentication, authorization, and group servers

accept proxies and issue proxies. If a proxy is issued

based upon a proxy that includes restrictions, those

restrictions should be passed on t.o the proxy' to be is-

sued. If a restriction is limited (see linfit-restrietion)

then the restriction may be left out. if it can be guar-
anteed that the proxy to be issued, and any' proxies

that might later be derived from it, can not be used

for any of the servers listed in the limited restriction.
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8 Status

A beta release of Kerberos Version 5 is avail-

able. The release includes support, for restricted prox-
ies. Information on the Kerberos release is available

from info-kerberos_mit.edu. Authorization and

accounting services built with restricted proxies are

being developed at the Information Sciences Institute

of the University of Southern California.

9 Discussion and conclusions

The problems of authentication, authorization, and

accounting are closely related. By subtly changing the
way one thinks about the problems, the similarities be-

come apparent. By extending an authentication sys-
tem to support restricted proxies, it becon_es possible

to support flexible distributed authorization and ac-

counting mechanisms. The proxy model strikes a bal-

ance between access-control-list and capability-based

mechanisms allowing each to be used where appropri-

ate and allowing their use in combination.
This paper has shown how restricted proxies can be

supported using existing authentication systems and

how they are used for authorization aml accounting.

The resulting mechanisms scale and appear natural

when compared with their analogues in society.
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