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ABSTRACT:
We propose a new parameterized method for the defuzzification process based on the

simple M-SLIDE transformation. We develop a computationally efficient algorithm for learning
the relevant parameter as well as providing a computationally simple scheme for doing the
defuzzification step in the fuzzy logic controllers. The M-SLJDE method results in a particularly
simple linear form of the algorithm for learning the parameter which can be used both off and on
line.

1. Introduction
Recently with the intensive development of fuzzy control[l, 2], the problem of selection of

a crisp representation of a fuzzy set, defuzzification has become one of the most important issues in
fuzzy logic. In [3, 4] it was shown that the commonly used defuzzification methods.Center of
Area (COA) and Mean of Maxima (MOM) [1, 2], are only special cases of a more general
defuzzification method, called Generalized Defuzzification via BAsic Defuzzification Distribution
(BADD). The BAD Distribution vj, i=(l, n) of a fuzzy set D with membership function

D(XJ) = Wj, wj e [0, 1], is derived from its possibility distribution by use of the BADD
transformation:

, o c > 0 (1).

The BADD transformation converts the possibility distribution Wj to a probability distribution vj, in

a manner that preserves the features of D, wj > w; => vj > vj and wj = wj => vj = vj. For a =1
the BADD transformation converts proportionally the possibility distribution wj, i=(l, n) to BAD
distribution vj, i=(l, n). For a > 1 it discounts the elements of X with lower grade of membership
wj. Through parameter a the BADD transformation relates the probability distribution v(x) to our
confidence in the model [3, 4]. An increasing of a is associated with a decrease of uncertainty,
decreasing of entropy and an increase in confidence. The defuzzified value obtained via the BADD
approach is defined as the expected value of X over the BAD distribution vj, i=(l, n):

dBADD = £ J5i*£_ , a>0 (2)
i=1

It is evident, that for fixed a, the defuzzified value d^ADD ^ minimizes the mean square error,
E{(x - dBADD)2] Thus the BADD defuzzified value is the optimal defuzzified value in the sense
of minimizing the criterion
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(3).

The main conclusion of this approach was that the best defuzzified value in the sense of
above criterion can be obtained by adaptation of parameter a. by learning. Unfortunately the
problem of learning the parameter a from a given data set using directly expression (2) is a
constrained nonlinear programming problem and its solution is difficult in real control applications.
In this paper we solve the learning problem by the introduction of a new transformation of the
possibility distribution wj, i=(l, n) to the probability distribution vj, i=(l, n), called the Modified
SemiLInear DEfuzzification (M-SLIDE) transformation. The introduction of this new
transformation results in a simple linear expression for the defuzzified value involving one
parameter. An algorithm for learning the parameter is proposed.

2. M-SLIDE Defuzzification Technique

Let the probability distribution uj, i = (1, n) be obtained by the proportional transformation
(normalization) of wj ,

i=d,n). (4)

The following transformation of the probability distribution uj, i =(1, n) to a probability
distribution vj, i =(1, n) is defined as the M-SLIDE transformation:

j] if i€M

(5)vi= I ( l -P)uj ifieM

where m = card(M) is the cardinality of the set M of elements with maximal membership grades:
M = {i I wj = Maxj[wj] }

The derivation of the M-SLIDE transformation is expressed in detail in Yager & Filev [5]
The following theorem [5] shows some of the significant properties of the probability

distribution obtained via the M-SLIDE transformation.
Theorem 1: Let wj, i=(l,n) be the possibility distribution of a given fuzzy set and let vj, i=(l,n)
be obtained by application of transformations (4) followed by (5). Then it follows:
i. distribution vj, i=(l,n) is a probability distribution;

ii. wj = wj => vi = vj ,Vij=(l,n) (identity);

iii. wj > wj => v i^ v »Vij=(l ,n) (monotonicity)

iv. [3=0 =>

v. (3 = 1 => vj = 0, ig M and vj = — , ie M.
An immediate consequence of Theorem 1 is that the entropy of the M-SLIDE Distribution

vj, is maximal for (3 = 0 and minimal for P = 1.
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When using the M-SLIDE transformation to obtain the probability distribution YJ the
expected value,d, with respect to the elements xj of support set is

jeM

d = (1-P) £ uj (xi - dMOM) + dMOM

where dMOM is the MOM defuzzified value,
dMOM = J_ £ Xj.

J€M

It is evident that expected value d generalizes the MOM defuzzified value.
Definition 1. The process of selection of a deterministic value from the universe of discourse of
a given fuzzy set by evaluation of the expected value d is called the Modified Semi Linear
DEfuzzification (M-SLIDE) Method. The defuzzified value, denoted dM^ obtained by
application of the M-SLIDE method is called the M-SLIDE value and is defined as

dMS = (1.p) £ Ui (xi . dMOM) + dMOM.
ieM

The next Theorem shows the relationship between the M-SLIDE method and the commonly used
COA and MOM defuzzification methods.

Theorem 2. The M-SLIDE method reduces to the COA defuzzification method for P = 0 and to
the MOM defuzzification method for P = 1 .
Proof. For p = 0

dMS = £ Ui xi + m- m umax £ xj = X c wi xi + c wmax £ Xj

i«M jeM ieM jeM

dMS= __L_ [£ wixi + wmax £ x]=dCOA

Wj

where by d- we denote the defuzzified valued obtained by the COA defuzzification method.
Forp=l,dMS= dMOM.

Theorem 3. The following expressions of the M-SLIDE defuzzified value, d1^ ^Q equivalent:
dMS = (l-p) £ Ui (Xi - dMOM) + dMOM

Ui (dMOM . Xi) + dCOA

dMS _ p (dMOM . dCOA) + dCOA
Proof. dMS = ( i_p) £ Ui (Xi - dMOM) + dMOM

ieM

137



= P £ ui <dMOM * xi) + Z ui (*i - dMOM) + dMOM

if£ M it M

= P X Ui(dMOM.Xi)+ £ u . x ._ £ UidMOM
i« M it M i« M

= P £ U i(dMOM_X i ) +£ Ui Xi - (1 -m u^) dMOM + dMOM

dMS = p £ Ui (dMOM . Xi) + dCOA

= p

= p(l-mU m a x)dMOM.p
i«

X i . p

ieM

= p dMOM . p dCOA + dCOA

dMS = p dMOM + (i_ p) dCOA = p (dMOM . dCOA} + dCOA

Theorem 3 provides convenient forms for the M-SLIDE defuzzified value as a linear
function of the parameter (3. In the next section we will use these forms for estimation of the

parameter P in a learning procedure, capable of working on line.

3. Algorithm for Learning the M-SLIDE Parameter

In this section we solve the problem of learning the parameter (3 of the M-SLIDE method
from a given sequence of fuzzy sets and desired defuzzified values. Furthermore we demonstrate
that the M-SLIDE method can be used as an approximation of the Generalized Defuzzification
Method via the BAD Distribution [3].

Assume we are given a collection of fuzzy sets U^ and the desired defuzzified values d^,

k = (1, K). We denote by df101^ and d£°A the defuzzified values of the fuzzy sets Ufc under

MOM and COA defuzzification methods. The problem of learning of the parameter P is equivalent
to the recursive solution of the set of linear equations: P * (d™OM - d£°A) + d£°A = djf , k = (1,
K).
For simplification we denote: ck = dJfOM - d£°A and yk = dk - d£°A and rewrite the set of equations

that has to be solved in the form: c^ P = y^ for k = (1 , K).
In general there is no guarantee that this set of equations can be exactly satisfied for some

value of p and also that c^ doesn't vanish for some k. For this reason we seek a least squares
solution of the set of equations under the assumption of noisy observation data. The solution of
this classical mathematical problem can be obtained by the application of a number of different
techniques . In this paper we shall use an algorithm that is a deterministic version of the well
known Kalman filter [6] which is usually used to solve the same kind least squares of errors
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estimation problem for the case of dynamic systems.
The unknown parameter p that has to be estimated is regarded as a state vector of a

hypothetical autonomous scalar dynamic system driven by the equations

where the term £k denotes Gaussian white noise with covariance r^. Then the recursive Kalman

filter that gives the best estimate of the state vector Pk of this system has the form [6]:
^ xs x^

Pk/k = Pk/k- l + g k ( y k - c k Pk/k- 1) i
^** s^

Pk+l/k = Pk/k ii
Pk/k-1 = Pk-l/k-1 iii

gk = Pk/k-1 ck -^ - J - iv

ck Pic/k-i + rk

Pk/k = Pk/k- 1 - gk ck Pk/k-1 v
Roughly speaking the Kalman filter calculates at every step the best estimate of the state vector as a

*«*

sum of the prediction of P at step k from its value at step k-1, Pk/k-l> and a correction term
^

proportional to the difference between current output value yk and predicted output Ck Pk/k-1-
Equation iv calculates the varying gain, gk, of the filter. The evolution of error covariance is given

^N s>*

by equation v. Because of the static nature of the autonomous system Pk+l/k = Pk/k = Pk ana<

Pk/k-1 = Pk-l/k-1 = Pk-1 tnis significantly simplifies the algorithm to

Pk= Pk- 1 + gk (yk - ck Pk- 1 ) (vi)

gk = Pk- 1 ck -; — l - (vii)
c£ pk.i + rk

Pk = Pk-l -gk ckPk-l (viii)
by combining vi and vii a more compact form of the algorithm is obtained

Pk= Pk- 1 + Pk- 1 Ck -5 — l - (Xk - ck Pk- 1 ) (ix)
ct Pk-i + rk

Pk = Pk-1 - Pk-i c£ -5 — 1 - (*)
ci pk-i + rk

Because usually we have no idea about the magnitude of the additive noise £k we sna^
consider rk = 1. Then equation (x.) is further simplified and we receive the following final form of
the Kalman filter algorithm for recursive least square solution of the original set of equations :

Pk= Pk-i + J*-1 Ck (yk - ck Pk-i) xi
c£ pk-i + 1

Pk = _ Etl _ xii
ck pk-i + 1

Regarding the initial conditions, it can be argued [7] that a reasonable assumption is to
consider PQ = 0 and nonnegative PQ.
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The algorithm gives an unconstrained solution for P. Because of the requirement of P
belonging to the unit interval, we shall restrict the solution Pk by applying a threshold to give the

*
value Pk where

{ l i f p k . 1 + A k > l

0 if pk.i + Ak < 0

Pk-i + Afc otherwise
where Ak denotes the second term in the right part of xi,

c pk.i +
The thresholding effect can be replaced by the following nonlinear expression:

Pk = 1 - 0.5 [1 - 0.5 (pk.i + Ak+lpk.i + Akl) + 11-0.5 (Pn + Ak+ lpk.i + Akl) I ]
The algorithm for learning the M-SLIDE parameter, based on Kalman filter, can now be

summarized in the following.
Algorithm for learning the parameter p (M-SLIDE Learning Algorithm)
1. Set Po = 0; po > 0.
2. Read a sample pair Uk, dk.

3. Calculate: i. dj*™; ii. d£°A; iii. ck = df>M - d£°A; iv. yk = dk -

4. Update Pk, pk: Pk= Pk_! + J^'1 °k (yk - ck p^) and pk =
k k - l CJ-pk.j + 1

*
5. Calculate Pk :

Pk = 1 - 0.5 [1 - 0.5 (pk.i -i- Ak+lpk.i + Akl) + II - 0.5 (Pn + Ak+ lpk.i + Akl) I ]
*

6. Update the current estimate of the parameter P: P = Pk.
We note that since the estimate of the parameter P is determined sequentially there is no

need to resolve the whole set of equations when a new pair of data pair (Uk+j, dk+i) becomes
available for learning. The addition of a new data pair can be incorporated by just an additional
iteration of the algorithm. This property of the algorithm allows it to be used for either off-line or
on-line learning of the parameter P.

In the case when the desired defuzzified values, the dk's, are the defuzzified values
obtained from the defuzzification method using the BADD distribution, the Algorithm can be used
to get an associated M-SLIDE parameter P corresponding to a BADD transformation parameter a.

The next example presents an application of the M-SLIDE learning algorithm.
Example. Assume our data consists of 10 fuzzy sets:
U! = {0/3, 0.6/4, 1/5, .8/6, 0.9/7, 0/8}; U2 = {0/5, 0.9/7, 1/9, 1/11, 0.2/12, 0/13);
U3 = {0/2, 0.4/3, 0.8/4, 1/5, 0.5/6, 0/7}; U4 = {0/4, 1/5, 0.9/6, 1/7, 0.9/8, 0/9};
U5 = {0/6,0.3/7, 1/8, 0.6/9, 1/10, 0/11}; U6 = {0/3, 0.2/4, 0.9/7, 1/9, 1/10, 0/12};
U7 = {0/1, 0.9/4, 0.5/5, 1/7, 0.4/8, 0/10); Ug = {0/3, 0.5/7, 0.9/10, 1/11, 0.4/14, 0/16);

140



U9 = {0/5, 0.2/6, 1/7, 1/9, 0.1/10, 0/11}; U10 = {0/4, 1/7, 0.5/8, 1/9, 0.7/10, 0/11).
We used the BADD defuzzification method to generate the ideal defuzzified values, d^,

associated with each of these fuzzy sets. In this way we formed six different data sets, each
consisting of 10 pairs (U^, d^) In each data set the d^'s where generated by a different BADD

parameter a.
For each data set, using the M-SLIDE learning algorithm, we obtained the optimal estimate

for the parameter P. The following tables show the results of the experimentation with our
algorithm. In the tables below we note that dk is the ideal value and dk is the calculated
defuzzification value using the M-SLIDE defuzzification procedure with the optimal estimated p
parameter for that data set.

DATA SET # 1 OPTIMAL ESTIMATED P = 0.00022
k ! 2 3 4 5 6 7 8 9 1 0

dc
k

dk

DATA
k

dc
k

dk

DATA
k

dck

dk

DATA
k

dc
k

dk

DATA
k

dck

dk

5.60

5.60

SET #2
1

5.54

5.71

SET #3
1

5.47

5.72

SET #4
1

5.20

5.36

SET #5
1

5.05

5.08

9.26

9.26

4.59

4.59

OPTIMAL
2 3

9.34

9.21

4.64

4.70

OPTIMAL
2 3

9.43

9.32

4.68

4.77

OPTIMAL
2 3

9.75

9.72

4.87

4.97

OPTIMAL
2 3

9.94

9.94

4.97

5.00

6.47

6.47

8.79

8.79

ESTIMATED P
4 5

6.42

6.42

8.82

8.98

ESTIMATED p
4 5

6.37

6.37

8.84

9.00

ESTIMATED P
4 5

6.16

6.17

8.93

9.00

ESTIMATED P
4 5

6.04

6.04

8.98

9.00

8.42

8

= 0

8

8

= 0

8

8

= 0

9

9

= 0

9

9

.42

5.82

5.82

.10758
6 7

.54

.82

5.95

5.76

.22539
6 7

.66

.93

6.09

5.88

.66891
6 7

.14

.27

6.61

6.49

.92394
6 7

.42

.45

6.91

6.88

10.39

10.39

8

10.46

10.46

8

10.53

10.58

8

10.80

10.83

8

10.95

10.96

7.91

7.91

9

7.92

7.99

9

7.93

8.00

9

7.97

8.00

9

7.99

8.00

8.43

8.43

10

8.39

8.28

10

8.34

8.15

10

8.14

8.00

10

8.03

8.00
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DATA SET # 6 OPTIMAL ESTIMATED |3 = 0.97293
k ! 2 3 4 5 6 7 8 9 1 0

d£ 5.02 9.98 4.99 6.01 8.99 9.47 6.97 10.98 8.00 8.01

dk 5.03 9.98 5.00 6.01 9.00 9.48 6.96 10.99 8.00 8.00

It is can be seen from the above example that the M-SLIDE learning algorithm learns values of the
parameter |3 that allow a very good matching of the data set.
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