Adaptive Defuzzification for Fuzzy Systems Modeling Ronald R. Yager and Dimitar P. Filev Machine Intelligence Institute Iona College New Rochelle, NY 10801

N93-29532-67 161816 P-8

ABSTRACT:

We propose a new parameterized method for the defuzzification process based on the simple M-SLIDE transformation. We develop a computationally efficient algorithm for learning the relevant parameter as well as providing a computationally simple scheme for doing the defuzzification step in the fuzzy logic controllers. The M-SLIDE method results in a particularly simple linear form of the algorithm for learning the parameter which can be used both off and on line.

1. Introduction

Recently with the intensive development of fuzzy control[1, 2], the problem of selection of a crisp representation of a fuzzy set, defuzzification has become one of the most important issues in fuzzy logic. In [3, 4] it was shown that the commonly used defuzzification methods, Center of Area (COA) and Mean of Maxima (MOM) [1, 2], are only special cases of a more general defuzzification method, called Generalized Defuzzification via BAsic Defuzzification Distribution (BADD). The BAD Distribution v_i , i=(1, n) of a fuzzy set D with membership function

 $D(x_i) = w_i, w_i \in [0, 1]$, is derived from its possibility distribution by use of the BADD transformation:

$$\mathbf{v}_{i} = \frac{\mathbf{w}_{i}^{\alpha}}{\sum_{j=1}^{n} \mathbf{w}_{j}^{\alpha}} , \alpha \ge 0$$
(1).

The BADD transformation converts the possibility distribution w_i to a probability distribution v_i , in a manner that preserves the features of D, $w_i > w_j \Rightarrow v_i \ge v_j$ and $w_i = w_j \Rightarrow v_i = v_j$. For $\alpha = 1$ the BADD transformation converts proportionally the possibility distribution w_i , i=(1, n) to BAD distribution v_i , i=(1, n). For $\alpha > 1$ it discounts the elements of X with lower grade of membership w_i . Through parameter α the BADD transformation relates the probability distribution v(x) to our confidence in the model [3, 4]. An increasing of α is associated with a decrease of uncertainty, decreasing of entropy and an increase in confidence. The defuzzified value obtained via the BADD approach is defined as the expected value of X over the BAD distribution v_i , i=(1, n):

$$d^{BADD} = \sum_{i=1}^{n} \frac{x_i w_i^{\alpha}}{\sum_{j=1}^{n} w_j^{\alpha}}, \quad \alpha \ge 0$$
(2)

It is evident, that for fixed α , the defuzzified value d^{BADD} , minimizes the mean square error, $E\{(x - d^{BADD})^2\}$. Thus the BADD defuzzified value is the optimal defuzzified value in the sense of minimizing the criterion

$$\sum_{i} (x_i - d^{BADD})^2 p_i$$
(3).

The main conclusion of this approach was that the best defuzzified value in the sense of above criterion can be obtained by adaptation of parameter α by learning. Unfortunately the problem of learning the parameter α from a given data set using directly expression (2) is a constrained nonlinear programming problem and its solution is difficult in real control applications. In this paper we solve the learning problem by the introduction of a new transformation of the possibility distribution w_i , i=(1, n) to the probability distribution v_i , i=(1, n), called the Modified SemiLInear DEfuzzification (M-SLIDE) transformation. The introduction of this new transformation results in a simple linear expression for the defuzzified value involving one parameter. An algorithm for learning the parameter is proposed.

2. M-SLIDE Defuzzification Technique

Let the probability distribution u_i , i = (1, n) be obtained by the proportional transformation (normalization) of w_i,

$$u_i = c w_i = \frac{w_i}{\sum_{i=1}^{n} w_i}$$
, $i = (1, n).$ (4)

The following transformation of the probability distribution u_i , i =(1, n) to a probability distribution v_i , i =(1, n) is defined as the M-SLIDE transformation:

$$\mathbf{v}_{i} = \begin{cases} \frac{1}{m} [1 - (1 - \beta) \sum_{j \notin M} \mathbf{u}_{j}] & \text{if } i \in M \\ (1 - \beta) \mathbf{u}_{i} & \text{if } i \notin M \end{cases}$$
(5)

where m = card(M) is the cardinality of the set M of elements with maximal membership grades: $M = \{i \mid w_i = Max_i[w_i]\}$

The derivation of the M-SLIDE transformation is expressed in detail in Yager & Filev [5]

The following theorem [5] shows some of the significant properties of the probability distribution obtained via the M-SLIDE transformation.

Theorem 1: Let w_i , i=(1,n) be the possibility distribution of a given fuzzy set and let v_i , i=(1,n)be obtained by application of transformations (4) followed by (5). Then it follows: i. distribution v_i , i=(1,n) is a probability distribution;

ii.
$$w_i = w_j \implies v_i = v_j$$
, $\forall i, j = (1, n)$ (identity);
iii. $w_i > w_j \implies v_i \ge v_j$, $\forall i, j = (1, n)$ (monotonicity)
iv. $\beta = 0 \implies v_i = \frac{w_i}{\sum_{j=1}^n w_j}$, $i = (1, n)$;
 $\sum_{j=1}^n w_j$

v. $\beta \approx 1 \implies v_i = 0$, $i \notin M$ and $v_i = \frac{1}{m}$, $i \in M$. An immediate consequence of Theorem 1 is that the entropy of the M-SLIDE Distribution v_i , is maximal for $\beta = 0$ and minimal for $\beta = 1$.

When using the M-SLIDE transformation to obtain the probability distribution v_i the expected value,d, with respect to the elements x_i of support set is

$$\begin{aligned} d &= \sum_{i=1}^{n} v_{i} x_{i} = (1 - \beta) \sum_{i \notin M} u_{i} x_{i} + \frac{1}{m} [1 - (1 - \beta) \sum_{i \notin M} u_{i}] \sum_{j \in M} x_{j} \\ d &= (1 - \beta) \sum_{i \notin M} u_{i} (x_{i} - dMOM) + dMOM \end{aligned}$$

where d^{MOM} is the MOM defuzzified value,

$$d^{MOM} = \frac{1}{m} \sum_{j \in M} x_j$$

It is evident that expected value d generalizes the MOM defuzzified value.

Definition 1. The process of selection of a deterministic value from the universe of discourse of a given fuzzy set by evaluation of the expected value d is called the Modified Semi LInear **DE**fuzzification (M-SLIDE) Method. The defuzzified value, denoted d^{MS} , obtained by application of the M-SLIDE method is called the M-SLIDE value and is defined as

$$d^{MS} = (1-\beta) \sum_{i \notin M} u_i (x_i - d^{MOM}) + d^{MOM}.$$

The next Theorem shows the relationship between the M-SLIDE method and the commonly used COA and MOM defuzzification methods.

Theorem 2. The M-SLIDE method reduces to the COA defuzzification method for $\beta = 0$ and to the MOM defuzzification method for $\beta = 1$.

Proof. For
$$\beta = 0$$

$$d^{MS} = \sum_{i \notin M} u_i x_i + \frac{1}{m} m u_{max} \sum_{j \in M} x_j = \sum_{i \notin M} c w_i x_i + c w_{max} \sum_{j \in M} x_j$$

$$d^{MS} = \frac{1}{\sum_{j=1}^{n} w_j} \sum_{i \notin M} w_i x_i + w_{max} \sum_{j \in M} x_j = d^{COA}$$

where by d^{COA} we denote the defuzzified valued obtained by the COA defuzzification method. For $\beta = 1$, $d^{MS} = d^{MOM}$.

Theorem 3. The following expressions of the M-SLIDE defuzzified value, d^{MS}, are equivalent:

$$\begin{split} d^{MS} &= (1 - \beta) \sum_{i \notin M} u_i (x_i - d^{MOM}) + d^{MOM} \\ d^{MS} &= \beta \sum_{i \notin M} u_i (d^{MOM} - x_i) + d^{COA} \\ d^{MS} &= \beta d^{MOM} + (1 - \beta) d^{COA} \\ d^{MS} &= \beta (d^{MOM} - d^{COA}) + d^{COA} \\ d^{MS} &= (1 - \beta) \sum_{i \notin M} u_i (x_i - d^{MOM}) + d^{MOM} \end{split}$$

Proof.

$$= \beta \sum_{\substack{i \notin M \\ i \notin M}} u_i (d^{MOM} - x_i) + \sum_{\substack{i \notin M \\ i \notin M}} u_i (x_i - d^{MOM}) + d^{MOM}$$

$$= \beta \sum_{\substack{i \notin M \\ i \notin M}} u_i (d^{MOM} - x_i) + \sum_{\substack{i \notin M \\ i \notin M}} u_i x_i - \sum_{\substack{i \notin M \\ i \notin M}} u_i d^{MOM} + d^{MOM}$$

$$d^{MS} = \beta \sum_{\substack{i \notin M \\ i \notin M}} u_i (d^{MOM} - x_i) + d^{COA}$$

$$= \beta \sum_{\substack{i \notin M \\ i \notin M}} u_i d^{MOM} - \beta \sum_{\substack{i \notin M \\ i \notin M}} u_i x_i + d^{COA}$$

$$= \beta d^{MOM} - \beta m u_{max} \frac{1}{m} \sum_{\substack{i \notin M \\ i \notin M}} x_i - \beta \sum_{\substack{i \notin M \\ i \notin M}} u_i x_i + d^{COA}$$

$$= \beta d^{MOM} - \beta m u_{max} \frac{1}{m} \sum_{\substack{i \notin M \\ i \notin M}} x_i - \beta \sum_{\substack{i \notin M \\ i \notin M}} u_i x_i + d^{COA}$$

$$= \beta d^{MOM} - \beta d^{COA} + d^{COA}$$

Theorem 3 provides convenient forms for the M-SLIDE defuzzified value as a linear function of the parameter β . In the next section we will use these forms for estimation of the parameter β in a learning procedure, capable of working on line.

3. Algorithm for Learning the M-SLIDE Parameter

In this section we solve the problem of learning the parameter β of the M-SLIDE method from a given sequence of fuzzy sets and desired defuzzified values. Furthermore we demonstrate that the M-SLIDE method can be used as an approximation of the Generalized Defuzzification Method via the BAD Distribution [3].

Assume we are given a collection of fuzzy sets U_k and the desired defuzzified values d_k , k = (1, K). We denote by d_k^{MOM} and d_k^{COA} the defuzzified values of the fuzzy sets U_k under MOM and COA defuzzification methods. The problem of learning of the parameter β is equivalent to the recursive solution of the set of linear equations: $\beta * (d_k^{MOM} - d_k^{COA}) + d_k^{COA} = d_k$, k = (1, K).

For simplification we denote: $c_k = d_k^{MOM} - d_k^{COA}$ and $y_k = d_k - d_k^{COA}$ and rewrite the set of equations that has to be solved in the form: $c_k \beta = y_k$ for k = (1, K).

In general there is no guarantee that this set of equations can be exactly satisfied for some value of β and also that c_k doesn't vanish for some k. For this reason we seek a **least squares** solution of the set of equations under the assumption of noisy observation data. The solution of this classical mathematical problem can be obtained by the application of a number of different techniques. In this paper we shall use an algorithm that is a deterministic version of the well known Kalman filter [6] which is usually used to solve the same kind least squares of errors

estimation problem for the case of dynamic systems.

The unknown parameter β that has to be estimated is regarded as a state vector of a hypothetical autonomous scalar dynamic system driven by the equations

$$\beta_{k+1} = \beta_k$$
 and $y_k = c_k \beta_k + \xi_k$

where the term ξ_k denotes Gaussian white noise with covariance r_k . Then the recursive Kalman filter that gives the best estimate of the state vector β_k of this system has the form [6]:

$$\widehat{\beta}_{k/k} = \widehat{\beta}_{k/k-1} + g_k (y_k - c_k \widehat{\beta}_{k/k-1})$$
i
$$\widehat{\beta}_{k+1/k} = \widehat{\beta}_{k/k}$$
ii
$$p_{k/k-1} = p_{k-1/k-1}$$
iii
$$g_k = p_{k/k-1} c_k \frac{1}{c_k^2 p_{k/k-1} + r_k}$$
iv

$$P_{k/k} = P_{k/k-1} - g_{k} C_{k} P_{k/k-1}$$
 v

Roughly speaking the Kalman filter calculates at every step the best estimate of the state vector as a sum of the prediction of β at step k from its value at step k-1, $\beta_{k/k-1}$, and a correction term proportional to the difference between current output value y_k and predicted output $c_k \beta_{k/k-1}$. Equation iv calculates the varying gain, g_k , of the filter. The evolution of error covariance is given

by equation v. Because of the static nature of the autonomous system $\beta_{k+1/k} = \beta_{k/k} = \beta_k$ and $p_{k/k-1} = p_{k-1/k-1} = p_{k-1}$ this significantly simplifies the algorithm to

$$\beta_{k} = \beta_{k-1} + g_{k} (y_{k} - c_{k} \beta_{k-1})$$
 (vi)

$$g_k = p_{k-1} c_k \frac{1}{c_k^2 p_{k-1} + r_k}$$
 (vii)

$$p_{k} = p_{k-1} - g_{k} c_{k} p_{k-1}$$
 (viii)

by combining vi and vii a more compact form of the algorithm is obtained

$$\beta_{k} = \beta_{k-1} + p_{k-1} c_{k} \frac{1}{c_{k}^{2} p_{k-1} + r_{k}} (y_{k} - c_{k} \beta_{k-1})$$
(ix)

$$p_{k} = p_{k-1} - p_{k-1}^{2} c_{k}^{2} \frac{1}{c_{k}^{2} p_{k-1} + r_{k}}$$
(x)

Because usually we have no idea about the magnitude of the additive noise ξ_k we shall consider $r_k = 1$. Then equation (x) is further simplified and we receive the following final form of the Kalman filter algorithm for recursive least square solution of the original set of equations :

$$\beta_{k} = \beta_{k-1} + \frac{p_{k-1} c_{k}}{c_{k}^{2} p_{k-1} + 1} (y_{k} - c_{k} \beta_{k-1})$$
xi
$$p_{k} = \frac{p_{k-1}}{c_{k}^{2} p_{k-1} + 1}$$
xii

$$c_k^z p_{k-1} + 1$$

Regarding the initial conditions, it can be argued [7] that a reasonable assumption is t

0 consider $\beta_0 = 0$ and nonnegative p_0 .

The algorithm gives an unconstrained solution for β . Because of the requirement of β belonging to the unit interval, we shall restrict the solution β_k by applying a threshold to give the value β_k^* where

$$\beta_{k}^{*} = \begin{cases} 1 \text{ if } \beta_{k-1} + \Delta_{k} > 1 \\ 0 \text{ if } \beta_{k-1} + \Delta_{k} < 0 \\ \beta_{k-1} + \Delta_{k} \text{ otherwise} \end{cases}$$

where Δ_k denotes the second term in the right part of xi,

$$\Delta_{\mathbf{k}} = \frac{\mathbf{p}_{\mathbf{k}-1} \, \mathbf{c}_{\mathbf{k}}}{\mathbf{c}_{\mathbf{k}}^2 \, \mathbf{p}_{\mathbf{k}-1} + 1} \, (\mathbf{y}_{\mathbf{k}} - \mathbf{c}_{\mathbf{k}} \, \beta_{\mathbf{k}-1}).$$

The thresholding effect can be replaced by the following nonlinear expression:

$$\beta_{k} = 1 - 0.5 \left[1 - 0.5 \left[\beta_{k-1} + \Delta_{k} + \beta_{k-1} + \Delta_{k} \right] + \left| 1 - 0.5 \left(\beta_{k-1} + \Delta_{k} + \beta_{k-1} + \Delta_{k} \right) \right| \right]$$

The algorithm for learning the M-SLIDE parameter, based on Kalman filter, can now be summarized in the following.

<u>Algorithm for learning the parameter β (M-SLIDE Learning Algorithm)</u>

- **1.** Set $\beta_0 = 0$; $p_0 > 0$.
- 2. Read a sample pair U_k , d_k .
- 3. Calculate: i. d_k^{MOM} ; ii. d_k^{COA} ; iii. $c_k = d_k^{MOM} d_k^{COA}$; iv. $y_k = d_k d_k^{COA}$
- 4. Update β_k , p_k : $\beta_k = \beta_{k-1} + \frac{p_{k-1}c_k}{c_k^2 p_{k-1} + 1}$ ($y_k c_k \beta_{k-1}$) and $p_k = \frac{p_{k-1}}{c_k^2 p_{k-1} + 1}$
- 5. Calculate β_k :

$$\beta_{k}^{*} = 1 - 0.5 \left[1 - 0.5 \left(\beta_{k-1} + \Delta_{k} + |\beta_{k-1} + \Delta_{k}|\right) + |1 - 0.5 \left(\beta_{k-1} + \Delta_{k} + |\beta_{k-1} + \Delta_{k}|\right)|\right]$$

6. Update the current estimate of the parameter β : $\beta = \beta_k$.

We note that since the estimate of the parameter β is determined sequentially there is no need to resolve the whole set of equations when a new pair of data pair (U_{k+1}, d_{k+1}) becomes available for learning. The addition of a new data pair can be incorporated by just an additional iteration of the algorithm. This property of the algorithm allows it to be used for either off-line or on-line learning of the parameter β .

In the case when the *desired* defuzzified values, the d_k 's, are the defuzzified values obtained from the defuzzification method using the BADD distribution, the Algorithm can be used to get an associated M-SLIDE parameter β corresponding to a BADD transformation parameter α .

The next example presents an application of the M-SLIDE learning algorithm.

Example. Assume our data consists of 10 fuzzy sets: $U_1 = \{0/3, 0.6/4, 1/5, .8/6, 0.9/7, 0/8\}; U_2 = \{0/5, 0.9/7, 1/9, 1/11, 0.2/12, 0/13\};$ $U_3 = \{0/2, 0.4/3, 0.8/4, 1/5, 0.5/6, 0/7\}; U_4 = \{0/4, 1/5, 0.9/6, 1/7, 0.9/8, 0/9\};$ $U_5 = \{0/6, 0.3/7, 1/8, 0.6/9, 1/10, 0/11\}; U_6 = \{0/3, 0.2/4, 0.9/7, 1/9, 1/10, 0/12\};$ $U_7 = \{0/1, 0.9/4, 0.5/5, 1/7, 0.4/8, 0/10\}; U_8 = \{0/3, 0.5/7, 0.9/10, 1/11, 0.4/14, 0/16\};$ $U_9 = \{0/5, 0.2/6, 1/7, 1/9, 0.1/10, 0/11\}; U_{10} = \{0/4, 1/7, 0.5/8, 1/9, 0.7/10, 0/11\}.$

We used the BADD defuzzification method to generate the *ideal* defuzzified values, d_k , associated with each of these fuzzy sets. In this way we formed six different data sets, each consisting of 10 pairs (U_k , d_k) In each data set the d_k 's where generated by a different BADD parameter α .

For each data set, using the M-SLIDE learning algorithm, we obtained the optimal estimate for the parameter β . The following tables show the results of the experimentation with our algorithm. In the tables below we note that d_k is the ideal value and d_k^c is the calculated defuzzification value using the M-SLIDE defuzzification procedure with the optimal estimated β parameter for that data set.

DATA SET # 1 OPTIMAL ESTIMATED $\beta = 0.00022$												
k	1	2	3	4	5	6	7	8	9	10		
d k k	5.60	9.26	4.59	6.47	8.79	8.42	5.82	10.39	7.91	8.43		
d _k	5.60	9.26	4.59	6.47	8.79	8.42	5.82	10.39	7.91	8.43		
DATA SET # 2 OPTIMAL ESTIMATED $\beta = 0.10758$												
k	1	2	3	4	5	6	7	8	9	10		
d _k	5.54	9.34	4.64	6.42	8.82	8.54	5.95	10.46	7.92	8.39		
d _k	5.71	9.21	4.70	6.42	8.98	8.82	5.76	10.46	7.99	8.28		
DATA SET # 3 OPTIMAL ESTIMATED $\beta = 0.22539$												
k	1	2	3	4	5	6	7	8	9	10		
d k k	5.47	9.43	4.68	6.37	8.84	8.66	6.09	10.53	7.93	8.34		
d _k	5.72	9.32	4.77	6.37	9.00	8.93	5.88	10.58	8.00	8.15		
DATA	SET # 4	ОРТ	IMAL	ESTIMA	TED β	= 0.668	91					
k	1	2	3	4	5	6	7	8	9	10		
d k	5.20	9.75	4.87	6.16	8.93	9.14	6.61	10.80	7.97	8.14		
d _k	5.36	9.72	4.97	6.17	9.00	9.27	6.49	10.83	8.00	8.00		
DATA SET # 5 OPTIMAL ESTIMATED $\beta = 0.92394$												
k	1	2	3	4	5	6	7	8	9	10		
d k	5.05	9.94	4.97	6.04	8.98	9.42	6.91	10.95	7.99	8.03		
d _k	5.08	9.94	5.00	6.04	9.00	9.45	6.88	10.96	8.00	8.00		

DATA	SET # 6	OPTIMAL ESTIMATED $\beta = 0.97293$								
k	1	2	3	4	5	6	7	8	9	10
d k	5.02	9.98	4.99	6.01	8.99	9.47	6.97	10.98	8.00	8.01
d _k	5.03	9.98	5.00	6.01	9.00	9.48	6.96	10.99	8.00	8.00

It is can be seen from the above example that the M-SLIDE learning algorithm learns values of the parameter β that allow a very good matching of the data set.

4. References

[1]. Lee, C. C., "Fuzzy logic in control systems: fuzzy logic controller, Part 1," IEEE Trans. on Systems, Man and Cybernetics 20, 404-418, 1990.

[2]. Lee, C. C., "Fuzzy logic in control systems: fuzzy logic controller, Part II," IEEE Trans. on Systems, Man, and Cybernetics 20, 419-435, 1990.

[3]. Filev, D. and Yager, R. R., "A generalized defuzzification method under BAD distributions," International Journal of Intelligent Systems 6, 687-697.

[4]. Yager, R. R. and Filev, D. P., "On the issue of defuzzification and selection based on a fuzzy set," Technical Report# MII-1201, Machine Intelligence Institute, Iona College, 1991.

[5]. Yager, R. R. and Filev, D. P., "SLIDE: A simple adaptive defuzzification method," IEEE Transactions on Fuzzy Systems, (To Appear).

[6]. Aoki, M., Optimization of Stochastic Systems, Academic Press: New York, 1967.

[7]. Deutsch, R., Estimation Theory, Prentice Hall: Englewood Cliffs, NJ, 1965.