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NAFIPS '92. an international conference on fuzzy set theory and applications, is sponsored 
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Fuzzy set theory has led to a large ;number of diverse applications. Recently, interesting 
applications have been developed ahich Involve the integration of fuzzy systems witti 
adaptive processes such as neural networks and genetic algorithms. NAFIPS '92 will be 
directed toward the advancement, commercialization, and engineering development of these 
technologies. 

The conference will consist of both plenary sessions and contributory sessions. The plenary 
sessions will be addressed by leading experts. Topics to be discussed at this conference 
include the following: 

Biomedical and Biochemical Issues 
Business and Decision Making 
Commercial Products and Tools 
Computer Systems and Information Processing 
Control Systems 
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Foundations and Mathematical Issues 
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Neural Networks 
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Tutorials by leading experts will be provided on December 14, 1992. 

8:OO - 9:40 Introduction to Fuzzy Sets and Approximate R~Ã§on ln  
RONALD R. YAGER. Iona Cdlege, New Rochelle, NY, USA 

9:so - 11:30 Fuzzy Intelligent Information S y f r n s  
hi. ZEMANKOVA, NATIONAL Science Foundation, Washington, DC, USA 

11:30 - 12:30 Lunch 
12:30 - 2:10 Fuzzy Logk In Expert S y t m  end Its Applications for IE/OR/MS 

I.B. TURKSEN, University o( Toronto, Toronto, ON, CANADA 
2:20 4:OO Fuzzy Control and If Applications 

M. SffiENO, Tokyo Institute of Technology, Yokohama, JAPAN 
4:10 - 5:50 Fuzzy Hardware Dmlgn and Its Applications 

K. HIROTA, Hosel University, Tokyo, JAPAN 

8:OO Welcoming Remarks 

8:15-9:OO Plenary Speech 
PROFESSOR L m  ZAOEH, UnhrsKy at Cditomia at Berkeley 

9:OO - 12:OO Parallel Souions 

An Analysis of Possible Applications of Fuzzy Set Theory to the Credibility Theory 
KRZYSZTOF OSTASZEWSM, University d L~~isvflle, Louisville, KY 
WALDEMAR KAFtWOWSM. Uflbf&y of L o u r n .  L0lJiSVib. K'f 

Estimations of Expecte<!r.ess and Potential Surprlm in Possibility Theory 
HENRI PRADE, Univerdte Paul Sabatter, Toubuse Cedex, FRANCE 
RONALD R. YAGER, bna College, New Rochette, NY 

Comparison of Speclflclty and Information for Fuzzy Domains 
ARTHUR RAMER, University of New South Wales, Kensington. AUSTRALIA 

The Axiomatic Definition of a Linguistic Scale Fuzziness Degree, Its Major Properties and 
Applications 

ALEXANDER P. RYJOV, Soviet Association of Fuzzy Systems, Moscow, RUSSIA 

How to Select Combination Operator* for Fuzzy Expert Systems Using CRI 
1.0. TURKSEN, University of Toronto. Toronto. Ontario, CANADA 
Y. TIAN. University of Toronto, Toronto, Ontario. CANADA . 

Approximate Reasoning Using Temlnolofilcal Models 
JOHN YEN. Texas A&M University, C0lege Station. TX 
NIT-IN VAIDYA, Texas A&M University, C O W  Station, TX 
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Quantitative Analy_e of PropeNia8 end Spatial FialaUoneof Fuzzy Imago Regions
nw_u KR_ Un_ms_yOfUrea,d, _ Me
,L,mESM.KELLER,UnivemtyOfI_mmd, _ Me
Y]BON_IdA,Univers_ofMimmud,Coluntia,

A Fuzzy Cluete_lng Algorithm to Detect Planar and Quadrk: Shapes
Ft_HU K__ Untver_ OfUmoud.Cobnt_ UO _

HICHEMFRIG_' :JNverdyOfMI_ Cok_ Me " li
OLFANASP,_.I, UnlvemltyOfMlmmd,_ Me

A Fuzzy Measure Approach to Motion Frame Analysis for Scene Detection " 1

,_.OERTn.LE_. McDomenDouomSp_ Symms.Houm,.TX tSANKARK.PN., IndianStatbticalInsllule,Cak:ulU_INDIA ':

Automatic Rule Generetlon for High-Level Vision
FRANKCHUNG-HOONRHSE,U_vemyofMaguS._ Me :;!
_u KR_SHNAPURAM,UNvemlyOfMls_mu_Columbia,MO :":-",

Encoding Spatial Imagel - A Fuzzy Sst's Theory Approach
LESZEKM. SZTANDEP.A,UnlverslyofToledo,Tol_._,OH _.

Image Segmen_tlon Uslng LVQ CluMerleg Networks
ERICCHEN-KUOTSAO,TheUnivendlyofWestRodda,Pensaco4a,FL
JAMESC. BEZOEK.TheUnivemityOfWut Fiodda,Pensacola,FL I
NIOtlLR. PAL,TheUniversityOfWestFlodd¢Pensacola,FL ).

12:00- 1:00 Lunch

1:00 - 3:30 Parallel Selllona

A Nsuro-Fuzzy Architectu:e for Reel-Time Appllcetl_ne
P.A._, UniversityOfC.,indmati,Cincinnati,OH
SONGHUANG,UNversWOfCincinnati,Cincinnati,OH

A Compeslte Self Tuning Strategy for Fuzzy Control of OynmnlcSystems
C-YSHIEH,UnivecsityOfMissouri,Columbia,MO
SATISHS. NAP,,Universilyof Missouri,Columbia,MO

A Self-Learning Rule Base for CommandFollowing In Dynamical Systems
WE]K.TSAI,Universityof Calomlaat IMne,Irvtne,CA
HON-MUNLEE,Univemi_of Ca_.nla at IMne,In_ne,CA
ALEXANOERPN:LOS,TexasA&MUniversity,ColegeStation,TX

Adaptive Defuzzlflcatlon for Fuzzy System Modeling
_ R.YAGER,lenaCollege,NewRochele.NY
DIMITARP. FILL=V,lenaCollege,NewRochelle,NY °

3ealgn Issues of a Relnforcament-BmNKISetf-Learning Fuzzy Controller for Petrochemical
:recess Control

JO_ YEN,TexasA&MUNvenmy,Cok_ SWan, TX
I-IAOJIMWANG,TexasA&MUntvemly,Colegeelation.TX
WALTERC.DAI;GHERITY,TexasA&MUn_;ers_.Coik)geStation,TX

rut
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Looming Chamcterletios of s Space Time Neural Network as s Tether Sklprr)pe OINmrver
ROBERTN. LEA,NASA/Johnm_ Space Center,Houslon,TX .
JAMESA. VI_ NASNJohnsonSpace Cenler,Houston,I"X .:
JANIYASltVANT,Togai IrdraloglcInt,, Houston,TX .....
CHARLESCOFEUU¢D,Lord SlmCeSystems,Houston,TX

. Clustering of Tethered Satellite System Slmuletion Data by on Adaptive Neuro-Fuzzy
Algorithm

SUNANDAMITRA,Texas Tech UNvendly,Lubl:eck,"IX
SURYAPEMMARAJU,Texas Tech Unlverdy, Lubbock,TX

P

Character Recognltfon Using s Neural Network Model _with Fuzz, Representation
NASSRINTAVAKOU,tJniversly of NorthCaroliraatChadoUe,_nanotle,Nu
DAVIDSENIW,Universityof NorthCarolinaat Chadotts,

Chadotte,NC .......... ',
:4

Designing I Fuzzy Scheduler for Hllftl Real-Tim Systems _

JOHNYEN,TexasNr,M Unlvendty,Colege Station,TX TXJONAT LEE,TexasA&MUnn, Conege
NA'IIIAN PFLUGER,Texas A&M Un]ver_, Co_ Station,TX
SWAMINATARAJAN,Texas.A&M Univemlty,CogogeStation,TX

WARP: Weight Aesocletlvo Rule Processor A Dedlceted VLSI Fuzzy Logic Megecell !
ANDREAPAGNI,SGS-'r_ Mk:meledmnl_, Agrdo Bdam (MI) ITALY
R. POLUZZI,SGS-Thocrtl_onMicroelocdb1_k_,AgrateBrlanza(Mr)ITALY
G. G. RIZZOTIO,SGS-_ Mk:meloctmnlcs,/_raeBdanza(MI) ITALY

imuml.y= I L 1,ti,1

8.-00 - 8:45 Plenary Speech
Piers Bonlesone, "Fuzzy Logic Control: From Development to

Deployment (with an Application to Aircraft Engine Control)"

8:45- 10:45 Parallel Sessions

_.'.'._i_:•.'.:_. ..m_..'m.. ........ _; • _ •_,,_x_,_.//H_'e_ ,_._-_,..:

Evaluationof Fuzzy InferenceSystems Using Fuzzy Least Squares

JOSEPHM. BARONE.LaidSoftware,Inc.,LibertyComer,NJ t

A Model for Amelgematlon In Group Declelon Making
VINCENZOCUTELLO,Consorzioper la Rk_rca sullaMlcroelettmnk:adelMezzogiomo,Catanla, ITALY
JAVIERMONTERO,ComplutenseUniversity,Maddd,Spain i

i

Fuzzy Forecasting and Decision Making In Short Dynamic Time Series 1
EFINJA.KARPOVSKY,Odessa klSlituteof NationalEconomy,Odessa,UKRAINE

Decision Anelyels With Approximate Probabilities
THOMASW_LEN, GeorgiaStateUniversity,AUan_,GA



DIMrlbUted Trlt11¢ 81glII CORIrOI thll•g Ftlzy I.ogl¢
STEPHENClCU,Ro(:lmd InlematbnalSdence Cenmr.

ThousandOaks. CA

Intelligent VMual _ i• the Setting of Fuzzy Sell
JOHNT. [X)CI(ERY.Gem_ MasonUnlver_/, Faldm,VA

- DAV_Unm_. _ _jon UnPin,y,F_ VA

Comparison of _ aml Fuzzy Cimlm_r NmmCke In l_,_lmltten Word Recognition
PAULGAOEP_Um_erR4d UWou__
MAeOIMO_mAeO,Unkm_oqMmmud,Co_r_ MO
JUNG-Hsr_CNm_ _ _ _ _ MO

Fuzzy Neur_: Network. _Ibtl-,m_y N)plfed to I OIIllnmmt
MARIANB:GO_, TechnlcIl UNvemilyof K]_, lOelce,POLAND
MARYDEUTSCH-MCLEISlI,Unlverily d _ Guelph,OnladO,CNCN)A

11:00 - 12:00 Plrllfel Selelonl

.... _ • _._.._.-_ _-_._ ...... _-:- ....... :.---._--_ .................. ___. ...... _ ....... _. ":_!.:.' "

An Experimental MethodOlOgy Ior • Fuzzy Set Preference Model
I.B. TUFIKSEH,Universlyoi Toronto,Torcnlo,ON, CANADA
IANA. WILLSON,Univendlyof Tommo,Ton)too,ON, CANADA

A Fuzzy Set Preference Model for MMkst Shire An_lyele
I.B.TURKSEN,_ of Tomfllo,Toronlo,ON, CANADA
IANA. W1LLSOfl,Ut_dly of Toronto,Tomnlo,ON, CANADA

I_;:'!..... , --:':':=_: ..... ' " ".!I

Informatlon _mlIlon In the Context Model
J_r_; GEBH.q_T, TectmicalU_emly of B."_mschwelg,Bmu_ GERMANY
RUDOLFKRUSE,TechnicalUnivemb/of BraunsctBvei0,Braunschwet&GERMANY
DETLEFN/tICK TechnicalUnivend_/ofBraumchwefg.Braunschwelg,GERMANY

Fuzzy Knowledge Bsse ConltrucIIion Through Belief Networks IfeIed on Lukallewlcz Loglc
FEUPELARA-R_, Unk,erskladNa_;_onalAulonorn_de Mexico,MexicoOF, MEXICO

12:00- 1:00 Lunch

1:00 - 3:30 Parallel Sessions

I:__ _-'._!_:.'.'_:_I
_::_ _'_._;:,_i_ _ _::_'_ _:_._:_:_.;: I

Intelligent Fuzzy Contmaer for Event-Driven Real 1rime Systems
JANOSGRN/INER, Unlverlly o4MINtNOII, Mir_, MN
MAREKPATYRA,Urdvem_ of Minneso(¢ Minneipoin, MN
MARIANS. STACHOWIC_Unlvendlyof Minnesota,Minneapols,MN

Fuzzy Coordinalor In Control ProblemI
A. RUEDA,UNvemly of IkinlIobl. W1nnlpeg,Manl_ CANADA
W. PEDRYCZ,UNven_y ol Manloba, Winnipeg,Manlo_, CANADA



Tuning a Fuzzy Controller Using Quadratic Response Surfaces
B_U_NSCHOrr,GeocCaStm_, Mma,GA

The Cognitive llamm _r the Design of a New Clmm of Fuzzy Logic Controllem: The Clearr_n
TraflMormsUon Fuzzy Logic Controller ._

LABIBSULTAN,York UNvemlty,Toronto,OnMido,CANADA
TAUBJN¢PBI,Mentalogk:Sy_emstnc.,
OntadOoCANADA

A Fuzzy Control Design Calm: The Fuzzy PLL
H.N. TE(X)OFC=SCU,PolytechnicInstlule of lad, ROMANIA

- I. BOGOAN,Poiytedv_ I_ of lad, ROMANIA

I_............................_'_...................................................'_........................_"!'I

Adding Dynamic Ruim to Sen-Organizing Fuzzy Systems
_T_JNV.E_nJS_,P,on_mtank;adomy,C_oaCop_,mi,_

Fuzzy Learning Under and About an UnMmlllar Fuzzy Teacher
BELURV. DASARATHY,Dynstics,Hunlsville,AL

Som_ Problems with the Design of Self-Learning Management Systems
ZiNYFUKOP,NYNEX Science andTechnology,Inc.,

WhitePraise,NY

A Neural Fuzzy Controller Learning by Fuzzy Error Pmpsgstlon
DETLEFNAUC_ TechnicalUnivef_tyof Braunschweig,Br_m(:_eig, GERMANY
RUDOLFKRUSE,TechnicalUnivenglyof Braunschwe_Bramschwe_,GERMANY

IJuu.ggaZ_ 1Z..1.g_

8:00 - 10:00 Parallel Se_lone

Determining Rules for Closing Customer Service Centers: A Publ.lc Utll;ty Company's Fuzzy
Decision

ANDREDEKORVIH,Universityof Houston- Downtown,Houston,"IX
MARGARETF. SHFLEY, Universityof Houston- Downlown,

Houston.TX
ROBERTN. LEA,NASA/JohnsonSpace Center,Houston."IX

Fuzzy Simulation In C__ncurrent Englnlmring
. A. KRASLAWSKI,Lappeer._,_P_aUniversityof Technolow,Lappeenranta,FINLAND

L. NYSTROM,LappeamaNa Univ_rsly of Technology.Lappeenranta,FINLAND

. Inverse Proble,ms: Fuzzy Representation of Uncerlelnty Generates • Regulsrlzstlon
V. KREINOVlCH,UniverMy o4TexasM B Paso,ElPaso,TX
CHING-CHU/t/K_CI'_ _ of Texasal B Paso,B Paso,TX
L REZNIK,VictoriaUniversityofToct_.no;ogy,MMC Melbourne,

VIC 3000, AUSTRALIA
G. N. SOLOPCHENKO,St. Petersl_lg T_ Univelslly,St. Petersburg,RUSSIA

xi



Quentlflcetlon of Huron Responses
p,.,_,_c. _ Un_en_ofoay_m,Damon,OH
T.E._ Un_r,_/ofOay_r_Dayton.OH
p.y.W.L_,So_,eCasc:adeP_D_PoUnd,OR

Non-Scalar UncertJlnty
SALVADORGUTIERREZMARTINEZ.InstitutoTecnologimde Momlla.MomlILMEXICO

Coml_rlson Between the Performance of Two Clmmee of Fuzzy Contmllem
TAUBH. _ MenlaloglcSy_ems Inc.,Maddlam,Onlsdo,CANADA
I_H. SULTAN,York Universily,Toronto,Ontado,CANADA

PoseiblllsUc Measurement lind Set SUIIletlcs
CUFFJOSLYNSUNY-Binghamlon._.ME ........

The Fusion of information via Fuzzy Imegratl_n
JIM KELLER,Unlver_ly M Mluoud, _ MO
HOSSEINTAHANI,Unlvemllyof Mlssoud,Co_inbla, MO

10:15 - 11:45 Parallel Selmlon8

I!_.:_.._._... .................................................

on the Ev_n of F_ i_ _ In I D_ee _g_ s_em
PA_ _, IRIS__T, _ _'F_E
_ _, IRon.AT, _ _, F_E

A Fuzzy (:see Based Rmumnlng Tool for Model Based Approach to Rocket Engine Health
Monitoring

SRINNASKROVVIDY.Universilyof _. Cinctnnali.OH
ADAMNOU_ Univemilyof _ae. Clncinn_ OH
YONGI._ l-'aJ,Unlvers-_ol_ Clmlma_ OH
WILLIAMG. WEE,Universityof _, Clnclnnafl,OH

A High Performance, Ad-Hoc Fuzzy Query Processing System for Relational Databases
W.H. MANSFIELD,Bellcom,Can'd:ddge,MA, USA
ROBERTM F__::i, _N, _, _

GenetIc A_o_hms In _e Fuzzy control
C. LU__ U. S. __of _ _reau _ M_, T_,

k Genat_ Algor_hml ApprOaCh for _e_Rg the __hlp Fun_lonl In F_ Log_
controllers

HANASHEHADEH.UnComCoq)oratlon.Houston.TX
ROBERTN LEA NASNJohnsonSpace Cenler Houston TX

Fuzzy Multiple Llnser Regression - A ComputMIonal Approach
C H JUAN(;.ClemsonUnlversily.Ciermon,SC
X H HUN_. ClemsonUniversily.Clemson SC
J W _, Ck,mon UntvemW Ckmson, SC

xU
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" 12:00 - 1:00 Lunch _"1
i

1:00 - 4".30 Parallel _Selelons I.

I*l ,ilia I • . . -................................. _ ................

IncorporMfon of Varying Typel of Timporil Dill In I _ Itlh'i_lk
M.E. COHB, CallornlaSlamUrdvendly,Ffor,no,CA

. D.L HUOSON,CallomlaStile Unlvemly,Fresno,CA

Fuzzy Operators and CycU¢ Beh_leur In Formld Neural Networks
E. LA8OS,SemmelweiaU_ MedicalSchool,Budapesl,HUNGARY
/cV. HOLDr_,TheUnlversllyof Leeds,Leeds,UK
j. I.Aczxo,LudwigMaxlmienUn_em_, Mumhen,GERMANY
A.S. I.ABO6,SemmelwelsUnlversllyMedloalSchool,Bi_, HUNGARY

Neural Netw(_,l(l: A Slmulltloa T4lchniquoUnderUncertainty Co.dltlons
LUlSAMCALUS11ER,MoravlanColege,Bethlehem,PA

Incomplete Fuzzy Data Procelldng Using Artificial Neural Network
MAREKJ. PATYRA,UnivemltyofMinnesota,Duluth,MN

Stochastic Architecture for Hoplleld Neural Nets
SANDYPAVEL,PolytechnicalInstluleof lasi,iasi.ROMANIA _ t

Hlerarchlcel Model of Mltchlng
W. PEDRYCZ,UnivemlyofMantobe,W'_, Manll_:_,CANADA I.
EUGENEROVENTA,YorkLIrJiven;_y,Toronlo.Ontario,CANADA t

A Conjugate GradlentrJTmlt Region==Algorithm for Training Multllayor Perceptrons for I
Nonlinear Mapping IRAGHAVENDRA,_.MADYASTHA,RiceUrn, Houston,TX

TROYF.HB_SON,ii_ C.,oqx_tion,Houston,TX ]
WENDYL HU)040_, IBMCoq)oralion,Houston,TX i'
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_.__ ._ ..... . ...... ._;_,__,_:_:_;;_ _._;_._.>_._.....

On Probablllty-Polmlblllly Transformations i
GEORGEKUR,StateUniversityof NewYo_k,Binghamton,NY
BEHZADPARVlZ,CaliforniaStateUniversity,LosAngeles,CA

Inference in Fuzzy Rule with Conflletlng Evidence
LASZLOT. KOCZY,TectmicaiUniversilyof Budapest,_udapest,HUNGARY

. Gausslan Membership Functions ere Most Adequate in Representing Uncertainty in
Measurements

V.KREINOVICH,Universityof TexasatB Paso,B Paso,"iX
. C.QUINTANA,UNverslyof MtctdganatAnnArbor,AnnArbor,MI

L.REZNIK,VictoriaUnive_tyofTechnology,MMCMelbourne,
VIC3000,AUSTRALIA

Applyln{: the Metric Truth Approach to Fuzzlfled Aut_mmtedResigning
VESAA.NISKANEN,Untverr_yof Helstnki.Helsinld,RNLAND

Life Insurance RIIk Aslossmont Using a Fuzzy Logic Eq_ert Syslem
L._ CARRENO,Togaiirdr_Log_Houston,TX
R.A.STEB.Togaii_raLog_,He.ran,TX
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Bartlesville, Oklahoma

Remote sensing is assuming a role in the search for natural resources. Research has
shown that satellite imagery may be important in locating certain types of petroleum
and mineral deposits.

Either direct or indirect indications of natural resource occurrences have to be detectibl,
from standard or enhanced imagery data. These indications are the result of geochemical
alteration of _oils or geochemical stress on vegetation in affected areas as compared
to the surrounding unaffected area.

Traditional mapping of geological structure can be accomplished using satellite imagery
data. In petroleum exploration this may be helpful in remote underdeveloped countries,
but probably will not be utilized extensively in well mapped areas such as the U. S.,
Canada, and Europe.

In the case of petroleum, it is generally accepted that petroleum migrates to the surface
where it can interact geochemically and geobotanically. Petroleum ranging from asphalt
to methane is encountered as seeps or microseeps in soils above petroleum trapped at
depth. Tonal anomalies have been reported on Landsat imagery, for example, from Wyoming.
It is believed that iron depletion and the presence of hydrocarbons in the soil over the
Patrick Draw field may be the cause of the stressed sagebrush at that location (N. L.
Froman, 1976 and R. W. Marrs and R. Gaylord, 1981). At other locations such anomalies
have been attributed to development roads and well locations developed after the discovery
of an oil field.

Tonal anomalies inRailroad Valley, Nevada provide an interesting case for the use of
enhanced imagery to clarify an anomaly. Oil was discovered in the Eocene at 4000 feet
below the valley floor. The anomalies do not coincide with the outline of the known
production. This case would provide a good case to investigate both geochemically and
geobotanically.
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Adding Dynamic Rules to Self-Organizing Fuzzy Systems 

Catalin V. Buhusi 
Romanian Academy, Institute for Computer Science, 
Calea Copou nr.22A, IASI 6600, ROMANIA 

Abstract 
This paper develops a Dynamic Self-Organizing Fuzzy System (DSOFS) capable of adding, 

removing and/or adapting the fuzzy rules andthe fuzzy reference sets. The DSOFS background 
consists in a self-organizing neural structure with neuron relocation features which will develop 
a map of the input-output behaviour. The relocation algorithm extends the topological ordering 
concept. Fuzzy rules (neurons) are dynamically added or released while the neural structure 
learns the pattern. The DSOFS advantages are the automatic synthesis and the possibility of 
parallel implementation. One could remark a high adaptation speed and the reduced number of 
neurons needed in order to keep errors under some limits. The computer simulation results in 
a nonlinear systems modelling application are shown. 

keywords: fuzzy systems, neural networks, neuron relocation, Kohonen self-organizing 
procedure, LMS procedure, feature map, basin of attraction, lateral feed-back. 

I. Introduction 

The promising link between the fuzzy 
reasoning and the massively parallel 
calculus, i.e. fuzzy neural networks, became 
an important topic of the fuzzy systems 
research during the last years. 

Learning on membership functions and the 
fuzzy rules are major problems in 
synthesizing a fuzzy system. In this paper 
we are interested in the automatic synthesis 
of reference sets and fuzzy rules. One of the 
classes of fuzzy systems which gives a 
solution to these problems is based on 
self-organizing neural structures which map 
the desired topological relations between the 
fuzzy system input and output. Some 
solutions are briefly discussed in section 111. 

This paper presents a Dynamic Self- 
Organizing Fuzzy System (DSOFS) capable 
of adding, adapting and/or removing the 
fuzzy rules and the reference fuzzy sets. The 
fuzzy system synthesis is based on a 

modifiable adaptive neural network using a 
neuron relocation algorithm as a learning 
method. This algorithm extends the 
topological ordering concept [4,7l. In the 
adaptation process neurons are added andlor 
disposed while learning the pattern. This is 
the neural equivalent of modifying the fuzzy 
system rules. The relocation algorithm 
supposes for every fuzzy rule (neuron) a 
basin of attraction as a base for the fuzzy 
reference sets construction. 

II. The Dynamic Self-Organizing 
Fuzzy System Definition 

In order to fix the ideas we will denote by 
Rn the input universe of discourse and by 
Rm the output universe of discourse, where . 
n and m are fixed integers. 

The DSOFS input and output are vectors 
in Rx ... xR. We will denote such vectors as 
X, Y1 Or {XI, '2, 'n11 y21 .'., y*}. 

The rules of the DSOFS have the 
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following form: 

if X is Xr then Y is Yr with br (1) 
- 

where X? Rn is the input vector; Y â‚¬ is 
the output vector; Xrâ‚¬ is the input 
reference vector for the rule number r; 
Y r 6  Rm is the output reference vector for the 
rule number r; br is the basin of attraction of 
the rule number r, E R * .  

The truth degree w' of any rule r is given 
by: 

where br is the basin of attraction of the rule 
number r; d(*,*) is the Euclidian distance; 
F m )  is a family of functions of 
parameter br such that: 
(i) F[bq : R++R, vbrâ R'; 
(ii) F[t^ is monotone decreasing Vbrâ R+; 
(iii) F[b'](0) = 1, Vbrâ R+; 
(iv) if bi > bj then F[bi](z) > F[l>,](z), Vz6 R  ̂
and bi,bjâ R+ 

The fuzzy system output Y is computed 
via: 

N N 
yi = I ; w y i  / Ew' , i=l..m (3) 

r=l  r= l  
where N is the number of rules; w', y' have 
their previous meaninks. 

in. The Dynamic Self-organizing 
Fuzzy System Synthesis 

A fuzzy system synthesis has to solve two 
problems: construction of the fuzzyfier, i.e. 
obtaining the reference fuzzy sets of the 
system, for both input and output, and 
construction of the fuzzy rules. These 
problems find particular solutions when 
fuzzy reasoning is linked on neural 
networks, and especially on self-organizing 
neural networks. 

Yamaguchi et al. [13] proposed 

unsupervised learning the membership 
functions using the Learning Vector 
Quantization procedure [8], and the if-then- 
rule part using Bidirectional Associative 
Memories (BAMs) to show the relationships 
interpreted from fuzzy rules. Another 
approach made by Takagi and Hayashi [I 11 
is using two kinds of neural networks, for 
the itiembership functions and for the fuzzy 
system output, networks whose adaptation 
and optimization are made by clustering 

. algorithms. Bezdek proposed recently [l] a 
fuzzy Kohonen self-organizing system, an 
approach linking the Kohonen self- 
organizing procedure and fuzzy systems. 
Such a link was also proposed in [2]. 

One of the backdraws of the Kohonen self- 
organizing procedure, and of others 
clustering algorithms as well, is that the first 
engineering decision to be made is how 
many nodes should be used. 

The Dynamic Self-organizing Fuzzy 
Systems solve all these problems, based on 
a self-organizing neural network with neuron 
relocation features. Through the "learning" 
stage, the fuzzy rules are changed by 
adapting both input and output reference 
vectors and their basins of attraction. If 
necessary, new rules will be added andlor 
the old ones removed. The output of the 
fuzzy system will be therefore refined 
through an adaptation algorithm. This 
adaptation is made such that the energy of 
the difference between the DSOFS output 
and a desired sequence of outputs is 
minimized. The used adaptation algorithm is 
the well-known Least Mean Square (LMS) 
algorithm for adaptive linear combiners 
[la. 

m.1. The Neuron Relocation 
Self-Organizing Procedure 

A neural network implements the 
behaviour rules in the net weights. The 
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DSOFS 
. . output Y 

r I 1 input X 

rig. I The DSOFS and the Neural Relocation Network - - -  - 

adaptation algorithm proposed in [4,7l by 
Kohonen is based on lateral feed-back 
concept. Networks using this biologically 
motivated process will behave such that 
network outputs form clusters around the 
excitation input local maxima. Such a neural 
structure supposes constant number of 
neurons, free of the information conveyed 
by the pattern, [4], in the sense of the 
topological distribution. Thus, a network 
with a given number of neurons could 
obviously hold less information for a 
nonuniform input distribution in opposition 
to a uniform one. 

Neural net has N neurons 
corresponding to the fuzzy 
system rules, and n+m 
inputs corresponding to 
fuzzy reference vectors 

I input vector outkt vector I 
Pig. 2 The Self-organizing Neuron 
Relocation Procedure (Block Scheme) 

On the contrary, a dyiamical neural 
structure [3] could be distinguished by a 
neuron adding-releasing character as an 
aspect of the pattern novelty features. The 
DSOFS input-output mapping will be 

obtained via a self-organizing neuron 
relocation procedure which adapts the 
number of neurons (fuzzy rules), the weights 
and the neurons basin of attraction, forming 
clusters around the best matching neuron 
(fuzzy rule). We further propose a clustering 
algorithm which increases the adaptation 
speed and adapts the required number of 
fuzzy rules. 

We will work with a neural net containing 
a variable number of neurons, equal to the 
number of fuzzy rules of the DSOFS, i.e. 
N. The behaviour of the DSOFS consists in 
the pairs {Xr, Y*} and in their basin of 
attraction br. In the adaptation stage the 
input-output pair {X, Y } will feed the neural 
network which will map the input-output 
behaviour of the DSOFS in the net weights. 
These weights are the reference vectors of 
the fuzzy system {Xr, Yr}. 

In the followings we will use the Euclidian 
distance as a measure of similarity. 
The relocation algorithm is based on a 

dynamical neuron allocation in terms of the 
input distribution specificity. Therefore, we 
propose the insertion of a new rule, i.e. of 
a new neuron, while the input is outside the 
basin of attraction of every rule in the actual 
set of rules. A rule will be removed if it is 
inside the basin of attraction of another rule. 
If none of the above, the rule adaptation 
process continues in order to build the 
reference fuzzy vectors, i.e. the neural 
feature map. 
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We will denote by N the variable number The weights will assume new values in the ,
of neurons, each one represented by the process formally specified by: I

radius of the basin of attraction b', varying 1!.

between two fixed limits B,m and B_,, and ah_/at -- t'(t)_'(z:h0, i=l..n+m, jENb(k,t) t
n+m connection weights h_, between the ah_/at = 0, otherwise (7)
input i, i= l..n+m, and ther-th neuron. In
fact, every ordered set {hu .... , hn+,.,} may where k denotes the neuron with the best .
be regarded as a kind of image that shall be matching between the input {X, Y} and the
matched against the input vector {x_.... xo, w.-.ights; Nb(k,t) denotes a time decreasing
y_.... , y.} neighborhood of the k-th neuron; fit) -

a. Initialize Structure denotes a slowly decreasing function of
Initialize N with No, b' with Bu, hl, with time,-determined by experience.
small randomvalues, g. Release Neuron .

b. Develop Background If d(k)<b k then increment the basin of
Train the network in order to produce the attraction of the best matching neuron:
feature map formation via the successive
presentation of some n + m samples from the bk = bk + e, _> 0 (8)
pattern, breaking the process before the
convergence phase, [4]. This step gives a Verify if some neuron is inside the basin of
background to the network for future attractionofthek-th neuron's andif

adaptation and avoids an insertion explosion n+m .!
(see section IV). sqrt( _ (z_i-zP._2) < bk, 1_<p < N, p ;_k (9)

c. Present New Sample i= 1
Present input vector Z={X, Y} and remove neuron p and update the number of
compute the Euclidian distance to the N neurons. Repeat by going to step c.
neurons:

n+m ooo

d(j) = sqrt( _ (h_j-z_j)2),j-=l..N (4) This algorithm will provide the fuzzy
i=l rules, i.e. the neurons with their basin of

d. Select Best Matching Neuron attraction, and the fuzzy reference vectors,
Select the neuron k such that: i.e. the pairs {X', Y'} consisting in the

weights hi, of the network.
d(k) = rain {d(j)}, j=I..N (5)

111.2. The DSOFS Refined

e. Insert NewNeuron Synthesis via LMS Adaptation
If d(k)>Bm_ then insert the p=N+l -th Procedure
neuron such that:

The synthesis of the fuzzy system via the
hq, = z_, i= l..n + m (6) self-organizing neuron relocation gives only "

Update the number of neurons N, and repeat a meanestimation of the pairs {X', Y'}. The
reference fuzzy sets X' and Y' may be

by going to step c. considered satisfactory and the computer
f. Adapt Network simulations showed that the basic properties

If bk<d(k)< B_ then adapt the network in of the input-output behaviour are well
order to yield the characteristic feature map preserved by neural learning. A great
(7). Then repeat by going to step c.

/
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Pig. 3 The LMS Adaptation (Block Scheme) 

improvement may be obtained by adapting 
the output reference fuzzy sets such that the 
fuzzy system output will reach the desired 
output [2]. A classical adaptation algorithm 
is the LMS procedure. The block scheme of 
the LMS adaptation is depicted in Fig.3. 

Suppose that we have at the moment k, 
D(k)â‚¬ the desired output vector, and 
Y (k) ? Rm the actual fuzzy system output. 

The error vector E(k) is given by: 

TheLMS adaptation rules are: 

where y. is the adaptation factor; k is the 
iteration number; aT'< is given by: 

N 
ar(k) = wr(k) / E wr(k), r= 1.. N (12) 

r=l  
where wr(k) is the truth degree of the fuzzy 
rule number r. 

the developing background stage, in the 
neural relocation algorithm the "learning by 
insertionn method will reduce the time 
needed in order to adapt the network, 
because it is worth copying the input-output 
behaviour than adapt the weights. If a fuzzy 
rule is no longer needed (i.e. the rule is 
inside the basin of attraction of another rule) 
it will be removed, so the complexity 
diminish. 

Of course, in th? above algorithm could be 
inserted a nud~cr of neurons equal to the 
number of iterations. This can be balanced 
by changing the maximum basin radius B̂ ,. 
The maximum radius B- is important in 
both minimizing the errors and the number 
of neurons. The minimum basin radius B- 
may be chosen to be null or a small ps:  'e 
value, contributing only at the convergence 
time. 

The simulation results showed the 
background developing stage to be very 
important in the neuron cost. If this stage is 
overstepped, the adaptation will evolve such 
that the initial iterations will add random 
neurons and it will take some time to 

IV. About The Neuron Relocation remove some wrong positioned ones. This 
.. Algorithm stage will form a basis on which the 

relocation features act well. The initial 
number of neurons N,, has a similar 

0 0 t h  n importance in the neuron cost. ~t can be 
above may be against Other null, but this is not recommended. 
clustering algorithms. The Grossberg ART net [S] has also the 

l-he complexity level is the as fa^ of ,,,̂ i"g ^^ ,̂ , ̂  a 
Kohonen's procedure. Nevertheless, after parameter called vigilance. The same 



problems (adding too many nodes or having y = exp(-xt2-x_), (13)
too little discrimination) arise. In opposiuon x_E [-2, 2], x_E [-2, 2]
to ART, the proposed model uses a __,,
parameter controlling the insertion of
neurons ,i.e. B_._, and also a number of N - .
parameters controlling the adaptation and
deletion of the neurons (fuzzy rules), i.e. b',
r=l..N. The B._L_parameter is fixed _ the
vigilance is in the ART model, but the bf
are adaptive parameters.

Our simulations showed the time needed to

adapt the net to be at least 25 % lower than 7:i.g, 4 The Nonlinear System Output
the Kobonen self-organizing method_ and the The DSOFS has n--2, mffi I and rules of
number of neurons needed in order to the form:

represent the input-output behaviour
diminished at about half. This can be ifXisXrthenyisfwithbf, r-l..N(14)
explained by the "insertion" effect and the
radius of attraction which can substitute where X = {Xl, X2}, XER2; yER; b'ER ..
neurons. In the self-organizing step of the synthesis

we have used a neural network of inputs x,,

V. An application: Nonlinear x2and y, with No=40 neurons (fuzzy rules).
3ystem Modelling We have stopped the preliminary adaptation

process before the 1500-th iteration

We have applied DSOFS in a nonlinear (developing background step). Afterwards,
we have sucx_ssively presented samples

system modeling application. This problem from the pattern according to the neural
it is really suited to the DSOFS. It involves

relocation algorithm proposed above.
a model and a fuzzy system which will

The similarity measure that we have used"learn" the behaviour of the model. The
in our computer simulations was of the

input and the output of the DSOFS are
suited as the same dimensions as the model, following form:

In the first step of the synthesis a neural d({x_, x2, y}, {h_,, h2r, h3,}) = a2*(xl-network "learns" the behaviour of the

model. This phase will give us the reference htr)2+a2*(x2"h2r)2+b2*(Y'hJ')2 (15)
vectors, the number of fuzzy rules and their

where b > a, a,bE R..
basins of attraction. The output reference

The simulations results also showed that
vectors will be adapted through LMS

the network have the tendency to add lessprocedure in the second step of the synthesis
neurons while the process continues, as anin order to obtain a better resemblance to

the model, effect of increasing the basins of attraction

In the computer simulations that we further of the fuzzy rules up to the maximum basin
present we have used a multi-input single radius. In Fig.5 it is depicted an example of
output nonlinear model with the input-output the distribution of the rules in a step_of the
behaviour depicted in Figure 4, des_bed neural relocation self-organizing procetlure.
by: Every rule r is represented by a circle with

the center (x(, x2_ and the radius br.
After the neuron relocation self-organizing
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Ti .5 The Spatial Distribution of the Basins 
of Attraction 

I I 

FÃ§g. The DSOFS Output after the Self- 
Organizing Procedure 

procedure we have obtained N=51 rules 
{xrl, xr2, yr} consisting in the network 
weights {hlr, h,,, h3,},i=l..N. In Fig.6 it is 
depicted the output of the fuzzy system after 
5000 iteration of the self-organizing 
procedure. We can note the well topological 
resemblance to the model (including the . symmetries). 

The truth degree of the rule r was 
computed by: 

where gl, g2, g3 are gaussian-like functions. 
These vectors became a background for 

1 I 
Fig.7 The DSOFS output after the LMS 
Adaptation Procedure 

- - .  - 

the second step: LMS adaptation of the 
output. in the LMS adaptation procedure we 
redraw the output reference fuzzy sets yr in 
order to obtain better results. In Fig.7 it is 
depicted the output of the fuzzy system after 
1000 iterations of the LMS procedure. 

VI. Conclusions 

The Dynamic Self-organizing Fuzzy 
Systems have some major advantages based 
on rules addinglremoving features and the 
reference fuzzy sets adaptation: [I] 
automatic synthesis based on neuron 
relocation self-organizing procedure and the 
LMS adaptation; [2] the possibility of 
parallel implementation 

The DSOFS background consists in a self- 
organizing neural network with neuron 
relocation features. The neural equivalent of 
addingiremoving rules is relocation of the 
neurons. According to the proposed 
clustering algorithm, neurons (fuzzy rules) 
are relocated and the fuzzy reference sets 
for both input and output are adapted in 
order to develop feature map formation. One 
could remark a higher adaptation speed and 
the reduced numbers of neurons in 
comparison with Kohonen * s self-organizing 
model. 

These advantages impose them in the 
problems involving modelling, automatic 
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fuzzy system synthesis aridadaptation. They I_
can be both used in the developing stage of
other fuzzy systems and in self-sustained "_,

applications, r
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FUZZY LEARNING UNDER AND ABOUT AN UNFAMILIAR FUZZY TEACHE2 t"_ / ,,._-)_,,Belm"V. ll_mm_y

P. O. Drawer W
HIBville, Ai 35814-5050

ABSTRACT

This studyaddresses the problemof _ parametricleamin8 in unfamiliarfuzzy eavinmmems. Pri_
iathedomainofunfamiliarenviromngal_whichemployedeithercrisporfuzzyal_mmdtestomodelthe

... um:emity or imperfectnessof the learningeavimmnent,assumedthatthe trainingsample labelsprovidedby the
_..T._ teacherwerecrisp,evanifnotperfect,llere,themorerealis;icproblemoffuzzylesmiag,unde_m uafa-......
_gach_ who providescmlyfuzz,/(insteaddcrisp) labels,is tackledby exl_mdingtheIXeViO_ydefinedfm_y
mtemlknshipconceptsto includean additionalcompmgntrepresentativeof the fuzziness of the teacher. The wevi-
mEly _dlied scenark_ uamely,crispandfuzzy lem_g under(crisp)u.,familim"teacher,canbeI_ _ as _-
_al ca_ of thisnew _logy. As undertheeadierstucE_, thee_mted membem_pfuncfioascm thenbe de-

dintingthe ensuing _.L,ssificationdecisim phaseto judiciouslytake into account the impegfecmessof the
cavironmem. Thestudyalso offers someinsight into thepropertiesof severalof these fuzzymembersh.ip
esdmato_ by e,"a,_iningtheirbehaviorrudercertainspecificscenarios.

1. INTRODUCTION

Pmbabilisticdecisionmakinginimperfectlysupervisedenvironments,i.e., scenarioswhereinthelabelsof
_he gilst wainingsamplesareunre"'Eable,hasbernextensivelystudiedin the iiteratm_overthepast twodecades [ i-
77_ TRk_ of thekaming modelsproposedare:laebabilisticteacher[I], imperfectteacher[2, 3], unfamiliarteacher
[]J$]amlVEDICteacher [5]. A couple of fuzzy smdels [6, 7] have also beenproposed recently. Themobabilistic
m:scheraplmzachprolx)sedby Agrawala[1], whi_ gelxcsenteda startof a wholenew line of studies,essentiallydisa_-

k givenunreliablelabels,i.e,,treatstheimperfectenvircmuem as unsupervisedandusesa probabifi_c label-
im_ sdzme to learn the underlyingparametersforthedesignof theclassifier.On theotherhand.the imperfect
Ilmdtermodelproposedby_hanmugem[3]assamesthatapreciseknowledgeof thelevelof imperfe:tion_) inthe
e_eiet_eat is availablea priori anduses this infennationto guide the parame_ kmning. This imWoves the qual-
iiW of_ over theprobabilisticmodel only m longas the underlyingassumption is valid, i.e., the level of im-
lperfecam assumedis close to the reality. Otherwise,theresultantlearningunder the imperfectleacheris likely to
dee_ than underthe pmbabilisticteacher,which, in essence, assumes[3= 0.5 for a two-classproblem, or in a
tmme_ _ _ = I/m, wherem is thenumburof known patternclasses in Gteenvimnmem.

Theunfamiliarteacherscheme_ byDasarathyandLakshminarasimhan[4] avoidsbothoflhesecom-
lltlknata_ problems,of eitherhavingto diszeganlthe imperfectlabelsendrelye_! lose someuseful infonnadonor
mmkiaga possibly wrong assumptionoa the in_ _ecmess level and therebybiasing the leamin$wocess. This is
agt:OmllTmlgdby viewing theenvirm,mentinitin_ as unknown(i,e., startsthe learningprocess in much the same
mmmaera_the ixobabilistic teacherscheme, with 13as l/m) and thenlearning13aboutthe mviroamentsimullane-
tamty 1:k the lemningof theparametersfor thedmsifier system desigu. This learningaboet theteacherhasbeen
s_m_mroamandeahancc the learningumJerthezatner (see Figure2 of refe_nce [4D. This apWow_ was exteaded
ib_y_allty and_ [5] to dynam_scenariosusingthe VEDICteachermodel,whacia t,_eleve_of

_, in additionto being unknown,is alsochangingwith time.

_g_tly, fuzzy models [6, 7] werepropo_ toeffectively capturethe uncertainties_ by the imperfect-
ae_ oflkse crispteachers. Underlyingthese fuzzytechniquesis theneed to definea fuzzy membershipmatrix for

- d_ghawainingdalaset. Variousappmacheshat_ebecmproposedfor I_ing tlgsengmbe_bip functions. The
of thestudybeing repm_ hereis to adaptthisnovel conceptof fuzzy learningunderaa unfamiliarteacher

imahe Im_em of learningin an environmentthatis not only unfamiliar,i.e. "labelinginformationis of unknown
re=rodof Eftability,butalso fuzzy, i.e., the given tminlngsamplesareassociated with multipleclasses (ratherthan
j_t e_)w/thmembershipdislributedacrosslheimlemclassas,The fuzzy membegshipfuactiomto be learntdm.-
_g _1_t_kting phasereflect notonly the inherentimperfectnessbutalso the fuzzinessintheclassassociationpro-
raidedbyIkeunfamilinrfuzzy leacher. _ fuz_stembershipscanthenbeusedinthecl_.ssif_alinnphasetoap-
_mq_md_ bias thedecisk_ Im3c.ess.Delails of ghisinteg]ndionof theconceptsof fuzzy learningunderan unfamil-
m-_:a_pteachegwith thoseof a fuzzy teacherarepresentedin the sequel. _ction 2 briefly geviewsthebasic caisp
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learning under an unfamiliar crisp teacher. Section 3 prov&ksa short overview of fuzzy learning under an onfiun'diar 
butstiflcrispuacher. I n s t i o n 4 , h ~ ~ e x ~ m d ~ ~ m ~ ~ d ~ ~ m -  
der ail unfamiliar fuzzy teacher is presented. The associatedalgorithmic procedure is outlined m section 5 lo aid the 
implementation o'f the new methodology. Section 6htlines some potential dtunativcs to the initially proposed 
fuzzy membership model. The last section offers some concluding comments. 

2. CRISP LEARNING UNDER AN UNFAMILIAR CRISP TEACHER 

The intuitively appealing concept, of learning about an unfamiliar teacher as an aid to learning undcf the 
teacher, that underlies this study, was first proposed and successfully demonstrated by Dasarathy and 
Lakshminaiasimhan 141 in 1976 in a two-class crisp environment They showed that this learning under an unfamil- 
iar teacher is iixteed an efficient and practical t"ol for learning in imperfectly supervised environments wheiein it is - 
tiireal'itic to assume ths'. the level of imperfectness is known a pnOri , the basis of earlier studies in this area. This 
dual learniing process, of learning about the teacher concurrently with parametric learning under the teacher, is 
schematically illustrated in Figure 1. 

Figure 1. Crisp Learning in Unfamiliar Crisp Teacher Environments 

b 
mutd-and 

Here the learning about the teacher consists in learning $, the effective level of imperfecmess in the labels 
provided by the teacher (environment). This is modeled as a Bernoulli trial with parameter 6 and a Bayu estimator 
for minim& quadratic loss, which has a beta distribution (81, is set up for the &mation of fl. The &ing under 
the teacher consists in learning the parameters of the underlying distributions which is essential f a  classification in 
the operational phase, the primary objective of the effort. It is to be noted that (his learning scheme [4] in essence 
encompasses the spectrum of learning scenarios, starting from learning with a perfect teacher (B = 1) up to teaming 
wittxxit a teacher or learning with a probabilistic teacher (6 = 1/m) through learning with a known imperfect teacher 
(i.e., P , l/m S $ S I is blown a prten) and ultimately learning under the most realistic of these xenarios IUBU$~ 
learning with an unfamiliar teacher, i.e., p, (1/m 5 5 1) is unknown a priori and is learnt simultaneously with 
parametric learning. Further implementation details of this learning process can be gleaned from [4] and, as such, are 
not presented here to save on publication space. 
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3. FUZZY LEARNING UNDER AN UNFAMILIAR CRISP TEACHER 
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The unfamiliar teacher scheme discussed in the previous section was synergiaically combined recently [6] 
with the now-well-understood concepts of fuzzy membership to derive a potentially powerful tool of fuzzy teaming 
in unfamiliar teacher environment. This integrated learning is schematically illustrated in Figure 2 Hoe, the learn- 
ing includes, not only the distribution parameters and the imperfectness level (as outlined in the previous section), 
but also the fuzzy membership values generated for each of the input samples by the fuzzy modeling of the uncer- 
tainties in the learning environment. This synergism permits the user to exploit the b d i  of both the unfamiliar 
teacher hypothesis as well as those of fuzzy learning concepts. The algorithmic and other details of this integrated 
s c b  of learning, as well as the associated fuzzy nwmbcrship n~xteb, their alternatives ŝ  properties, behg rad- 
ily available in the study published recently [6], are not repeated here in the interest of conservation of publication 
space. 
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Figure 2. Fuzzy Learning in Unfamiliar Crisp Teacher Environments 

4. FUZZY LEARNING UNDER A UNFAMILIAR FUZZY TEACHER 

The scheme of fuzzy learning under an unfamiliar teacher, oiulincd in the previous sectMin, asmmcd that b e  
labels provided by this unfamiliar teacher, were crisp, even if imperfect. However, in real-world environment, the 
imperfect teacher is likely to be fuzzy also. The previously reported fuzzy model (61. which was postulated to take 
into account d y  the imperfectness of the teacher, had in provision for taking into consideration the fu  ̂in tbc 
teacher behavior. Accordingly, a more generalized fuzzy membership model, viewed as the sum of two weighted 
components is proposed here. This new learning process is schematically shown in Figure 3. 
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Figure 3. Fuzzy Learning in Unfamiliar Fuzzy Teacher Environments 

The new fuzzy membership function, in effect, captures both the impcrfectncss and fuzziness of the unÂ£t 
miliar teacher environment during (he learning phase. This is then used to correspondingly weight the decisions 
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madein theclassifg.mionphase. This is thecentralideaof themethodologypresentedherein thisstudy. Therecur-
sive learning_ necessaryforaccomplishingthisobjectivecan be viewedas one of upgradingthe fuzzy mere- ,
bershipvaluesfurnishedby the teacherfor each trainingsample,simultaneouslywiththe lemmingof the underlying i
distributionparametersandthelevel of imperfectnessof thesu_rvision availablein theenvimmnenL t

The inputto this recursivetriplelearningprocessconsistsof:

• a set of trainingsamplesor featurevectors {xi : i = I,... n}
• a set of correspondingfuzzy label memberships{{ vij: i = 1.... n };j = | ..... m)

These labelsmembershipsare assumedto havea level of reliability[3whichis unknownat thestartof the
learningprocess andis learntduringthe learningprocesssimultaneouslywith theparamete_of the underlyingdis-
tributions.This learningbegins with an assumptionof [3= l/m, i.e., the labels areessentiallydisregarded.Thus,
initiallyeach samplewould have membershipvalues in all the givenclasses in proportionto thea pr/ori _li-
ties of these classes in the environmentsince we do not as yet have any measureof confidencein-the-uafamiliar....
teacherfurnishedfuzzy labelinginformation.Underequala pr/or/probabilitiesof theclasses,lhe membershipfunc-
tion values for each sample will be I/m provided,of course,the environmentis completelyexposed, i.e., all the
classes expectedin theenvimmuent arerepresentedin the trainingSeLOtherwise, one will have toadaptintothis....
scenarioadditionalconceptssuchas learningin partiallyexposedenvironments[9] thathavebeendevelopedfor deal-
ingwith cases whereinall the classes are notrepresentativelyknownat thestartof the lemmingprocess. Thiswould
involveaddingthe flexibilityof a rejectoptionto theclassificationphaseand hencea methodof definingorlemdng
theboundariesof thecurrentlyknownclasses relativeto the restof theworld inadditionto learningtheboundaries
betweentheknownclasses. While this is conceivablein the lightof the reporteddevelopments[9], it is notconsid-
end hexeas beingoutside the scopeof thecurrentstudy.

As the rectwsive learningprogresses,each sample is assignedprobabilitiesof belongingto the different
classes by the unfamiliarteacherscheme (in a mannersimilarto equation (4) of reference[4] bet modifiedto take
intoaccountmultipleclassesandthecurrentfuzzymembershipfunctionvaluestocorresl)on_yweightthediffer-
entapr/or/probabilities),Then,onecanupdateclassfuzzymembershipvaluesbasedonnotonlytheteachafur-
nished fuzzy membershipvalues,butalso on the relativepr_qx_i_uaSti_ of _ o poslerioripml0abilidesand[_the
imperfectnessof the unfamiliar leacher. LetPijbe the a posteriori probabilityof xi beingassignedto classj corn-
puledon thebasisof not only the featurevectorvalues bet alsothe currentfuzzy membershipfunctionsandteacher
imperfectnessmeasure. Then the updatedmembershipfunctionvalue uij, of xi beingin cinssj, is given in termsof
thetwo weightedcomponentsas shown in expression(1):

uij = _ vii + (1- (X) wij (l)

where

_Pi) ' iki; j=Li

k=l

L i
wi.i = f ( 13,m, Pij, J = 1.... , m ) = (1 - 13) (2)

(m-l) Pij j=l ..... m

(1-13) m

k=l ........
L i
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Here, the firstcomponent,vii is theono furnishedby thefuzzy teacher. The secovdcompeaeat,wij, is de-
tmninedbythelean_ngsystem(inamam_mitar tothat_ intl_ _ study)toaccountforthe_.
perfecmess aspect of the unfamiliarteacherand a is therel_ive wcigMingof thetwo COmlg_gnts.When a -_0,
thiseffectively correspcmdsto thescenariostudiedpreviouslyin [6] withtheunfamiliarteacherprovidittgcrisp la.
bels. At theother endof thespectrum,i.e. a= I, weonly have thefuzzinessdefhtedby thete_gherwithnot_at to
take intoaccount the imperfectnessof thet_tclgr w_in the fuzzy membershipmodel (crisplea_aingundera fuzzy
teacher! - a not very convincing modelof learning). A conceptuallyelegantchoice for ct is given by theequation
(3):

a= (m_-x) (3)
(m-I)

Here, as _ => l, i.e. as the teacherprogressivelybecomesmo_ andmore _Imbie, _ im_ m_ _g ............
reduces,a => 1, morerelianceis #aced on the teacherlxovidedfuzzy label information(vii) andless on therec_-
sively determinedcomponent(wij). Ontheotherhand,as [$=> l/m, i.e. the teacherbecomeslessreliableand_nds
towardsthe unsupervisedscenario,a => O, the fuzzy membershipinformationprovidedby the tea_er becomesless
relevant andmore weight is given to thecomponentdeterminedby the actuala posteriodprobabilities.

Equation (1) canbe rewrittenusingequatk)n(3) as

(ml3-1) m (1- 13)
Llij= (m-1) vii + (m-1------)--Wij (4)

Here,wehave ._

111

j=l

Substitutingequation(5) in theexpression(2) we can rcwrite(2) as

(m-
I) _ Pi) ...... ; j=L i

[(I-_]) + (ml_- 1)PiLl (6) ::,-
wiJ = (1- 13)Pij j = 1..... m

[(1-13)+(m_-l)PiL_ ' j_L i

Forthe specialcase of m = 2, whichconc.Slmndsto the classical detectionor binarydecisionproblem,ex-
ixession(6)_lucesm

[3PiLl ........ ; J = Li

[(1-13)+ (2 1_-1) PiLi ]
wij (7)

(1" I_)(1" Pild) ; j_L i

[(1-13) + (2 13- 1) PiLl ]

Here, it is imeresling to no_ that in equation(6), wij : j = Li is symmea,icaily depeadem on _ andPij: j =
Li. As the supervision improves,i.e., as [_increasestowardsunity, the fuzziness due to impcffccnw.ssreduces (the
membershipfunctioncomponentwij approachesunityfor theclasscorresponding to thegiven label),I_ its relative
weightagein equat/on (4) reduces. Whenthe a poster/or/probabilityincreases(for a given/mpctfeclness level_ the
supervision), the component wij : j = Li, once again approachesunity, and thereby contributestOa colresponding
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in.ease in uij : j = Li also, since [3is not decreasing. Thus. althoughthis secondcomponent(wij : j = 1.4)is sym- I

metricwithrespectto the imperfectnesslevel anda pmtedori _ility, the totalfuzzy memlxnhip function(uij: I _j=Li)isnotsymme_c. ,.:.',
IJAt the otherend of the spectrum,when [3= I/m, i.e., with essentially no supervision,exlm_don (4) R-

duces to: .... "

uij=wij=Pij ; Vj=l .... m (8) , ,

Thus,undertheunsupervisedscenario,thefuzzy membership values ate dictatedwholly by the relaliveaposterion
probabilitiesof the samplebelongingto differentclasses computedon thebasis of theestimatedvaluesof thedistri-
butionparameters.For all othervaluesof [3in the raage (I/m) < [3< 1.0,the fuzzy membershipvalue is a funaion
ofboth_ relativeapo$terioriprol_bilitiesaswellasthereliabilitylevelofthelabelsprovidedbyh _ as........... :....
giw,n byequadons(4)and(6). Since Pijand [3canbe COmlmtedduringthesequentialleandngsdleme baed m the
unfamiliarteacherconcepts (usingaPlxOWi_ly modified forms of equations(4) and(5) inRefcreace [4]), we can :_
continuallyupdatewij and henceuij also. Thisconsmct also assuresconsistencywith the defmiUonof these func....
dons, i.e., the sum of membershipfunctionvalues for eve_ sample is equal to unity. For cases whereinthea po$-
teriori probabilitiesPijare all equal for a given samplexi, (i.e., Pij= I/m for all j = l ..... m) expression(6) re.
ducesto:

[3 ;j=Li . •,
wii = (9)

(1-[3) ; j._ ', ..-
(m- 1) ,_ ....

Wecan also derivethecase for whichthe secondcomponentof all themembershipfunctionsbecomeequal,
i.e.,

wij= wi Vj = I..... m (10)

as

(m-
1)[3PiLi- ; l_*l (11)

Pij = (1-13)

Here, it is interestingto note thatequation(1 l) reducesto thepreviouslydiscussedcaseofequala posteriori woba-
bilities for all classes when [3= l/re.

In view of fact thatthesum of tima posteriori probabilitiesof all classes is unity(equation(5)), equation .
(11) in effectdefinesa specificvalue forthea posteriori probabilityas:

(1-_)
PiLi =[1 + re(m-2) [3] (12) : _.

Correspondingly,equation (11) becomes
J

(m-1)_ (13)
Pij = [ 1 + m (m- 2) 13]

Equation(12) reduces to l/m for [3= l/m and (I- [3)for m = 2 the two special cases previouslyconsideredhere.
Co_gly, equation(13) reducesto l/m for [3= l/m and [3for m ,, 2.
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Theoutpuuof thissequentialfuzzylesming(underex_u._famil_fuzzyteacher)processate: ,
• ;L- _x)paramemrsof _e undedyingdisMbudonsof thecliffmemple_ dassesm _ en_ : "::
• _ - theleyel of imperfecmessof die unfamiliar fmzy u_ef in them_ <_
• U - the set of membe_ip funcfi°nv_lues f°r all _e wi/nin8_'nples °v_ a/! _e _ff_l ©_ .... i/_

5. ALGORITHMIC PROCEDURE '.'
: \

(i) Set _ = Po at an appropriatelevel ( l/m _ _ _ I) - the scheme is not very sensitive m this ini,ml
valueandassuchthechoiceisnotcritical

(ii) As each new samplexi is input,generatea ImYoabili_etcailyassignedlabelt i basedon Ibepmmetm" "
estimates as knownusing the fuzzy membershipfunctionvaluesto approprin_iyweight thecone-
spondingclasses(bymodifyingthemulticlassversionofequm/on(4)ofrefe.q_q_[4])

(iii) Updmeu_ pmame_ X(usingequmionO) ofref_ [a]) ......
(iv) IftheteacherfurnishedlabelLiandthegeneratedlabeltimatch,setYi= ldenotingasuccess..............

event; else set Yi = 0
(v) Up:late_(usingequation(5)ofref_ [4])
(vi) Update wij using equation(6) ,.
(vii)Updateuijusingequation(4)
(viii)Go backtostep(ii)forthenextsample
(ix) Rq_,attheproc_tu_tillarelh_sampleshavebe_ processed

6. SCOPE FOR EXTENSIONS

In theanalysis hitherto,it was assumed that the imperfectness_ of theunfamiliarteacheriscoustaate_oss
the differentpatternclasses.However, in the real-worldenvironment,thismaynotalways be truesince informmioo
acquiredaboutsome of the patternclasses may be less reliable thanthatavailablefor otherclasses. Forexample,in i
the fieldof non-cooperative_argetrecognition,it is quite likely thatthelabelsof samplesacquiredof friendlytargets ;'!
may be morereliablethanthoseof adve_ries. These differences in theenvkonmenthave to be aPwowia_y
intoaccountby the learningprocessfor the learningto be trulyoptimal. Accm_ngly, thereenrsivelearningprocess
will have to be suitably modified to accommodatedifferent_ values for thedifferentclasses. Here,these multiple ....
_'s areassumedto be statisticallyindependentfor the limitedpurposeof theensuingdiscussions. However,appro-
priatemodels which accommodate statisticaldependence between these [Ps can also be visualized,if so desired.
Underthis class dependent[_scenario,multiple estimators (similar to theequadon(5) in reference [4]) willhave to
be set up, one for each of thepatternclasses expected in the environment.Correspondingly,expression(2), em-
ployed here for estimatingthe fuzzy membershipfunctions, will also have to be modifiedto permitmultiple_ val-
ues. This is accomplished by employingan estimator illustratedby the followingexwession:

[SLiPij ; j = Li

[PI'iPiLi+(l'[3Li)_Pikj(m-l)k=l
wij = f( _j, m, Pij, J = 1, .... m ) = _eLi (14)(1-PLi)

(m-l) Pij j=l ..... m

Pik
_i Pmi+ (m- I) k --1

_ L i



Using equation (5). expression (14) can again be restructured as 

As before, for the case m = 2, i.e., a binary deciision case with different levels of reliability for the labels of 
the target samples from the two classes (for example lethal and benign), we have 

Expression (9), which represents the case of equal a posteriori probabilities pij, will also get modified cone- 
spondingly, whenever the im-tness levels for the different classes are estimated separately. Expression (14) re- 
duces to: 

Again, for the second cornpent of all the different class memberships of a given sample to be equal, (equation (10)) 
can be derived from expression (14) as 

which as before is again subject to the constraint equation (5). Hence, from equations (5) and (19). we get 



For the binary decision case, i.e., m = 2, this reduces to 

 he concsponding steps of the algorithmic procedw oudined m section 5 should be approfxialdy modi f i  m sefkt 
this variable nature of acms the classes, assuming the P's to be siatisticaUy independent 

In e x w o n  (14). the fuzzy membership component wij is a function of only the imperfectness of the 
class represented by the given label, i.e., it is independent of the quality of supervision available f a  classes other 
than to which the sample is assigned by the teacher. A more realistic, but complex, model would be of the fam: 

L # Li 1 
It is interesting to note that in expression (22). wij becomes a function of the imperfcctncss levels of all the 

different classes in the environment while retaining the uniqueness of the original expression (14) for the perfectly 
supervised class case of $ ~ i  = 1. (However, unlike equations (2) and (14). equation (22) cannot be restructured to 
eliminate the summation over pik because of the presence of the variable within the summation term). 
Expression (22) can therefore be viewed as a more realistic portrayal of the imperfectness in the environment f a  the 
classification phase. Under this model, a crisp (i.e. 1 or 0 value) scenario gets established f a  Ã‡; whenever just the 
single corresponding imperfectness parameter disappears (pj = 1). This therefore reprcser~ts an .OR. logic based de- 
pendence across the imperfectness values. One can also visualize an .AND. logic based version of the model as: 

PQ Pij 



7. CONCLUDING COMMENTS

The study offers a potent tool for learningandopegatingin imperfectlysuigrvised fuzzy environments.
This is agcomplishedby treatingthe fuzzy emqmnngnt asesseatially tmfamil_ at the initiation_ _ _ _ --
cess andthereafterlearningabouttheenvironmentin termsof the level of imperfectnessand thefuzzy membelMfip
valuesfor eachtraining sample_ withtheWimm_lemminguukofdeterminingtheuudedyingdism'lm-

withinthedefinedfuzzy frameworkboth theimperfectnessof '.heunfamiliartew.J_m wenasmemzzmessml_ la-
belingprovided. Admittedly,Mtemativefuzzy modelformulations(suchasfoeexampleequation(24)), caineasily be *
conceived.

tit

I'I [3k Pij "

k=l ; j=Li

[ 1 ................fi [SkPiLi + 2 ( m1 1 ) _ ( 2- 15Li - [3k) Pikk=l " k=l

Li (24)
wij = ( 2- [3Li-_j )

2(m-l) Pij j=l ..... m

_k PiLi + | _ (2"l_Li'[3k)Pt 2(m'l)k=l

Theapwoach can also be extendedto dynamicenvironmentsbycombiningtheVEDIC leacherconcepts[5,7] with
thedual-componentbasedmembershipfunctionlearningmethodologydevelopedhere.
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Abstract

In this papersomeprob!emsin thedesign of managementsystemsforcomplexobjectsarediscussed.Coasideringthe
absenceof adequatemodelsand the factthathumanexpertisein themanagementof non.stationaryobjectsbecon_
obsoletequickly,the useof self-ieaming togeOterwitha two-stepoptimizationof on-linecontrolrulesis soggeswd.
To prepareforthe objectamalysis,a set of definitionshasbeenproposed.Tradidmalandfuzzy sets [1, 2] approaches " "
areused in theanalysis. Todecrease the reactiontimeof theconlrolsystem,we proposethedevelopmeatof cmaml
ruleswithoutfeedback.

Keywords: ControlProcesses,Decision Theory,FuzzySets, Optimizafon

1 Introduction

Automaticandsemi-automaticcontrolandmanagementsystemsusuallyarebasedon sets of controlroles.Thedevel-
opmentof suchrulesrequiteseither comprehensivehumanexpertiseoranadequateobjectmodelor both.However,
thedesign of reliablemodelsof compiex objects is oftena verydifficulttaskaeglhumanexpertisein thecontrolof the
non-stationaryobjectsbecomesobsoletewith time.Thetraditionaluseofa conuei with feedbackresultsinWolonged
reactiontime.These problemscan be partiallyavoidedffa self-learningapproachisused forthedevelopmentof con-
tmlrules.In thispaper,whichis butam3(hetdropin theseaof controlandmanagementliterature,we leo areIsepos-
ing andstudyingsome variantof such anapproach.

_. Themethodolegyfor synthesizingmanagementsystemsdependson thecomplexityof thecontrolledobject. In this
paperwe will discussthemanagementof complex controlledobjectswith muliipleinputsandoutputs.(Qneueing
networksandassembly plantsare examplesof such objects.)Theobjecttransforr_ationfunction(mapping)is defined
by an objectorganization(sffuctur_)andby the valuesof the objectelementset-__ parameters(valuesof con_l vari-
abies). Objectperformanceis evaluatedby multiplecriteria(via multiplecontmtteAvariables).Managementsystem
performanceisevaluatedby the managementsystem'sability to maintainomputsatthepredefinedlevel(the simple
control task)andby itsabilityto minimize_e "cost" requiredforthecontrol(theoptimizedcontrol task).Modem
managemm;tsystemsarebasedon relativelypowerfulcomputersandexecutetheirtasksby varyingeithercontrol
variablesand/orobjectstructure.In thedevelopmentof managementsystems,one shouldconsiderthatmmmgement
systemreactiontime mustbe muchshorterthaninputdrift,andprocessesof eavironmentalandstmctmalchanges.

The abilityof managementsystems to controlandoptimizeobjectsdependson theefficiencyof thealgoridunsused
for these pmpo_. Inturn,thesealgorithmsdependoncontinuity,separability,andmonotonicityofcontrolledobject

" mappingfunctions.Ingeneral,thebehaviorofmappingfunctionsdependscathenatureofcontrolledobjects.If,for
example,simplephysicaldevicesoftenhavemappingfunctionsthatarecon_eous,separable,andmonotonic,thisis
notalwaysthecaseformorecomplexcontrolledobjects.Whenmappingfunctionsarecontinuous,separable,and
monotonic,relativelysimplecontrolandoptimizationalgorithmscanbeapplied.However,whenmappingfunctions
me not continuous, separable,andmonotonic,thensignificantlymorepowerfulalgerithmsareneeded.Becausethe
behaviorof mappingfunctionsimposes limilatkmson theselectionof controlmd optimizationalgorithms,andsince
proposedserf-learningmethodologyis basedon s,._'halgorithms,let'sdefinewhatwe meanby continuity,separabil-
ity,andmono_icity. Let'salso defineseveralothertermsused inthispaper.

2 Definitions

Froma management'point-of-view,an object can bedefinedvia thefollowingmappingfunctions:

- _- F(V, H): X-_, Y, F(X,H) :V--+ Y and F(X, H) :V_Q (1)
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where:

X = (xl, x2..... xm) is all i13_ltvector m = IMJ,M isa _t of ml_t va_tbles;
y = (y_ y2, .... y') is an outputvectorn = l_,,%'is a setof outputvafiabl_;
I/"= (v_,v2,....vp)isavec_ ofcontrolvariables,p = )_,Pisas_ofcomtolvariables;
Q = (ql, q2..... qb) is a vcclor of controlledvariables,b = [BI,B isa set of conlmllealvariables;
H = {ht} isacomro|ledobject structure,hz is anobjectelemcal, le L.

We candefinesome propertiesof these functions,whichareusefulformanagementsystemdevelopment:

a. Lct'sconsidcrafunctionF(v,/-/): (X+_.)_(Y+p.) withanyfixcdv aadH as continuousintospace C if
when _._0, then p_0 for VX¢ ¢, (X+X) e C. (2)

b. Let's consida a functionF(X,H) : (V+'q) _ (Y+p) withanyfixed X and H as confinuousintospaceA if
when _ _ 0,then p.--)0 for VV¢ A, (V+_I) ¢ A. (3) "

c. let's consider a function F(X, H) : (V+ TI)--*(Q +p) withanyfixedX andH ascontinuousintospaceL if
when -q-)0, thenp_0 for VV¢ L, (V+_) _ L. (4)

d. Let'sconsid_rafunctionF(V,H) : X.-)Y withanyfixedVamiH, andXe C asmonotoneifwhenX is
changinginonedirectionalongsamemonotoneIrajectoryintoC, thenY isalsochanginginonedirection
along a monotonictrajectoryinto ouqmt space. (5)

e. L_t'sc_si_ a func_tonF (X_H) : V --)Y with anyfixedX andH a_d V _ A asm_n_t_neif wh_ V is_ha_g-
ing inonedirectionalongsamemonotonetrajectoryintoA, themY isalsochanginginonedirecfi_alonga
monotonicIrajectoryintooulputspace. (6)

f. I.ct'sconsid_afunction F(X,H) : V _Q withanyfixodX md H and Ve L asnmnotm_if whea V is
changing in one directionalong same monotonetrajectoryintoL, then Q is alsochanginginone direction
along monotone trajecto_ intocontrolledvariablespace. (7)

g. Let's c_nside_a function F(V, H) : X'-) Y as separableif F: (t zz .... ,_ + ,_. .... x') _ (Y+ xz) and
F:(xX,x_..... _+AJ, .... x") --, (y+_4) thenF:(xt,:, ....xi+A i, .... _+&/, .... Y") _ (g+g/+x/) (8)

h. Let'sconsidexa functionF(X. H) :V _ Y as separableif F: (vI. ,_. .... vi+ Ai, .... ve) -) (Y+ _) and
F:(_._2.....,/+a_,....,O--,()'+_) men_:(;.,_,.:.,_+a; ...._+a_,....;') -* (y+_+_J) (9)

i. Let'sconsidexafunctionF(X,H) :V-)Qas,'r_ablcifP:(vt, v_,....vi+Ai..... _') --, (Q+#) and
_:0;.__....._+_ ....._ _ (Q+_V)then_:(;,_, ...._+a: ....;+_. ....,") -) (Q+¢+¥) (10)

We candefine the fluctuationrangeof i, (i ¢ M) inputvariableby anorderedAi set thatconsistsof realnumberss_
represeatingpossiblemeasuredvaluesof this variable.Thewhole inp_ space is:

A = AxxAZx...xA '_ (11)

We candefinethereference(desired)valuey_,foreveryonlpuivatia_i,(ieN) a_dO)cref_'enc,eoulpulvector
y, = (y_.y,_..... y,') forthe wholeobject.

WeaJsocandefinethepermissibleoutputspace:

4)= [yr+a.yr_Otlxl1 I 1 [y2+ff.2,y2r--a2|X... ×[yr+a" ",y,-a""] (12)

where ai is an accuracyof wack_g i variable;[y_+a_.yi,- a i] is a penaissibleintea,al of i otaimtvariable.

/

/
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Eachpermissibleintervalalso can be relxesentedby a normalizedfuzzy set _ with amembershipfutl:tkm

bd(y).ye suppU_.Inthisset,y_= y_,hasamaximalpossiblegradeb/(y_)= i.Inthiscase.thepermissibleoutput
spaceO canbedefinedas:

0 = suppU 1 xsuppU 2x ... xsupp U_ '_ (13) __

Theactualoutputvector gt at momentt usuallydiffersfrom)',. Thisdifferenceis theresultof ei_terXf driftormap-
. pingfunctionchangescausedby v ins;abifityandenvironmentalandH clmmgcs.Deviationof Y_fromY, isacemiml

errorforwhichthemanagementsystemmustcompensate.Compensationcanbedoneeitherbyvaryingonly v or
only H or bysimultaneouschangesg andH.

Thequalityofconb-oiisevaluatedeitherbyanoutputerrorvectorthatatmomentt is:

"I 2 i_i i
_, = (_,,c, ..... _) ,where c,-y,-y,. (ie N). (14)

orby 3 = _ (l-bi(y_)) that can be used forestimatinga degreethat Y,e e. (15)

We willconsider that thecontrolled objectis workingwithina requiredaccuracyif eitherof t,_ followingcondidcms
aresatisfied:

for Vi, (i¢ N) (y' +(x') <y',> (y'.-a') or y',esuppU_ (16)

or Y,e cp or Y,• e (17)

All X, forwhichconditions(16, 17)arcsatisfiedforsomecombinationof vu,are pcmds_bleinputv_ctmsfor
combination.Wecanproposetwodefinitionsof permissibleinputsubspaccs-' for z-thcombinationof VH:

-:= { X1X_ Y • OorYe 0 forz-d_combinationof VH}

or --'= {x..-x...ll' 1, x [x,,,,_-x.,_.lx,...,x{_.-x.i.12_2, ' " (18)

wherexi_=,- xi_i. isapermissibleinputintervalof i inputvariablewhichprovidescorm'itions(16, 17)for z-_h
combination;

'| "g
x'._,_x'_'. arecorrespondinglymaximalandminimalpermissiblevaluesof i inputvariable.

Wealso can defineeachpermissible i inputintervalas a normalizedfuzzy set W':witha membe_hipfunction

b_z(x), x G s_pW iz. Correspondingpermissibleinputspace _!'z is:

_I" = suppWt: xsuppW2_x ... xsuppW_z (I ¢_')

Wecan defineforeach outputvariablei at anytime t a distanceof yit fromtheborderof a permissibleoutputinterval
eithervia:

Si = mitt (IY_+ cxi- Y_'IYir+ (xi-Y_)orviamembershipgradesasI - bui(y_)(20)

- For the outputvectorwe can use either:.

= ./-_(a_,)zor(15). (21)Dt
Wi,= _ieN.

Theefficiencywithwhichthemanagementsystemexecutesitscontrollingfunctionscanbedifferentfordifferent
combinationsof V andH. We canintn3dtw.ea multivaluedgoalfunctionG lhatcanbeusedfor evaluatingtheeffi-
ciencyof themanagementsystemandoptimizingtheobject:
c,--Z4, (22)

Je I

whac 3/isaweightcoefficientof }"cormx)Uedvariable,fe B.
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3 Managemmt

Management.¢ys',emsshouldbe ableto workin two interrelatedmodes:

1. Simplecontroimode.This is eithera processof minimizingan outputerrorvect_,

I 2 A -
rainKs= (£=,e,.....£t) ormin_ = E ("-bj(y_)) (23)
V,H V,H _EN

ora processof confining Yt to permissibleoutputerrorspace (12, 13),whichis execmed bY_rying
only V or V togetherwith H. Forsuccessfulcomml,conditions(2) and (3) mustbe satisfzd. Cou_lling algo-
rithmscan be relativelysimple if conditions(5, 6, 8, 9) e_ealsosatisfied.

2. Optimizedcontrolmode.This is alsoa processof theobjectcontrolcorrespondingwith (24). However,here
theobject l_rfonnance is opfimiz_ by varyingeitaefordy V, or v and H:

ma_ G= _ 3/¢f uponsatisfaction(16, 17). ',24)
V,H lea

RJe._tivelysimplealgorithmscanbeusedforthisol_unizationifconditions(4,7,and10)aresatisfied.If
(5-10)arenotsatisfied,thenthealgorithmproposedin[3]canberecommended.Theopfimiza_(23,24)thatis
executedby varying v isbas¢_,m general,on non-linearprognmuning.Durings_chanolYdmizalion,cenditioes (16,
17)can be preservedrelativelyeasily. However,theoptimizLt_t thatisexec:ted via controlleddbjectstructural
changesis basedon thecombinatorialapproach. Duringcomb_ optimization,conditions (16, 17)can be unex-
pectedly violated,sinceanychangesofH createasignificantdestabilizationeffectontheobject.Todecreasethepos-

sibilityofviolationsof(16,17),themanagementsystemshould,beforechangesofH aremade,lrjtodriveY,into
theceuterof¢,(e).Thiscanbedone,forexample,viathoroughV optimization.,_coccurrenccofrznearthecen-
terof¢_(O)isanindicationthattheobjecthasanexcessofstability.Asaresult,theolximizafiodexecutedvia

changesofH becomes_ssible.

3,1Models

Diffacntmanagementsystemmodesrequiretheuseofdifferentmodels.Namely,thesnnpleconmolmoderequires
theinput-controlvariables-objectstructure-outputmappingmodel.ThismodelreflectsF(I:,/4):X _,Y (Fignsela)
andF(X,H):V_ Y (Figurelb).Fortheoptimizedcontrolmode,acontrolvariabks-controlledvadabks-mapping
model thatreflectsF' (X, H) : V _ Q (Figure Ic) shouldalso be used. Bothmodelsarecreated_d updatedduring the
_If-leaming process.

....

Fgju_I

3.2ControlApproaches

Forobjectstabilization,twoaT0roachesbasedeitheronVfl,=f(r,)orV l,.=f(X_)canbeused.Thefirst
approachusesafeedback_c_me,i.e.,themanagemeatsystemcom_andymonitorscoalitions(16,17)andcorrects
output,ffnecessary,by v-_uyingg _ndH. Thisapproachis relativelyaccurate.However, it is slow, sbr_econtrol deci-
sions =redelayed by _:_object _f_ Y transformationtime afuiby a decisionImX:essthat requitesCI_ lime. Thesec-
ond Vii = f(Xt) approachdoes not use a feedbackschemeall thetime.Instead,thenumagememsystem
continuouslymonitorsconditionX, _ -' (X=_ Y') and makesdecisions, eitherthatd_ VII combil_J_ hastobe
changedandthuswhat hastobedoneto satisfy(16, 17),orthatno change hastobemade.Inotherwords,thesecond
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approachuses rulesof this kind:"If Xt e _' (Xt E q,z), thendo nothing.If X, _ _.s (Xr,_q,.). thenfindother--" (_pr)
m which X: belongs andchange the object in corresixmdencewith V_H''. This aplxoacbis fas_t _m the feedback
approach,butrequires that VH = f (X) (reactions) for VXwill bepreparedinadvance.To decreasereactiontime,we
will studythepossibilityof usinga second(withoutfeedback)controllingappreechjncombinationwithstir-learning
and_on.

4 Self, Learning and Adaptation

The purposeof self-learningis thedevelopment(modification)of controlrules basel oncause-and-effectinformation
receivedvia lrials. In theabsenceof analyticalmodels, it is recommendedthatirialsbe madeon the teal objects.
Serf-learningconsists of threephases. Namely:

1. The preliminarycause-and-effecttrialsphase.This phase is dedCatedtotheanalysisof howlinearF(V, Hj : ..
X-, Y, F (X, H) : V _ Y, and F' (X, H) : V -, Q are, and whereconditions(2-7) are satisfied.Conditions(8-10)
mustalsobestudied.

For the studyof F (V, H) :X'_ Y and for the fixed v and H, we will eitherobservenaturalX flnctuationson the real
object, or activelychange X on the modelor on thereal object.Foreach X, a valueof Y is defined._ processis
repeatedfordifferent V and H. Similarly,for the studyof F (X, H) : V _ Y, andfor the fixed X (if it is possible)
and H, we will vary V and definefor each v a valueof Y. Thisprocessis repeatedfor differentX and H. Theptr-
pose of this is m check (2, 3, 5, 6, 8, 9).

For the studyof F' (X, H) : V _ Q, and forthe fixedX (ff it is possible)and H, we will vary v and define foreach
V value of Q. This process is repeatedfordifferentX and H. The proposeof this is to check(4, 7, 10).
The numberof such lrials is dictatedby thedesiredaccuracyof verificationof (2 -10) andit mustbe heldto the
minimum.The results of the firstphaseareneeded forthe selectionof optimizationalgorithms.

2. Thedevelopmem of thecontrolrulesphase.This is implementedvia a two-stepobject_3timization.Duringthe
firsts_p, an VH combination(feasiblesolution) is receivedfortheanalyzedX inc_ with(24) (Figure
2). Thesecond step is theselection of the optimal (in correslxmdencewith (25)) VHcombinationfor thesame X.
(The useof optimizationfor developing rules allows us to restrict the number of analy2ed Vil combinationsonly to
the combinations used during optimization. As a result, the analysis of all possible combinationsof VII, required
for the fulbscale object analysis, can be avoided.) -.

V,H. ._"

........ ,o..... .....

.... _ .... ..°.°_°.°.°.°*.o°.*_°°.oo

Figure2
ControlruledevelopmentstartsfromsomeX. WhentheoptimalVH combinationis receivedforlidsX, thenaper-
missibleinputspace_==or_= forthiscombinationis definedonthebasisof (18)or (19)byvaryingeider modelor
realobject inputs(Figure3).

..................
...(_z)..... _ VZ,Hz _ .........................
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Consequently,we will formulatea rule:"If X E ._' (X E _s), then//'V' combinatlmhas to bechosen."Then k
two-stageopcimizationwocessisrepeated for uneotl_ Xa -" (X_ LI,')..Asareselt, we will findo_er VrHr
combinationsand ocherinputsub.aces _" or '!" (Figure4).

.i !iiii17..4 .......................-
Fi_,e 4 - ...

Afterthis.thenext X (neitherX _ ---' (X E _P')norX f -'-"(X gz'V')) is selectedandtheprocessis repeated.Input ......
vectorsare selected fortheanalysisuntileitherthewholeinputspace Abecomes decomposedora feasiblesolution
forthesame X is impossibleto find. As a resultof decomposition,some inputsubspacescanintersect;i.e., more

thanone feasible soludon exists forsome X;i.e.,Xe _t+_t'g= f3 _P'._Oor Xe =,.z • -r-l ..f_z=_*_'wbere-I
m-_I't representa 8-th intexse,ction.

If X, _ _.', and X, c _--andif contritions(3) and (6), or (9) aresatisfied,thena combinedweightedrule[4] canbe
executedto provide r, _ e.

When thecontrolledobjectis non-finear,it is possiblethat [--'[;_]._'_0_P'] ,_[_P'I).Weshouldtrytoavoidintersec-
tionsiluationsbecausethemoreinputspace thatbelongsto the intersections,themote VII combinalimshaveto be
analyzed.If .="(_p3)representsan objectstabilityinputspace for the :-th combinationof VII, then"-= L) _."
(q' = tO ,t) representsa total objectstability inputspace, s, z

seZ

When_. = A (tit = A),thenthe object isstable. If ._GA (_PE A),then theobject isonlypaninlly szable.P.esults
consistingof optimalinput subspace-object structure-controlvariable vector rulesshouldbe stozedin the input-
reactiontable. - -

3.The adaptationphase.Becausean objectand/orobjectenvironmentrsually arenon.slazioea_,themanagement
system'sability tocontrolandits performanceefficiencydegradewithtime. Tomaintainthecontrolledobjectper-
fonnanceat thepredefinedlevel, themanagementsystemshouldconstantlymonitorthevalidityof thedeveloped -
rulesand thevaluesof Gt. The IXnImseof monitoringis todetecta momentwhenmanagementbecomesineffi-
cient.Whenmanagementsysteminefficiencyis detected,anotherself-learningprocessis necessary.

Dependingoctthe peculiaritiesof controlledobjects,we will tt_edifferentapproachesintheself-learning.
Samecontrolledobjectsortheirmodelscan be studiedin thetest-bedmode.In thismodeX, isstabilizedasX and
precisely measmed.Othervectors (Y, V.Q) can bepreciselymeasuredalso. The test-bedmodepenn/isimplementa-
tionof a specialalgorithmduringthe firstandsecondphasesof self.learning.Moreover,self.learningprocesscanbe
executedautomatically.AIp._thms for the (23, 24)o[_mizatim are selecteddependingon theresells of thecause-
and.effectphase.If thetes',: _d mode is unacceptable,tben self-learninghas to be implementedon therealobject in
theon-linemode.Inthisc_ conditions(2 and5) memmlyzedwithinthe firstphase.This analysisis madevia either
nstta_ or speciallycreate4 _angesof inputvariablesuponfixed VH. If thealgontlun (31is nsedforthe (23, 24)
optimization,thentheanalysisof conditions(3 and 4) can be madeduringthesecondphase.Mofenv_',algorithm[3]
doesnotrequiresatisfactionof conditions(6 - tO).
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Appendix 
- 

This appendix presents an example of the application of the methodology proposed in this paper. Let'sconsider the 
packet switching network (Figure 5) analyzed in (5, pp. 304-3051. The network strocture H is defined by a set of 
nodes, their connecting lines, and (he line capacities. " 

The numbers displayed in Figure 5 represent line capacities Ci (where i is  a line number, Ã = 1, ..., 16) in packets- 
per-second. In this network, traffic transmitted between any source and destination nodes can be split between differ- 
ent paths. 

where V ,  = (v", ..., flcBA. ..., fl) is the control vector that is implemented in the network via node looting 
tables and defines sets of paths for every sc~irce^stmatron pair of mxto. It also defines in whatpopon^ n-affic 
must be split between paths. For example, is the portion of the traffic transmitted from source node D to desti- 
nation node A via path DCBA . (Control vectors are presented in "Hible I,  columns "Curve A*, "Curve B", and "Curve 
A", 

L.) 
A ,  = (A". A"=, .... A". .... A") is an input vector. w b  A"'. f a  ciliple. is waf6c that is ataing the 

network via node A and destined for node B. When traffic between nodes A and 8 is split, then A*' = V 3T; J'1' 
is a set of paths between which traffic from A to B is split; is a traffic in the pad) j. j t f  

One can see examples of splitting in Table 1, "Pathn column. 

- A B  -AC -nC - & A  
A ,  = (A , A , ..., A , ..., A ) is an ompul vector. iA is, for example, traffic Aai is entering ihe net- 

work via node A,  is transmitted by the network to node B ,  and is leaving successfully the network via node B . (When 
traffic apixoaches link capacity, then the network can drop traffic to avoid congestion. In this case A < A i . )  

F H A  : V ,  ++ 
is a function that fines the ing of a control vector into a controlled vector 

A = ( X1, . . . . A,' . . . , X' that represents the actual (in pkWsec) traffic in every link of the network. 

where A*' is traffic in the f path (ki  e 1C); K' is a set of paths that contain link i .  All three parameters (A*, f , and K') 
are governed by ",I,,. 

16 

We evaluate the control 0 of the network via the function:@ = V/ (Ci - Xi) (26) 
i= l 

For simplicity, la's evaluate an efficiency G of the network according to the following: 
16 

G = ~ C '  (27) 
i 



Forillustration,let's definethenetworktaskas one thatprovidesa conm31upon_ s 14.0_ adaG whenI1_
betweennodesBF andCE variesandis fixedforall othersomme-destinationpairsof nodes.

When V_,, provides¢i> _.ifor Vi, then mappingP(V,_rlOiAiap _A,,, is continuous,selmah_and _,
and ^o,_ = A_,p.If a routingoptimizationalgorithmallows for tliecominuouschangingof V,a. aJeamalSping
F (Ai,#,H) : (V,,, _ A) is also continuous.However,it is non-separablebecauseIramcin ev¢_ link is definedvia -
(25) _ (26) is a non-linerfunction.

For the developing networkcon_l roles, we use the modelandoptimizationalgorithmproposedin [3]. "l'nismodel
and optimizationalgorithmallow for thecontinuouschangingof V,.,andthey do not requiremonotmicityof the _ - - __
optimizedfunction.Developmentof therulescan be donein the test-bedmode.Since we havealnmdycheckedthe

continuity,separability,andmonotonicityof the F (v,, r/0 :Ai,w_ Ao,, andF (Aisp,//): V_,, _ A mappings,let's
go directly to the secondphaseof the controlrulesdevelopment.

Wecan startthe developmentwith trafficvaluesfor B - F andC - E _ pairswhichareproposedin
[6]; namely4.0 pkts/sec for B -F and3.0 pkts/secfor C- E.During the fffststepof theoptimization(whichisbased
on varying V,,, uponfixednetworkswactureH). the proceduredescribedin [3] checksthe lx_ibility thata cenlrol
vector,providingconditions _ _ 14.0,can be fotnld.Such a controlvector"A" was found andis siegedin TableI in
thecolumn,"CurveA traffic(%)'. Thevalueof 4_thatconesixmdsto thisvectorandtheanalyzednetworkslrectme
and Irafl_values is 13.56 and G = 425. Since • < 14.0, thenetworkhasanexcess of capacityaadits sm]ctu_ can
be optimized.

Duringthe secondstepof optimization,the networkstmctm'e(linkcapacities)was changing;howeva',conlmlvector
v, was fixed.As a resultof thisoptimization,thecapacityof theEF andFE lines weredecn_tsedto 42.63lttts/se¢.
That_nds to G = 385.26and• = 14.0.Thenpermis_'bleinputspacesweredefined.Thiswasdoneon a fixed
network _xtlctuteby varyingB - F and C- E Inlffic.while monitoringql,_ 14.0conditions.Westartedwith theorig-
inalstructureand controlvectorIhatisoptimalfor B - F _ thatis equalto 4.0 pkts/secand¢- E trafficdmt is
equal to 3.0 pkls/sec. Modelingallows us to pl_ curve"A" on Figtae6. Thezone underthiscurveis a permissible
inputspaceand it definespossiblecombinationsof B - F and C- E _ for whichthe analyzedControl",'ectorpro-
rides _ S 14.0. In other words,a controlrule "Umil B - F and C - E tr_ is in the zone belowcurve "A". theset of
routing tables, corresponding to "CurveA traffic (%)" of the Table1, shouldbe u.ved"canbegpplied.

We canme fromcurve"A"thatll_maximalB- F trafficislimitedto9.66pklgsecandC- Etnd_islimitedto
8.12 pkts/sec.To "analyzethe network'sability to absorbmore B- F Ira/tic,we canchoose a valueof B - F waflic
which is above 9.66 pktffsec. Thenwe can findtheotherconlrol vectorthatprovides (5) and_I,_ 14.0conductions.
Thisvector is presentedinTable 1, column"CurveB Iraffic(%").Analysisof thenetworkwitha newcontrolvector
allows us to plotcurve "B" in Figure6.

WecanrepeatsimilarproceduresfortheC- E wMficthatexceeds8.12 pklgsec. Thisgive usonemore_! vector "
(TableI, column'`C") andanothercurve"C". --

As a resultof these studies,the followingrulescan becreated:"Until B- g and C - E tr_jfc is imthezone below
curve"A",thesetofroutiagtablescorrespondingto"CurveA traffic(%)"shouldbeused.IfWnfficisinzoneI.then
use the set of routing tables corresponding to "CurveB traffic (%)". If trafjfcis in zone Ii, then use the set ofmuting
tables cry'respondingto "Curve C traffic (%)". Theserulesapplyto theinitialH thatcon-_3olxh to G = 425.

A similarstudycanheexecuted withcontrolvector"A"andthe networkin whichthecapacitiesof lines £F and FE

were_, to 42.63 pklgsec. As a resulta curveA,p, was ploUed.Thepreviousrulecanbemodifiedby adding
the following: 'If B - g and C -E tragic is in thezone below the curve _.pt, then muting tables corre_poJuiin$to
"Curve A traffic (%)"should be used and the capacity of lines EF and gE can be decreased to 42.63pkt$1_.c."
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Table1-Network 'l_llZc Roulfnll

"_ ! I III I I ,,

Traffic Cu_eA. _Cun_BZralfic CurveC -
Source Destination Pa_(pkts/sec) traffic(%) (%) rare(%)

II il I i I III I i

A B 9.0 AB 100.0 I00.0 i00.0

A C 4.0 ABC 40.0 47.5 162S
AEC 6O,O 525 _.75

.., ,.,, ,, ,, ..,,

A D 1.0 ABCD 90.0 1(30,0 10.0
AECD 10.0 20,0

ABFD 70.0

A E 7.0 IAE 100.0 100.0 100.0 "_
,i ,-, .... , ,, ,,,,

A F ,o 1®o ,o;.o
ABF 35.0

...... I

B k 9.0 B/k 100.0 100.0 100.0

B C 8,0 BC 100.0 100.0 100.0

B D 3.0 BCO 50,3 100.0 89.7
BFO 49,7 10.3

,. .,, .,,,

B E 2,0 BFE 100.0 100.0 100.0

B F 4,0andvary BF 100.0 100.0 100.0 "- - ....

C A :4.0 CBA 51_5 32.5 7125
CEA 48.75 67,5 28.75

,1 ,,,, ,,, ........ ,

C' B 8.0 CB 100.0 100.0 100.0
....... .... j ,,,,,

C 0 3.0 CO 100.0 100.0 100.0
, ,_ ..,

¢ E 3.0andvat,,. CE 100.0 1(_,0 100.0
,, . ,,,

C F 2.0 CEF 100.0 100.0 100.0
....... ,,., , .

O A 1.0 DCBA 30.0 60,0 5.0
DCEA 60.0 5.0 60.0
OFBA 10.0 35.0
OFEA 3SO

, ,, -, ..,,, , Jl

D B 3.0 DCB 56.7 46.7 90.0
DF'B 43.3 53.3 f0.0

,,i

P C 3.0 13(3 1_0.0 ;1¢0.0 100.0
..... , | ,, ,,, ,,,, .........

D E 3,0 DIE 60.0 140.0 93.3

DCE 40.0 160.0 6.7
i ,,, ,, J

D " F 4.0 DF 100.0 100.0 : _100.0

E A 7.0 EA 100.0 100.0 100.0
,. ,,,

E B 2.0 EF'B 1100.0 100,0 100.0
.... ,, [ , -,, i,,, ,, iJ,,

E C 3.0 EC 100.0 100.0 100.0
....... , J ,,,,,i ,,

E D 3.0 EFD 57.7 72,3 75.0
ECO 42.3 27.7 25.0

E F 5.0 EF 100.0 100.0 100.0
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I I ii II I i|1

Source Deslination Tratfic Path CurveA CurveBbaltic CurveC
(p_sec) meic(_) (%) tmSc_)
I ii I

F A 4.0 FF.4, 100.0 W.O 100.0
- FBA " " 10.0

F B 4.0 FB 100.0 100.0 100.0

F C 2.0 FEC 100.0 100.0 !100.0 ..... -

F D 4.0 FD 100.0 100.0 100.0
,, ,, , ,,, ,,

F E 5.0 FE 100.0 tO0.O 100.0'

C-E

10_
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Abstract

In this paper we describe a procedure to integrate techniques for the adaptation of
membership functions in a linguistic variable based fuzzy control environment by using
neural network learning principles. This is an extension to our work in [2].

We solve this problem by definining a fuzzy error that is propagated back through the
architecture of our fuzzy controller. According to this fuzzy error and the strength of
its antecedent each fuzzy rule determines its amount of error. Depending on the current
state of the controlled system and the control action derived from the conc]nsion, each rule
tunes the membership functions of its antecedent and its conclusion. By this we get an
unsupervised ]earning technique that enables a fuzzy controller to adapt to a control task
by knowingjust about the global state and the fuzzy error.

1 Introduction

One of the design problems of a fuzzy controller is the choice of appropriate membership
functions or the tuning of a priori membership functions in order to improve the performance
of the fuzzy controller.

We solve this problem by definining a fuzzy error that is propagated back through the _-
neural-llke architecture of our fuzzy controller. According to this fuzzy error, the strength
of its antecedent, the current state of the controlled system, and the control action derived

from the conclusion, eax.h fuzzy rule determines its amount of error and tunes the membership

functions of its antecedent and its conclusion. This paper is an extension to our work in [2],
where we proposed a supervised learning algorithm depending on a non-fuzzy error.

We refrained from just integrating neural nets in certain parts of the architecture as black
" boxes as it is done in other approaches, or from adding an extra module to the architecture

taking care of the correction of errors for example by weighting the rules according to the errors
as it is described in [4, 12].

Our main concern is to keep the structure of the fuzzy controller that is determined by the
f,_zzy rules. We think of those rules as a piece of structural knowledge that gives us a roughly
correct representation of the system to be controlled. If the actual output of the controller
differs from the desired behaviour, we consider an unsuitable choice of membership functions

that model the linguistic values of the system variables to be responsible [8].

We understand the adaptations of the membership functions as a reverse mechanism de-
duced from the forwarding inference machinery. We consider the computation of the control
x_ue from given measured input values as a feedforward procedure like in layered neural nets
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[I0], where the inputs are forwarded through the net resulting in some output values. If the ....
actual output is not able to drive the controlled system to a desired state, an error has to be
propa_ted back through the architecture changing parameters taking !nto account the feed
forward propagation of inputs.

Becsu_w it is usually not possible to determine an optimal control action for a given state,
we are not able to calculate the error of the produced output directly. This means we cannot

use a supervised learning procedure like standard ba_kpropagation. But by evaluating the state
of the controlled system, we are able to determine a global error measure. This enables us to

define a non-supervised learning algorithm. Training a fuzzy controller with such a learning

procedure allows us to keep track of the changes and to interpret the modified rules. -

The term "non-supervised" indicates in this context, that there is no "teacher" providing
a desired output Value to be compared to the actual output value. The controller is able
to calculate the fuzzy error by just knowing about the state of the plant. From another

point of view one could say, that the system is watched by a supervlsor who uses "good" and
"baxi_ signals to guide the learning procedure. But this kind of reinforcement learning is not
considered to be a plain supervised procedure, and so w'e prefer to call our learnin$ algorithm

non-supervised, although it is derived from the BP-algorithm for neural networks [10].

Considering the ideas on which fuzzy controllers are based, we think it is a natural approach
to use a fuzzy error for our system, which, according to its structure, we may call neural fuzzy
controller.

In the following sections we first present the structure of our controller. Then we describe
the fuzzy error propagation algorithm that we use as our learning procedure. Next we consider
some simulation results concerning the control of an inverted pendulum and in the last section
we discuss our results.

2 The Neural Fuzzy Controller

We consider a dynamical system S that can be controlled by one v'_riable C and whose state can

be described by n variables X1,...,X_, i.e. we have a multiple input - single output system.
For each of the mentioned _'ariables we consider measurements in a subinter_d H = [hl,h2]
of the real line. The imprecision is modelled by mappings/_ : [h],h_] -- [0,1] in the sense of
membership functions with the obvious interpretation as representations of linguistic values.

The control action that drives the system $ to a desired state is described by the well-known
concept of fuzzy if-then rules [13], where a conjunction of input _-ariables associated with their

respective linguistic values determine a linguistic x-alue associated with the output variable.
All rules are evaluated in parallel, and their outputs are combined to a fuzzy set wlfich has to
be defuzzified to receive the crisp output value. The conjunction of the inputs is usually done
by the rain-operation, and for the aggregation of the outputs of the rules the max-operation is

usuMly chosen, as it is done by the well-known Zadeh-Mamdani procedure [7, 13].

For the e_luation of fuzzy rules the defuzzyfication-operation constitutes a problem that
cannot be neglected. It is not obvious which crisp _-alue is best suited to characterize the output
fuzzy set of the rule system. In most of the fuzzy control environments the center-of-gravity
method is used [5, 6]. Using this method, it is difficult to determine the individual part that
each rule contributes to the final output value.

To overcome this problem we use Tsulmmoto's monotonic membership functions, where the
defuzzification is reduced to an application of the inverse function [1, 6]. Such a membership
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Figure I: Defuzzification using Tsukamoto's monotonic membership functions

function # is characterized by two points a,b with p(a) = 0 and #(b) = I, and it is defined as

{ _ ifixE [a,b]A a g b)v(xE[b,a]Aa>b)p(z) = 9 otherwise

The defuzzification is carried out by

x= j,-l(_) = -_(a - b)+ a

with_ _ [0,I].
Consider the foUowing two rules

R_: IF O is PM AND 0 is PS THEN F is PS,
R2: IF 8 is PS AND 0 is PZ THEN F is PZ,

where PM, PS and PZ represent the usual linguistic expressions positive medium, positive small

and positive zero. The evaluation of those ruhs is presented in figure 1.

For our purposes we only need to restrict ourselves to monotonic membership functions
to represent the linguistic s_lues of the output x_riable. For the input variables the usual
triangular, trapezoidal etc. membership functions can be chosen, even if we do not make use
of this possibRity in our controller for reasons of simplicity.

An example for the structure of our neural fuzzy controller is depicted in figure 2. The
modules Xt and X2 represent the inpuz _ariables that describe the state of the system to be
controlled (plant, for short). These modules deliver their crisp x_lues to their p-modules which
contain the membership functions interpreted as linguistic values assigned to the respective

input variables. The g-modules are connected to the following R-modules which represent the
fuzzy if-then rules, the knowledge base of the controller. Each #-moduh gives to its connected

R.modules, the membership value /,tijiZi) of its input variable Xi. It is possible for each #-
module to be connected to several R-modules. The R-modules use a t-norm (rain-operation
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Figure 2: The structure of the neural fuzzy controller

in this case) to calculate the conjunction of their inputs and pass this value forward to one
of the v-modules, which contain the membership functions representing the linguistic values

of the output _rixble. By passing through the v-modules these values are changed to the
conclusion of the respective rule. This means the implication (min-impllcatioa in this case) is
carried out to obtain the _lue of the conclusion, which is usually a fuzzy set in a more general

case. The conclusions are then passed on to the C-module where they are aggregated (e.g. by
max-operation), and a crisp control _-xlue is determined by a defuzzilication procedure.

In our case, however, monotonic membership functions are used, and so the v-modules pass

pairs (rl, v_l(rl)) to the C-module, where the final output value is calculated by .

]C (',)
i--I

r;
ill

where n is the number of rules, and ri is the degree to which rule Ri has fired.

From a more general point of view one can interpret the messages from the v-modules to the

C-module as fuzzy sets clipped by the rain-implication at height ri. The C-module aggregates
the conclusioas by a max-operation, and uses a non-standard defnzzification procedure as it is

mentioned above. 391



As one can easily see, the system in figure 2 resembles a feedforward neural network. The
X-, R-, and C-modules can be viewed as the neurons a_d the p_and v-units as the adaptable
weights of the network. The X- and C-layer are identified as input layer, and output layer, .

..... respectively, and the P.-layer serves as the intermediate or hidden layer that constitutes the
internal representation of the network. The fact that one/=-module can be connected to more
than one R-module is equivalent to connections in a neural network that share a common

weight [9]. This is very important, because we want each linguistic value to be represented by
" only one membership function that is valid for all rules.

By this r_striction we retain the structural knowledge that we put into the system by

" defining the rules. In other neural fuzzy systems this fact is not recognized [1, 3] and it is
possible that one linguistic value is represented by different membership functions.

3 The Fuzzy Error Propagation Algorithm

Our goal is to tune the membership functions of the controller by a learning algorithm. Because
it is usually not possible to calculate the optimal control action for a given state of *.heplant,
so we can derive the error directly by comparing the optimal to the actual _ue, we are trying
to obtain a measure that adequately describes the state of the plant under consideration.

The optimal state of the plant can be described by a vector of state variable _-alues. That
means, the plant has reached the desired state if all of its state variables have reached their
value defined by this vector. But usually we are content with the current state if the _riables
have rougldy taken these values. And so it is natural to define the _oodness of the current
state by a membership function from which we can derive a fuzzy eaz_r that characterizes the

performance of our neural fuzzy controller.

Consider a system with n state _riables X1 .... ,X,,. We define the fuzzy-goodness Gl as

m'*,.I optimal • a,l_anal_
G1 -- .-,=.U_)t'3 '" ""'_'X_ J'

optimal
where the membership functions Px_ have to be defined according to the requirements of
the plant under consideration.

In addition of a near optimal state we also ccnsider states as good, where the incorrect
_-alues of the state x_riables compensate each other in a way, that the plant is driven towards
its optimal state. We define the fuzzy-goodness G_ as

G2 -- min(p c°mpensatel(XI .... , Xn),..., pcoml,ensatek(X! .... , Xn))

where the membership functions pco,nm,n,a% again have to be defined according to the require-
ments of the plant. There may be more than one pco,n_u,% and they may depend on two or
more of the state variables.

The overall fuzzy-goodness is defined as

6"=g(Gt,G2),

where the operation g has to be specified according to the actual application. In somecasesa
min-operat.;on may be appropriate, and in other casesit may be more adeq_-_teto choosejust
one of the two goodnessmeasures,perhaps dependingon the signof the current _"aJuesof the
state variables, e.g. we may want to rise G1 if all variables are positive or negative and G2 if
they are both positive and negative.

The fuzzy-error that is made by our neural fuzzy controller is defined as

E=I-G.
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We are now able to define our learning algorithm that works for each fuzzy rule in parallel.

Each rule R_ knows the value ri of the conjunction of its antecedents and the value cl of its
conclusion. Because we are rising monotonic memberzldp fundons, cl is already crisp. After the

control action has been determined by the controller and the new state of the plant is known, we

propagate the fuzzy-error E and the current values of the state variables to each R-module. If
the rule has contributed to the control output, i.e. ri _ 0, it has to evaluate its own conclusion.

According to the current state of the plant the rule can decide, whether its conclusion would
drive the system to a better or to a worse state. The actual control value cannot be determined,

but its direction, i.e. sgn(cop_), is known. For the case sgn(c_) - sgn(Copt) the rule has to be
made more sensitive and has to produce a conclusion that increases the current control action,

i.e. makes it more positive or negative respectively. For the second ease the opposite action
has to be "-,ken.

• Consider that we are using Tsukamoto's monotonic membership functions. Each member-

ship function can be characterized by a pair (a,b) such that/_(a) = 0 and/_(b) = 1 hold. A rule
is made more sensitive by increasing the difference between these two values in each of its an-
tecedents. That is done by keeping the value of b and changing a. That means the membership

functions are keeping their positions determined by their b-v_ues, and their ranges determined

by ]a - b] are made wider. To make a rule less sensitive the ranges have to be m_de smaller.
In addition to the changes in its antecedents, each firing rule has to change the membership
function of its conclusion. If a rule has produced a good control value, this s_lue is made better

by decreasing the difference [a - b], and a bad control value is made less worse by increasing

la- bl.
The rules change the membership functions by propagating their own rule-error

-ri. E if sgn(ci) = sgn(copt)eR, = ri" E if sgn(ci) _ sgn(copt)

to the connected p- and v-modules. The changes in the membership functions of the conclusions

(v-modules) are calculated according to

f at-o"eR_'lat-btl if(at<bk)
a_ew l a_ + a. eR, • ]ak - bkl otherwise,

where _ is a learning factor and R-module R_ is connected through vt to the C-module. If
_'kisshared,itischangedby asmuch R-modulesasareconnectedtotheC-module through

thismembership function.Forthemembershipfunctionsoftheantecedents(p-modules)the

follwingcalculationiscarriedout:

ajr, . or. en_ • [ajk, - bj_,[ if (ajk, < bjt_ )anew
jr: = .'1 ajt: _.eR, [aj_, bjk,[ otherwise,

where the X.module Xj is connected to the R-module R/through the membership function

Pit,, with kj E { 1,..., sj}, and sj is the number of linguistic s_lues of.¥j. If Pjtj is shared, it
is changed by as much R-modules as X$ is connected to through this p-module.

Compared to learning algorithms used in neural networks one can see, that the error is
not just passed back through the system, but that it is propagated to the intermediate layer
constituted by the R-modules, where a rather sophisticated e_luation of this error is carried
out, which is not typical for connectionistic systems. There the error signal is treated equally
by each component of the network. In our system the R-modules propagate the error back and
forward to the p- and v-modules, respectively, where less complicated calculations lead to a

change of the membership functions, the "fuzzy weights" from a connectionistlc point of view.

The neural fuzzy controller has not to learn from scratch, but knowledge in the form of

fuzzy if-then rules can be coded into the system. The learning procedure does not change this
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structural knowledge. It tunes the membership functions in an obvious way, and the semantics i
of the rules are not blurred by any semantically suspicious factors or weights attached to the

rules. .,

4 Controlling an Inverted Pendulum

- In this section we present the results of a simulation of the neural fuzzy controller applied to

the inverted pendulum (figure 4). An inverted pendulum ;s a well-known nonlinear dynamical

. system, often used to test fuzzy controllers. The sytem is described by two state variables that
are the input variables to the controller, the angle Omeasured a_alnst the upright position and
the ankle velocity #, which also describe the error and the change of error. The pendulum is

.... controUed by one control variable that is the cor',rol output, the force F applied to the base
of the rod that is only allowed to fall to the left or to the right. We use a simplified version of

the inverted pendulum in our simulation. The system is described by the differential equation

(m + sin 2 9)0 + _2 sin(20) - (m + 1) sin0 --
_ F COS _V

The movement oftherod issimulatedby a Kunge-Kuttaprocedurewitha timestepwidthof
0.1.

There areeightlinguisticvaluesattributedto eachofthe three_riables.Thisare the

common valuesPL, PM, PS, PZ, NZ, NS, NM, NL. Becausewe usemonotonicm-'mbership-

functionsthatarenotsymmetric,we modellthevalueZeroasPositiveZeroand NegativeZero.

A typicaldefinitionforth_membership functionsusedinoursimulationisdepicted_nfigure

3. The exactinitialvaluesofthe abovementionedcharacterizingpointb withp(b)= I and

theranged definedasb- a withIz(a)= 0 foreachmembershipfunctioncan be foundinthe

followingtables.

The rulebaseusedto constructthecontrollerispresentedinfigure5. Itwas foundthat

the controllerwas alreadyableto balancethe pendulum w_;ththisrulebaseand theinitial

membershipfunctions.However,a_terthelearningprocedurewas activated,theperformance

ofthesystembecamemuch better.Itwas alsofoundthatthecontrollerwas not abletocope

withextremeinitialpositionsofthependulum,e.g.0 = 20 and 0 = 2,when onlytheinitial

NL NM NS NZ _ PZ PS PM PL

-90 0 90 9

Figure 3: Monotonic membership functions modelling the linguistic values of #
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Figure 4: The inverted pendulum

PL PM PS PZ NZ NS NM NL
PL PL....
PM PM PS PS

PS PS PS PS

8 'PZ PS PZ .
Nz Ns

Ns NS NS NS "

NM NS NS [NM,N-I L ---

Figure5:The rulebaseoftheneuralfuzzycontroller

membership functionswereused.But when thelearningalgorithmwas appliedthecontroller

was abletobalancetherodafteronlythreetrials,i.e.thependulum felldown ([8_> 90)just
twice.

The results of the simulation can be found in table 1. We have only documented, the changes

in the membership functions of 0. For the other two variables similar changes have been found.

The fuzzyerrorE hasbeen definedby

l-min(1-_l,l-_) if sgn(8) = sgn(_), -3 <_8 <_3, -0.3 _<8 <_0.3
E = 18+ 1001 ifsgn(8)_ sgn(0),-3 < 8+ 10t_< 3

3 -- --

I otherwise. •.

That means thefuzzyerrorisdefinedby one two-dimensionaland two one-dimensionalmem-

bershipfunctions. The learning rate _ has been set to 0.01, _ ....

The next table shows the performance of the controller for each of the five runs. Each run

consisted of 3000 loops and has been performed with and without the learning procedure. The

performance is measure by the average over al] absoulte _ues of 9 measured during a run with

3_5 •"
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Run 1 Bun 2 Run 3 Run 4 Run 5

b initiald O 0 O = 10 O = 20 O = 20 O = 30 " "
_ = o.i # = I # = 1 # = 2 # = 2

NL .90 60.0000 so.oooo 60.0oo0 60.0000 60.00o0 60.0000
"NM -70 60.0000 60.0000 16,.0,,:.0000,J ,,60.00.00., , 60.0000 171.9157
NS -40 '40.0000 48.9108 47.5219 49.0139 64.3483 74.5797

NZ 0 -13.0000'" -8.0298 -9.5576 -I0.096I -9.6819 -9.2074

PZ 0 13.0_0 31.4427 17.6432 13.5961 13.6028 15.1134
PS 40:40.0000 -;19.8010 -48.2'032 '-50.0,_'0 -47.7372 "'-60.5255

PM 70 -60.0000 .60.0000 .61.0686 -62.0523 -82.9168 -180.7220

PL 90 '-60.00()0' .60._}00 -60.0000 -60.0000 -60.()000 -60.0000

Table 1: The changes in the ranges of the membership functions of 8

run1 run2 run3 run4 run5

8 without

learning 4.05 4.17 4.29 n.a.t,b, n.a.t.b.

with

]em_ng 0.56 0.65 0.74 2.13 5.36
L t

i no. of trials 1 1 1 3 11 ......

Table2:The performanceofthecontroller

n loops:

=
i=1

The controller was able to keep an angle near zero with activated learning procedure, and was
also able to balance the pendulum beginning from the extreme positions of runs 4 and 5 in 3 .....

and 11 trials, respectively, whereas the controller was not able to balance (n.a.t.b,) the rod in
these cases without learning.

5 Discussion ,

We have presented a learning algorithm for a neural fuzzy controUer based Gn a fuzzy error
measure. The structure of the controller resembles a neural network and the fuzzy error pro-
pagation can be compared to non-supervised learning procedures as they exist for certain

kinds of connectiomstic systems. Simulations of the controller have shown that the learning
procedure improves the behaviour of the fuzzy controller and is able to handle situations where
the non-learning controller fails.

The introduced fuzzy error measure is suitable for describing the performance of the con-
troller and allows each rule to determine changes for the membership functions of its precon-
ditions and its conclusion. The learning algorithm starts from a predefined rule base that can _
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be obtained by clustering methods e.g. [11],and it does not change the structural knowledge
encoded in these rules. It leaves the semantics of each rule intended by the user unchanged,
but removes the errors caused by an inaccurate modelling by changing the fuzzy sets. The
r_ults of the learnin_ procedurecan be easily interpreted [8]. It is not possible that two rules.
use differentfuzzy sets describing the same linguistic value.

Other neural fuzzy control environments, which are based more on neural network a_rift-
tectures [1, 3], often use factors to weight the rules or allow the rules to have different repre-
sentations for the. same input value. Promour point of view in this case there are semantics "
involved, that are different to our approach.This has to be consideredwhenan adaptive fuzzy .....
control environmemt is used.

An extension to the presented learning algorithm that is used in combination with a fuzzy
neuradnetwork that is capable to learn fuzzy rules and membership functions is presented in
[91.
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Abstract

In the present work, we consider the general problem of
knowledge acquisition under uncertainty. Simply stated, the problem
becomes: how can we capture the knowledge of an expert when the

expert is unable to clearly formulate how he or she arrives at a
decision?

A commonly used method is to learn by examples. We observe how
the expert solves specific cases and from this infer some rules by
which the decision may have been made. Unique to our work is the
fuzzy set representation of the conditions or attributes upon which
the expert may possibly base his fuzzy decision. From our examples,
we infer certain and possible fuzzy rules for closing a customer
service center and illustrate the importance of having the decision

closely relate to the conditions under consideration.

Z. Introduction
Much effort has recently been devoted to studying the problem of

knowledge acquisition under uncertainty. Uncertainty arises in many
different situations. It may be caused by the ambiguity in the
terms used to describe a specific situation. It may also be caused

by skepticism of rules used to describe a course of action or by
missing and/or erroneous data. [See (Arciszewski & Ziarko 1986),
(Bobrow, et.al. 1986), (Wiederhold, et. al. 1986), and (Zadeh
1983).]

To deal with uncertainty, techniques other than classical logic i

and the application of statistical methods need to be developed.
[See Mamdani, et. al. (1985) for a study of the limitations of
traditional statistical methods.] Rough set theorycan address the
limitations of statistics in dealing with uncertainty while

allowing rules to be extracted that describe a course of action or
a decision to be made. [See (Fibak, et. al. 1986), (Grzymala-Busse
1988), (Mrozek 1985 & 1987), (Pawlak 1981, 1982, 1983 & 1985), and
(Arciszewski & Ziarko 1986). ] Fuzzy set theory is another tool used
to deal with uncertainty where ambiguous terms are present. [See
(Zadeh 1979, 1981 & 1983)] Our work builds on these alternatives
to statistics, allowing us to infer knowledge from the uncertainty
associated with ambiguous (i.e. fuzzy) terms.
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2. D_elopment of the_del

The main purpose of the present work is to study the general
situation where the decision maker is faced with uncertain (i.e.
fuzzy) conditions and makes a fuzzy decision which might be
strongly or weakly based on these conditions. In this situation,
fuzzy rules can be extracted. We shall present the basic notations
and concepts for developing a methodology to extract such rules

from fuzzy conditions and fuzzy decisions. [Most of these concepts
are discussed in (Grzymala-Busse 1988), and (Pawlak 1981, 1982 &
1985) as they relate to crisp sets.]

Basic Notations and Concepts
Let U be the universe. Let R be an equivalence relation on U.

Let X be any subset of U. If Ix] denotes the equivalence class of
x relative to R, then we define

B(X) = (x • U/[x] = X) and

R(X) = (x _ U/Ix] n X _ e).

E(X) is called the lower approximation of X and R (X) is

called an upper approximation of X. Then B(X) c X c R(X). If

_(X) = X = R(X), then X is called definable.
An information system is a quadruple (U,Q,V,v) where U is the

universe and Q equals C u D where C n D = e. The set C is called
the set of conditions (attributes); D is called the set of
decisions. The set V stands for value and T is a function from UxQ
into v where _(u,q) denotes the value of condition q for element u.
The set C induces naturally an equivalence on U by partitioning U
into sets over which all attributes are constant. The set X is

called roughly C-definable

if E(X) _ e and R(X) _ U. It will be called externally C-definable

if B(X) = e and R(X) _ U. It will be called internally C-definable

if E(X) _ e and R(X) = U.

Unfortunately, uncertainty is all too often present in the
conditions and the decisions. The conditions and the decisions
fail to partition the universe into well-defined classes and some

overlap is present. We will deal withthe issue of using rough set
theory to handle the lack of clearly differentiated partitions by
using fuzzy sets. We will thus need to "fuzzily" rough set theory.

Rough Set Notation&pplied to Fuszy Sets
Two functions on pairs of fuzzy sets that will be used to

determine rules for closing a utility company's customer service
centers (CSCs). We define:

I(AcB)=inf Max (i - A(x), B(x)} (i) "
X

J(A#B)=Max Min {A(x), B(x)}. (2)

Here A and B denote fuzzy subsets of the same universe. The
function I(A c B) measures the degree to which A is included in B
and J(A # B) measures the degree to which A intersects B. It is



clear that I and J_can be expressed as

I(AcB)=inf (A _ B) ._. (3)
X

J(A#B)=Max (A n B ). (4)
X

In addition, the following relation holds:
I(AcB) = i - J(A#_B). (5)

. We can define the fuzzy terms involved in the decision as a

function of the terms used in the conditions. Let {Bt} be a finite
family of fuzzy sets. Let A be a fuzzy set. By a lower

approximation of A through (_), we mean the fuzzy set
E (A) = u _ ( B_ =A) Bi (_)

The decision making process may be simplified by disregarding all

sets B, if I ( Bi c A ) is less than some threshold u. Then,
= u I ( Bi c A ) Bi (7)E (A) a J

over all Bi for which I ( B c A ) _ u. Similarly, we can define
the upper approximation of _ through {B|} as

(A). ,= u J ( s_ # A ) B_ (8)

over all Bi for which J ( Bi # A ) _ e.
The operators I and J will yield two possible sets of rules: the

certain rules and the possible rules. The data given for the
Customer Service Centers (CSCs) will be converted to fuzzy
diagnosis of the attributes and we will be able to extract fuzzy
rules from the raw data. Each rule for the decision to close a CSC

will have some measure of belief associated with it. The primary
objective is to see to what degree a combination of attributes is
a subset of the decision (certain rules) or intersects the decision

(possible rules) to close a customer service center. In addition,
fuzzy terms involved in the decision have a lower and an upper
approximation so that we have a measure of the minimum degree to
which the lower approximation implies the decision and the minimum
degree to which that decision satisfies the upper approximation.

It is important to realize that the present methodology does not
give any indication of the quality of the decision. What is
determined is how closely the decision maker seems to depend on the
values of the selected set of attributes. If the decisions seem to

follow consistently these values and if we trust the decisicn
maker, we then have acquired knowledge, in terms of these
attributes, as to how decisions aremade.

3. Application
Houston Lighting & Power Company is the largest investor-owned

electric utility in the Southwest. HL&P is responsible for
generating and distributing electricity throughout twelve counties
surrounding Houston. Even though it is a private company, its
operations are regulated in Texas bythe Public Utility Commission
(Puc).

In November 1988, HL&P filed a request with the Public Utility
Commission for a $432 million rate increase. The public's
perception of HL&P's stability and sound judgment in the daily



management of its operations was critical to the outcome of the
rate case. HL&P needed to show that its decisions and operating
procedures were initiated with total consideration given to
effectively serving its customers.

However, the company's management felt that _n order to reduce
operating expenses in the event that the rata request before the ....
PUC was denied one or more Customer Service Centers (CSCs) might
have to be closed. These customer service centers handled walk-An

customer traffic for payment of bills and general customer
inquiries and, thus, were operated for the public's convenience.
With the rate incraase request before the PUC, HL&P had to

carefully analyze the CSC closing decision. The main consideration
for HL&P wast he public's reaction. Although a decision to close a

........ site w0uld potentially impact only a few customers, there might be
those who challenged the PUC rate hike request on the grounds of
paying more for less service.

HL&P investigated all relevant factors in making its decision.
The difference in relative operating expenses of CSCs was

negligible according to the company's operating and maintenance
budget. Therefore, operating cost couldnot be regarded as a major
consideration in the elimination of one of the CSCs. Four factors
could be considered in this decision: the total number of

customers in a district, the increase or decrease in a district's

population, the number of customers utilizlng the CSC in relation
to the district's population, and the distance that customers
would have to travel to an alternate CSC in the event their local

CSC was closed. (See Table 1.)

TABLE I: Customer Service Center Data

Avg. Customers in % Change in Usage/ Rerouting
District Customers Population Miles

Bayshore 38,510 5.1 4.64 15
Baytown 36,360 -1.4 21.5 15
Brazoria 20,689 3.4 14.07 20
Brazosport 21,976 .4 8.51 20

Cypress 44,074 8.3 1.87 17
Fort Bend 39,145 5.3 15.5 18
Galveston 31,263 - .1 36.44 20
Humble 55,911 1.0 12.44 15
Katy/Sealy 26,760 2.4 18.54 17
Wharton 8,707 - .74 39.43 18

NOTE: All of the above is based on 1985-1987 data.
' T '" L I • I " • ,,,I I

Based upon the data given in Table i, one of the authors served
as a decision maker in specifying a value indicative of a high
number of customers in the district and a low number in the

district; a great and a small percent change in usage; a high and
a low percentage of customers utilizing the canter; and a large and
small rerouting distance. A high number of customers was 60,000 and
a low number of customers was 5000 A great percent change was ±
9.00 and a small percent change was ± 0.1. A high usage population



ratio was 40.00 percent and a low usage was 1.00 percent. A large _
rerouting distance was 20 mil_s and a small distance was i0 miles.
The degree to which each site satisfied the definition of high,

low; great, small; high, low; and large, small is given by dividing
the actual data given in Table 1 by the parameter values defined
above to yield those values given in Table 2.

TABLE 2: Values for Fuzzy Sets of Conditions

Avg.Customers in % Change in Usage/ Rerouting
District Customers Population Miles

HIGH I_W GREAT SMALL HIGH LOW LARGE SMALL

Bayshore .640 .130 .567 .020 .116 .216 .75 .667
Baytown .606 .138 .156 .071 .538 .047 .75 .667
Brazoria .345 .242 .378 .029 .352 .071 1.00 .500

Brazosport .366 .228 .044 .250 .213 .118 1.00 .500
Cypress .735 .i13 .922 .012 .047 .535 .85 .588
Fort Bend .652 .128 .589 .019 .388 .065 .90 .556
Galveston .521 .160 .011 1.000 .911 .027 1.00 .500
Humble .932 .089 .iii .i00 .311 .080 .75 .667

Katy/Sealy .446 .187 .267 .042 .464 .054 .85 .588
Wharton .145 .574 .082 .135 .986 .025 .90 .556

Using the total operating revenue generated for each service
center, our decision maker determined that if revenue was less
that1% of the total generated from all centers, the CSC would be
closed. Conversely, the center would not be closed if revenue
exceeded 10% of the total. The raw da_a and the reflective

valuation of each center for closing and not closing are given in
Table 3.

TABLE 3: Revenue of each CSC & Closing Weight

Total Dollar Revenue Close Do Mot Close

Bayshore 270,411,636 .039 1.000
Baytown 142,262,298 .075 1.000
Brazoria 44,464,243 .239 .419
Brazosport 144,290,786 .074 1.000

_ Cypress 92,178,304 .I15 .869
Fort Bend 88,498,221 .120 .834
Galveston 89,125,871 .119 .840
Humble 120,219,083 .088 1.000

Katy/Sealy 53,675,510 .198 .506
Wharton 15,660,308 .677 .148

1,060,786,260

Of course, no one at HL&P would epecifically state exactly how
the decision to close a C$C would be determined. Since most

businesses define profitability in terms of revenue generated and



since HL&P representatives had obtained this information, we have
assumed that thf total operating revenue would bet he major factor
affecting the d=cision to close a CSC.

In reality, many factors, some of them even unknown to the
decision maker himself, may impact the decision of closing a
Customer Service Center. Still, we are interested in learning by
examples how much the decision can be attributed to theattrlbutes
for which HL&P had accumulated data for each CSC.

Example i
In the Eirst example we selected two attributes:

Usage/'Population and Reroutlng Distance.

First, we let x_ denote the customer service centers, such that
xI = Bayshore, x2 = Baytown,..., x_0 = Wharton. Then Da= Close the

.... csc, and Ds = Do Not Close the _SC. The decisionto close the
facility can be evaluated as:

Da = .039/X I + .075/x z + .239/x 3 + .074/X 4 + .l15/x 5 + .120/x 6
+ .llg/x_ . .088/x_ + .198/x 9 + .677/xi0
This indicates that based upon revenue generated, Wharton is a

fairly good example of a CSC to be closed, while Bayshore is not a

good example of _.
Likewise, we can indicate the degree of membership of each CSC

for each fuzzy-defined condition/attribute; High (H)
Usage/Population, Low (L) Usage/Population, Large (G) Rerouting
Distance, and Small (S) Rerouting Distance. For example, we define
the fuzzy set H as:

H = .l16/x I + .538/x 2 + .352/x 3 + .213/x 4 + .047/x_ + .388/x 6 +
.911/x_ + .311/x_+ .464/x_+ .986/X10

We compute the minimum degree to which possible combinations of

conditions/attributes are related to decision D_. _hu$,I ( H c D, ) = .i19 I ( H n G c Da ) = 1
I ( L c Da ) = .465 I ( H N S c D, ) = .462
I ( G c Da ) = .074 I ( L n U c D, ) - .465
I ( S c Da ) = .333 I ( L n S c D. ) _ .465

With a threshold of u = 0.40, the rules _or closlng a CSC are:
1. If usage/population percentage is low (i.e. 1% or less of

the customers in the district utilizing the CSC), then the

CSC should be closed. (Da is present .465 or Belief = .465)
2. If the usage/population percent is high (approximately 40%

of the customers in the d_strict utilize the CSC) and the
rerouting distance is small (approximately 10 miles), then
the CSC should be closed. (Belief = .462)

3. If the usage/population percent is low and the rerouting
distance is high (20 miles), then the CSC should be closed.
(Belief - .465)

4. If the usage/population is low and the reroutlng distance is
low, the CSC should be closed. (Belief = .465)
Since no new information is provided by rules 3 and 4, the

extracted rules for closing are:
i. If usage/population percentage is low then the CSC should be

closed. [The belief is .465.]
2. If usage/population is high and the rerouting distance is

small then the CSC should be closed. [The belief is .462.]
Rule 1 is certainly reasonable. Rule 2 sounds less reasonable. It

is generated by the decision maker deciding falrly strongly in
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favor of Wharton to be closed, although its usage/population was

definitely high and its rerouting distance was over .5 small. From
such examples, we learn that for high usage and relatlvely low
rerouting distance a CSC can be closed. Note that from the data, we
do not feel that strongly about these rules. The extracted _ules
would not be sufficient to infer closing from past experience.

We now measure the degree to which the fuzzy sets intersect D,
as"

J ( H # Da ) = .677 J ( H n G # Da ) - .677
J ( L # DA ) = .115 J ( H n S # DA ) - .556

. J ( G # DA ) - .677 J ( L o G# D, ) - .115
J ( S # Da ) = .556 J ( L O S # D_ ) - .115

S With a = 0,60, the acceptable rules are:
5. If usage/population percent is high, then closing is

possible .667.
6. If rerouting distance is great, then closing is possible

•677.

7. If usagepopulation is high and rerouting distance is
great, then closing is possible .677.

The extracted rule would be Rule 7. The possibility of closing if
usage/population is high and rerouting distance is great can't be

......... discounted. Brazoria was recommended to he closed with strength
.239 versus not closing with strength .419. Nevertheless, the
rerouting distance was definltely high and the usage/population was
rated .352 high versus .071 low.

We determine the lower approximation of DA, using a -.40, as:

R (D,) = .465 L _ .465 (L _ G} u .465 (L N S) u .462 (H N S)
= .465 L u .462 (H t_ S)

Note that this result shows Rule 3 and Rule 4 to be superfluous to

Rule 1 and unnecessary for the calculation of R (Da).
We can also show that Rules 5 & 6 should not be accepted since

the upper approximation of Da for a = .60, results in Rule 7:

(Da) = .677 H u .677 G u .677 (H N G)
= .677 H u .677 G

Although, Rule 1 appears to be the most logical rule to accept,
it eliminates Wharton as the primary candidate for closing. It
should be noted that Wharton's valuative scores based on high
customer utilization (.986) and relatively large as well as

relatively small rerouting values (.90 and .556, respectively) are
influencing the second and third decision rules. This example is an
excellent illustration of the necessity for the attributes to
properly reflect the decision criteria. In this example, the
decision to close a center was to be based solely on revenue

generated• This means that HL&P would select a center which
"- generated the lowest revenue as that to be closed and the one which

generated the highest revenue becomes that least likely to be
_J _ closed. This suggests that Wharton is our best site to close.

_ However, the usage/population percentage at Wharton is high
_ leading one to the conclusion that, in general, those centers with

high customer usage should be closed.
'_ _|e.-ampl e 2
i_ A second example is given to show that a closer relationship
_ between the decision and the attributes selected will lead to
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seemingly more logical rules being determined. For this ......

illustration_ we used the size of the customer base with the !
percent usage which suggests that although the percent usage may be t
high, there may be many fewer customers at the center generating
much less revenue, thus making the center a candidate for closing. !_

Using the values of the fuzzy sets High (NH) and Low (NL} for
the number of customers, and High (UH) and Low (UL) for the

usage/population percentages given in Table 2:

I ( NH c D, ) = .088 I ( NH , UH c DA ) = .463
I ( NL c D, ) = .677 I ( NH n UL c Da ) = .465
I ( UH c D, ) = .119 I ( NL , UH c Da } = .677 -
I ( UL c Da ) = .465 I ( NL N UL c Da ) = .87

With = = .60, the following rules would be determined:
i. If the number Of customers is low, the belief that the CSC

should be closed is .677.

2. If the number of customers is low and the usage/population
is low, the CSC should be closed .87.

3. If the number of customers is low and the usage/population
is high, the CSC should be closed .677.

Rule 3 is redundant and we would keep Rules 1 and 2.
Also using u = .60, we can determine the following rules from:

J ( NH # Da ) = .239 J ( NH n UH # Da ) = .239
J ( HL # D_ ) = .574 J ( NH N UL # Da ) = .i15

.... J ( UH # D'A ) = .677 J ( NL rl _I # DM ) = .574
J ( UL # D, ) = .116 J ( NL n UL # Da ) = .113

4. If the number of customers in the district is low, closing

is possible .574.
5. If the usage/population is high, closing is possible •.677'
6. If the number of customers in the district is low and the

usage/population is high, closing is possible .574.
From these rules, we select Rule 5.

Computing the upper and lower approximations based on u = .60,
we have:

R (DA) = .677 NL _ .87 ( NL _ UL} u .677 (NL N UH) and

Tus. the acceptable rules where Rule 1 and Rule 2 come from
certainty and Rule 3 come from possibility are:
1. If the number of customers is low and usage/population is

low, the CSC should be closed. [ Belief is .87. ]
2. If the number of customers is low, the CSC should be

closed. [Belief is .677. ]
3. If the usage/population is high, the CSC can be closed.

[Plausibility is .677. ]
If strictly ordering the CSCs to be closed based upon Rule 2,

Wharton would be the decision maker's first choice for closing
(followed by Brazoria and Brazosport). Although Rule 3 appears to
be illogical, if strictly ordering a center to be closed based upon
this rule, Wharton would be selected (followed by Galveston and
Baytown). If using the more logical Rule 1, Wharton would not be
considered first. Brazoria, ranking second in having the lowest
number of customers and fifth in having a low usage/population
ratio would be one possible choice for a CSC to be closed.
Brazosport with the third lowest number of customers and the third



lowest usage/population ratio would also be a good choice for
closure. Notice that these were the s_%ond choices if strlctly
ordering by Rule 2, based upon the number of customers i_ the
district. Since the number of customers in the district would

directly relate to the revenue generating power of a CSC, this
example provides a more reallstlc result and supports the need to
have well chosen attributes, reflecting the decisions made.

4. Qonalusions

Since the crisp set is a limiting case of the fu_. setting,
o expected benefits that arise from our fuzzy set based method are a

mor_ realistic and general approach to knowlea. J acquisition.
Acquisition of knowledge through examples, which is particularly of
interest when the decision •maker is unable to articulate how he

arrives at a decision, is a very natural approach to learning. Our
process allows the user to learn and determine rules based on the
examples available. Of course, the quality of the learning depends
upon the relevance of the chosen attributes to the decision.

The process allows rules to be determined through incorporation
of attribute data for all available alternatives for which a

decision must be made. The decision maker can specify a value he
considers to be high, medium, low, etc.and we can calculate the
degree of membership of each alternative in the fuzzy set. These
values can also be subjectively assigned after examination of the
attribute data. Ranges of values can be specified as we did for the
decision to close a customer service center.

The rough sets formulation as the bas_.s for determining the
decision rules is easily performed through maximization and
minimization of combinations of the fuzzy set values. The process
is not computationally intensive, although it does become more
l_ibor intensive beyond the two attribute with one decision case

presented in this paper. The authors hope to have a computer
program available in the near future to handle large-scale

.... problems.
Again, we stress that the proposed method does not give an

answer to: "are the decisions made, good decisions?". It is assumed
that the expert is knowledgeable about the conditions under which
the decision will be made. Our methodology gives an answer to "how
closely does the expert follow the attributes under consideration
in making his decision?". If the decisions seem to closely follow
the values of the attributes, then strong rules can be acquired
through examples end the expert's knowledge can be put into machine
representable fo_.

At this time, HL&P has not made a decision to close either of

• the customer service centers. Management has relied on reducing the
operating costs at each of the centers by moving to the company's
downtown Houston location, the CSC employees who generally had only
telephone contact with district customers. A complete evaluation
of the data from Tables i, 2, and 3 is to be performed and
submitted to HL&P as soon as the prototype computer program is
completed.
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Ngs-9/S ._
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Box 20, SF- 53851 Lappeenranta, Finland

ABSTRACT

Concurrentengineering starts to be more and more importantpractice in /
manufacturing. ;-
One of the problems in concurrent engineering is uncertaintyin the values of input _.....
variables as well as operating conditions. .....:-.---.:---.__
The problem solved in the presented paper consists in the simulation of processes
where the raw materials and the operational parameterswith fuzzy characteristicsare
applied. The processing of fuzzy input information is performed by the vertex --_- ' -
method and commercial simulation packages POLYMATH (1990) and GEMS(1987). .::. _
The examples are presented to illustrate the usefulness of the method to the ....
simulation of chemical engineeringprocesses. __

INTROD UCTION __::::_.:::'.:

There are two main reasons to model uncertain knowledge in chemical engineering, _-_..-
The first one is the scale of the phenomena. The micro scale is of the growing -- -
interest for the chemical engineers. The key examples are the biochemical processes
and new materials technologies. The analysis on the level of agglomerates,cells or
molecules is of the other type than that on meso or micro scale.
The secondreasonistheglobalchangeoftheestimationoftechnologiesinthe _ :"_-_-
surroundingworld. Environmental,economic, and cultural analysis is needed now to -_--:-:-_>.__:_-

answer the question: ,sa given technology good or not? -":-::-/_-::_
In both cases, the sources of the uncertaintyis the process complexity. The more . --__.'
complex the process is, the less information could be presented in numerical and
objective way. Such a situation is a consequence of the behaviourof complex -i" ._._:-__:,
systems. It is not a consequence of the lack of the good tools of analysis. ---_:: ........
The chemical engineers have to realize that another type of processes requires ....:_.___-
another tools for understandingand description. .....:-_--"__-__..

The change in design process is the additional reason for the use of fuzzy -..... _..
calculations, -''_.:-_

Design in chemical engineering is a long and complex process, _ _ :::__.
Its consequences are a long productdevelopment cycle, high manufacturingcosts, and -----_--_-_--.-"

" _-_-_..-_,__.i.

. _ -. .



often, poor final quality. The main reason for this situation is the sequential nature of _--.,
the design process. This way of proceeding results from the fact that the design
objectives andcoestraints are formulated gradually in all stages of the product and
process cle_;elopn'len_"In the next step the product is tested and, if the criteria are
not achieved, then the design procedure is repeated. :/" _
The name of such method is serial engineerin& ....

_. The present chemical process industry situation is characterized by the growing
competition, rising degree of complexity, and demand of high quality products. To
survive in a new situation, the companies have to reduce the time from market
demand to the full scale production to reduce the costs and to be more flexible. " "

These demands evoke the need of new managerial as well as engineering techniques.

One of the new engineering methods is concurrent engineering
(Rosenbiatt and wais0n, 1991, Ishii, 1990 and Hartley 1991).
Its essence is an integration of var/ous manufacturing, marketing and engineering
activities. This demand is realized by the team work of the multi-disciplinary groups. _.
The people from marketing, design, manufacturing, sales, and services are working
together. They formulate the required properties of a product, transform them into
the engineering data, study the resulting manufacturing problems and establish final
parameters of the product.

The tool for communication inside such a multidisciplinary team is a "house of
quality', (Hauser and Clausing 1988_ Thackeray and van Treeck 1990).

The integration of various activities results in the simultaneous generation and
evaluation of the different variants of product and proces_ The comparison of both : ....
types of engineering is presented in Fig L

The imprecise values of raw materials properties, operation parameters as well as
product demands are the consequences of the application of the concurrent
engineering tools in chemical engineering problems. ......
The properties of raw materials are imprecise especially in batch and bio- processes, ....... _....
It is due to the nonhomogeneity of the substrates that is normal in noncontinuous
processes as well as in natural products.

The problems of the imprecision in the operational parameters reflect the fact of the
contradictory'conditions imposed on the process. The contradictions are the ::-- _ "
consequences of the fulfilling of the different criteria. Given critet/on could be "_ "
reached at the given set of parameter_ In order to obtain the reasonable solution the : :_:
compromise has to be reached. The result of such compromise is the creation of the
operational ranges for parameters instead of crisp values of variables.

The variability of dem_ed is a popular situation that results from the market changes. ...... -
Uncertainty of stochastic type could be treated by the well known probabilistic
methods. However, there has been very few attempts to take directly into account the . - _
non-stochasticlackofpreci_oninsimulationaswellasinoptimization(Edgarand ._.-
Himmelblau 1989). There are several approaches to study the influence of ' • '_
uncertainty on the output variables. The most popular methods are flexibility and _=_'_ • -..

__:._._i.....j_

•
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sensitivity analysis. They are complicated and time consuming. The direct
introduction of fuzzy variables into the existing packages is the simplest way to
analyse the non-stochastic uncertainty. There are several approaches to study the
uncertainty in design (Wood et aL 1991). In the present paper the vertex method is
applied to introduce the fuzzy values into the existing programs.

VERTEX METHOD

The vertex method is based on the ec - cut concept and the interval analysis
proposed by Dong and Shah (1987). It enables the calculation of the membership
function t_:,of the following expression:

y =f ,...,x,) (I)

where x i .... x _ are fuzzy var/ables.
Let us assume the triangular form of /L_, membership function. At the given
_- level, the values of the membership function are [a,,, b.] as it is shown in Fig. 2. i:

As a result for the given xl,..., x_ and a - cut one obtains the set of intervals [a_,b,],
..., [an, b_i. The set of the intervals forms an n-dimensional reg/on with 2_ vertices.
An example for n :2 is given in Fig. 3. To obtain the y value in Eq. 1 on the a - level .-
one has to calculate:

: f .y,: f (cJ (2) ....

where c z : (a z ,,.-, a, ) ,.., c r = (b j ,..., b _).
The y value in Eq. 1 at the level cz is expressed as the interval function:

Y : [min f (c,) , mx! (c_)] (3)

The ,values of Y calculated on the different a - levels create the output fuzzy values
as presented in Fig.3.
If the membership functions of fuzzy variables are triangular, then the number of
runs equals 2e , where n is a number of fuzzy variables. The fuzzy output is
determined at different a - levels according to Eq.3. The Y values are calculated
for e_ : 1 and ec :0, in this paper, for the sake of simplicity. --

EXAMPLES

The examples presented below illust,-ate the fuzzy sin_ulation in concurrent
engineering problems. The fuzzy forms of operating conditions as well as raw
material properties are obtained applying "the house of quality" method.
The imprecision of the operation conditions and physico-chemica! properties is
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studied in the first example.
The influences of imprecise parameters of raw materials and operational¢onditioas
are examined in the second example.

_ Example I.

The following reactions has been studied by Himmelblau (1970):

kl
A+B " C+F

A +C " D+F

A+D " E+F

The proposed model for the reacting system is as follows:

dt

dB

dC

dE

where the kinetic constant k i ----a i exp(-: i / T ) i=I,2,3.
a l, b t are constants and T is process temperature.

The initial and final conditions with concentration expressed in mole/liter and time
in minutes has been reported as:

A(O) = 0.0209, S(O) = 0.00697, C(0) = D(0) = 0 and t =200.

The nominal values of kinetic constants have been reported as:
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k I= 14.7,k2= 1.53,k_= 0.294.

Aim of the study is to determir.'c the sensitivity of the concentrations A and E
caused by the imprecise values T.
Temperature T is given in the form of fuzzy set. It is a consequence of the
appplicationofthe"houseofquality"method, r __

Solution

The following fuzzy kinetic constants result from the "house of quafity" method:

- k I= (13.20014.700 15.500)
k_ - ( 1.180 1.530 1.720)............
k_= ( 0.253 0.294 0.315)

Therearen --2 3= 8 verticesc, accordingtovertexmethod.Givenvertexc,isa
vectorcomposed ofthreekineticconstants.The calculationsshouldberealisedat
differenta -levelsofthefuzzykineticconstants.
Thevaluesofallverticesat 0== 0 areyresentedinTableI.
If a = l thencalculationsareperformedonlyinonevertexc (k i= 14.7,k._=
1.53,k 3- 0.294).Thbsystemofdifferentialequationshastobesolvedforallthe
combinationsofthekineticconstants'values

Asa resulttheprofdesofconcentrationsA andE areobtainedusing{POLYMATH
1990).
Becausetherearenoextremalpoints,fuzzyvaluesofA andE aftertimet- 200
rain could be determined from the Eq.3. In the opposite situation instead of applying
Eq.3. another approach should be used (Wood et al. 1991).
At • = 0, according to Table 1, minimal and maximal values of A and E are:
rain A -- 0.00551, max A = 0.00631, rain E = 0. 00151, max E = 0.00189.
At ¢ = 1 there is only one point to calculate. The results of simulation are given in ,
Table 1 for vertex 9.

The resulting fuzzy concentrations A and E obtained for fuzzy kinetic coefficients are
as follows:

A = (0.00551 0.00573 0.00631)
E = (0.00151 0.00177 0.00189)

IFI.

Example 2

The problem consists in the estimation of the product characteristics that are
influenced by the the imprecise properties of raw material and operation condition._
The process under consideration is mechanical pulp mill peroxide bleaching.The raw
material is unbleached pulp and the product is bleached pulp.
The raw material properties are light scatttering, brightness,and initial pulp pH. The



m

operating conditions are limited in this example to iaitinl peroxideconcentrttion. The
product properties are brightness, f'mal pH and metal ions content.
The process has been simulated with (GEMS 1987). Usually, the raw material is not
uniform. ,Asa result, its parameters could not be determined in a prec_ way. As a
consequence, the operating parameters are uncertain, too.
The aim is to estabilish the product properties taking into account the impreci_on
of raw materials properties and operating conditions
Solution....

The form of fuzzy input variables of raw material is preseated in Table 2. The results _Ii
of some simulations are presented in Table 3. Resulting interval values are given in _ _
Table 4. The fuzzy characteristic of products is determined by Cartesianproduct of

two fuzzy sets y I and y, (Dubois and Prade 1988). The resulting fuzzy set is as ]i

follows: .....................

:4

0

(7.3; 68.7?) (7.3; 71.85) (8.53; 68.77) (8.53; 71.85) I'

1 I 1

(s.75;75.e4). (e.9 74.32). 75.64)

CONCLUSIONS

The presented method can be used in coucurrem engineering approach to pr_
design. The main advantage of the presented method over the e_ting approaches is
its ability to study the uncertainty in the raw materials characteristic as well as in
operating conditions. It could be used with commercial packages without any changes
of the existing programs. The construction of the "compact "package is the main
aim for ghe future. Such a package should be composed of simulator,vertex method
module and house of quality interactive program.
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TableI.Theverticescoordinatesofkineticconstantsandsimulationresults. *'

i q l l i _tt

vertex I_ l_ I_ A I0= C I0= D l(P E I0z
number

1 13.2 1.18 0.253 0.631 0.854 0.460 0.151
i i i ii _ * .

2 13.2 1.18 0.315 0.606 0.881 0.431 0.178
,.

3 13.2 1.72 0.253 0.577 0.415 0.495 0.161

4 13_2 1.72 0.315 0.551 0.436 0.464 0.189
........ 4

5 15.5 1.18 0.253 0.630 0.850 0.460 0.151
ii i

6 15.5 1.18 0.315 0.606 0.881 0.431 0.178 -
, ,. H|

7 15.5 1.72 0.253 0.577 ....... 0.415 0.495 0.161

8 15.5 1.72 0.315 0.551 0.436 0.464 0.189

9 14.7 1.53 0.294 0.573 0.544 0.466
[ II ill

Table 2. Charecteristicsof raw material

x_ light 71.9;72.2;
scattering 15.0;0.3

63.2; 63.8;
bdghmes 1.1;0.0

xs 10.8;11.0;
. pH ..... 0.6; 0.0

Table3. Examples of the results of simulation
iiiiii inNtt :_IL .m. i i

r_ xz r_ r_
light brightness pH I_0_ YH _rightness _etal ions
scattering

i i m _ w....

71.90 63.20 10.80 } 3.0 8.75 74.32 6.87"101
II i iii i i

Table 4. Fuzzy output parametersof pulp

i i j i m ,N

, 7.52;7.69

_rightness 0 68.77;69.7.... ! 74.54;75.8

y) 103 0 5.12;6.48
Lmetal ions 1 5.49;5.50
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Abstract. In many applied problems (geophysics, medicine, astronomy, etc) we cannot directly
measure the values z(t) of the desired physical quantity Z in different moments of time, so we
measure some related quantity y(t), and then we try to reconstruct the desired values z(,). This

problem is often ill-posed in the sense that two essentially different functions x(t) are consistent with
the same measurement results. So, in order to get a reasonable reconstruction, we must have some

additional prior information about the desired function z(t). Methods that use this information to
choose x(t) from the set of all possible solutions are called regularization methods.

In some cases, we know the statistical characteristics both of z(t) and of the measurement
errors, so we can apply statistical filtering methods (well-developed since the invention of a Wiener

filter). In some situations, we know the properties of the desired process, e.g., we know that
the derivative of x(t) is limited by some number A, etc. In this case, we can apply standard
regularization techniques (e.g., Tikhonov's regularization).

In many cases, however, we have only uncertain knowledge about the values of z(t), about
the rate with which the values of x(t) can change, and about the measurement errors. In these
cases, usually one of the existing regularization methods is applied. There exist several heuristics
that choose such a method. The problem with these heuristics is that they often lead to choosing
different methods, and these methods lead to different functions z(t). Therefore, the results x(t)

of applying these heuristic methods are often um_llable.

W_ show that if we use fuzzy logic to describe this uncertainty, then we automatically arrive
at a unique regularization method, whose parameters are uniquely determined by the experts
knowledge. Although we start with the fuzzy description, but the resulting regularization turns
out to be quite crisp.

1. INTRODUCTION

What is an inverse prob_m ([TA77], [I83], [G84], [I86], [I86a], [LRS86], [CB86]). In many
applied problems (geophysics, medicine, astronomy, etc) we cannot directly measure the values x(t)
of the desired physical quantity x in different moments c _time, so we measure some related quantity
y(t), and then try to reconstruct the desired values z(t). For example, in case the dependency
between z(t) and y(t) is linear, we arrive at a problem of reconstructing z(t) from the equation

y(t) = f k(t, s)x(s)ds + n(t), where k(t, s) is an approximately known function, and n(t) denote
the (unknown) errors of measuring y(t). These problems are called inverse problems.

Another example of inverse problems is image reconstruction from a noisy raw data.

Why inverse problems are so difficult to solve? These problems are often il/-posed in the
sense that two essentially different functions x(t) axe consistent with the same observations y(t).
For example, since all the measurement devices are inertial and thus suppress the high frequencies,
the functions x(t) and z(t) + sin(wt), where w is sufficiently big, lead to almost similar values of
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y(t). So, in order to get meaningful results, we must scmehow choose from all possible solutions
x(t) (i.e., from all the functions that are consistent with the measurement results) a one that is
the most reasonable, the most regular (in some sense). A process of choosing such a function is
therefore o_lled a regularization [TA77], [I83], [G84], [I86], [I86a], [LRS86].

Inverse problems are extremely important for space exploration. If we are analyzing
familiar processes, then we usually know (more or less) how the function z(t) looks like. For
example, we can know that z(t) is a linear function _r(t) = Cz + C2z, or a si,ne function x(t) =
Clsin(C2t -I-C3), etc. In mathematic_ terms, we know that z(t) = f(t, Cl ..... Ck), where f is
a known expression, and the only problem is to determine the coefficients Ci. This is how, for
example, the orbits of planets, satellites, comets, etc., are computed: the genera] shape of an
orbit is known from Newton's theory, so we only have to estimate the parazneters of a speci_c
orbit. In such cases, the existence of several other functions z(t) that axe consistent with the same
observations, is not a big problem, because we choose only the functions z(t) that are expressed by
the formula f(t_ Cz,..., Ck).

In space exploration one of the mzin objectives (and the main challenges) is to analyze new
phenomena, new effects, qualitatively new processes, and in these cases no prior expression f is
known.

How these problems are traditionally solved? If we know the statistical characteristics
of x(t) and statistical characteristics of the measurement errors n(t), then we can formulate the
problem of choosing the maximally probable x(t) and end up with one of the methods of statistica_
regularization, or filtering (Wiener filter is one of the examples of this approach).

If we do not have this statistical information, but we know, e.g., that the average rate of change

x(t) is smaller than some constant A (i.e., _/f _(t) 2 dt <_ A), then we can apply regularizationof

methods proposed by A. N. Tikhonov a_ad others [TA77], [G84], [LRS86].

In particular, one of the most widely used (and most efficient) regularizatior, techniques consists
of choosing among _ the z(t) that are consistent with given observations, a function z(t) for which
the so-called Tikhonov functional (or Tikhonov stabilizer)

J(_) = aof(x(t)) 2dt + u_f(_(t)) 2dt . a2f(_2_(t))2dt + ... . ._ f(z_k_)_dt
takes the smallest possible value, where ai are n_m-negative real numbers, ak > 0, k > 1, and z(_){t)
denotes i-th derivative of x(t).

For .;rouge reconstruction problems, whca instead of a function z(t) of one variable t we have a
function I(x, y) of two coordinates (that expresses brightness in a point (x, y)), a similar functiona/
that involves partial derivatives cast be used.

If no such information is available, it is usually recommended to use Tikhouov's (or alternative)
regularization techniques that correspond to some values of ai. Several semi-heuristic rules of
choosingthesepazameters¢i axe known. The problemwiththesechoicesis thatdifferentrules
sometimesleadtodrasticallydifferentresults,and thereforezLeseresultsareunreliable.

Usually experts possess some uncertain knowledge. The whole situationseemshopeless.

butitisnot.Yes,innew fieldswe do not havepreciseknowledgeofwhat isgoingon,but we may"

be abletomake some uncertainpredictions.Forexample,ifwe wanttoknow hcw thetemperature

on a planetchangeswithtimet,thentheexpertscan tenthatmost_ikely,z(t)islimitedby some
valueM, and thattherate_(t)withwhichthetemperaturecharily,istypically(or"mostlikely,_,

etc)limitedby some valueA, etc.We can Mso havesome expertknowledgeabouttheerror,with
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which we measure y(t), so the resulting expert's knowledge about the value of y(t) in some point t _'_ ._-_'_:';;
looks like _the difference between the measured value y(t) and the actual value Y(t) is most likely, ......

not bigger than 6" (where 6 is a positive real number given by an expert). - " :_ _;i;_

The importance of this information is stressed in [B92]. _'_.7

What we are planning to do. In the present paper we show that if we use fuzzy logic to describe _ ....
this uncertainty, then we automatically axrive at a unique regularization method, whose parameters "- f- .....
are uniquely determined by the experts knowledge. Moreover, although we start with the fuzzy .?_- "
description, but the resulting regularization turns out to be quite crisp. -<_: ....

In Section 2 we will discuss briefly how to choose an appropriate representation of the experts :_:(:!f'-_..

uncertainty, in Section 3 we use the resulting representations to solve the inverse problems. ""iii-.-.:

2. PRELIMINARY DISCUSSION: . .:= _:
HOW TO DESCRIBE RELATED UNCERTAINTY ::_-.:--_

What we have to describe. We want to use fuzzy logic to describe this kind of uncertainty. So -::--:_:-'-::;5we must do the following:
• find appropriate fuzzy representations of the experts statements of the type "most likely, X is

< M _, or "most likely, ]X - a[ _<_, where X is unknown, and M,a,_ are known values; :_:::"
• choose a way to combine the resulting fuzzy statements into a membership function for different : ' =:'_":_

z(t); :
• transform this fuzzy description of z(t) into a single function z(t) that will be produced as a _.

solution of the inverse problem, i.e., choose an appropriate defuzzification. --,

In thepresentSectionwe willdescribehow to make allthreechoices.Actuallywe willstart - "
with choosing an appropriate combination rule, then we will choose an appropriate membership ' "_,i.
function, and then it will turn out that defuzzification is trivial. _ -'.:-}:'

How to choose an aggregation function, in general,our uncertainknowledgeaboutthe -_:_ -
unknown functionz(t)consistsofthestatementsofthefollowingtypes:"mostlikely,Iz(t)[< M", : 5.:.:

_most likely,]_(t)[< A", "most likely,]y(t)-f k(t,,s)_(a)daI<__",etc.F,a_hstatementisfuzzy ....
in the sense that for an arbitrary function z(t) we are not 100% sure whether this statement is -_..:
true for this function or not. The general idea of fuzzy logic is to describe this uncertainty by a : :."

membership function, i.e., by a mapping that assigns to every z(t) a number from the interval [0,1}, "
that describes to what extent we believe that this statement is true. _- :

Suppose that we have already decided how to express each of previous statements in terms :_ ;- ,r:_
of membership functions. So we get a differen_ membership function for each moment of time .... "" ......
t and for each statement. We must now generate a membership function that describes all our
knowledge, i.e., that describes the fact that the first statement is true, and the second statement is -;:;'-_- -
true, etc. The total knowledge is obtained by applying "and" to all the statements, and therefore
the resulting membership function must be obtained by applying one of the operations & : [0, I]×
[0, I] _ [0, I] that express "and" to all the correspondent membership functions pi(_): /_(_{t)) = - ..... .

Experimentalresultsgivenin [HC76],[077],and [Z78],show thatamong allpossible_and"-

operationsa,b---*min(a,b)and a,b--,ab arethebestfitforhuman reasoning.The rainoperation

doesnot seem to be adequateforour purposes,becauseifwe usemi_, then,e.g.,thedegree,to

which a function z(t) satisfies the condition "most likely, [z(t)[ <__M", is equal to the minimal of - -
the degrees of the corresponding statements. This minimum is attained when the value of ]x( t)] is
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-_'_=._7 • , .

the biggest possible. Therefore, the function zl(t) that is everywhere equal to 2M, gets the same
degree of consistency with the above-given rule, as the function z_(t) that is almost everywhere .... _--.:-
equal to 0, and is attaining the value 2M only on a small interval. Intuitively, however, for the first _-_ --.-_-_--
function zl(t) (for which the ineituality is always false), our degree of belief that it satisfies this _-:=_:-- '_
condition is practically 0, while for the second function z2(t), for which this inequality is almost _-"_-=.2 .....
everywhere true, our degree of belief must be close to 1. So using rain in our problem is inconsistent --_ _ '

with our intuition, and therefore we must use the product for &. _ _,i..

Comment. Other arguments for choosing different & operations are given in [K83], [KR86], [K87], " ':-=
[KKM88], [K89], [K89a], [K90], [KK90], [KL90], [KQL91], [KQLFLKBR92]. -..,

What membership functions to choose? We want to describe the statements of the type
"most likely, IX -a I _<_'_, where X is an unknown (z(t),_(t), or.y(t.)).and a,_ are known values

(forexample,/_= M and a = 0).So we must describe,towhat extentany givenvaluez satisfies __.
. -'?"

this condition. _'-_;_ ,.
Evidently, :r satisfies the inequality Iz- a[ </_ if and only if the value y = (z-a)/5 satisfies the ......_("

. _-_<_:y ...k.-'-;" ....

inequality I_/I_- 1. Therefore, it is natural to assume that the statement "most likely, Ix - al <__" ..__- ....
has the same degree of belief as the statement "most likely, lYl <- 1", where _1= (z - a)/_. So, if we : _ .......
willbe abletodescribea membershipfunctionp(y)thatcorrespondstothestatement"mostlikely, .--....=
]_/I < 1", t_.en we will be able to describe our degree of belief p_(z) that z satisfies the condition _- "-_::_:::"_-
"most likely, }X - aI _</P' as _((z - a)_). So the main problem is to find an appropriate function " ......

In the present paper we use Gaussian membership functions/_(z) = ezp(-/_z _) for some _ > 0. -
Therefore, the statement "most likely, IX - a I _ _" will be described by a membership function - - .....
_,_(_)= e_p(-_(_- a)_/,_). :'_-:_"

Gaussianmembershipfunctionsaxewidelyusedinfuzzysystemsand fuzzycontrol(see, e.g., "_'-:.....
[K75], [BCDMMM85], [YIS85], [KM87, Ch. 5], etc.), and there are several theoretical explanations " .......
why they are so successful: in [KR86] and in Section 8 of [KQLFLKBR92] we prove that Ganssian ....
functions are optimal (in some reasonable sense), and in [KQR92] we describe reasonable axioms
that uniquely determine Gaussian membership functions. .i .i_!".:.-

A remark about defuzziflcation. Suppose that we have determined the membership fun,:tions :..... " :-
pi(z(t)),thatcorrespondtodifferentstatementsabouttheunknown processz(t).Then theresult- _ --....

ing membership function p(_(t)) is obtained by multiplying the functions _i(z(t)) that correspond _:' _ ....
to thesestatements. " -':_."

AllthevaluesofPiare _ 1.So,ifwe multiplymany suchvalues,we end up withverysmall ""

numbers. E.g., if we have 10 experts who all assign the truth value 0.9 to some event, the resulting _ _ -
estimate is 0.91° _ 0.3. Thus, the fact that for some process z(t) the membership value/_(z(t)) is _ "_i:.

small, does not necessarily mean that this particular dependency z(t) is hardly possible. What is _:_.._._
meavingful is not the absolute, but the relative value of p(z(t)): if p(z(t)) ,_ p(y(t)), then it does ......

mean that, according or our knowledge, z(t) is much less probable than y(t). _: _/..._

To make these comparisons easier, L. Zaxieh proposed to use normalization, i.e., turn from _ .......... "
u(z(t)) to/d(z(t)) "- N_(z(t)), where a normalizer N is chosen in such a way that the maximal - -=_
value of p'(z(t)) is equal to 1 (i.e., N = 1/(ma_cldz(t))) ). =--_..........

Comment. Theor,_tical explanations of this choice of a normalization are given in [KQLFLKBR92] _"•
(in the framework of a general mathematical foundation scheme for fuzzy logic). ..
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3. FUZZY DESCRIPTION OF RELEVANT EXPERTS KNOWLEDGE _: _"
AND RESULTING REGULARIZATION ......_..-.-

Let's first llst the possible experts-statements. -- !_-L

I) Usually experts c,m give the approximate range of the process z(t), i.e., they can give a number .._=____,_"-m_.
M for which "most likely, for every t the value of Ix(t)} is limited by M. _ --:_ :".--i

•_S>.

2) Usually they can also give some approximate bounds for the rate, with which the values of .... :: ----
z(t) can change, i.e., they can give a number A, for which "most likely, for every t, the value _::-_._
of [_(t)[ is limited by A'. : :

3) Sometimes, the experts' knowledge and/or intuition can also prompt the approximate bounds
for the second time derivative of the process (acceleration), and bounds fro:some higher deriva- _:-.-
tires. For each of these derivatives, an expert gives a value Ai and states that "most likely, •

for every t, the value of Iz(i)(t)[ is limited by Ai" (here x(i)(t) denoted i-th derivative). _ _'"="_-'_..______

4) Experts can also give some information about the possible measurement errors, i.e., about the
values n(t) = y(t)- f k(t, s)z(s) ds, where y(t) are the measured values. In this case, an expert _--:_ :_ -
gives a value _, and states that "most likely, for every t, the value of In(t)l is limited by 6."

In addition to that, we have some measurement results y(t), and these measurement results _.
determinea setX ofallthefunctionsthatareconsistentwiththem.Forexample,ifwe know the --:

maximal possible value e of a measurement error n(t), then X consists of all the functions z(t) that H:__ ....
satisfy the inequality [y(t) - f k(t,s)z(s)ds] <__ for all t.

We want to represent the expert knowledge in terms of a membership function that is defined -L-_-: _"
on this set X.

We cannot directly translate these statements into membership functions, so we need ........

an additional approximation process. Each of these statements refers not to a single value of .....
some variable, but to infinitely many values, namely, to the values of x(t) for all possible moments
of time t. So, if we write down all the resulting elementary statements, we will end up with in-
finitely many such statements. So, to get a membership function that coresponds to the resulting
knowledge, we must apply an "andS-operator to infinitely many membership functions, that corre- _.•
spond to infinitely many elementary statements. But we know only how to apply "and'-operator _.

to finitely many functions, i>_

In order to cover the infinite case, we will apply the usual mathemat]cal method of dealing
with infinities: we will first consider the case, when the experts statements are applicable only to

finitely many points t_,...,tn, and then tend n to infinity in such a way that in the limit these
points ti are everywhere dense. One of the natural possibilities to do that is to choose ti :- to + ih,
where h > 0, and then take to --, -co, h --_ 0, and n _ c0 in such a way that t,, = to + nh -, +co.

The resulting membership function: derivation. Let us apply this procedure and compute .....
theresultingmembershipfunction.The readerswho areinterestedonlyinthefinalresultcanskip

thissubsection. _._

Let'sfirstconsiderthecase,when theonlyexpertsknowledgeconsistsoftheboundsM and A

on Iz(t) Iand I_(t)!. Then for each t the corresponding membership functions are ezp(-/_]z(t)l _/M _)
and ezp(-_l_(t)l_/A_). Therefore, if we take into consideration these statements for t = t_ ..... In, .7 <_
ti --"to + ih, the resulting membership function will be equal to the product of these membership
functions, i.e., will be equal to the following expression
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,(x(t)) = II_'=ie:P(-_l:(_,)121M2) × l'ff_-1ezp(-_l_(t,)pIA2).
",D t

Comment. We are restricted to the set X of all f_nctions z(t) that are consistent with the measure-
ment results. Therefore, the above ,xpress_ionfor p(z(t)) b valid only for such functions z(/). A11

functions z(t) that are not consistent with the measurement results are impossible, i.e., if z(t) _ X,
then p(x,(t)) = O. _....

Since ezp(u) x exp(b) = ezp(a + b), we can simplify the expression for p(z(/)) as follows:
_(:(t)) = e:_-(;/M _)E_=, I:(t,)l2- (_/A2)E__-,li(tJP).

What happens when n -* or? If we multiply the sum Y_-_=t[z(/i)[ 2 by h =/i+t - Ii, we get an
integral st,,m for the integral f Ix(t)[ 2dr. These integral sums tend to this integral, when h ---, 0.

Hence, for small h, this sum is approximately equal to h -1 f [z(t)[! dr. Ther_efore, themembershi p
function is approximately equal to the following expression:

ph(z(t)) ._ ezp(-(_/h)J(z(t))),

where

J(x(t)) = M -2 f Iz(t)l 2 dt + A -_ f l_(t)}2dr. . .....

When h --, O, (/J/h)J(z(t)) --* co, and, therefore, ph(z(t)) _, ezp(-(fl/h)J(z(t))) --, O. Therefore,
if we apply a transition to a limit, we end up with a meaningless expression lt(z(t)) =- 0.

In order to get a reasonable limit membership function I_(z(t)), we must apply the nor-
realization procedure before going to a limit. In other words, we must transform I_l,(z(t)) into

p_(x(t)) = Npa(z(t)), where N -- 1/(mazz(e)_xl_a(z(t))). .

Since ph(z(t)) _ ezp(-(_/h)J(z(t))), the value of/_h(z(/)) is the biggest when the value
of J(z(t)) is the smallest possible. So, if we denote by m the smallest possible value of the
functional J(z(t)) on X, we can conclude that mazz(Ocxph(x(t)) = ezp(-(_/h)m). Therefore,
N = 1/maz = ezp((/_/h)m), and/_(z(t)) = Nph(z(t)) = ezp(-(_/h)(l(z(t)) - m)).

Now we are ready to describe the membership function #(z(t)) = lim__op_(x(t)) that cor-
responds to the limit h --* 0. If J(ztt)) = m, then p_(z(t)) = 1, and therefore #(z(/)) = 1. If
x(t) E X and J(z(t)) _ m, then, since m is a minimum of J(z(l)), we get J(z(t)) > m, therefore _ :"
(_/h)( J(z(t)) - m) --_ oo, and hence, p_(x(1)) --, 0 as h -. O.

As a result, we get a crisp membership function that corresponds to Tikhonov's leg-
ularization. If J(z(_)) _ m, we have p(z(t)) = 0. So, although we started with fuzzy statements
and fuzzy membership functions, the resulting membership function is crisp" it is equal either to 1
or to 0 depending on whether the functional J(z(/)) attains its minimum at z(t) or not. Hence, in /
this case, we do not need any defuzzification procedure: we just pick a function z(t) from X, for
which J(z(t)) attains its minimal value.

What if the experts can also give some bounds on the second and higher derivatives
of the process z(t). In case an expert gives estimates Ai for i-th derivative and/or a bound
for the measurement error, the resulting membership function is the same, with the only difference
that additional terms are added to J(z(t)): A_"2f(_(i))2 dl in case of i-th derivative, and

6-5 f(y(t) - f !:(t,_)_(s)ds)2dl
in case of an error bound.
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How to solve inverse problems: resulting procedure. As a result, we arrive at the following
methods of solving inverse problems: ._

• 1) ask an expert to give approximate bounds M for Ix(t)l _d A for I_(t)l;_if possible, get also his
bounds Ai for i-th derivative Iz(O(t)l, and 6 for the measurement error ]y(t)- f k(t, 8)z(s) ds[;

2) from all the functions that are consistent with the measurement results, choose a function z(t)
for which the functional J(z(t)) attains the smallest possible value. In case the expert gives
only the estimates M and A, J(z(t)) = Jo(z(t)) + Jl(z(t)), where Jo(z(t)) = M -2 f [z(t)J _ dt
and Jl(z(t)) = A-2 f I_(t)l _ dr. In case he gives bounds for i-th derivative and/or for errors,
we must take J(z(t)) = _-_iJi(z(t)) + Je(z(t)), where for i > 1 Ji(z(t)) = A.'f_ f(z(i)(t)) 2dt
and Je(z(t)) = 6-_ f(y(t) - f k(t,s)=(8)ds)2dr.

We can use ready-made software. The resulting method turns out to be a particular case of
the Tikhonov's regularization scheme. Therefore we do not need to design any new software: we
can use the techniques, algorithms, and programs, that have already been developed for Tikhonov's

regularization.

If the only thing we have done is justification of a well-known method, then what's
the buzz? Our proposal to use Tikhonov's method has two advantages over the usual heuristic

suggestion to use it:

i) Tikhonov's method is semi-heuristic, while we derived our method from the fuzzy formalism;

it) we do not need any heuristic ruie of choosing ai, because we have explicit expressions for these
parameters in terms of experts' bounds.

Therefore, we avoid the problem of Tikhonov's regularization that differeut heuristic rules lead
to different values of al and, therefore, to different solutions z(t).

4. CONCLUSIONS

Suppose that we must reconstruct z(t) from the measurement results y(t), and the problem
is ill-posed in the sense that drastically different functions z(t) are consistent with the same mea-
surement results. Such problems are very frequent in geophysics, astronomy, image processing,
etc. Suppose also that the only additional information that we have about the process z(t) is the
experts estimates M and A for which the experts say that "most likely, for every t the value of
[z(t)l is limited by M," and _most likely, for every t, the value of l_(t)l is limited by_', where
_(t) denotes the rate with which z(t) changes (i.e., in mathematical terms, time derivative of z(t)).

Then iu2_y reprpsentation of this uncertainty leads to the following method of using this
experts' knowledge: from all the functions that are consistent with the measurement results, we
choose a function z(t), for which the functionai J(z(t)) takes the minimal possible value, where

J(z(t)) _- M -2 f Ix(t)l2dt + 4 -2 f I_(t)l2dr.

Similar functionals can be described for the cases, when bounds for higher derivatives and/or
measurement errors are known.

The resulting method turns out to coincide with a particular case of the general Tikhonov's
regularization approach. This approach has already been implemented in software, and it has been

successfully tested on numerous real-life ill-posed problems.
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The advantage of our approach is that w_ solve two main problems of Tikhonov's regularization: _
, we provide a jttstification its formulas, and

. . , we provide a method for choosing the parameters of Tikhonov's reguiarization.
.... . ..... . _.._ r_
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/ QUANTIFICATION OF HUMAN,RESPONSES ......
R.C. Steil_e*, T.E. Gantner*, P.Y.W. Lhn**

_qua_u _ T-*__,,_ion_ Human perception is a complex phenomenon which is difficult to
tiff/with instruments. For this reason, panels of several or many people are often

/ used to elicit and aggregate subjective judgm.ents. Prin. t quality, taste, smell, sound _,
/ quality of a stereo system, softness, and grading Olympzc .divers and skaters are some
[ examples of situations where subjective measurements or judgments are paramount. We .............
[ usually express what is in our mind through language as a medium but languages are

•[ limited in available choices of vocabularies, and as a result our verbalizations are only
[ approximate expressions of what we really have in mind. For lack of better methods to
I quantify subjective judgments, it is customary to set up a numerical scale such as 1, 2,

I 3, 4, 5 or I, 2, 3, ... , 9, i0 for characterizing human responses and subjective judgmentswith no valid justification except that these scales are easy. to .und .e.rstand an.d
convenient to use. But these numerical scales are arbitrary slmplifications of the

complex human mind; the human mind is not restricted to such simple numerical
variations. In fact, human responses and subjective judgments are psychophysical
phenomena that are fuzzy entities and therefore difficult to handle by conventional
mathematics and probability theory. The fuzzy mathematical approach provides a more
realistic insight into understanding and quanti_jdng human responses. This paper
presents a method for quantifying human responses and subjective judgments without
assuming a l_attern of linear or numerical variation for human responses. In particular,

,_..q!l_tification and ev_duation of linguistic judgments was investigated.

Avvroach. The method used to code responses obtained from panelists is
especially _mportant when one wishes to make decisions concerning properties or events
which are not objectively quantifiable but which must be evaluated subjectively. The
problem of coding such responses has been addressed from many directions. In this
paper we propose a technique, based in fuzzy mathematics, for quantifying and
evaluating subjective responses and then we test our technique in situations where the
properties are also objectively measurable. By testing our technique in objective
situations, we hope to lend credibility to its use in purely subjective situations. The
technique we describe is a refinement of techniques originally proposed by Saaty [4-8].

Salty [4-8] proposes using five adjectives as _response words" iv subjective panel _.
tests. These words indicate that two samples are indistinguishable with respect to a
given property or that the difference between them is slight, moderate, significant, or
extreme (or absolute). Of course, panelists are permitted to hedge their bets and cast
their ballots between two such judgments.

i

Thus Ssaty is proposing a 9 point scale for linguistic or subjective judgments as
illustrated below. The illustration is stated iu terms of physical weight although the
particular property is irrelevant.
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1 - A and B are equally heavy
2-

- 3 - A is slightly heavier than B .........
4-
5 - A is moderately heavier than B .......
6-
7 - A is significantly heavier than B
8-
g - A is extremely heavier than B

The integers 2, 4, 6, 8 represent compromise judgments between two of the
above odd numbered positions. As Salty states, this is a good scale in that it provides
enough shades of meaning without expecting a panelist to be scrupulous.

After obtaining panel data, the next problem is the analysis of this data. Aside
from the usual statistical analysis, a technique that has been shown to be successful in
fuzzy or subjective situations is to find the dominant eigenvalue and associated
eigenvector for the reciprocal matrix of paired comparisons. This analysis is based on
the work of Perron and Froebenius [1]. If n objects A1, ... , An are being compared,
these are listed horizontally and vertically to indicate tl_e rows and columns of a matrix

M. If Ai is judged to be significantly heavier than Aj, then a 7 is placed in row i,
column j and 1/7 is placed in row j, column i :

1 ..- i ..- j .-- n

1

i ... 7 -.-

j ... :/7 ...
:

n

H

If our objective is to determine the respective weights of n objects, then the
- resulting eigenvector should indicate the relative weights. If we have perfect

information (no judgments are necessary and responses are not restricted to integers and
their reciprocals) we could simply fill in the matrix using the ratio of the respective

weights: mij = wi/w j. We then obtain a reciprocal matrix: mji = wj/w i = 1/mij.



- wI wI wI -
.-"

w2 w2 w2. . oo.

w11 w n W_1

.............. i -.

It can be shown that _ = n is the only non-zero eigenvalue for M and that W --
(wl, ... , Wn) is its associated eigenvector; the correct weight determination is indeed
obfained as the eigenvector. This eigenvector is unique up to a scalar multiple.

H the experiment was needed, however, perfect information is not. available at
the outset. But if the responses are a reasonable approximation to the reality of the
situation, then the responses will approximate those which would have been placed in
the "perfect information" matrix. Hence the eigenvalue should approximate n (the

__ number of samples) and the associated eigenvector should approximate the actual
distribution of the property (weight, etc.) among the samples. Thus the eigenvector not
only ranks the samples ordinally (indicates smallest, largest, etc.) but also gives a
cardinal ranking (indicates relative strengths or weights, etc.). In actuality _ > n, the
associated eigenveetor V = (v 1, .... Vn) is unique up to _ multiphcative constant, and
when normalized so that v1 3r-... + Vn = I, vi indicates the percentage of the total
(weight) possessed by objecCi. The eigenvalue I is a measure of the consistency of the
responses given by the panelist. A good rule of thumb is that if ,_> n + 2, the panelist
has contradicted himself or herself so many times and/or so egregiously that his or her
responses should be ignored. On the other hand, if _ is very close to n, the panelist was
very consistent (although not necessarily accurate or correct). In short, the eigenvalue

• is a good flag to indicate errors in recording data; e.g., a number and its reciprocal may
be interchanged, The 1 to 9 scale does conform well to linguistic comparisons in the
sense that it allows one to discriminate simultaneously on 9 = 7 + 2 levels. This is the
maximum number in the range 7 ± 2 of simultaneous comparisons that an individual
can keep in mind without beconfing confused; see Miller [3]. If a scale much larger
than 9 is used, the differences in reciprocals become negligible and some discrimination
between samples in the resulting eigenvector will be lost. A collection of objects in
which the samples may be too widely diverse should be subjected to a lfierarchical
analym[4-s].

However, our experience indicates that while the above 1 - 9 scale may be
appropri_:_te for eliciting and coding human responses, it is not always the proper scale
to be used in the ensuing matrix analysis. In fact, the scale used will be reflected in the
results. The largest number used is in essence the ratio between the strongest and
weakest (or heaviest and lightest, etc.) objects in the resulting eigenvector. Thus an

429



inappropriate numerical scale will lead to undesirable end efforts concerning the
extremes of the objects being compared. This end effect is extremely volatile when
computing percent error on the low end. Our experience indicates that a linear
rescaling of the 1 - 9 linguistic scale to a scale determined by the accepted or perceived
ratio of the two extreme objects in the given group significantly reduces this etid-point -
effect.

An _ Consider 6 weights w1 - 2, .w2 = 4, w3 = 6, wA - 8, w5 = 10,
and w_ = 12. The matrix M6 - [wi/w;] - [mi;] i/the matBx of periffiectinformation,
and th_ integer entries of this matrix radge fromJ1 to 6. In this case, the weight ratios

w-2/w1 = w4_/w2 = w_/w 3 = 2 all indicate that the numerator weight is twice that of
tl/e denominator, whidl is quite different from the linguistic use of the number 2 in the
above 1- 9 scale. The linguistic 2 says two san_ples are "almost indistinguishable. The
dominant eigenvalue of M6 is 6 and its unit.eigenv_tor is V.6' = (w]/.w, 7" '--w6/w)' ........
where w = w + ... 4- w_ = 42. We linearly rescaled the integer entries m Mg to

. v • .v

1-9 scale to get a reoprocal matrix M0, as well as to a 1.-3 scale to get a. reclproc.ai
matrix M . The unit eigenvectors _ and V._, respectively, corresponding to the
donnnant elgenvalues of Ma and Ma generate weight vectors 42VQ and 42Vq. These are
displayed in the table belo_v. In all cases the eigenvalue _ was less than g005. These
low eigenvalues merely indicate consistency, not agreement, with experimental
measurements.

PERFECT INFORMATION
VARIOUS SCALES

42V3 42V6 42V9
% error actual % error

2 1.344 32.8%w I 3.57078.5%

w 2 5.41835.5% 4 3.192_ 20.2%]
, , |

6 5.376
w3 16.72012.0% - 10.4%

w4 7.812 8 7.89
-2.4% - 1.3%

w5 8.778 I0 10.626
- 12.2% 6.3%

w6 9.702 12 13.566
-19.2% 13.1%



In Ma, the 1- 9 scale exceeds the actual maximum weight ratio w+;/w1 = 6. As
a result the _igenvector scale overestimates the heavier weights and trade, estimates the

lighter weights_ In M._, the 1- 3 scale falls short of the maximum weight ratio w6/w 1= . As a .esult the eigenvector scale tmderestimates the heavier weights and
overestimates the lighter weights. The spread between the two extremes is too large
with a scale of 1- 9 and too small with a scale of 1-3. However, all three scales
provide the proper ordinal ranking of the weights. -.......

As a practical test of our theory we duplicated Saaty's weight test on five
dissimilar objects of various sizes, shapes, and weights:

1. Ski Boots 8 lb. 3 oz.
2. Radio 2 lb.13 oz.
3. Iron 3 lb. 4 oz.
4. Jug of Wax T Lb. 9 oz.
5. Pile of Kindling 6 lb. 4 oz.

Pairwise comparisons of these objects were made using the linguistic 1 to 9 scale
and the corresponding reciprocal matrix was generated. The results as compiled below
are distorted significantly from the actual weight distribution. Nevertheless the
eigenvalue A = 5.30 is rather low. Again, this low eigenvalue indicates consistency of
the responses - not necessarily accuracy of the predictions.

On the other hand if we observe that the maximum ratio is Boots/Radio =
8.1875/2.8125 = 2.9111 __ 3, we see that a maximum ratio of 3 (as opposed to 9)
might have been better. Rescaling the original observations linearly to 1- 3 from 1- 9
changes the results considerably. These results too are tabulated below; they axe seen
to be much more acceptable.

WEIGHT TEST

,',_,

: Scale 1 - 9 Scale 1 - 3

Computed Actual Computed
Weight Weight Weight

% error % error

...._ w 1 8.7 8.1875 7.58
+::..... 6.4% - 7.3%

w2 0.84 -70.1% 2.8125 2.75 -2.1%
w3 1.4 3.25 3.06

\\ - 56.9% - 5.8%
-_ w4 11.79 7.56 8.47

56.0% 12.0%
iii w5 5.33 6.25 6.23

; - 14.7% - 0.3%
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Using the correct scale reduces the maximum relative error from 70% to 12%;the
error at the volatile low end was reduced from 70% to 2%. Note ;hat the original 1 -9
responses were just rescaled to a 1 -3 scale. The experiment was not redone. Had the
original experiment been redone with a 1- 3 limitation on responses, much of the _fine
tuning" of the responses would have been lost; i.e., not enough linguistic-variation
would have been permitted.

An alternative to 1- 9 responses (gr any numerical respom_e for that matter) is
- to use a bar graph in which the center position represents equality of the samples and

the ends represent extreme dominance of one sample over the other:
"[

j AI I 18 "

A over B Equality B over A
/

Using such a bar graph, responses can be interpreted on any numerical scale
desired. We used bar graphs of this type ".'nan experiment designed to test the ability
of panelists to ascertain sm,ql differences in samples when the total magnitude was also
small. In short, we wanted to test the applicability of this process to situations in
which minor differences must he determined; can the process be "fine tuned _ to indicate
detailed differences as well. as general relationships? Again, we tested tbe process in a
situation where the property in question could also be objectively measured. Without
such tests, the process would have little credibility in purely subjective situations. The
experiment and its results are described below.

"4

Ag E_xperime_at:The thickness of paper is called "c_liper" in the paper industry.
C_2iper is usually detern_ined under laboratory conditions using instruments capable of
accuracy to within 10-o inches. Because of the non-uniformity of any given piece of
paper, the caliper is usually measured in several spots and an average of these is used. as
the caliper of that sample. Thus caliper is an imprecise (even fuzzy) measurement
made on a given sample of paper which is representative of the run of paper from which

'_ .. the sample was obtained. Since fuzzy sets provide a framework in which one can study
subjective judgments, we attempted to deternfine how closely the determination of

"' caliper of paper, made by subjective decisions of panelists, compares with the
' " instrumental measurements of the szane samples under laboratory conditions./

_'7--. In all, 29 panelists participated in evaluating 6 paper samples. The papers were
....... . chosen so that caliper was essentially the only difference between them. Also to prevent

other factors from influencing the results the samples were glued down to uniform metal
-_,, blocks. The paper was trimmed to within 1/4" of the edge of the block on all sides.

, Thus _flexibility" for example could not affect the evaluation.

.... Interpreting the panel responses on the bar graphs in the traditional 1-9
- linguistic scale gives the following results. The results presented are averages over 27

panelists (2 were eliminated from consideration because of high eigenvalues). Caliper is
;- given in 1/1000's of an inch.
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CALIPER TEST
Scale 1- 9 - -

Paper Average Computed Relative - -
Sample Caliper Caliper Error t

I

I. 3.26 1.80 -44.7% ]
2. 6.35 4.99 - 21.4% --
3. 5.63 4.03 -23.1%
4. 10.24 13.04 27.4%
5. 4.29 3.99 7.0% ...........
6. 8.03 9.94 23.8%

Note that almost all errors are large but that the largest error occurs at the low
end mid that the next largest error occurs at the high end. Tile sizes of these errors
would seem to severely limit the applicability of the process to situatious in which such
delicate differences occur and are to be detected. On the other hand, the maximum
ratio in average measured calipers is 10.24/3.26 -_ 3.14. Reinterpreting the original
paneldata on a 1-3.14 scaleimprovesthe resultssignificantly.The resultswe [
tabulatedbelow. An extracolumnisincludedtoindicatethevariationsintheseveral !

calipermeasurementstakentoobtainthe"AverageCaliper"forthegivenpapersample, i

V
i
i

CALIPER TEST i
Scale 1 - 3.14 {

Inherent
Paper Average Computed Relative Variation
Sample Caliper Caliper Error in Sample

1. 3.26 3.09 - 5.2% + 4.3%
2. 6.35 5.99 -5.7% + 8.7%
3. 5.63 5.17 - 8.2% ± 6.2%
4. 10.24 10.51 2.6% + 1.3% .
5. 4.29 4.48 4.4% + 4.7%
6. 8.03 8.55 6.5% :t: 3.7%

By rescalingtheinterpretationfrom1 - 9 toa I - 3.14scale,thedistortionat
the low and highendshasbeenremoved. In samples2 and 5,theerrorisno larger
thanthevariationinherentinthesampleitself;thereisthuseffectivelyuo errorinour
computedcaliper.Inno caseistheerrormore thandoublethevariationinthesample.
We thinkthiskindofaccuracyobtainedfromsubjectivenon-quantifiedjudgmentsis
astounding.Itshouldbe pointedout thatsamplevariationdoesseem tobe relatedto
the resultingerrors._ computed caliper.The lowestsample variation(1.3%)
correspondstothelowestexperimentalerror(2.6%).Thus itwouldseem thathalfthe
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experimental error is attributable to variation in the samples themselves. The error I
generated by the subjective evaluations and the subsequent computational process is no
greater than that•which is contributed by variations within the samples. -....

We remindtilereaderagainthatwe arenotproposingthatthisprocessbe used
to measureobjectivelyquantifiableproperties.Rather,we aretestingour theorieson
objectivelyquantifiableproperties,suchasweight_md caliper,soas tolendcredibility
totheprocesswhen itisusedinsituationswhichareprimarilysubjective.

Another_ The determinationof printqualityhas been a subject _--
matterforwhichmany sophisticatedinstrumentalapproacheshavebeendeveloped,but _-
human perceptionisstillusedas an integralpartofthefinalevaluation.In [2]non- " ...........
impact printerimage qualitieswere studiedusingpairedcomparisonselicitedfront
panels.Linguisticexpressionsand graphicresponseswerebothusedfortranscribingthe
panelresponses.The responseswere analyzedusingthetechniquesdescribedin this
paper. The purposeof theexperimentwas to testtheapplicabilityof the process
outlinedinthispapertosituationsinwhichminordifferencesmustbe determined.The
resultingeigenvalueindicatedthatthepanelistswereabletogiveconsistentresponses
in making thepairedcomparisons;panelfatigueand/orconfusionwas nota problem.
The eigenvectoranalysisofthepanelresponses,when averaged,gaveresultsconsistent
withwhat one wouldexpectfromviewingthes_unples.Sampleswhichwererankedas
being near in qualityrequiredhigherlevelsof magnificationbeforesignificant
d;fferenceswere obs'ervedthandid sampleswhichwererankedas beingfarapartin
quality..While instrumentalmeasurementsmade on greatlymagnifiedimagescan
resultm overly stringentpurchasingrequirements,panel testingbringsthe
determinationofprintqualityclosertothepracticalmarketingsituation.

Summa_.-y_and C_onclusions.Many applicationsin commerce and industry
demand fargreaterrelativeaccuracythan issometimesevidencedin the useof the
pairedcomparisoatechniquetoelicitfuzzyproperties.Earlyfad[cationsobtainediaa
fuzzyanalysisshouldinmany casesbe refined.Forinstance,thedifferencebetweena
I% and a 3% market sharecouldmean a triplingof businessvolume fora small
contender.More preciseresultswouldberequested.

Many argumentscanbe giventojustifytheutilityofa I- 9 linguisticscalefor
subjectiveresponses.However,we have foundthatitisnotnecessarilyadvisableto
continuetousethe1-9 scaleillthecomputation_processwhichfollowsthesubjective
evaluations.Infact,thechoiceofcomputationalscalegreatlyinfluencestheresultsat
theextremes- thelow and highends-withrelateddistortionsinbetween.In short,
the choiceof computationalscaledictates(approximately)the ratiobetweenthe
extremes of the measured property in the given samples as generated by the
eigenvector. Too large a scale results in the extremes being separated too far: too small
a sca2e brings the extremes too close together.

Taking greater care in making the compaxisons cannot correct for this distortion _-
if an inappropriate scale is chosen. This distortion is inherent in the computational
process.
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This observation has a theoretical basis as well. For each column of the matrix _
(when normalized) is an approximation to the (normalized) dominant eigenvector.
Thus the maximmn ratio in arty colmnn will approximate the maximmn ratio in tile
eigenvector. In the Colunm corresponding to the lightest (thinnest, et_.)sample all k_ _
entries will be integers on a linguistic scale or at least greater than or equal to 1 on a
continuous (bar graph) scale. Thus the maximum ratio in this column-should be
approximated by the ratio of the extremes in the resulting eigenvector. This '.
observation is also borne out in the examples and experiments described in the body of
this paper.

Thus in any panel test involving paired comparisons there are two distinct tproblems :

1. Using an acceptable scale for the panel responses. Whether this scale be ,
linguistic,continuousor otherwise,itwould seem that9 levelson a scaleof 1- 9 is :,:
perfectly _.cceptable. An exception to this rule is that if the samples are too diver:e, a _
hierarchical analysis would be in order. _

2. The choice of computational scale should be treated as being independent of -: ........

thescaleusedby thepanelists.Iftheresultsaretobe realisticandiftheaccuracyisto I
be "fine tuned", the computational scale nmst be close to the actual ratio between the
properties in the extreme santples. This is not a trivial problem, however. If a fuzzy

analysis is indeed necessary, then presumably this ratio cannot he obtained objectively. -t

Nevertheless, since some kind of yardstick is probably desired, industry or

E

marketing experts could indicate that one or several scales may be "appropriate ". An
advantage of the bar graph approach is that it readily lends itself to arbitrary
computational scales. Thus results could quickly be processed for several scales and ";
comparisons made. Then other scales could be checked - all without requiring further
input front panels. i

I
However, some outside judgments will be necessary in selecting a scale. For the

computed spread between the extreme samples is an increasing function of the scale.
There is no critical point or critical value which says that in trying several scales, we
passed through the correct scale. The only critical point occurs with the minimum scale
of 1 which pushes all data together and makes no distinctions whatsoever.

* Department of Mathematics, University of Dayton, Dayton, Ohio
** Boise Cascade R&D, Portland, Oregon

(Now at the Fine Paper Division of Union Camp Corporation, Franklin, Virginia)
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Abstract

The following point is stated throughout the paper: Dynamic systems are usually subject
to uncertainty, be it the unavoidable quantic uncertainty when working with sufficiently small
scales or when working in large scales uncertainty can be allowed by the researcher in order to
simplify the problem, or it can be introduced by non-linear interactions. Even though non-
qnantic uncertainty can g¢:nerallybe dealt with by using the ordinary probability formalisms, it
can also be studied with the proposed non-scalar formalism. Thus, non-scalar uncertainty is a
more general theoretical framework giving more insight about the nature of uncertainty and
providing a practical tool in those cases it, which scalar uncertainty is not enough, ugh as when
studying highly non-linear dynamic systems. This paper's specific contribution is the general
conceptofnon-sealaruncertaintyanda firstproposalfora methodology.Applicationsshould ,, ......
be basedupon thismethodology.The advantageof thisapproachisto providesimpler
mathematicalmodelsforpredictionofthesystemstates.

Presentconventionaltoolsfordealingwithuncertaintyproveinsufficientforaneffective
descriptionofsome dylmmicsystems.The mainlimitationsareovercomeabandoningordinary
scalaralgebraintherealinterval[0,I]infavorofa tensorfieldwitha much richerstructure

andgenerality.ThisapproachgivesinsightintotheinterpretationoftheQuantumMechanicsand
willhave itsmost profundconsequencesin thefieldsof elementaryparticlephysicsand
nonlineardynamicsystems.Conceptslike"interferringalternatives"and"discretestates"have

,.

an elegantexplanationinthisframeworkintermsof propertiesof dynamicsystemssuchas
strangeattractorsandchaos.

The tensorformalismprovesspeciallyusefultodescribethemechanicsofrepresenting .;

dynamic systems with models that are closer to. reality and have relatively much simpler i
solutions. It was found to be wiser to get an approximate solution to an accurate model than to
get a precise solution to a model constrained by simplifying assumptions. Precision has a very i
heavy cost in present physical models, but this formalism allows the trade between uncertai,"nty
and simplicity.

It was found that modeling reality sometimes requires that state transition probabilities
should be manipulated as nonscalar quantities, finding at the end that there is always a
transformation to get back to scalar probability.
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Introduction

About 60 years ago, after strong experimental evidence in the field of elementgry particle
physics, it was realized thatprobability theory as defined by that time was insufficient to handle
the unavoidable uncertainty in the behavior of microscopic physical systems. As stated by the ....
late R.P. Feynmann "...the laws of probabifity which are conventionally applied are quite
satisfactory in analyzir .aebehavior of a roulette wheel but not the behavior of a single electron
or a photon of light." - "Quantum Mechanics and Path Inte&rals', R.P.Feynmann & A.R.
Hibbs, McGraw-Hill, 1965. As a result various formulations of theories generally known as
Quantum Electrodynamics and Quantum Mechanics were born. These theories have proven to
be enormously successful as predictive tools and are in this respect unchallenged to this day,
though they have originated much controversy by their philosophical implications. Nevertheless,
all of them overcome the limitations of probability to deal with the results of experiments. They
do so because they invariably recur to algebraic structures much richer than the real interval
[0,1]; all of them involve first working with complex or hypercomplex fields and
multidimensional structures and then prescribe a transformation that restates the predictions in
conventional probabilistic terms. It is not in the scope of this paper to state a formulation or
description of any of these theories, for there are countless of them available in the subject's
literature. They are mentioned as a monumental example of the potential of multidimensional
structures and complex fields in the treatment of uncertainty.

The higher dimensionality and more complex operations
involved in complex and hypercomplex fields are useful to

interferringgeneratethealternatives.predictedpatterns in the probability distributicCs of _ /7

What are interferring alternatives can be illustrated by
Young's experiment (Figure 1), which is in this description a
thought experiment that can be instrumented in more realistic
settings. A source of particles (electrons or photons, whatever), Figure I Young'sF_riment
emits them toward a screen, but between the source and the

screen we place a barrier with two slits. If we make the beam so weak that it consists of a single
photon at a time, we could assume that a single particle would go through either slit and then
it would be recorded at the screen. After a great number of particles have made their way one
by one through the screen they would form a visible pattern on the surface which would
represent the relative frequency (probability) distribution of a particle coming from the source,
through the slits, reaching a certain point on the screen. This probability density function is
represented by the curve at the right of the screen in Figure 1 and is unexpected, since it has

,+

many local maxima and minima as if it were recording the effects of waves instead of particles.

If we could know with certainty that electrons come through either slit say, by blocking
one of them, then we would record a probability density function more like the curve indicated
in Figure 2. A similar result would be found when the other slit is blocked (Figure 3). If both
distributions were independent from each other we would fred that the probability density
function that would be the sum of the previous two ones, giving a bell shaped curve.

438
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differentfromthe expectedone (Figure4). This is whatis meant i _.N
by sayingthatthealternativesinterfere, muchin the waywaves - -_>_

do, but the interferencepatternis defined on the probability .j:
(frequency)distribution,Whenevertwo ormorealternatives -- '
cannot be resolved by experiment,they alwaysinterfece.The

',, differencebetweentheobservedand_pected patternsis caused : , .
\ by the fundamental uncertaintydescribed by Heisenberg's '_

Figure 2 Distribution of principle.Wheneverwewantto interactwith the particlesto find ' "
Particles through one Slit. out whichway they came the interferencepatternat the screen ' i

is blurred.If we would like to

determine the particle's path by getting it to interactwith a /: [ _"l

photonor some other particle,then .t:_edisturbanceproducedby
the sensing particleswould be unavoidablytoo big to findout _,

'" .1
Figure 3 Distribution when

Dynamic Systems Subject to Uncertainty the other Slit is Closed. .,:
The essenceofdynamic

___/____ _'x_/(_ systems is time dependency. When observing microscopic .I ,,

dynamic systems we can say that much of Heisenberg's
.---I unavoidableuncertaintycan be focused on thetime variable, "

since most of the relevantvariablesare timedependent.In this
/_ kind of dynamicsystemsit is not possible to say with arbitrary

\_\ precisionthat a given particleis in a certainwell defined stateat
"-"_ anyprecisemoment, noris it possible to say thatit hasa defined t

Ztgure 4 Observed vs. trajectoryand there existsets of timedependentvariableswhose t
Expected Frequency Dist. precisevalue can not be knownsimultaneously,suchas position

and momentum. A similar argument holds for _ of
dynamicsystem subjectto uncertainty,speciallyfor non-linear
ones. This means that we are left with a system which can

assume a set of states which can be either well definedor fuzzy, but we do not know in what
statewill the system be at a certain time. ,

Becauseof this loss of informationon timedependencywe are forcedto studydynamic
systems disregarding the time variable;i.e., we are compelled to make l_ "'
statementsabout the states of a system. This is just the kind of statement that a fre0uency
(probability)distributionis: Whatstates can a dynamicsystem assume andhow likely is it to
be in any of them given some determinedboundaryconditions. Because of uncertainty,
observing the system by means of an experimentalsetting meansthat we will. not generally
observe the sameoutcomefor identicalrepetitionsof theexperiment.So, all we can do is repeat
experimentsandmeasurementsfora large numberof timesand then watchthe relativefrequency
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of the outcomes. Theoretical statements can only be made in probabilistic terms and
confrontation with reality can only be made in terms of comparing predictedprobabilitiesagainst
observed relative frequen_es. " "

The theory of dynamic systems shows that there _re some states that can be. called -- i-
"equilibria", which means that once a systemhas reached one of them it tends to stay in it for
a long time. If a system tendsto abandon an equilibrium slate at the slightest perturbation then
this point is calla "unstable'. Of _urse, if we observe just the opposite, i.e. the systemtends
to stay in some state regardless the effect of small pemu-bations, then it is called a "stable
equilibrium'. Of course, things in reality are not always thatsimple forwe can findsome special
states around which the behavior of the system tends to wandez. They axe called strange
attractors and can have a _mple or very complex nature. The reader is referred to the vast
literature on the subject to extend and clarify these concepts.

If a dynamic system subject to uncertainty has strange atU-aeton, they wiil show up in
the frequency (probability) chart as a peak, band or concentrationof points, si,lce it will spend
a considerable part of the time on them. These peaks look very much like interference patterns
when the dynamic system is defined by non-linear functions.

This point can be nicely illustrated with a very well known example, the Verhulst Process
(a population growth model, [Peitgen]). We make the following initial assumptions: ,_

xo - InitialPopulationSize

x. " Population Size after n years "

R - (x''l-x_) _, ._lative Increase per year ....
x.

If this rate is constant (say 'r'), then the law is:

x.. ; fix.) = 0 +r)x

If R varies with population size, then R = r(l-x,), where r > 0 is the "growth parameter'.
Then,

x,,, = f(x.) = (l+r)x.-rx. 2

Then xe = 0 and Xo = 1 are equilibrium points. Analysis for 0 < Xo< < 1, r > 0 yields:

44o
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As the Frequency Maps show (Figures 6,8,I0 & 12), there are "interference" patterns
apparent in the frequency distribution of states. As the growth parameterr increases the behavior ,i
becomes chaotic, but the "interference" still shows up.

State Space ;;

State Spacecan be regardedas the "arena"where dynamicsytemsperform,andleave
their trails andis definedas the setof all possiblestatesa certaindynamicsystemcan attain.
The definition of statespacepresumesthe definitionof statevariablesandsupportsand the:_r
value sets. Reaching this stage is equivalent to climbing the fLrStrung in a ladder of
epistemologic levels [Klir 1, pp. 16, 33-64], defining a Source System; i.e., isolation of a I
system from reality to the point where eve.ything is ready to perform observations and to get I
data.

Definition of state variables and their nature almost defines the nature of state space. It

only leaves now to define some other general properties of such a space -i.e., metrics,
continuity, compacity, discreteness, order, invariance requirements, etc.

There is no reason to suppose that any two dynamic systems should have the same state

space, not even two distinct Source System definitions from the same dynamic system.-This is i
why we need to define the essential properties which a state space should have in order to reach
a meaningful methodology.

1.- State space is a metric space S =(X,/5), where X is a set of elements (points)
and 6 is a distance function satisfying

a) _(x,y)=O < = > x=y, x, y E X,
b) _(x,y) ffi t_(y,x), x, y EX,
c) 6(x,z) < _x,y) + 8(y,z), x,y,z _ X
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Cover Space _'I

To ensure an adequate structure we regard the state space S as a subgr.,ceof another one ..._
called C (Cover Space), which is linear, of the same dimensionality as S and has a satlar.,
product that agrees with the metric defined on S.

Quantie Uncertainty
q

QuantumTheory formulations can be made equivalent to some extent. Basically, we can
say that states of a system correspond to vectors in a specially defined Hilbert space [Dirac, p. i;
51] or to wave functions [Landau, p. 19]. Linear operators defined on such spaces can be wade ..
to correspond to dynamic variables. If such operators satisfy .some oth_ requirements -being

Hermitian or self-conjugate- they can be made to correspond to physical "observables', or
quantifies that can be measured or observed. Furthermo_, if they have eigenvalues and
eigenvectors, then they are real quantifies and can be interpreted as the values assumed by the
dynamic variables associated to such operators when the system is in the state corresponding to L
thosevectors.Statescanaow be "superposed"and probabilitydistributionsfor statesandvalues
can be obtainedby first finding the squareof the modulus of the associatedvector or wave

function amplitude and then getting its square root. 8

Quantum phenomena are subject to an unavoidable and intrinsic kind of uncertainty 1
manifest at atomic scales, stated first by W. Heisenberg in the 1920'_. Such uncertainty is /
responsible for the unexpected results in experiments such as Young's -described previously in
this paper. It enters the formalisms where we would expect _o find it; i.e., associated in some :,
way to the time variable, which is "translated"to phase components of certaincomplex numbers.
In the limit case when Q:antum Mechanics approaches Classical Mechanics wave functions can
be seen to have terms of d_e form

a_h i

¢

In this limit c_se, phase is proportional _o S, the mechanical action of a system. But h (Pl,_nck's
const_t) implies meaningful contrioutions (ones whicI_do not _'_cel out) only at the mi_'_world
level scales. Thus, quantum mechanics formalisms introduce the effects of this unavoidable
uncertainty into the phase component of a complex quantity. This allows for addition of these
complex quantities over "all possible paths" in transition from one state to another, where paths . ,.
which are very close to each other contribute constructively to the final amplitude, whereas
unlikely paths which require relatively much longer times, tending to cancel their contributions " _i
out. This is R. Feynmann's approach [Fcynmann I, pp. 31-38]. It should be stressed :bat these
processes operate on non-scalar elements all the time. It is only at the end when ore can
translate that complex amplitude to a probability via the scalar product operation, when finding
the modulus of the resulting amplitude vector. It is very important to realize that quantum
dynamic phenomena exhibiting interference Fatterns in frequency or probability distributions
cannot be explained when manipulating uncertainty as a scalar quantity. The non-scalar nature
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of amplitudes is what allows constructive and destructive Contributions when adding them up.
Thus, we may confidently state that uncertainty can be represented and manipulatedas a non-
scalar quantity in a manner which is perfectly consistent with the conventional scalar probability
framework. This at least, is the case in one of the most successful scientific paradigms

Non-scalar Uncertainty

It should be realized that at least in Quantum Mechanical phenomena we find interfexence
patterns in probability or frequency distributions and these patterns are blurred out when
introducing the unavoidable uncertainty associated to observations at these scales. In the same
fashion, we find this kind of patterns in probability or frequency distributions in the macroscopic
world, specially when studying non-linear dynamic systems -c.f. the Verhulst Process described
before. And they can be blurred, too, but this time by ob_rver-introduced uncertaintyin the
measuring processes or by error propagation in calculations.

It is not difficult to see that the additive and moaotonic properties of all existing scalar
uncertainty frameworks (probability, possibility, etc.), make it impossible to model the
destructive contributions from events which are independent from the point of view regarding
their origin, but which can interact in strong ways (as is the c_se in non-linesr phenomena),
resulting in an overall decrease in the probability of the union of both events. In other words,
interference patterns in probability distributions cannot be constructed from _alar probability
quantities by ordinary means.

One of the main claims of this paper is thatthere are many instances in ordinarypr_tical
situations (especially when dealing with non-linear dynamic systems), where the following
requirements are due:

I) If A, are arbitrary events

P(A,U A2 ... U A_) _ P(At)*...+P(A n) - E P(A,tNA_) + E P(A, f3A_RA_>- -

+(-s)*'1
lt*t_*| t

II) This probability should also "fluctuate" along some support variables

Z'(AILIa2U..Lt4= wherev
an arbitrary function; the tls are xystem variables

In practical situations this can be an empirical function sampled in some point/intervals of the
domain. Instances of it are interference patterns in the screen in Young's experiment, or the bar
graphs along the line graphs illustrating the Verhulst process previously descn'bed.

AAA
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In other words, _o(tp ts, ..., tm) is a marginal probabilitydensity function which could '": -

be obtained by th-" projection of an (m+l)-dimensional joint probability density function _'

_(tz,...,tt,_t,...,_ .) . This processcan be called "collapsing"the supportvariables. This ':

"collapse" can be accomplished in many ways. By introducing the time variable and the effects _.
of uncertainty as phase components (temporarily adding one dimension) and then obtaining the
(squared) modulus by a scalar product (eliminating the time variable), as in quantum mechanics ' i
formalisms; Or by first finding thejoint probability density function empirically, introducing the . '_.¢

effects of uncertainty along with the time variable and then projecting over the state variables _ /
/

(collapsing the support variables). This can be stated also as a contracted product if _ is _ _/

regarded as something like a tensor. . ._

Th.ere are more reasons other than notation that make it convenient to consider these as

tensor quantities. Invariance with respect to base changes and basic operational needs make it <
desirable to define them as tensor-like arrays. Uncertainty can then be viewed as a tensor-like " j
quantity of order zero (scalar), order 1, 2,..., etc. . :i

!:5

If we define the state of a system under the very general frame described by G.J. Klir ,_
[Klir I], a generalmethodto managethe effects of uncertaintycan be describedas first '
concentrating these effects on the support variables by "coarsening" their resolution (reducing
the number of possible states of these variables and/or broadening the sampling intervals),- .
allowing a better determination of the true system variables and then collapsing all support
variables, leaving only support independent frequency or probability distribution functions. This
is only one way to take advantage of the uncertainty/simplicity trade pointed out by Klir [Klir
2]. A fa'st contribution is that by regarding the system states and the frequency and probability
distributions as tensor-like quantities we get invariance to changes of base and some operational
advantages inherited from their new algebraic status. Thus, a state of the system, a vector whose
components are the values of the system variables suitably defined by a methodology like Klir's
[Klir 1], becomes S_, a subspace of C,, the cover space, 1<i<m, where m is the number of
statevariables excluding supports. The overall system behavior array, with as many dimensions
as system variables and supports, and ones in those elements which correspond to observed
overall states is

B tl,-,T_ kl
,,s, where xt is the support
d

Here, ×S i is the cartesian product of all the state variables' value sets. If l,t,_,, - is an all|

ones array, then the unnormalized frequency distribution function becomes

445
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_s, = BVl'-'_"" 1,p...,t,
t

thisis thejoint frequencydistributionof all states.The dot indicatesgeneralizedmatrixproduct
reducingover the repeatedindexes. Of course, we can leavesome supportsin and some out,
obtainingthe correspondingjoint frequencydistribution:

4/"c''_,= S"-"._s, 1_,_._,,= 4_'"",,s,"1_.__,,,
I i I

where _m,..._,, means"includeall indexes exceptthebarredones'.

To normalizethe frequencydistributionswe divideeach elementby the scalar

v --4,'". If'
x._I 'Cl.-'Cm
I

whichisthe totelnumberofobservedstates,so ._

andwe have

¢_s," 1' = 1
I

State Transition Uncertainties

Transitionfrom one stateto anotherinvolves computingT(x,y), a functionexpressing
the d_c_ty of going from state x to state y in terms of the timevariable.I.e., it must be
proportionalto the time takento go from one state to theother.Then, we can definea two-
dimensional quantity ,-
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o

which represents the non-scalar likelihood to go from state a to state b. If time is not the only
support we wish to "collapse" then we need another component in this vectorial (complex or
hypercomplex) quantity. Ail quantities can be normalized so that we can get real probabilities
when obtaining their norms by means of scalar products. Finding function T means we know
the state transition structure of the system and we can relate it to time or othersupportvariables.
An important comment about the state-transition likelihood is that the sum is computed along
all possible paths from a to b in such a way that those paths which differ very tittle from each
other have a more important contribution to the final non-scalar transition likelihood. So we can 1
say that there are preferred paths in any system.

It is convenient to express all these quantities with complex or hypercomplex numbers,
but it is clear that they can be represented in other algebraic settings.

In the simple example of Young's experiment, we can simplify T to be proportional to

the length of the paths followed by the particles, then it is evident that we should get an i
interference pattern, since uncertainty can be referred to a distance (wavelength), too.

Conclusion

This paper contributed the concept of general non-linear uncertainty and a proposed
methodology to deal with it. The advantages of using it are a simplification of mathematical
models due to the controlled admission of uncertainty.

Dynamic Systems subject to uncertainty are cases where ordinary treatmentand "._lculus
of uncertainty is not enough to provide an adequate description of the system. Therefore, a more
general and powerful calculus is needed where scalar algebra in the real interval [0,1] is replaced
by a complex or hypercomplex field, which have a much richer structure and generality. This
calculus is homeomorphic to the methods of Quantum Mechanics and its study and development
throws much light on foundational issues of Quantum Mechanics and the now available
mathematical tools formanaging uncertainty. Also, phenomena such as "intefferringalternatives"
so basic to Quantum Mechanics find a very elegant explanation in this framework.
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Abstract -

This paper presents an application comparison between two classes of fuzzy controllers; the
Clearness 'l_-ansformation Fuzzy Controller (CTFC) and the CRI-bued Fuzzy Controller. The ........
comparison is performed by studying the application of the controllers to simulation exam*
pies of nonlinear systems. The CTFC is a new approach for the organization of fuzzy con-
trollers based on a cognitive model of para_,-aeter driven control, the notion of fuzzy patterns
to represent fuzzy knowledge and the Clearness Transformation Rule of Inference (CTRI) for
approQeiraate reasoning. The approach facilitates the implementation of the basic modules of
the controller: the fuzzifler, defuzzlrter and the control protocol in a rule-based architecture.
The CTRI scheme for approximate reasoning does not require the formation of fuzzy relation
matrices yielding improved performance in comparison with the traditional organization of
fuzzy controllers.

1 Fuzzy Logic Controllers

Fuzzy controllers have emerged to the engineering practice as a convenient tool for modelling the operator
knowlegde and experience of controlling complex processes and systems. The basic assumption behind their

dissimination is the ability to imitate the approximate reasoning mechanisms that the human operator ap-
plies to make decisions in complex and vague situations. The great works of L.A. Zadch [5, 6, 7, 8] on fuzzy
reasoning has opened a new avenue for artificial approximate reasoning which is required to intellectualize
machine decisions. The compositional rule of inference (CRI) which Zadeh introduced as a tool for approx-
imate reasoning [6] has been successfully applied for the synthesis of linguistic control protocols of skilled
operator, thereby making the design of fuzzy logic controllers possible.

However, no systematic approach exists for the design of fuzzy controllers. The main drawback seems to



lie in the application of the CRI scheme which requires the formulation of fuzzy relation matrices and the
performing of the Max-Min operations associated with them. For complex processes these matrices are
multidimensional and the computaion time required to perform the Max-Min operations can go beyond

real-time problem solving and control requirements.

Mentalogic Systems Inc. developed a new approach for the design of fuzzy controllers based on the operator

cognitive model of fuzzy control [4], and using a new approximate reasoning scheme that requires niether
the fuzzy relation matrices nor the Max-Min operations associated with them. This scheme is called the
Clearness Transformation Rule of Inference (CTRI). It i-- a real-time approximate reasoning scheme in which
calculations are remarkably reduced in comparison with the CRI.

2 The Operation of Fuzzy Controllers

Fuzzy logic Controllers can be classified as control expert system capable of interpreting fuzzy statements
of human knowledge such "pressure is low" or "decrease steam flow slightly" etc. Using the CRI scheme
the control actions are deduced by the composition of fuzzy sets generated from the measured values of the

process variables (which ate the input to the fuzzy controller), and the matrices of fuzzy rules (knowledge
on the input-output relationship) using the algebraic operations of the Max and Min. Fuzzy logic controllers
map input crisp data into fuzzy linguistic terms described by vectors (fuszification), deduce the control
actions as fuzzy sets in the form of vectors also using the CRI, then translate these actions into crisp

data (defuzzification) whic is applied to regulate the controlled process. The overall operation of the fuzzy
controllers can be looked upon as numerical mapping procedure in which the compositions of fuzzy acts and

fuzzy rules are handled by the C11I while the controller provides numerical to linguistic (fuzzificatiou) and
linguistic to numerical (defuszification) converters to communica'.-_ with the controlled process.

The CTFC fuzzy controller, however, is designed following the operator cognitive model of control [1, _, 3].
It has a modular structure in which each module performs a set of distinct tasks. These tasks are the
fuzzification, rule selection, approximate reasoning, and defuzzification. Contrary to the CRI designs of

fuzzy controllers which are data processing devices, the CTFC is a cognitive pattern processing device which
recognizes fuzzy patterns and processes them to perform its decision making procedure. An overall account
of the CTFC controller is as follows. The controller receives crisp data which represents the states of the

process variables to be controlled. This data is channeled to the fuzzifier module which recognizes their fuzzy
patterns and their clearnes_ assessments in a coguative manner. The output of the fuzzifier is then used by
the Domain Knowledge-Base and approximate reasoning module for rule matching and clearness assessment
of the fuzzy patterns of the process situation. The defuzzifier then generates the fuzzy control actions which
are then translated to control commands in the form of crisp data "._ich is subsequently sent to regulate the

process.

In this controller a fuzzy pattern is defined by the triple { S, D, A ), where:

S - is the syntactical description of a fuzzy pattern. The logic of fuzzy predicates is utilized to describe the
fuzzy patterns of the real world situations. The notion of a fuzzy predicate as an atomic formula cf this logic
is considered an elementary fuzzy pattern. Complex fuzzy patterns are described as well formed formulae
(WFF) of this logic.

D - is the domain to which the fuzzy pattern is attached. This domain is composed of three attributes:
L,: is the domain variable.
X: is the space of all instantial models of L= .
_: is the set of allowable substitutions of the models of X for Lz •

A - is the clearness assessment of a fuzzy pattern. This asse_ment employs a clearness measure built in the
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closed interval [0, 1] and divided into a finite number of clearness values (ok). _ Ji

Two types of fuzzy patterns _re employed by the CTFC controller;The static fuzzy patterns stored in the i _knowledge-base of the controller, and the dynamic fuzzy patterns denoting the patterns detected in real
dynamic operations. The static and dynamic patterns have the same syntactical description but may differ 1",
in their clearness evaluation in terms of "strength" and "weakness_. Global and local clearness assemments !
are employed to describe the static and dynamic fuzzy patterns.

2.1 Process Representation

Forthe simulation examples presented inthis paper, the variableswhichare used to represent the process are
the error in the output response and the change of this error. These variables are calculated as in equations
(1) and (2) below. The fuzzy predicates utilized for each ":affableas shown in figure (2). The same fuzzy
sets were used for the error, change ot"error and output. The control rules were different for each control
system.

ep,,,,,. = I - o,lt (I)

ce = cp...... - ep..._o_. (2)

where:

epe,ent = present error in the output response (for a unit step input). ---_.
eviction, = previous error in the output response (for a unit step input,)..... .....
ce - change of error in the process response.

The control rules which are used in the fuzzy controllerare applicationdependent. To formulate the control
protocol we generally started with some approximaterules, then improvedthese rules in the direction which
improved the controller performance for obtaining better processoutput response.

For the two variables chosen, the error and the changeof error, sixty four rules were sufficient to describe
the control requirementfor each simulation example.

2.2 Simulation Results

To compare the performance of the CTFC and CRl-based controllers, simulations were performed using
the same controlled systems under the same simulation conditions which are achieved by employing the
same fuzzy sets and control rules for both controllers. The systems chosen are nonlinear and representing
problematic systems from control point of view. Their synthesis reflects the capability and limitation of
each controller. The systems are single-input single-output closedloop nonlinear systems with single valued
and double valued nonlinearities. Two examples are presented here. The first example involves a single
valued nonlinearity, and the second example involves a doublevaluednonlinearity. Figure (1) shows a block
diagram of the closed loop system.

Example 1

In this example, the linear element is a second order system having a free integrator, and described by the

transfer function 2.5
G(s) = s_ +0.3s+O.l

The nonlinear element is on-off plus dead-zone as shown in figure (3). The rules which are used for the
control of this system are shown in figure(5). The system response before and after compensation using both
the CTFC and CRl-hased controllers is shown in figure (4). Both controllers were capable of eliminating



the steady-state error caused by the dead-zone. However, the CTFC controller response is much smoother
than that of the CRl-based controller. The gain of the CRl-hased had to be raised to obtain this response.
Lowering the gain to that of the CTFC controllergave zero output response because the controller output
always fell within the dead-zone of the nonlinearity. The controllerwas not capable of emerging outside the
dead-zone. The CTFC was capable of addressing this system without requiring any outside interference or
help, reflecting better capability and hiher intelligence in handlingdifficultsystems. Note the elimination of
steady state error despite the presence of the dead-zone.

Example 2

In this example, the linear element is a second order system having double integrator, and described by the

transfer function 1

O(s)= s_
The nonlinear element is a backlash nonlinearity as shown in figure (3). The rules which are selected for

the fuzzy controller are displayed in figure (7). The system response before and after compensation using
both controllers is shown in figure (6). In this system the CTFC controlleryielded excellent response while
the CRl-based controller failed completely in addressing thissystem. The superiority of the CTFC over the
CRl-based controller is clearly reflected in this example. It is interesting to note that the nonlinear element
in this systems is a double valued nonlinearity.

3 Evaluation and Conclusions

A comparison simulation study has been conducted betweenthe CTFC and the CRl-based fuzzy controllers
to illustrate the capabilties of each controller in addressing difficult control systems. The systems chosenfor
the comparison study are nonlinearcontrol systems. Onesystem was chosen with single valued nonlinearity
and the other system with double valuednonlinearity. Forthecomparison to have a meaningful interpretation
the same fuzzy sets and control rules wereemployed in both controllers.

The results of the simulation show a clear advantage of the CTFC controller over the CRl-based controller.
The CTFC was capable of addressing both systems giving-mooth response for them, while the CRl-based
fuzzy controller gave a 25% overshoot in the first system and failed completely in addressing the second
system.

The simulation examples also reflect the capabiity of the CTFC fuzzy controller in addressing systems with
double valued nonlinear elements, and clearly illustrate the optimum solution embedied in this controller.
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'IF _tND THEN _ E ;_ PZ CE -- NB "CA - NZ
E--NB CE- NB or E=PZ CE'-- NMor

CE=NM CA=NB CE=NS. -ICA=PZ
E-NB CE NSor E_-PZ CE-NZ CA 'Ps"

CE=NZor E--' PZ CE=ISZor " ....
CE = PZ or CE - PS or
CE = PS CA = NS CE - PM or

. E=NB 'CE=PM'or CE=PB CA=PB
CE -- PB CA = NZ E = PS CE = NB or

E=NM C'E 'NBor CE=NMor

CE = NM or CE = NS or
CE-'NS. CA=NB CE=NZ "

E=NM CE=NZor _ CE=PZo, I
CE=PS CA=NS CE P,_/

E=NM _CE--PZ CA.-NZ CE--Y
E-NM CE " PM0r CE

CE-PB CA-NM E=PM C"
E - NS CE = NB'c: ¢

CE = NM CA = NS

E ='Ns CE = NS or E = PM
CE = NZ CA = NB "_

E NS' CE = PZ or
CE = PS CA = NS

E NS CE " PM or
CE = PB CA = NM

-E -- NZ CE = N'B or ....
CE = NM or
CE = NS CA = NS

E=NT. CE=PZ CA NZ

iE NZ "CE=NZ CA=NB _E NZ CE PS or r.

CE = PM or I- _ "CE=PB CA--NM _ '

Figure 5. Control Rules for Example 1

The abreviations used are:
E = Error
CE = Change in Error
CA = Control Action

NB = Negative Big
NM -- Negative Medium
NS = Negative
NZ - Negative Zero
PB -- Positive Big
PM - Positive Medium
PS - Positive Small
PZ = Positive Zero



]F AND THEN E"-PZ ,CE.,=_n °r/c,. _ . .
E='NB "'CE=NBor

CE --NM or E'=PZ CE - Nk'-'-_ I

cz=NS CA=NM E=PZ "'CE'--P_"
E = NB CE NZ CA = NB CE- PS o_ ]

CE-PMor iE--PS ICE-NB0r __PBCE-PB CA---NZ ICE NMor
E--NM- CE--NBor CE = NS or CA "

CE=NMor E-PS 'CE NZ

CE=NSor E=PS 'CE=PZor _ J .
CE = NZ CA = NB CE ---PS or /_

E=NM CE=PSor CE=PMorf/
CE = PZ or CE = PBPs _"
CE-PM or E=- P-"M C"E----"_
CE = PB CA = NZ CE =f_" ............

E = NS CE = NB or CE
CE = NM or C"

CE = NS CA =_NB E = PM
E':"NS CE NZ or

CE = PZ or
CE = PS CA = NS

E NS cE PM or

CE = PB CA "-"NM E
E NZ CE = NB or

CE = NM or
CE = NS or

E-NZ CE= NZ CA =NB
E=NZ CE=PZ CA=NS

E=NZ CE' _Sor ' B'
CE = PM or [ _, [CE = PB or
CE = NB CA = NM _-

Figure ?. Control Rules for Example 2
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Possibilistic Measurement and Set Statistics*
. I 0

/
Cliff Joslyn _ _

Abstract

Set-based statistics are necessary to generate Imuibi]ity distributions from measured data. Methods
by which pby_cal measurements can generate statistical data on real intervals are considered, including
trials from multiple heterogeneous measurement devices rather than a single instrument at multiple times;
classes of cons/stent intervta_sconstructed from statistical dat_ around a common point focus or interval
core; and consonant intervals constructed from statistical data.

I Introduction

My overall interest is to expand the applications of possibility theory beyond its traditional uses in the
engineering of human-created technological systems (e.g. knowledge-based control systems, artificial intelli-
gence and approximate reasoning, etc.) to include the modeling of nattvral, complex systems. In order to
do this, it is necesu_ to extend the semantics of possibility beyond traditional interpretations based on the

toUnCertaintYnaturddsystemsjudgnmntSisneeded.°fhuman subjects. Instead, a semantics of poaihility that has meaning with respect I_'_

Existing empirical methods for deriving possibility distributions are frequency conversion method, wl:ich
transfovn_ some measured probabilistic data into a po_sibilistic form [16]. Of course such transformations
must be used when only frequency data ate available, but the resulting pomihilistic representation is never
ultimately a?propriate for data initially governed by a frequency distribution. When possibilistic data are l
desired, it is always preferable to obtain them in a form more directly similar to their poesibilistic represen-
i_ation.

The additivity of frequency data results from the specificity of observations of singletons, or indeed
elemcnts of any disjoint class. Therefore, the first step tow&,xls po_sibilistic measurement is allowing for
the possibility of non-specific measurements, that is observations that are possibly non-disjoint. This is
essentially the concept of set statistics, originally advanced by Wang and Liu [17], and developed more by
Dubois and Prude [4, 6].

Frequency counts on subsets result in empirically derived random sets. In earlier papers, _mlyn [9, 10]
and $celyn and Klir [11] considered methods for deriving a possibility distribution from a given empirical
random set. In this paper, methods for the collection of set statistics are developed, including direct collection
of interval data, and also generation of intervals from point-data streams.

2 Mathematical Preliminaries

We begin with the standard evidence and possibility theory [3, 14]. Given a finite universe _ = {w_}, 1 _
i <_ n, the set function m: 2n _ [0, 1] is an evidence function (otherwise known as a basic assignment
or basic probability assignment) when m(0) = 0 and _Acfzm(A) = 1. Denote a random set generated
from an evidence function as S -- {_Aj,mj ) : mi > 0}_ where (.) is a vector, AjC f_,mj = m(Aj), and
I <_ j <__N = l_q[ <__2n - I. Denote the focal set as _" = (Aj : mj > 0} with core C(_ r) - _'_ Aj. The

"Preparedforth_ Com_ca'¢_c¢_ the North Amcric._aFury Inform_kmProccmin$Society,December1992,PuertoV_trt_
IGraduat_ Fellow, _ystems Science, SUNY-Bin_,hamtma,327 Spring St. _ 2, Portland ME, 04102,USA, {207)774-0029,
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dual belief and plausibility measures on VA C _ are BeI(A) = _a,ca mj and PI(A) = Y_a,Za mj, where

A.LB_ANB=_.-

The plausibility assignment (otherwise known as the contour function, falling shadow, or one-

point coverage function) of $ is

#! = (Vl({_al})) = (Vii), Pl, = _ mi.

fl is a fuzzyset that can be mappedto an equivalence¢1_ ofrandomsets[8].
WhenVa; _ Y, lal = 1,thenS is speciS¢,andBel(aj) = PI(A_)= Pr(A_)is an additiveprobability

measure with probability _tributiun F! - _ - (p_) with _diti,,e normalizationEiz'_ - 1. S is
consonant (Y"is a-nost) when(witl_outlossofgeneralityforordering,and lettingA0 = _) Aj_, c At.
NowPI(Aj) = H(A_) is a possibiEcymeasure. As Pr is additive,so 1I is maximal in thesensethat

II.(Oi aj) = % n(aj), whereVis themaximumoperator.DenotingA, = {,e,,w2.... ,,ed, and aimtlming

that _" is complete (i.e. Vwi E Q,3Ai), then l_l = _ = (_r_) is a possibility distribution with maximal
normalizatiotx Vi *ri= 1.

2.1 Consistency and Consonance
f-

$ is consistent when C(_) _ _. E_ch consonant random set is consistent with core C(_') = Ah and _"
being coudst_nt is both necessary and sufficient for _/Pli = 1. Thus a consistent but non-consonant random

set has a maximal pcssibility distribution 1_1= _, but its plausibility measure PI is not a possibility measure
II. While an additive probability distribution uniquely determines a measure and random set, a maximal _.
possibility distribution does not. However, a possibility measure 11"that is optimally approximate can he
constructed according to the formula VA C fl, II'(A) = V,,,_A xi [5]. When $ is already consonant, then of !
course If" = PI = II.

Dubois and Prude [3] suggest that the plausibility assignment of a consistent but non-consonant random

set t71 = _ should not he taken as a possibility distribution, but rather should be used to derive a nest from
which a possibility distribution can be generated. That nest is the focal set of the constructed possibility
measure II', denoted Y'* -- {B_]. The evidence for each focal element, denoted m_ = m(B'_), is given by
the formula

m_:= _ mj - m_._x
AjCB_

where m_ = 0. This method results in a greater constraint on the evidence provided by m, and thus the loss :7-_
of some informtttion available in a consistent $ (see example in Section 4). "

2.2 Consistent Transformations

When _" is not consistent, then V Pli < 1. Here a set of focused consistent transformations $i can be

constructed from ,S [10, 11]. Vwi _ fl, $i is a consistent approximation of $ with evidence function [10]

re(A) + re(A- (_d), _ e Arhi(a) = 0, _ai¢ a '

The effect is to create a core C(_i) = {wi} with focus wi = w*. Under the transformation ,{i, the sub-

maximal plausibility assignment 1_1= ( PII, Pl2 ..... Pll,..., Pin ) is transformed into a maximal possibility
distribution i = (PI_, PI2 .... ,1 ..... PIn ). _ in turn generates a consonant random set $_r, determined
from the constructed possibility measure H" of _.

In using the transformation the task is to choose the "correct" w* as a focus, and to elevate the plausibility
of that element to 1 as a possibilistic normalization. While there are many methods to choose w', to date
only the Principle of Minimal Information Distortion [10] (or information Loss [11]) has been studied. Given
a random set S, then that focused consistent transformation _i is selected so that the total information

content of _ is as close as possible to that of the original 8. Details of the measure of total information can
be found elsewhere [7, 10, 151.
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3 Empirical Random Sets

Assume that some phenomenal system can be described as a set _ - {o;_), 1 < i <_n. A traditional concep-
tion of a measurement on f_ results in the observation of an element _i Ef]. For example, a thermometer

calibrated in integral degrees on the interval [O,100] could yield a result of 72 degrees, 72 E {0,1 ..... I00}.
Assume a counting function c: Q _-, 2;, ci = c(wi), where c_ is the number of observations of 0:i. Then

for a total number of counts as N, the frequency distribution on _ is f:_ _-* [0,1], f(w_) -" j_ = ci/N.

Since _"_i fi = 1, therefore f is a natural probability distribution on fl with an additive measure F: 2t_ _-,
[0,II,F(A)= _=,_/,.

3.1 General Measuring Devices

However,most realmeasuringdevicesare not likethis,due to necessarymeasurementuncertainty.Most

measurementsproducean observationofsome subsetA C ft,perhapsan intervalA C _. The observation
ofthe intervalA leavesuncertaintyas tothe "actual"valuew E A.

Itmay be thatnotallsubsetsareobservable.Thus a generalmeasuring deviceisdefinedasa class

C - {A_,}C 2n,I_ f < N _.The natureofthe measuringdevicewilldependon theelementsand structure
ofC.

Assume a collection of set observations A t E C, 1 < k < M. In general, for some kt, k_, it may be that

Att = A t2 . Therefore the A t form a multi-set, denoted as a vector A = ( A t, A 2.... , A M ). The empirically

derived focal set _'_ C C is the set of subsets that are actually observed in A. _-B is derived by eliminating

the duplicates in A. Let _-E = {Aj}, where _-E C C, 1 _ j < N _ N', N <_M and YAj E _'E,Aj E A, and
inclusion of an element in a vector is defined as would be expected.

Now establish a set-counting function C: _'E _._ _, C/ = C(Aj), where YAy E _-E, C: is the number of . /

occurrences of Aj in A. Finally the set-frequency function is arrived at _

Cj Cj/M. "

The intention_sobvious:since_# m_ = I and _ _ _rs,thereforem _ isa naturalevidencefunctionon i_
generatingan empiricallyderived random set denoted,q_.

3.2 Disjoint Measuring Devices

Generally,scientistsstriveto constructmeasuringdevicesforwhichC isdisjoint;thatis,VAi,A_ _ C,A_ J.
A2. Insuch classicalmeasuringdevices,C isan equivalenceclasson f_,yieldingan observationofan At _

unambiguous.
Virtuallyalltraditionalmeasuringdevicesareofthistype.A typicalexamplecouldbe _ thermometer,

where _ C _ issome distancealonga glasstube marked atcertainpoints,say d_,witha certainnumber

of degrees. The A could then be the disjoint, equal length, half-open intervals A# = [d_, d/+_). Observation
of a specific position of the mercury (an w _ Ai) yields a specific A i reading for the temperature. The size ..

of the A_ relative to the size of the tube indicates the precision of the thermometer. While any particular
interval A_ is usually identified with one degree reading (either d_ or d_+t), it must always be kept in mind
that it in fact indicates the entire interval [d_, d_+t).

Because the Aj are disjoint, observation of any one particular interval admits to no uncertainty at the level -
of description of C. Thus in this case C itself can he considered as a new universe of discourse _T : C " (A/).
Because the Aj are disjoint, so will the A _.

Now m z is the frequency of the disjoint Ai, and is thus a true probability distribution, and not an ......
evidence function proper. Measurements from a classical measuring device are usually parameterized in
time k, yielding the observations A _ as time-series point data. An additive distribution and measure are
derived as for frequencies above

F'(SCn')=
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Possibilistic Measurement

4 Instrument Ensembles

- One way to generate measurements of intersecting subsets is to use an ensemble of classiealinstruments. That
ensemble can be considered as either multiple, heterogeneous instrument4t taking separate measurements at
the same time, or as a single instrument which is changing its structure over time.

Let Ci = (A_t.), 1 < j_ <_.N_ -" loll be disjoint cla_ses on II, and F -- {C k) be the family of such cialmes I

I < k < M. The natural partial order on F is

c' -4c' VA , c', c C', =UAJ,.
When CI -4 Ci then Cl refines Ci, and C2 coarsens CI. For example, ¢I could be a thermometer reading in
tenths of degrees, while C2 could belong to a mutually calibrated thermometer reading in whole degrees. F - - -
is consonant whenever the Ct-are all comparable under -< (they are all mutual refinements or coarseninss).

Luting A i he the subset observed in device Ct, then the vector of observations over F is _ = (A k ), [/TI =

M, and A generates the empirical random set S E as described in Section 3.L If any of the Ct share common
members (in particular, if any of them are equal), then some of the A t may be equal, yielding multiple

observations in A of certain subsets. Otherwise, _ll subsets will be observed a single time, and will not
necessarily be disjoint.

Assume observations from two devices, say A 1 E C1 emd A 2 E C2. It is expected that A x _ A 2. In the
event that A 1 2. A 2, then at least one of the devices C1 or C2 would be regarded as being in error, or perhaps
even the assumption of the "reality" of the quantity being measured would be questioned. Thus, while there
is nothing in the mathematics that would preclude such a result, pragmatic conditions require that p'B be
consistent, so that 8 j_ has a natural po_ibility distribution _rand at worst a constructed possibility meamlre
II*. In the event that ._£ is nevertheless not consistent, and there are pragmatic reasons for accepting the
results of the measurement, then the focused consistent transformation method outlined in Section 2.2 is #
available to construct consistent random sets Si-

When F is consonant, then without loss of generality for ordering, _1 -4 C2 -4 ... -4 _M. Here if _'E is
consistent, then it must also be consonant, with Al C A_ C ... C Alv. Of course, in this case a pouibili_ic ..........
analysis is less useful than it would be otherwise, since there is an absolute gain in accuracy in the movement
towards the finest measurement A 1. Nevertheless, the mathematical analysis is available.

Example 1: Let ft = [0,5] C _ and define a family F of four measuring devices

C_ = {[0, 1),[1,2),[2,3),[3,4),[4,5]}, tY_ = {[0,1), [1, 2), [2, 3.5), [3.5, 5]) ....
Cs = {[0, 1.5),[1.5, 3.5), [3.5,4), [4,5]}, C4 = {[0, 1.5), [1.5,4),[4,5]},

so that M = 4. F is not consonant, but C3 -< C4. Measurements are made on each instrument yielding
a vector of four measurements (Figure 1)

X = ( [l, 2), [1,2), [1.5,3.5), [1.5, 4)).

After eliminating duplicates, the set of observed intervals _E is derived with N = 3 < M sad i

i F ........... "1 I C,i

I. , ......... _ ; : C3

I I ; _ _ _

0 I 2 3 4 5

Figure I: Measurements on four instruments.

random set _qE

_l_ = {[1,2),[1.5,3.5), [1.5,4)), S_ = {([1,2),.5),([1.5,3.5),.25), ([1.5,4),.25)}.
i .......

i
{ i
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_'E is consistent with core C(#_'-E) .= [1,5, 2), the region on which _"= I. r(_) is determined by
_(_)_ _B- _.4,_ j , so that

.5, _e[1,1.5)

1, w _ (1.5, 2)
_r(_) = .5, _ _ [2,3.5)

.25, w _ [3.5,4)
0, elsewhere

a.sshown in Figure 2.

0.75

•(w) 0.5

0.25

0 2 3 4 5
_2

Figure 2: _rdetermined from ,.qE.

Dubois and Prade's method described in Section 2.1 results in the consonant random set

{{[z.5,_),0),([z,3.5),.75),((z,4),.25)}

and possibility distribution shown in Figure 3. Comparing Figures 2 and 3,it ca._ be seen that reliance
on the consonant class and its greater constraint results in a loss of distinctions of possibility values ..
over portions of the possibility curve, f-

0.75 _

_'(_) 0.5
0.25

! !

0 I 2 3 4 5
t# ,,

Figure3:_r*determinedfromDuboisandPYade'smethod.

Because _rE is finite, a- is piecewise continuous, consisting of a union of constant segments. Also, -
because C(5r_) is connected, _r is unimodal at C. Therefore f in this example, and in the sections ....
to follow, has the form of a centrally peaked staircase. As I_rel --- co, _r approaches the traditional
forms for possibility distributions (e.g., fuzzy numbers [2]).

5 Consistent Intervals from Focused Point Data

Even given a single measuring device and time-series data gathered on it (as discussed in Section 3.2), which • _ •
is our normal concept of measurement, interval data can still be generated. Sinc_ classical instruments
generate observations of disjoint intervals that can be regarded as distinct points in a higher-level state
space, therefore in the following sections a single measuring device that yieidr,observations of points in a
lower-levelstate space, a closed interval ft C _, will be considered.
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Denote an observation as a data point d E._, and the collection of data as a data strmun, a multiset
_denoted as the vector/_ = (d_), l < i .< n. The set generated by eGminating duplicates iu/_ is the data

sot D = {d_},1< i< n'< n.

A po_ibilistic analysis of/_ will be approached by using its order- statistics [1]. For a given data stream

/_, the order statistics, denoted d(o, are a permutation of the _ such that d(1) _<d{_) _<... < d(,). d{1) and

d(,) are called the extremes, and the range interval is W = [d(z), d(,)]. The order star,tics of the data set

[_' ) l<i<., 1./T are d_), 1 <_i < n'. The _0 n_turally generate the disjoint intervals 6/= o'd_,+s) ' - - -

For completeness, let 6,, = .d("')' _,,). - _

5.1 Focused Data Intervals

thus represents a classical measuring device with the 6i partitioning W, and so the greatest problem with _
deriving a p_sibility distribution from A is the lack of a focus, or any core. Thus we posit the existence of a
focus u E W. The purpose of u is to provide a value on which all the intervals (yet to be determined) agree;

a value for which _r(u) -- 1. u naturally divides W into left and right sub-intervab denoted Wt = [d(x), u)
and W, = (u,d(,)] so that WtU[u,u]VW_ = W.

Given a focus u _ W, then Vd0) _ u, d(i) _ W_ or d{0 _ W,. Denote the intervals A _, 1 <_ i < n as
follows:

A _ = re, d(i)], d(q _ W, . '_

Since I

d(i_),d(_) _ W_, i_ <_is -. A _ C Ai_; and d(i_).d(i_) _ W., is <_i2 ."* A _ C A i_, }

therefore each of the sets of intervals [
I

.]:zm{Ai:d(1)_Wi}, Fr={Ai:d(o_W,}, i

are nests. Since Vi, u _ A t, the total set {A i} is consistent, forming a focal set .,_'_ = ._ {J_', with core ]
C(_ "_) - [u, u] - {u}. _qz is then constructed from the counts of the d(0 _/_ of the corresponding interval
A i .

Generally, each d(0 will generate a single count for the interval A i. However, if _il, i_,A i_ = A i_ then
multiple counts will be generated as discussed in Section 4. If u - do) or u - d(a) then .T _ will actually be
consonant.

Example 2: As above, let fl = [0,5], and assume that n = 6 point observations in I] are taken giving the

data stream/_ = ( 2,1,4,1.5, 2,4.5). The order statistics are

d<_= _, d_>= 1._, _ =d_,>=2, %_=4, %s_= 4._
¥

and W = [1, 4.5]. The corresponding data set is/T = {1,1.5,2,4,4._} so that ,' = 5 < n, with order
statistics and disjoint intervals

= {[I,1.5),[_.s,_),[2,4),[4,4.s),[4.s,4.s]}
Assuming that u E [2, 4], then the focal and random sets (Figure 4, with u - 3) are --

_rg -_ YI OY,. = {[l,u],II.5,n],[2,n]}O{[u,4],[u,4.5]},

SE _ {([l,ul,1/6),([1.5,u],1/6),([2,u],1/3),([u,4],1/6),([u,4.5],1/6)}.

The possibility distribution is shown in Figure 5. i

t
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_ _ A 6

A4

_ t____ As
A2

I I ! t : t i : I _
0 1 2 3 4 5 w

1 2 43 5 6 d!q
1 2 _ 4 5 "'(i)

, ! , i
W_ _ W,

! I
W

Figure 4: Co_htent family from focused data set.

1 I I ' !

_'(') 1/3 .rl- '
0 1 2. 3 4 5

W

Figure 5: Derived lx_ibility distribution.

5.2 Choice of Focus

So far the method by which the focus u can be chosen has not been discussed. While a number of methods
suggest themselves, selection of methods will depend on user methodology and further empirical research.
However,in Example 2 the first four methods below all yield u _ [2,4], which is the inner intezval of A (see
Section 6).

Sample Mean: Selection of

. = _ = _ d_/n
is a possibility, _lthough one that is not in keeping with po_ibilistic concepts. In our example, this
would yield n - 2.5.

Range Midpoint: The midpoint of W, denoted I_', is much more in keeping with pomibilistie concepts:

u = W = d{_)+dr.)
2

It expresses something like the concept of a "po_ibilistic sample mean". This would yield tt = 2.75 in
the example.

Closest to Range Midpoint: There may be some value in having u actually be one of the data points, so
that u _ D_. This can he done by selecting that _ _/Y closest to I_ (yielding u = 2 in our example):

u = mmI_ - P/I.
_,_D'



.... ., //

Poasibilistic Measurement

Data-Set Midpoint: The middle point of the data set itself can be chosen, that is

.... .-- _._
if n I is odd. If n_ is even, then either , :

'i

u = _n'/2) or u = d_+l).

Alternatively, if n' is even then the midpoint of th.; central interval can be selected:

2

Information Principles: Finally, the Information Principles introduced in Section 2.2 can be applied to
the problem [1I, 12]. Again, details will not be given here. Selection of u can be regarded as a problem
of arnpliative reasoning, of making an inductive inference beyond the given information. Then the
Principle of Maximum Uncertainty can be invoked, which states that u should be chosen so u to
maximize the total uncertainty of the resulting random set, or of the final possibility distribution.

Alternatively, selection of u can be regarded as one of transformation from the frequency distribution

of/) to a possibility distribution. Then the Principle of Uncertainty Invariance [13] or Minimal In-
formation Distortion [10] can be used, which states that u should be chosen so as to make the total i
uncertainty of gE as close as possible to the entropy/_.

6 Interval Cores

A potential disadvantage of the methods in Section 5 is the reliance on a singleton-valued core set C(P "£) = '
{u}, while the other elements of the method are the intervals 6_ and A t. Instead, methods that yield an
interval-valued core can be considered. A disadvantage of these methods is that they may eliminate some
data points, thus loosing some information from the resulting 8_.

Let/_, De and A be given as above. Now identify the core as an interval in the range with endpoints
Ct and C_, so that C -- [Ci, C,] C W. Assume for the moment that _d(i} _ C. Then the left and right
ranges can be redefined as Wt = [d(x),Ct) and Wr = (Cr,d(n)], so that WI UCUWr - W. Also redefine
the intervals A i as follows:

.4'= f, W,
L LC,,d(oJ, d(0 e W,.

Again _'a and _r are nests, so that _.e - _'s U _'r is comfistent with core C(_ "£) -- _A i - C.

If 3{d(k)} C C, then a new data set/_- _-/) - {d(t)} is defined, where the operation - of a set from a

vector is just the elimination of Vd{_) from/_. Corresponding new d_),/T-, etc. can be generated without
special treatment.

• 6.1 Choice of C

As with the selection of point foci, there are a variety of methods by which an interval core can be selected.

Central Disjoint Interval: If n_ is even, then a central disjoint interval is naturally generated from the
data set DS:

C = 6.,/_.

Since d_n,12), di_+l ) e C, all instances of them will be eliminated from D in forming/_-.

Modified Central Interval: If n' is odd, then there are two disjoint intervals on either aide of d_(g._t_.
Thus a core would be selected

C =_._ U6=p ......
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that eliminates.... ins_ces of the three data points d'(._s_t ) ' d_,,, and d*(_a ) from /_.

Alternatively, the midpoints of the two disjoint intervals ea_und --a_(_ ) cam be selected amthe endpoints
ofC: _. -

Disjoint Interval Around Focus: Given a method from Section 5.2 to select a point focus u, then C can
just be selected as the data, generated disjoint interval around u:

..... O =_i, u-E 6i.- ......

As above, instances of d_i) and d_i+l ) will be eliminated from/).

Confidence Interval Around Focus: It may be appropriatc for the user to involve some traditional sta-
tistical information. Again, given some focus u, then C can he selected as the interval within a standa:d
deviation of u:

Information Principles: Methods of Uncertainty Maximization or Invariance can be applied, as discussed
in Section 5.2.

7 Consonant Intervalsfrom FocusedPointData

It may be desirable to go as far as generating consonant, not just consistent, families from a data stream/).
However, as the methods progress from consistent families with point focuses, through consistent ft_nilies
with interval cores, to consonant classes, the consUaint on 5 s increases, thus loosing information awilable in

the original ]_. This is reflected in the loss of some dat_ points in the interval core methods, and in roughly
half the number of available intervals from the following consonant methods. Thus as with the case of an
ensemble of measuring devices (Section 4), use of strictly consonant cases may be less useful than simply
consistent cases.

Again, a number of methods present themseives.

Inner Nested Intervals from Interval Core: Assume that an intervM core C = [Ct, Cr] has been de-
termined according to some method discussed in Section 6.1. Denote A 1 = C, and construct a set of

._ t: /cintervals A k [A I ,Ar] such that A_,A_ E/T and A _ C A k+x. Given an interval A _, then A t+_ is
the nearest interval detern_ned by/T containing A t

= < = >A#.
d_,) ED (' " • di.)ED*

The A _ a:eavailableup to a maximal Al.n'l_]--147._r_ - {At}isthena consonantcl_. The count

ofA* can be determinedasthemaximum numberofoccurrencesofeitherendpointofAt in/_.

Inner Nested Interval_from Point Focus: Assume insteadthata pointcoreu _ W has been deter-

mined accordingtosome method discussedinSection5.2.Now simplyletA_ = [u,u]and applythe
method above.

Outer Ne_ted Intervals:Proceedin theoppositedirectionfrom above.Now defineA _= W, and con-
structA _+_ from A_ asfollows:

Af+, = ar_n_i_,_O> A_, A_+'= _.)m_._0 < A_.
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Multisensor fusion is becoming increasingly important in

intelligent computer vision systems. In this paper we present the
generalized fuzzy integral with respect to an S - decomposable measure
as a tool for fusing information from multiple sensors in an object
recognition problem. Results from an experiment with automatic target
recognition imagery are provided.

INTRODUCTION

Many intelligent systems use multiple information sources becavae
the information from any individual source is either partial or
contaminated, that is, it is uncertain and/or imprecise. To evaluate
this information properly, intelligent systems must be capable of

integrating both complementary and redundant information provided by
nmltiple knowledge sources. Pattern classifiers, scene analysis
systems, imase processing systems, and computer vision systems all
must be capable of integrating knowledge from multiple sources.

In an earlier work, we developed a new evidence fusion technique,

based on the fuzzy integral with respect to g_-fuzzy measures Ill. _e
fuzzy integral differs from the previously mentioned paradigms in that
both objective evidence supplied by various sources and the expected #

worth of the subsets of these sources are considered in the fusion ]

process. In [2] we developed the fuzzy integral with respect to }
w

different classes of fuzzy measures, namely, S-decomposable measures, !

as an informacion fusion technique. We generalized the concept of the |

fuzzy Integral to increase the flexlbillty in the =rule of
combination" of evidence. In this paper, we briefly survey _hat

development and demonstrate the usefulness of the generalized fuzzy

integral in a multlsensor fusion domain.

FUZZY _KASUKES

Let X be a finite set and let D be the power set of X. The
elements of n are called measurable subsets of X.

t
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Definition 1: A set function 9 : fl _ [0,I| is called a fuzzy measure
iff the following axioms hold.

(I) _(_) - 0--.,(X) - I.

(2) p(A) _ p(B) if A C B.

Fuzzy measures based on triangular cononrms (t-conorms) have been
studied by Dubois and Prade in [3]. They have shown many interesting
properties of these types of fuzzy measures and their relation to
Shafsr's belief and plausibility measures:Weber in [4] studied the
fuzzy measures based on Archimedean t-conorms co define the Weber
integrals. He called _he fuzzy measures based on t-conorms

S-decomposable measures.

We define the S-decomposable measures, following Weber. Let X be
a finite set. Note thaC this restriction is only for simplicity and
that all of our applications assume finite sets, but the theory can be
extended to infinite sets (see [4]).

Definition 2: A function # : n--_ [0,I] wlth p(_) - 0 and #(X) - 1

is called an S - decomposable measure wlth respect co a t-conorm $ iff
for A, B _ X with A n B - _,

_(AUB) - S(_(A),_(B)).

Definition 3: A mapping X--_ [0,1] defined by x L _ p({x ]) - pL is

called a _ density_ map_in_ and the set {pl,...,pu) is called the
densitysec.

We note that an S-decomposable measure is uniquely defined by --":_"i
knowing the t-conorm and the fuzzy densltymapplng. Let X - {xI.....x) ....

be a finite set and let pL . _({xt)). If A is a subset of X, A -

{Yl ..... yp}, then

_(A) - #({yl}U ... u {yp})- SI#({yl}).....#({_}_.

Now, since #(X) - i, the fuzzy densities must satisfy

S(#1..... #n) . i.

This equality would be trivially true if pt . i for some i. Thus a

S-decomposable measure can be constructed by knowing the density

mapping and assuming that at least one of the fuzzy densities is I.



THE FUZZ'/ INTEGRAL ...... _.

Definition 4: Let X be a finite set and _l be the power set of X. Let h
be a function from X into the closed interval [0,1]. The fuzzy
integral over A _ X of the function h with respect to a fuzzy measure
# is defined by

[ [ ro 11h(x) o #(.) - sup mi min h(x) , p(A n E) .

"A - E _ X -._ xEE ................. J..J ....

The calculation of the fuzzy integral when X is a finite set is

easily given. Let X - (x1'xz'''''xn } be a finite set and let h : X -_

[0,I] be a function. Suppose h(xl) _> h(x2) >_ ... >_ h(x ), (if not, X "-n ",

is rearranged so that this relation holds). Then Sugeno in [5] proved
chat a fuzzy integral, e, with respect to a fuzzy measure p over X can
be computed by

e - max rain h(x L),#( ) , (I)

where A - [x .....x }.

Equatlon (i) is the _le of comblnatlon" for the fuzzy integral-b_sed ........
information fusion. If # is an S-decomposable measure, then the values -_

of #(A t) can be determined recurslvely as

_(A) - _(Ix_))- _ (2_) ....._ '

_(A t) - S(#_ , #(At.x)), 2 _<i < n. (2b)

The reader £s directed to [1,2,5] for many theoretical properties
o_ fuzzy measures and fuzzy integrals.

#oJ, HLet |#_ : 1 < i _< u} be a £uzzy density set and let #_, Po'

and #_ denote the fuzzy measures based on S_, SS, _, and SA t-conorms ""
[6] (see appendix for definitions) respectively, for a permutation o

of the fuzzy density set. Since SD > S_ > SII > SA, then for any subset
A of X,

_(A) >_p:(A) >_pf(A) >__(A). (3)
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For these measures, the following theorem (proved in [2]) is of
interest.

Theorem 1: Let {#i -_ 1 _< i _< n} be a fuzzy density set that define a ........ .....

fuzzy measure. Let h be a function from X to [0,1]. Then / ._

Jx Jx

THE GENFAALIZED FUZZY INTEGRAI_

In the definition of the fuzzy integral Sugeno, in a loose sense,

used the max and the min operators to replace the addition and the i.... "
multiplication in the Lebesgue's integral. It seems natural to

generalize the fuzzy integral by usin 5 a t-nora instead of the mln ....

operator and by replacing the max operator with a t-conorm [6]. "

In [2] we suggested two types of 5enerallzations of the fuzzy _
integral which have natural interpretations. The fuzzy integral, as

defined in equation (1), may be interpreted as "the highest

pessimistic" &fade of agreement between the objective evidence,h, and
the expectation, #. For the first generalization, we replace the min

operator by any t-norm, ranging from T/A to TD (see appendix). The

resultant integrals can be interpreted as ranging from "the highest
pessimistic" to "the lowest pessimistic" grade of agreement between h
ana #.

Let X be a finite set. Let h be function from X into the closed

interval [O,l] and assume that h is sorted in decreasing order. Then
the above generalization of the fuzzy integral of the ruction h with

respect to a fuzzy measure # is written as

•T - max T h(x L),#(A t) , (4)
t,,,1.

where A_ - {x, .....xL}, and T is a t-norm. For example, eli is the

integra.1,value of the function h with respect to a fuzzy measure

when the t-norm TII is used instead of the min operator, Ta-

In [7] an alternative definition of the fuzzy integral of the

function h with respect to a fuzzy measure # is given by .....
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When X is a finite set and h(xl) >_ ... >_h(x ), an optimistic version

of this integral can be calculated by

°[ [ IIE - min max h(x L),_(A) , (5)
L-,1

where A_ - {x 1,... ,xt}. This integral can be interpreted as "the

lowest optimistic" grade of agreement between h and _. Then by

replacing the max operator by any t-conorm ranging from SA to SS, the

resultant integrals will be interpreted as ranging from "the lowest
optimistic" to "the highest optimistic" grade of agreement between h

and #. Similar to (4), lettlng ES to denote the generalized fuzzy

integral of the function h (assuming h is sorted in decreasing order)
with respect to a fuzzy measure _ using the t-conorm S instead of max

operator in (5), we can write

Es - mln S h(x t),#(A t) , (6)
trot

where A t - {xI .....xt).

The following theorems (proved in [2]) establish an ordering of
the generalized fuzzy integrals for a fixed function h and fuzzy

measure _.

Theorem 2: Let _ be a fuzzy measure and h : X --_ [0 i] Let

S _<S be two t-conorms. Then ES < ESI 2
t 2

Corollary I: Let # be a fuzzy measure and h : X --) [0,i]. Then ED _>Es

>_E_>_ E_. "

Similar to theorem 2, we have:
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Theorem 3: Let _ be a fuzzy measure and h : X-_ [0,I].Let

T1 _< T2 be two t-norms. Then eTx < dT "2 ;

Corollary 2: Let /_ be a fuzzy measure and h : X --) [0,i]. Then

e/A > ell> e_> el)"

APPLICATIONS - MULTISENSOR FUSION

The fuzzy integral was used as a segmentatlon tool in [8°9], and

as a fusion technique in [1-2 ]. Here, the desi_nn and the

implementation of a multisertsor object recognition system using the

generalized fuzzy integrals wlch respect to t°conorm*based fuzzy ....
measures (S-decomposable measures) is explained.

At any level of recognition, the classification problem can be

stated as follows : Let C - (Cl,...,C } be a set o_ classes or
.o

hypotheses of interest. Let A be an object under consideration in the

scene. Then one must decide to which class C , object A belongs. Note

that each Ct may, in fact, be a set of classes by itself.

Let X - (xI .....x } be a finite set. Each x is a knowledgen

source or may itself be a set of knowledge sources for the reco_Ition

of a particular class, CL, I _< i _< m. Let A be the object under

consideration for recognition. Let hk : X -_ [0,1] be the partial

evaluation of the object A for class Ck, that is, hk(xl) is an

indication of how certain we are in classlfylng the object A in class

Ck using the knowledge source x .

In order t to calculate the fuzzy Integral value, the degree of

importance, _k' of how significant x is in the recoEnltlon of the

class Ck, must be given. These densities can be subjectively assigned

by an expert, or can be generated from a training dace set, as in
[1,2,9].

After sorting the h function in descending order (along with
their corresponding densities), we can construct the S-decomposable
measure, 9, using equations (2). Now, using equations (4) or (6), the
generalized fuzzy integral value can be calculated.

d'Y_ •



00 FOR each object ...... .
DO FOR each class

Get hk(x _) .

Sort hk(x _) in descendlng 0rder

Calculate measures recursively by equation 2 --_-'----_
Calculate genenralized fuzzy integrals by equation 4 or 6 -

END DO

Classify object into class with largest Integral value .....
END DO

RESULTS

The data consists of several sequences of FLIR (forward looking

infrared) and and 'IV images contalnlng an armored personnel carrier
(APC) and two different tanks. There were five I00 frame sequences of

FLIR and _wo 1OO frame sequences of TV imaEes.Sequence 5 of FLIR and

sequence 1 of TV were taken simultaneously and constitute the
multl-sensor data.

Size-contrast filters were run on each image to detect objects of
interest. Several different statistical and texture features were

calculated for the object windows found by the prescreeln 5 operation.
Here, the features are assumed to support the existence of an object

directly. In this experiment the system was tested by multl-sensor

data on sequence 5 of FLIR and sequence 1 of TV, uslng sequence 4 of

FLIR and sequence 2 of TV for trainlng. The h functions were generated
using the (smoothed) normalized hlstogram of the tralning data, and

the fuzzy densities were generated using the method described in [10].
Here, we consider the problem of target vs. non-target, In this

problem there were II features for each sensor. These features
consisted of four statistical features and seven texture features

calculated on the unsegmented objects. In a [11], we subdivided this .....
problem into specific classification problems, and Investlgated the

effect of a multilayer structure on the multlsensor fuslonproblem for

object recognition.

Tables 1 and 2 show these results. Table I shows the result of

using different integratlon values for final classification and Table I

2 shows the confusion matrix of the best overall class£flcatlon for

the problem. As it can be seen from Table l, the best total correct

classifications occurs for _, the highest optimistic integral value.

This is due to the fact that many sources (features) provided zero

values for all classes includlng the correct class. The reason" for

this is the training data used to generate the h values was
considerably different from the testing data. The testlng data was

registered multl-sensor data whereas the tralnln 5 data consisted of

two non,correspondlng sets of single sensor data, a practical problem
when deallng with real data. The robustness of this approach is
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demonstrated by the fact that, except for the most pessimistic

.. integral , over 68% of the data-was correctly classified in "spite of
the problem with the data.

Table I

% Total Correct Classifications for l-level Configuration ....-

ED E$ ElfI E_lI eAi ell e, .... el) ................... 496.9 78.2 80.1 79.1 68.7 71.8 75.5 9.8

Table 2

ConfuslonMatrix of Best Overall Classification

Target Non-target i

Target 300 0

Non-target I0 16 _'.

" !

CONCLUSIONS

In Lhis paper, a generalization of an earlier methodology for
information fusion using the generalized fuzzy integral with respect

to a fuzzy measure based on a t-conorm was applied to the problem of
multlsensor fusion. S-decomposable measures allow the prediction of _
the effects of changes in importance of nodes to the overall
evaluation. Also, these measures can simulate the different attitudes

necessary for information fusion.

The generallzed fuzzy integral algorithm as a multlsensor fusion .....

paradigm was applled to the problem of automatic target recognition
and produced excellent results.
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Appendix _"
., .......

The t-conorms used in this paper: '.',

1. Drastic sum _c'

a, b - 0,

S_(a,b) - b, a - O,

I, a,b > 0.

2. Bounded sum

S$(a,b) - mln(l,a+b)

3. Algebraic sum

Sii(a,b) - a + b - at) I
h

4. Logical sum

S_(a,b) - max(a,b)

The t-norms used in this paper:

I. DrasClc product ......

To(a,b)- b, a 0,

1, a,b>O.

2. Bounded product

Tz(a,b) - max(O,a+b-l)

3. Algebraic produce

TH(a,b) - ab

4. Logical product

T_(a,b) - min(a,b)
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- - IN A DATABASE MANAGEMENT SYSTEM .........
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ABSTRACT

Many propositionsto extend databasemanagementsystems havebeenmade in the lastdecade.

'"' Some of them aim at the supportof a wider range of queries in.volving_buz_effi_.Unfortunately, these queries are semewhat complexand thequestion of thexr• tctency _s a
subject underdiscussion. In thispaper,we focuson a particularsubsetof queries,namelythose
using fuzzy quantifiedlm_dicate_Mcceprecisely,we will considerthecasewheresuchpredicates
apply to individual elements as well as to sets of elements. Thanks to some interesting
propertiesof a-cuts of fuzzy sets, we are able to show thattheevaluationof thesequeriescanbe
significantlyimprovedwith_ to a naive strategybasedonexhaustivescans of sets or fries.

I. INTRODUCTION

The databasemanagementsystemscurrentlyavailableare basedontherelationalmodelandthey suffer
several limitationsregm_linSuseror applicu6onneeds.Inparticular,it is assumedthatdataate wecisely known
(or fully unknown)and queriesare basedon crisr conditions.The notionof imprecisioncan be introducedin
such systems at two levels : for representingimpreciseof uncertainaataandto allow flexiblequeries.In this "
paper, we will only considerthe second aspect,thatis to say thatthe .:..a ageassumedto taketheirvalues in
ordiaaryuniverses,whereasqueriesmay containimpreciseconditions."tu-thisway, regulardatabasesage taken
intoaccountandtheusers areprovidedwithangers consistingof anordered_ of elements(tuples)according
totheiradequan.

Variouskindsof compoundfuzzypredicateshavebeenlXOlx_d inrecentyears [4,8]. Basepredicates
describedas fuzzy sets (i.e by means of characteristicfunctions) can be alteredby linguisticmndilkrs and
arrangedtogetherusing connectorsor aggregatesin ofderto reachthe_e semantics.Dependingon the
context,a predicatemay applyto individualtuplesor tosets of tuples_in bethcases, a pt_iem of perfofmance
is posed if the numberof tuples is large and an exhaustivescan is peffofmed. In a previous Pal_r [3], we
concentratedon the evaluation of compoundfuzzy wedicates applyingto individualtuples. Inparticular,we
showedthat thecomputationof an alpha-cutof a fuzzy setcouldbe performedin two steps: efficientsedection
of a supersetof the alpha-cutby meansof a booleancondition followed by thecomputationof the alpha-cut
itself from this superset.In this paper, we deal with theevaluation of fuzzyquantifiedwedicates which can
concerneitherindividualtuplesof setsof tuples.Fuzzyquantifiet_werefirstintroducedby L.A.Zadeh[10] tO
generalize the existential (3) anduniversal(V) quantifiers.Recently, R. Yagersuggestedanotherapproachto
the definition of fuzzy quantifgrs [7, 8, 9]. Ouraim is topoint outsome efficientstrategiesfor the evaluation ¢
of fuzzy quantifiedpredicates,since efficiency isa key pointin DBMS's[5]. !In section 2, fuzzy quantifiedpredicatesare inmxlucedalongwiththeirtwo poss_le inteqgetaticqs.
Theiruse in the frameworkof an extended relational languageis also illustrated.In section 3. we point out

some interesting properties of the OWA aggregation operator which will be useful in improving the
evaluation. The evaluation of fuzzy quantifiedpredicates applied to individualtuples and sets of tuples is

/ discussed in sections 4 and 5 respectively. Stm'tingfroma naive strategybasedon an exhaustivescanof the
concerned elements, we point out some properties intended for limiting the data to be accessed (and
consequentlytheI/O volume).To conclude,we summarizethemainresultsanddrawsome directionsforfuture
work.

lI. FUZZY QUANTIFIED PREDICATES AND THEIR INTERPRETATION

2.1. Tuple and set oriented predicates

In the usualrelational framework, we can distinguishpredicatesP applyingto individualelements(x's)
ofaset X:

P:xe X-4 [0,I]
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andpredicateswhoseargumentisawholesetX ofelements:

P:X_ |0,1].

Typical examples of these twocategoriesin anSQL languageare:

"findtheemployees earningmorethan$4000"expressed:

select * from EMPLOYEEwhere salary> 4000

and "fredthedepmlmentswhere theaverageof thesalariesis over$4000"exim_aui:

select depfrom R group by dep baving arK(salary)• 4000.

2.2. Fuzzy quantifiers according to Zadeh

Inthe contextof an extendedrelationallanguagesupportingimpreciseque_g suchas SQLf [1, 2], it
seems natural to introduce fuzzy quantifier$_lside queries. The initial quantifkxlpropositions made by
L.A. 7_.adehwere basically applyingto setsof topics [10]as shownin the followingqueryexample:

"findthebest 10 departmentswhereatleast threeemployeesaremiddle-aged"expressed:

select 10 dep from EMPLOYEE
group by dep having at leastthreeare middle-aged (A).

Afterwards,J. Kacllzyk suggestedan adaiXatimfor individualtopics[6]insidequeriessuchas:

"find the best 10 employees matching almost all of the predicates (middle-aged, really well-paid.... }"

expressed," :

select I0 * from EMPLOYEE
where almost-all monk (middle-aged,reallywell-paid,..} (B).

Inboth cases, the quanth-_eris seen asa fuzzy setdeemedonthecardinalilyof a fuzzy set. In example
A. thequantifier is absolute(at least three) and theas_ted fuzzy,set mapsR intotheunitinterval[0.1]. If
AQ stands for an absolutequantifier,theexpression "AQ X are D"is interpretedaccordingto the formula:
_^Q(_T.ttD(Xt)).where _l_(xt) denotes theabsolute cardinalityof the fuzzy set associatedto "X are D'. In
example B. we have a relativequantifierwhich is represented by an applicationfrom[0.1] to [0,1]. If RQ
repre_nts a relative quantifier, the expression "x matches RQ among [Pl ..... Pn}" is defined as :
ixRo((_p,(X))/n). Possibleshapesfor thequanfifiersused in these examples_e g_venin figureI.

0 _-_ 0
0 12345678 .... 0 1

at leastthree almostall

Figure 1. Examples of the representation of two quantiflers.

2.3. Fuzzy quanfiliers accordinK Io Yager

R. Yager recentlysugge_ed representingmor_onous quan_rs bymeansof OWAaggregatioas[9].
Firstof all. let us recall thedefmitionof anOWA :
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OWA(wl ....Wn,xl.....Xn)= _ (wi*x_ .... (I)
i=I '_

where Xk_is the im largestvalue amongthe xi's. - ........

Example. Let us consider the case whereW = (.1, ,2..3, .4) andX = {.4..9, .6, ,1 I. We wilicompute (.1 *
.9)+(.2*.6)+ (.3*.4)+ (.4*.I)andwe getthevalue:.37.

In this context, a fuzzy quantif'wais representedby theweights put into theoperator,each of which expressing
thecontributionof the i_ large_'telemem accordingm the figuredrawnbelow:

• wi

0 ... i-1 i .... n

Figure 2. Weights design for a fuzzy quantifier.

2.4. Comparison of the Uwo approaches

We will make the comparisonin the contextof an example.Let us cousidu the query : "fred the sets
: whereat least threeelements are C" along with the two following fuzzysets : {a/.9,b/.8, c/I, d/.l, el.2, frO]/

and In'/.4, b'/.7, c'/.6, d'/.5, e'/.8l where the degree indicates the extent to which an element s_-ttisfiesC.
According to Zadeh's definition, the two sets have the same cardinality(3) and they will be considered
equivalent whatever_ characteristicfunctionchosen for thequantifier.On thecontrary,if we take an OWA
interpretationwith weights w I = I/3. w2 = 1/3, w3 = 1/3, wi = 0 9'i > 3, thedegree for the f'u_tset is : .9 and
thatof theother is : .7. We prefer thissecond result since we believe thaiit wi!l belier meet databaseusers'
intuition.The limitation is in the restrictionof monotonousquantifiers,butthesemanticsof such an operator
seems tobe moreconvenient fordatabasequeriesand thisapproachwill be considenxlin the restof the paper.

2.5. Queries under consideration

More precisely,we will concentJateon theevaluationof three_ ofqueries:

- tuple-oriented(or horizontal)fuzzy quantifiedpredicates:
select ... from R where Q among IPz..... P,)

. type I set-oriented(or vertical.l) fuzzy quantifiedixedicates:
select ... from R group by all having Q are D

.type2 set-oriented(or vertical-2)fuzzyquantifiedpredicates:
select ... from R group by art having Q (C are D)

In the first case, the weights are statically definedby the user (oran administrator)and thecalculus is to be
carriedout accordingto formula (1). In the last twocases, the quantifieris assumedto be representedby a fuzzy
set Q and the weioohtsarecalculateddynamically(dependingon theset thequ_tif_r appliesto) and used in the
following manne_[9] :

:- - type I : i) wi = Q(i/n) - Q((i-l)/n);
ii) compute Ywi * I_(x_) wherexk_denotesthe ia_largestvalueamongtheIxv(xiY_,

- lype 2 : i) compute Yi= I_(x-,) for eachxt in X; call zl the i_ smallest amongthey;'s;
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j=z i=1 j,,l i=;
iii) computeEi = maX(pD(Xi).P_(xi)) C are D is seen as the impli¢_ C =* D; ...........

iv)compute_ wi * Ek,whereBe.representstheim largestvahteamongt_ Efs.

In both cases, n is thecardinalityof the set of tuplesconcerned withthequantification.For the sake of clarity
and withou_loss of generality,we will a._,'umethatpredicatesinvolved in a quantificatim (PI.... P.,.C and
D) areatomicfazzy wedicates.

Example. Let us consider the proposition "mostof the middle-agedemployees ate well-puM"and let us
assume a set of five employees el to e5 such thatmiddle-aged= [,6/eL .3/e2, lie3, 0/e4..l/e5} and weD-paid
= {.81el, .41e2, .91e3, lle4, lle5}. Moreover, let "mostof' be representedby the function : x -+ x2. The ..............
weights will b_ : wl = 0, w2= .0025, w3= .0375, w4 = .21, ws = 35. The value of"middle-aged =_ welt-
paid"for each employee is : [.We I, .7/e2, .91e3,lle4, lle5 } andthe finalvalue of the IXepositionis given by :
(I * 0) + (I * .0025) + (3 * .0375) + (.g * .21) + (3 * 35) = 32925.

IlL SOME PROPERTIES OF THE OWA OPERATOR

The idea which will be developed in therest of thepaperissituatedin t,_escope of theevaluationof
such predic_es for a given threshold7-(satisfaction degree).The reasonfor thai is the faczthatin general, the
user is only interestedin a small subset of teples and met Wecisely the best ones. I,, my case. we are o_ly
interested in those tuples whose degree is over 0, consequently,0 is a lower bound far X. In the following
sec_ons we will examinehow to evaluatehorizontalandverticalfuzzyquantifiedpredicateswherethequantifier
is expressed by mea_ of an OWAoperatorandwe willalso takeadrantageof propertiesef snch an operator.

The OWA is a meanoperatorand so it has interestingWolgnies:

OWA(w I..... w,. xt.... x,) _ max(xt ..... x,) (2)
OWA(w I ..... w,. xl .... xl..... x,) _ OWA(wl .... w,. Xl..... xi.l...,l) (3)
OWA(w I ..... W,. xz.... xz..... x,) ¢_OWA(w_..... w,.l ..... l.xi.l ..... I) (4)
OWA(w z..... w,. xz..... xi..... x,) _ OWA(w_..... w_. xl ..... xi,0....0) (5)

Pro._erties(4) and (5) arise from: i) themonotonicityof any meanoperatos,ii) the fact thatx beiongsto [0.l].
From these basic properties, one can derive conditions bearing on the x[s which are necessary for the
satisfaction of the condition:

OWA(wl ..... w,. x_..... x,) > 7..

From (2), one can assert:

OW._(wl ..... w,. xl ..... x.) > 7. _ max(xl..... x,) _ 7. ¢_ 3i. xi > 7- (6).

From (4). one can derive:

OWA(wI ..... wn. Xl ..... xn) >- 7-:_ OWA(wl ..... wn. l ..... I. xi, l .... l) > 7-

n-!
¢:_ (_" wi* l)+Wn*XiE_.

i=l

¢_ (1 - wn) + wn * xi > _.

and finally, we get :

OWA(w! ..... wn. xl ..... x,) > 7- =*, Vi. xi > _'+ wn" 1 (7).
wa

This las! formulais validonly if we is strictlypositive, otherwise no implicationcan be foend. Moreover. it is
only profitable if(7. + wn) > 1 (otherwise. we havea condition whichis triviallysatisfied).

From (3) and (5), we have : 481
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OWA(wl ..... wn. xl .... . xi.l....l) < X :_ OWA(wl ..... w... xi ..... x,) < X ...... (_)

and"

OWA(wl ..... w,. xl ..... xi.0....0) _ _. :_ OWA(wt ..... w., xt ..... xl..... _) _ k (9).

These ia_t two conditions will be used for partialeva_uationsof an OWA aggregationas we will see in section
5.

IV. EVALUATION OF TUPLE-ORIENTED FUZZY QUANTIFIERS . ,_

4.1. Initial strategy

Let us consider the evaluation of quantifiedconditions applyingto individualtuplesof thefona (in
SQL0 :

select ... from R where Q among {PE..... P_}.

The principle is to compute the sum _ (w_* Pi(x))anda naivealgorid_ couldbe :

for each r in R do .....

for i from 1 to n do Vii] = pei(r) enddo:
orderthevector V giving W;
GV=O;
for i from I to n do GV = GV + V'[i) * W[i] enddo
if GV _ _, then write(xlGV) endif

enddo

4.2. Improvements

This algorithm is based on an exhaustive scan of relation R (in practice the entire file containing .
relationR shouldbe read)and it can be improvedin twoways : the numberof elements to be accessed andthe
calculations to be performedon each element. Itcould be of interest to replacetheouter loop by : "for each r
in R' do", as faras R' is a small subset of R whichcan be easily obtainedfromR (andefficiently, for/nstance
withoutrequiringthe exhaustive scan of R) and it is sure thatno possibly satisfyingtuple hasbeen discarded.
At this point, we can come back to properties(2) and (3) and profit fromthe derived formulae (6) and(7) to
proceed in two steps : creation of a subset R' of R by means of a usual boolean condition, then the
application of the previous algorithm on R'. One expected interestof the first step is the fact that a regular
DBMS is able to workefficiently as far as indexes or access paths are available. Formula (6) becomes :

P_(r)_ 7. or ... or P.(r) > _.

and if we assume that each fuzzy predicateP_is representedby a trapeziumon an attn'buteAi. we finally get a
condition :

(r.At _ [il,sx])or ... or if.A, ¢ [in.an]) (8)

where ij and sj are the inferior andsuperiorvaluesassociatedto the ),-levO cutof Pi. In a way similar,formula
(7) (ff (7. + wn)> I and w_ > O)leads to thecondition: •

/

(r.Al _ [i'l.s'_])and .., and if.An E [i'n.s'_]) (9)

where i'jands'jarethe infed_ and superiorvaluesassociated to the ((Z+ urn- l)/Wn)-levelcutef Pi. -== ......

Since these two conditions arenecessary,we cancombine them togetherby meansof a conjunction.However. " • -
it should be noted thatcondition (8) is a disjunctionandif usedalone, it will generallyrequiretheentirescanof
the relation R to be executed and in this case, dataaccess is not improvedat all. On the other hand.coition
(9) is conjunctiveand ffonc of theattributesAi is indexed,the whole condition can bel_ces_ with a limited
numberof dataaccess.

4.3. An example

Consider the membershipfunctionsdrawnin figure 3 in thescope of thequery: _ =-_,-,
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select* from E_LO_ where ....
most{mid_e-aged,_-_, low-commissi_,_um-_es, _(n_hfl_n_)).

Accordingto the representationof "most" by the funcdon: x _ x2, theweightvectorassociatedto the OWA
is : wl = .04. w2 = .12. w3= .2, w4=. 28. ws = .36. If we assume thatwe want the topics satisfying this
quantifiedpredicateat a level greaterorequal to .g2, we have to considertheoperation:
OWA(.04, .12, .2, .28, .36. middle-aged(e), high-salary(c),low-commission(e),medium-sales(e), arotmd(nb-
children(e),2))> .82 foreach employeee.

In thiscase.,expression(8)becomes:

cage e [39,51] ore.salary 2 46000 or e.commission < aS00 (10) -
or c.sales e [1,3.2.7] or c,nb-children= 2.

Since (;L+ ws) = 1.18 is greater than 0. formula(7) is applicable, (Z + ws - l)/ws = .18/.36 = .5 and
expression(9) yields:

cage • [37,53] and e.salary > 41000 and e.commission _ 9800 (li)
and e.sales e [1.2,2.8] and e.nb-childrene [1.3].

Froma practicalpointof view, expressions(10) a_! (I 1) can be usedin twodifferemcontextsor architectures. -........
Thefirstone is a pre-processingbasedon an explicit querysubmittedto a regularDBMSsuchas :

select * from EMPLOYEEe where eage e [37,53] and c.salary 2 41000 and
e.commission < 9800 and e.sales e [1.2.2.8] and c.nb-childrene [l,3] and
(age _ [39.51] or salary > 46000 or commission< 8500 or sales _ [1.32.7] or nb-children= 2).

The second one would consist of using these conditionsat the internal]evel of queryprocessing inside an
extendedDBMSable toevaluamfuzzyqueriesdirectly.

35 55 age 35000 salary 12000 commission

_k medium-sales _i around(nb-c_dren2) _k most ,_.

IM 3M sales 0 I 2 3 4 nb-cldldlcn 0 !

Figure 3. Membership functions used in the example.

V. EVALUATION OF SET-ORIENTED FUZZY QUANTIFIERS

$.1. Partit!oning of relations and initial strategy ..-

Insection 3, theprLqdplefor theevaluationof fuzzy quantifiedpredicatesapplyingto one (or several)
sel(s) of luples was given. Hereafler.we will considerqueries of the form"selectall from R group by all
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having Q are D" (including a .sO-calledvertical.1 fuzzy quantifiedpredicate)where Q is a pro_
quantifierwhich will be RT,_.nled by weightsappearingin an OWAag_replion. The *groupby"clau_ _
SQL is called pmlidoninganditsmeaningis explain*din figure4. .

We now outline a naive algorithmperformingthecalculus,assumingthatRi denotes thesubset (or

partition) of R whe_ all = vj :

for eachri in R)do Viii = Po(r-,)enddo;
orderthevectorV giving_:
compete the vectorW; ........
comment this calculus_ the knowledgeof n the cardinalityof Rj eudcommeut:
GV=O:
for i from 1 tOndo GV = GV + V'[i] * W[i] enddo; :
If GV 2 _. then write(v_OV) mulif;

This algorithmlooks similarto the ly_eviousone. but it is in factvery differenLOn theone handthe values
used in _e aggregationcome fromthe tuplesof a pardtio, (issuedfromthegroupingmeclmmism)_ _ _
a singletuple, on the otherhandthe weightvectordependson n, thenumberof tupks of theconsideredsubsel "
of relation R. Therefore, it is clear that if n cannot be known without scanning a whole partition, no
signi_cant improvementregardingdataaccess can be attained.So. we will assume thaz: i) the numberof
elements of eachpartitionis known(this ispossible especially if therelationis indaxedontheatlributeall or
if the pmidons an: builtusing a sortwhichmaintainsthesizeof blockswithidanl/calson key value), ii) each
partitioncan beaccessedsepamlelybut stepby stepastuplesare requized.

III tit

.....  11:.1 I .....
Y • set of mples of R
t _ : w_ thevalue
• • of the_xibute art
z is tl_ same(a) .._
It

k
I

'
i
J •

• Ilri !; : setof luples ofR
: whexe the value

' I 1:1 I, z , is thesame(z)relationR

Figure 4. The "group by" mechanism in SQL.

$.2. Improved algorithm 1

Our aim is Io reduce the access to tuples and by doing this. to indicate thoseconditions deciding
whetherthe calculus should continueor is able !o be stopped.More precisely,thecalculus (mainly the loop
whichencompassesdataaccess)canslopin twocircumstances: i) whenthepardon cannotreachthedesired
level (X). ii) when it is certainthat the partitionwill reachthedesiredlevel CA)and the precisevalue of the
membershipdegree is not required.This reasoning is very similartowhal is done in thedesign of "lryand
error"or "branchand bound"algorithms where some heuristicsis searchedin ocder to limit the numberof
candidatesto be examined.

Since n is "known.the weight vectorW can becalculatedand in paniculerits last_a.l,uew=. Thus. if
the sum (Z + wa) is greater than 1. we can apply thecondition(7) to any tupleriof a panaiostand insertthe
following instruction:

if Po(r.,) < (_. + wn "l) / w, then exit endJf

Froma practical pointof view. partitionswitha largenumberof elent_ts will leadto a low value for we and
consequently thisconditionwillnot wott frequendy(exceptif _,isveryclose to 1).
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Now, let us assume that we have alreadyaccessed k tuples of a partition(tuplesri to rk), and
valuesViii = tlv(r._for i E [l,k] areknown. If we assume thatthe (n - k) missing valuesate I andtheresultof
theOWA aggregationremainsunder_ acceedingto formula(8) we can becertainthatthispartitionwill never
reach the desiredlevel _i.We have to delennine theaggregation:

n-k k

OWA(wl .....Wn,Vl.....Vk,l.,.,l)= (_'_wi)+ _ Wn.k.i *vj..k._
i=l i=l

This computationrequiresonly lhat thevaluesV( I] to V[kIaresorted.Inaddition,theexpressionhasnot to be
calculatedfrom scratchfrom step k to step (k + l) since fog the firstpart,it is enoughto subtractwa._.Thus,
once again, we can specify a conditionlikely tostop theouterloop:

insert ttD(r_)intoV[l:k} ;
n-k k

computeA = ( _ W[i])+ _ W(n- k+ i] * Vii]:
i=! i=l

if A < 7, then exit nadir

When k = n (last tupleof the partition),thevalueof A equalspreciselythevalue GV which is the degree tied
to the partition.

Finally.ifthevalueofthemembershipdegreeof the partitionis no_aecessay (forinstance,thequery
looksonlyforthebestppartitionsbutdoesnotaimatorderingthem),we canmikeadvantageofformula(9).
Infactthisformulastatesthatifwe havealreadyaccessedk tuplesofapartition(tuplesrItoqc)andwe
assume that the (n - k) missing values equal 0 and theresultof theOWAaggregationalreadyexceeds 7,, then
we can besine thatthis partitionwill reachthisdesired level _. Wehaveto determine:

k
OWA(w 1..... Wn,Vl..... Vk.0,..,0)= _ wi * Vkt

i=l

Hereagain, it is jusl necessarythat the values V[1] to V[k] aresorted_d we can specify a condition likely Io
slop theouter loop :

insert $tD(rk)intoV[l:k] :
k

computeB = _. W[i] * Viii;
i=l

if B _ _. then wrile(vj); exit endif

Again,when k =n, the valueof B equals thatof A andis GV themembershipdegreeof thecun_ntpartition.

We can now give the final algorithm, when n the numberof tuples of any partition,is known in
advance:

A = 0: compute the vector W: comment W[i] = Q(i / n) - Q((i - 1)/ n) endcomment:
for each rkin Ri do

if I_(r0 < (;L+ wn - 1) / wn then exit endif:
insert ttD(rk)into V(l:k] : comment in decreasingorderendcomment;

n-k k
A=(_ ". W[i])+ _ W[n-k+i]*V[i];

ill i=l
if A < _. then exit endif;

k
B = _ W[i]* V[i] : comment these two instructionsare presentonly if we

i,-|

if B _: ), then write(%): are not interestedin themembershipdegreeendcomment:
exit

endif
enddo:

if A > X then write(vj/GV) endif; comment this instructionappearsif the previousdo not
endcomment:
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Finally, we have to deal with_ last case. namely theso-called vertical-2fuzzy quantifiedpredicates
(Q r'sC are D). If we look at the definition given in section 2, we can see thatthe weightsaredependanton ....
the value of thep<:(xi)'sand it does not seem realisticto perfolra_ calculus without theentire scanof the
underlyingrelation R. Consequently,the canonic algorithm derivedfrom thedef'mifioncan be appliedand it
will requiretheexhaustivescanof all thepartitionscreatedby the"groupby'. ....

$.3. An example

Let us consider the query "find the best 5 deparunentswhere most of the employees are well-paid"
which is expressedin SQLf as :

select 5 dep from EMPLOYEEgroup by dephaving most are wc_l-paid.

We examinea det_rtment(partition)containingfive employeesel toe5 with the followingcharacleri._:

e2 d 38000
e4 d 55000
el d 46000
e5 d 32000
e3 d 48000

with "most"representedby the function: x _ x2, _. is set to .73 and "well-paid"is the membershipfunction
given in figure5.

wen.paid

1

II ml ,i
V

3O000 50000 salary

Figure 5. The membership function for the predicate "well-paid",

So, the fuzzy set well-paid is (.8/el. A/e2..9/e3. l/e4, .l/e51 and the weight vector W is : w I = .04. w2 =
.12. w3= .2. w4=. 28. w_= .36. If we performtheoverall calculusfor these data(naive strategyrequiringthe
access to the 5 tuples), we get : (.04 * 1) + (.12 * .9) + (.2 * .8) + (.28 * .4) + (.36 * .1) = .456: therefore.
this partitiondoes not matchour requirement(.73). Now, let USapply ourimproved algmithmassumingthax
the tuplesate accessed accordingto the orderdepictedabove. Since (X+ w_) isover I (('3.+ ws - 1)/ ws = .25),
the in'stcondition of the algorithm is interesting(nottriviallysatisfied).

Access employee e2 : I_.r_(e2) = .4 > .25; A = .784 > .73; B = .016 < .73 _ the loop goes on
Access employee e4 • p_,a.n_(e4) = 1> .25; A = .784 > .73; B = .088 < .73 w the loop goes on
Access employee el: I.k,ta.p,td(el) = .8 > .25: A = .728 > .73 is false =_ the loop stops here.

In this case, we save 2 accesses and ire5 were the first tuple9f theconsideredpartition,the loop wouldhave
stoppedimmediately,since ttwell-paid(eS)= .1 is under.25, and4 damaccesseswouldhavebeensaved.

VL CONCLUSION

In Ibispaper,we havedealtwithdatabasemanagementsystemswhereconventionaldataarestoredand ,.
support imprecise queries.More precisely, we have concentratedon fuzzy queries involving quantify. We
have distinguished two main classes of such queries : !) those wherethequantifiedconditionappliesto each
element of a set (x matches Q among IPI..... P,)). and2) those where thequantifiedconditioncmcerns a
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whole set of elements : a) Q x's are D, or b) Q x's C are D. Two majorframeworksf_ the interpretationof
quantifiersexist and w-_havechosen Yager'sapproachwhichis _ on theOWA aggregationoperator,since ......
we believe that generallyit fitsmore the al_ropriatesemantics of a databasequery.

Ourobjectivewastodesignsomestrategiesfortheevaluationofthesequeries,whenathresholdfor -
the_dsfaction degree is given by the user. Startingfrom a naive strategybasedon the exhaustive scan of the
consideredse/, we have pointed out some propertiesof the OVA operatorallowing for -_omeimprovements ..
especiallyregardingdataaccess.FortypeIqueries,abooleanqueryselectingasubsetoftheelementslikelyto
be satisfactorycan be evaluatedandifappropriate_dexesareavailable, it is thenpossibleto save data_K:cesses, . .
For type 2a queries, where the number of elements of the concerned sel is known, we have shown lhat
conditions couldbe applied to each elementof theset to decide whetheror not thecakulus hadto be continued.
Thisapproachisverysimilartotheintroductionofheuristicsin"tnyanderrs"or"branchandbound" . ...
algorithms.The basis of the improvementsis to reduce the numberof dataaccesses. Consequently,we replace
algorithms in 0(n) by algorithms in O(n) and theclass of complexityof Ihefinal algorithmshas not changed.
Finally.it does not seem thattype 2b queriescan be significantlyimproved.

One interesting resultof this workis toshow thata fuzzy queryis not nec_ly inefficienteven for
quer_ involving quantifiers. Moreover. thenotion of heuristicsused fortype 2a queriesis likely to workfor
otherkindsof set-orientedqueries such as those wherea fuzzy predicateapplies to a monotonic aggregate(sum
or averageon positive values for instance). In theneat future,we will performsome simulationsin orderto get
anideaaboutthegain providedby ourimprovements.
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I.iROVUCnON
One of the main requirements of a rocket engine Health Monitoring (HM) system is

its ability to recognize potential failures of all kinds such that catastrophic failures can be

avoided through cutoff and other less catastrophic failurc; can be avoided through repair

works. The HM system must have the ability to learn new situations and be able to recognize

potential failures. The behavior of key SSME performance parameters vary significantly

depending on engine power level and changing interface conditions (Nemeth et aL, 1990,

Millis 1991). Parameters included in this list are turbine discharge temperatures, other

turbopump inlet and discharge temperatures and pressures, turbopurnp speeds, propellant

flow rates, and valve positions. Therefore, a model based approach is well suited to identify

dynamic, nominal operating values. In real HM operation, we are always confronted with

uncertain data, data where event of physical failures occurs. A fuzzy set approach (Kosko,

1992) to describe this data is most logical.

In the recent years, researchers are investigating a new paradigm for problem solving

and learning, by using specific solutions to specific situations (Riesbeck and Schank, 1989).

The basic idea is to make use of the old solutions while solving a new problem, and such an

approach is known as Case Based Reasoning (CBR)(Krovvidy & Wee, 1992, Riesbeck &

Schank, 1989). A model based approach is found to be one of the useful approaches for

designing planning systems (Birnbaum et al., 1991). Currently rocket engine protection

consists of redline systems that issue an engine cutoff if measured value exceeds a pre-

determined operation limit for any of several par-meters (Millis, 1991). More recently efforts
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arebeingmade to developan advancedframeworkfora failuredetectionsystemwiththe

addition of model ba-_.'_!algorithms (Hawman et al., 199I). i;

In this paper, we develop a fuzzy case based reasoner that can help building such a

model from old cases and any existing domain knowledge. A detailed system description is

presentedinthispaper,
4

II. PROBLEM ST SLTEMENTAND SUGGESTED APPROACH

m_ In thissystemwe developa fuzzycasebasedreasonerthatcan builda case

representation forseveral past anomalies detected, and develop case retrieval methods that
can be used to index a relevant case when a new problem (case) is presented using fuzzy sets.

The choiceoffuzzysetsisjustifiedby theuncertaindata.The new problemcanbesolved

using knowledge of the model along with the old cases. This system can then be used to
:..f

:_ generalize the knowledge from previous cases and use this generalization to refine the
existing model definition. This in turn can help to detect failures using the model based

_) algorithms._+,

IIL SYSTEM DESCRIPTION

The proposed Fuzzy Case Based Reasoner (FCBR) is depicted as shown in the Figure
1.

I J_tifier I

Case Base

Sten_ '+

Retriever Figure !. Proposed Fuzzy Case Based Reasoner

A case is defined as an n-vector (vector of n dimensionsfrom n sensors)with m

samplesover a time window T seconds.This n bym matrix constitutesa caseinput to be

either trained (learned) or decided (tested). This case definition allows a decision to be

generated or made every T data width of m samples. It istherefore possible to generate a

decision per sample interval AT - T/re. But in general, to be practical, a multiple of AT say
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kAT with k << m can be used as the decision interval. We need to be sure that m samples

over T seconds is enough to model both the engine start-up and shut-down, and main sage

operation.

It is very difficult to give a definite relationship between data collected and _ fault

occurring at a given time and at a specific location b,,'cause of many uncertainties. A

- monotonic fuzzy number is modelled using time and sensor location for each case. This
modelling in discrete time space will be used in generating both trainingand testing cases. In

training, a fuzzy number from [0-1] is gene_ted and associated with the data of an n by m

matrix. In the testing phase, we need to consider multiple decisions under different time

scales. When a new problem is given, we use FCBR to find the closest case from the previous

cases. We will predict the chances of failure at different future time periods and then propose

a general decision scheme for the given case from those predictions.

IV COMPONENTS OF FCBR

1) Retriever, Modifier, Justifier, Storer and Learner: In diagnostic design problems, case

retrieval should be done based on the qualitative description of the problem and the causal

relations in the explanation of the design solution. The indexing mechanism mustals0 allow

cues to access cases at any level of the representationusing fuzzy set theorems. The criteria

that are used to evaluate whethel" a case is similar enough to the current design problem

should use the salient features of the domain. In the SSME problem, we ..,_ustuse the sensors'

data to evaluate the applicability of an old case for a new problem.

If the retrieved solution is not acceptable the Modifier tries to adapt and synthesize

different parts of the design into a solution using fuzzy sets. The Modifier can help us to

suggest the necessary changes to be made in the dynamic modelling of the failure. The

Justifier justifies the suggested solution.

The Storer stores the case. When a solution for a given problem is obtained it can be

stored in the case base for future retrieval. When a set of sensor data is diagnosed for failure

prediction, that data within the defined window (n by m matrix) must be stored in the case

base. The cases would be diagnosed based on some monotonic fuzzy number. This value

would define the chances of failure for that particulardata set. Therefore, the cases are stored

using fuzzy set concepts. The Learnerthen develops generalized solution strategies from the

stored fuzzy cases. This is particularly importantbecause of the enormous amount of data
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generated by the sensors. Therefore, we will develop generalization methods to take several

cases and represent them in some form of rules so that we can contain the size of th- case
base.

V PRELIMINARY EXPERIMENTAL RESULTS

Some preliminary experiments are performed using the datafrom several sensors. In 4

/

.......... particular, we selected 4 sensors and defined a fuzzy case based reasoning system.

1) Data sets selection

In general the cases are defined based on multiple sensors. Our current test "s

. restricted to the problem of detecting faults in the HPFTP (High Pressure Fuel Turbopump).
Four sensors are selected and listed in the table 1.

ID PID NO. LABEL
u • i q i

1 7 MCC Pressure
• i i • , i i , m i n

2 17 . HPFT Discharge Temperature

3 ., 77 MCC Hot Gas InjectorPressureA

4 78 MCC Cool_..'rDisch_ge TemperatureB

Table I. SELECTED SENSOR FOR CASE STUDY

The data sets of test 902-457, 902.463, and 901-463 are used in our current

study. (Hawman et al., 1990) The tests 902-457, and902-463 are two nominal data sets

with no shutdown. The test 901.436 was reported with having a problem of HPFTP

coolant liner buckle. It was shutdown due to a HPFT discharge temperature redline at t
= 611.035 seconds.

2) Casedefinition
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The sampling rate is defined as 0.04 which means T/0.04 samples are generated

in T seconds. A case is defined as the samples generated in T seconds. In particular this

is represented by a T x 4 vector. All the cases obtained from test 902-457 and 902-463

. are considered to be safe. The cases obtained from test 901-436 has varying levels of

failure modes. In other words the cases collected well before the breakdown have a low

possibility of failure while those cases closer to the breakdown have ahigh possibility of
failure_

3. Normalization of the data

Since the value of sensors highly depends on the power level, a normalization

procedure corresponding to the power level is applied. The MCC pressure (MCC_PC) is

proportional to the power level. It is used to define the measurement of power level.

The power level (LP(t)) is defined as a ratio of MCC_PC value with predefined
.... - MCC_PC(t)

standard MCC_PC value (MCC_PC_STAND), LP(t) = MCC PC_STAND " The
Sensor Values(i,t)

corresponding sensors level CSL(i,tJ - Sensor..stand(i) can be estimated by some

polynomial functions of power level (PL(t) ) as follows:

. ::1 CSL(i,t) = CI*pL3(t) + C2*pL2(t) + C3*PL(t) + (24

• The coefficients ((21, (22, C3, C4) are obtained based on the nominal test data 902-457

with linear regressior, technique. The Sensor_stand(i) is standard value of sensor i

/ which is predefined based on data from the nominal test 902-457 corresponding to the

' predefined standard MCC_PC value. The normalized value of each sensor are computed

' as follows:

Sensor__Value(i,t)
norm(i,t) - Sensor__stand(i) * CSL(t)

I"A -I

- - For our defined case matrix A = lil _ = (all' ai2' ai3..... aiN), at---4.a

normalized average percentage error (APERR) is defined as the case index.

1 4
APERR(t) = -- 5".11.0- enorm(i,t)l

4 i=l
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- where - -

enorm(i,t) is average norm of sensor i within N data points

I k=_
enorm(i,t) = .-7 Znorm(i,t + kT)

N k=-_

N is number of samples within the window, T =0.04 is the sample ram

The cases are grouped such that they are classified into one of the categories { high

risk, moderately risk, low risk and no risk}. The cases are stored in a case base. The retrieval

from the case base is done using a hierarchical indexing. At the first level, we take the sample

and compute its APERR, There we will be retrieving all those cases with a similar APERR.

In the next step, we use a function defined on the first sensor data.The matching is continued

until we identify the group to which the sample belongs. After obtaining the group, we can

associate the possibility of breakdown with the new problem same as that of the identified

group. The grouping of different cases is shown in the Figures 2 and 3. This has been

identified as the primary index. With more sensors we expect to develop several such indexes

and also more categories of cases. We also want to compare the results with other methods.
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Figures 2. Grouping of cases in Breakdown and nonbreakdown da_a

The methods proposed were presented in the context of specific sensor dam set

analysis. The primary reason for this is to be able to compare recent performance (Hawrnan,

et al., 1990) of regression analysis and linear predictors to that of the fuzzy case based

reasoner. Wi:h adequate performance FCBR will be utilized as sensor models for seve_'al

other parameters deemed relevant by the 1990 sensor study (Carter et al., 1990). This will

enable the development of a fault detection system which would be less complex and more

accurate thanpreviously proposed methods.

The application of these methods are not isolated to SSME data. Success in this s.,udy

implies wide ranging application to all engine monitoring systt,,ns.

V REFERENCES

Birnbaum, L. et al., A Model-Based Approach to the Construction of Adaptive Case-Based
• Planning Systems, Proceedings of Case-Based Reasoning Workshop, May 1991.

Carter, D., Denny, S.K. _Rocker Engine Condition Monitoring System-Phase I. Technical
" Report CDRL 3012, Pratt&Whitney, United Technologies Corp. July 30, 1990.

Hawman, M.W., Galinaitis, W.S., Tulpule, S., Mattedi, A.K., Karnenetz, J.,
Space Shuffle Main Engine Health Monitoring System. Final Report, NASA-CR-185224,
United Technologies Research Center, March 1990.

Kosko, B., Neural Networks and Fuzz_ Systems, Prentice Hall, 1992.

494



Krovvidy, S. and Wee, W.G. Wastewater Treatment Systems from Case Based Reasoning, ._._._ ._
Special issue on Case Based Learning of Machine Learning. (1992, in press) - "'- "

Millis, M.G., Technology Readiness Assessment of Advanced Space Engine Integrated ___._ _-.._.
Controls and Health Monitoring, Proceedings of the Third Annual Health Monitoring ..
Conference for Space Propulsion Systems, Cincinnati, Ohio, November I991.

Nemeth, E., Maram, J. and Norman, Jr., A.M., ttealth Management System for Rocket -- .....
Engines, Proceedings of the Second Annual Health Monitoring Conference for Space _\:,_...::-
Propulsion Systems, Cincinnati, Ohio, November 1990.

Riesbeck, C.K., & Schank, R.C. Inside Case-Based Reasoning Lawrence Erlbaum -- _:¢

Associates, Publishers, Hillsdale, New Jersey, 1989. .. :

,,' ...... --

i





N9S.29571 .."
A High •Performance, ......... ".....

Ad-Hoc, Fuzzy Query Processing System
for Relational Databases

William n. Mansfield, Jr. _/_= _'/
Belkore, USA

Robert BBN,M"FleischmanusA** :- :O
rm_dismcmd.tte._m

ABSTRACT

Database qucdes involving impreciseor fuzzy predicatesarecurrentlyan evolving areaof academicand
industrialresearch[Buc87,Bosc88,1_rad87,Tah77,Uma83,Zem85].Such queriesplaceseverestresson the
indexing and I/Osubsystemsof eceventional databaseenvironmentssince they involvethesearchof large
numbersof records. The Datacyole_ architectureandresearchprototypeis a databaseenvironmentthat
uses filteringtechnology to performan efficient, exhaustive_Lrch of an entiredatabase.It hasrecently : "':
been modified to include fuzzy predicatesin its query wocessing. The approachobviates theneed for
complex index structm_s, pmv'Klesunlimited query t_ronghput,permits the use of ad.ho_ fuzzy
membershipfunctionsandprovidesdeterministicresponsetimelargelyindependentof quctycomplexityand
load. This paper describes the Datacycle Wototype implementationof fuzzy queriesand some recent
perf_tu_t_ _:

1. Introduction •
In relatienaldalahasesystems [Codd70]databasescontaintabularrei_esentatiensof infmmalienwhererows
representdatabaserecords (topics) mulcolunmsrepresentVelds(attributes)widfinthereencds.Relational
algebra defines operationsthat can be carriedout to specifyparticularquery requestsin whichattribute
valuesandBooleanlogic are usedto identifysets of recordsof inlerest. SIn,cturedQueryLangmge (SQL)
is a querylanguagethatdefines thegrammarandtheuserinterfacebetweenan applicationandthedatabase .....

managementsystem. In SQL,datab_ dataretrievaloperationsaredefinedin selectstatementsd thefrom .... :_ /-

Select attribate.list from relation where predicate

wheretheauri&ae.ILuidentifiesvaluestobereturnedtotheuser,relationidentifiesapankulartablein the i-......
database,andthepred/r.ate identifiesa searchcriteriaconsistingof Booleanex_ involvingaltn3mte ......
namesandvalues.Onecluwactedsticof these queriesis thattheusermustbe veryfamiliarwithtireenntents
of the datahase,from boththe perspectiveof structure,aswellasthevaluerangefor pa_icularattributes. _:.. ,_, ... .
Mechanismsto introducemeaningful impfeci_ termsintothepredicatesuchas young, o/d./rig& and low .=_- -
donot exist. "_" ""

Fuzzy set theorytT.m}6_hasbeenproposedas one methodfor introducingimwecise queriesintodamhase ...... :
systems. Efforts havebeenmade to pre-_ impreciserequests[Oala91],[F.ast87]intoa relaficoalquery ,,:
language such as SQL or QUEL where a requestfor young employees might be translatedinto a range ,",
requestforemployeesI_ween theages of 20 and30. "

Membershipfunctionsprovidethe method to translatean attributevalue to a degree of membershipin a
fuzzy set. referredto as• possibifityvalue. FigureI showsmembershipfunctionsthatmapagevalues into " :: ::
the fuzzy sets YOUNG, MIDDLE AGE and OLD. Ages less than 15 are definitely membersof the set _'-:......... ._--

YOUNG andhaveIX)Sm'_ityvaluesequalto1.0.Foragesbetween15and25,tSedegreeofmembe|rship ..._i_.i

** Workwasperformedwhiletheaudmrwasa¢Bellcore.

TMDatacycleisauadeamk°fBelk°re
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in the set YOUNG decreuscsfrom 1.0 to 0.0 indicating that agescloserto 15 are "younger" thanages
closerto25. Fox agesbeyond 25,the functionYOUNG yieldspossibilityvaluesequalto0.0indicating
that ova 20 ages azenot members of the set YOUNG.

MIDDLE

YOUNG AGE OLO ,

1.0 _ _:,

b

0.0
5 I0 15 20 25 30 35 40 45 50 55 60 --J_:.....

Age inYears

FIGURE I 1--_ "
Meubership tnctions for YOUNG, MIDDLE AGE and OLD

%

¢

A common approach in implementing fuzzy query capability is to utilize specialized database index _ ._
stmctugs that associate records to fuzzy sets. The database index structures avoid the complexity of
executing the m_hip function against every tuple in the database during query Wocessing. This
approach allows high-speed access for a Wedelermined number of fuzzy predicates. Arbitrary queries
involving derived data negate the use of the these index structures and force the run-time execution of ......
mcm10asihipfunctions. This pcffmnmncc penalty is fmxl_ impacted by the need to pedorm set intersection --
and unionoperationsinvolvinglargesets.....

Theccmbin_effectsofthesepedorman_penaltiesmakehighperformancefuzzyque_systemsdifficultto
implement. While the index approach improves response time performance, it reduces flex_ility by
limiting the user to a small number of pre-detmnined fuzzy sets. in contrast, to maximize que_

flexibility, a run-flute execution of membership functions that can be specified within the quezy grmum_ ..
isrequited.Us/ngtAeDatacycleprototype,we haverecendyimplementedafuzzyquerycapabilitythat
offerssab-secondresponsetimeforlarsedatabasesfora virtuallyunlimitedmunberofconcturem_ers.
The appmechpermitsthead-hocdefinitionofmembershipfunctionsinthequerygrammar,_ useof
nmw,dcat_t_tusinthedatabase,andhig_lperformance.

The specificationc_themembershipfunctionatthegrammar levelcoupledwiththeefficientrun-time
executionofthemembershipfunctionaremajorcontributionsofthiswork.Thesetwo characterises
providetheprimitivesfor_ membetuhipfunctionsineitherthedatabasemanagenw,ntsystemor

withintheapplication.Thus,an adaptivefeedbackloopcan easilybeimplementedtosuppmtvarious
learning algorithms to adjust the membership functions over time to the underlying database,or to '
acconmtodate shifting data. A second contribntion of this work is the dynamic modification of memlwaship
functions to permit their use oververydifferent data attributes. • _.

Section 2 presents the Datncycle mchitectare and details of the prototype implementation in the context of " ._ "
the Datacycle Woject's original goals ('crop" query processing). Section 3 describes fuzzy query
extensions including the grammar and wocessing environment. Section 4 introduces a method for
dynamically modifying the memlggship functioa to the underlying dataduring query execution. Section 5
_ov_._':_ .e_._'_nu___ measmem_ts from ben_marking activities. Section 6 identifies some future work
based_ mi_ _xonch, -_,d _ 7 offers our conclusions.

2. The Datacycle TM Architecture and Research Prototype
The Dmacyclo architecture and researchprototype[Her87,Bowgl,Bow92] is a revolutionary apptuach to
database Woce_ng motivated by the need to provide both high performance and flexible dataaccessin
singledmmlx_ syslcm.This secl/ondesm_,'s the architectme and Wo_ype in termsof processing
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relational(crisp)queri_ Section 3 _ea Imildson the _hitecttee descriptionandcharacteristicstodmuibe
ourimplementationof fuzzy queries.

In thel_m:ycle architecture,entin_dmat_mesare broadcastoverhighbandwidthcommtmicmimmfacilities
m specializedfdming haniwaretLeegl] tMt perfectostheconplex damselecuonandallgresmim_
necessaryto satisfy applicationdatarequests. The originalobjectivesof the projectwere to dememuate
extremeumsaction fluoughpmrues (te_ of thonsan_ of readtransactionsper secem3 in a s_m tlatMso
supportedhigh updatethroughput. While offering flexible access to thedata, a numberofadvantN_ of
the filteringoperationwere largelyunanticipated. Theextensionto include fuzzy querywedka_ is one
exampleof them_hitumae's flexibility.

Fromtheperspectiveof the veriomapplicationsaccessing it, the Datacycleexperimentalresearchpt_toly_
appearsm a single databaseserverwithan SQL-Msedinterface.Applications interactwith datsbuse¢eatants
using ANSI SQL with the addition of some data manipulation primitives providing aon-malitional
fenctionality. Databasecontents we definedand manal_i solely in termsof therelationalsfhema andthe
values of attributesof individualtuples;no distinction between "indexed"and "non.indexed"attributes
exists. Thereageno indexes. TAe entire database is coment-addressable meaningthat _ can be
identifiedand retrieved basedon thecontentof any attributeor combinationof attributes.Thus, if a table
contains15numericaun'butes, anyone, or severalof the 15can be usedin a predicatewithno perfonrauge
penatty.

The intentaiDamcycle system modelis del_cl_l in F'qgure2 andcomprisesof anarbitrarilylargenumberof
access managersacting on a single set of shareddam items. The entire set of dataitems is _ in a
centralsubsystem call the storagepump. Dam items are madeavailableto themanyaccess mamgersby
repetitivebroadcastof theentirecontentsof thedatabase. On-the-flysearchof the_ lgeam is the
responsibilityof custom VI_I datafilt_rswithintheaccess managers. Dalafiltet_arees_ntiaUyapplication
specific _ whose architectureand _tion set are optimizedfor synchronous,high speed
search. The presence of the entire contents of the databaseon the bn_adcastchannel provides the
oppotlunityfordirect selection of recordsbasedon thevaluesof any attribute_ combinationof attributes, "
eliminatingthe need to store and maintain indices. The broadcastcommunicationmedia allowsaccess
manage_ to be geogra_ically distn'eutedover wide a_eas. Database scaling is achievedusing multiple

subsystems.

Broadcast Media

Access Access Access

lnternet

Application Application Application
FIGURE 2.

The Dutacycle Architecture

The custom VLSI datafilters have an instruction set that is optimized for Boolean comparisonand
arithmeticprimitives. The filtersar_duaibtdTezeddevices allowingrandomacccss in the foregroundbuffer
while a subsequentrecmd is filling thebackgroundbuffer. Thus, at therecord level, filteringis notstream .....
oriented. Thirty.two datafilter insmgtions can be executedwhile an individualrecord is presentin the -
barfer. A single instruction is sufficientto complete a 4-Byte comparisonand marka recordfor selection,

498



associate it with a specific query, and initiate onlpuL Complex, muiti-pamlic_ seldom o# several
independent selections can be performed simultaneously within the filter within the 32 imtngtion
constraint. Tbe dmafilterinstructionset inclndes mithmeticinstructionsthatopenacon in0cgegdamvalues.
The ability to calculate numericfunctions based on databasecontentsprovides the wimitive epetati(m
necessaryto perfmmmembershipfunctionson-th_fly while datan_ords a_ peesentin thefiller.

In tbu Datacyck experimentalresearchixmmype, the storagepumpis impkmmted in a 32 - 128 MByte
dual ported, banked RAM that allows the storage coatents to be read sequentiallyfor broadcastwhile
pmims of the dmbe_ are avallabie for updateopemtim_ Tbe memoryonm_u are_ overa 32
bit wide communication channel at 53 MBytes peg second. A 16 MB_e databasewill appearon the
_ channelonce every 3 seconds and tbe_em willoffer theuseraboat I secondmslma_ time for
selectsagalnstthedatahase. A32MBytedatahaseprovidessterage for256K 128byte tupi_

The coutent-addgessabilityand full databasescan, coupled with the flexibility of the filte_ opelation
permita varietyof databaseselectionoperatio_ thatareparticularlytroublesometo conventionaldelalm_
systemapproaches. Inan _t0r Services (_) applicationsetting, we haveincludedlongitudeand
latitude infonmtkm for evezyculmner in the datahase. Multi-dimensimalrangeseazch_ can be mmpleted
in asingle broadcastcycle and spatialqueriesmcindinga.OSEST (findthe nearestobjectin thedalMmse)
can be dealt with in two passes (one to identify the object and a subsequentpass to naricve it). The
CLOSEST function requires that a distance function be calculatedon-the-fly within the filter. This
calculationis representativeof a largerset of se'ectionoperationsthatperform aritlunetictransformations
on one or moreattribute,s, In conventionalsy_mls, these transfomulfionsoften negate the adv_tages of ""
trad_ _ indexsmJcttnsfmcingafulldatabasescanrequiringextensive_ andcausing
extreme respmse time delays. In theDatacycle zrchitecage,since a fulldatabasescanis alwaysperfomml,
variationsin querycomplexitymeoftenlm_dledin constantn_xme time

3. Fuzzy Queries within the Datacycle Experimental Prototype
We have recently completedan investigationof fuzzy query processingin theDalacycleatcbitecttwe.Our
work has centeredon storing crisp databasevalues and applyingfuzzy query wedicates duringselection _
opexatious. Fuzzy requests define algorithmic membershipfunctions that map the valueof a database
attributeto a degree to which it meets a fuzzy predicate. Fuzzy selection predicatesinclude imwecise
qualifiers such as near, kigk. old, best, ta//, etc. Severalof thesemembership functionscan becombined
using fuzzy logic to identify data objects flintbest meet a number of vague or imlm_ciseselection
specifgations. Forexample, a fuzzydatMm_ n_questmayaskfor circuits with a hi&hsignal.to-noi_ ratio
anda/ow maintemn_ history thatterminatenear aparticularlecation. Suchrequestsplaceahighdogree
of strmsontheindexingandIK) operalionsin conventionaldalahasesystems becausetheyfoge thesystem
toconsider largenumbersof tuples in a search to find an optimal,or some numberof "best"matches. The
Datacycle filteringpdmilives can performthe efficientevaluationof membershipfunctionsandthe fuzzy -
logic necessary to combine them.

In the Datacycle prototype, we have chosen to utilize SQL extensionsbased on fuzzy quedes consistent
with previous fuzzy query grammars[BuclD.Kac89.Tah77,2em85]. We have extended thegrammarto
allow the dynamicdefinitionof membershipfunctionsfromtheapplicationlevel.

Select * from R wkereart itqnl art = attributename
qual = fuzzy term

TheextendedSQL queryto selectall therecordsfor individualsin thefuzzyset YOUNGwould

Select * from R wkere age is YOUNG

The fuzzy term can be defined as a trapezoidas depictedin thegeneralcase in Figure3. The breakpoints
{A,B,C,D} define the range(support)of themembershipfunction. Forcases otherthanthegeneralcase
we havechosen to use a strictpositioningof variablesandthe use of nulls forunspecifiedImantete_ (e.g.
{,C,D}). Othermoeenaturalalternatives[Zem85] for specifyingthesefunctionshavebeea mggesled. We
chose thisexplicit notationto simplifyparsingduringqueryprocessing.
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We have implementeda libraryof commonlyused membet_ functionsl_rameledzed by these _id
break_ints ]̀3eringqueryparsing,bteai_intsmesubstitetedforrecognizedfuzzyqualifiers.Tofacilitate
the ad.hoc definitionof otherfuzzy qualifiers, the break_inu can be specified within thegrammar.
using thebRakix_D {.J525] insteadof the fuzzy _nn YOUNG. thequery to select entirerecordfor all
the youngindividualsnamedSmithwould be

Select * where name-smith and age is [ .15,25}

GeneralCase

A B C D ^B

C D AB D

FIGURE 3
Trapezoidal Membership Functions

The prototypesupportsmultiple fuzzy predicatesduringa singleselectionandcombinesthe resultsof
membershipfunctioncalculationsusingstandardfuzzy logic operatorsfor fuzzy and. or andnot
operaion=

Select * where mame_smith and age is YOUNG and I_lght is TALL

Due to the characteristicsof the currentdatafilta-,membershipfunctionsare limited to piecewise linear
functions. The restriction is due to the lack of a multiply instruction in the VLSI datafilter. Our
implementationuses repetitive additiontoemulate a multiply instruction. The combinationof multiple
membership functions with overlapping domains can be used to approximate slightly more complex
functions.

1.0 _-- 'X
0.0 10 15 20 25

Select * where age is { . 15,20) and age is { .10,25}

T

0.0 10 15 20 25
Select * where age is { ,,l$,20}JilLage is { ,,10,25)

The selectionIxocess pennils bothhardwareandcombinedhadware-softwa_ filtering.TheVLSIdalafdt_r
has the zesponsibilityof reducingthe amountof informationlXeSentedon the highbandwidthchannelto an
I/O l_mdwidththedownstreamdalabaseprocessingenvironmentcan manage. WherelX)ssible,it is usually
advantageousm complete this filtering operation in the VLSI datafilter. Wherethe complexity of the
requestexceeds thecapabilityof thedalafiltcr,a partialpredicate,or an approximationc_ be used in the
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datafilter, and the downstream software can complete the predicale or apply a precise _. For
instance, we have approximateda dis/ance functio_ in the datafiIlerwith an approximationDxy= hl + lyl.
F_ some applicatinm, this is sufficient. We use this distancecaicuimim inafuzzy_m" Indicate.For ,.,:_
_se applics/_s nXlaldnga wecise disunce funcdon, the_ can yieMa supa_ ot Ibe mswer
set. and do_ softwarecan applya Euclide,an distancefmglion to identifycon_ luplesor a correot
orderingof luples. This techniqueachieves greaterflexibility andpumits applkatkxaswhere the selection -.i
predicatesexceed thecapacity or primitivesof the _t,Sl datafflter. Using this techniqueit is po_ble to _.
approximatenon-linearfmgtions with piecewise linear functions,andsubsequentlyapply the prtgig now
linearfunctioninsoftwareoutsidethedatafiitef.

4. Dynamic Fuzzy Queries
One problem witha staticpredefinitionof memb_ship functions(i.e. YOUNGis less thanage 25) is that
thebindingmay makesense relativeto ritedomainof theattributein general(overall age groups), butfor
specific cases, may make no sense at all. For instance, suppose we were to apply the fuzzy predicate
YOUNGas definedin Figure I to eitherelementaryschool childrenornursinghomeadults, Thedefinition
is totally inapt. To pagt_ily ovetr,ome this shortcoming, we have implementeda dynamic fuzzy ,'
predicatewhichdefines themembershipfmgtk_ in termsof statisticsanddynamicallyadjuststhe function
to the domainof thepmtkate. InthiscaseYOUNG isdefined in terms of pew,emiles of the domainspace
andinte_cted as definitelyyoung in the fwst l_h petr,entile, decreasingin membegshipvalue for the lO-
20th percentileandnot YOUNGbeyondthe 20thpercentile. Whenapplied to thedomainof theImplicate, I_
themembershipfunction is scaled aplgepd_ly asdepictedin Figtwe4. In thecaseof thecurrentDatacyde
prototype,the domain cut be obtained by simply determiningthe maximumand minimumvalues of an
attribute given additional predicate constraints (elementary school or nursing home). This can be
accomplished by observing the data streamon a single cyclepriortotheactualfuzzy selection. Using
multiple filters or additionalcycles, datadistributionscan beobtsin_ if severe dataskew is present and
needs to be takeninto comidetation. Theselect statementsindicatedin Figure4 show theextendedSQLfor
thedynamicallyscaled requests. This approachdoes not createmembershipfunctionsas in [Kamg0], but
rather,transforms"existing"membershipfunctions to differentpopulations.

1.0

StstisticaiDefinition

YOUNG0.0
5 10 15 20

Percentageof AttributeDomain

Domainof /Dynamic Scaling_
Elemen.,n, j, .--:, _,,.-,a. _ Domainof Nursing

Age in Years

select where age RIS YOUNG and group=elementary
select where age RIS YOUNG and group=nursing

Figure 4
Dynamic Fuzzy Query Processing
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Inehegramn_,wcu_etbe_,xmRlS (gelat/ve is) in placcof the lS termto specify thata fuzzy tam ia . -
the wedicate is to be scaled. The use of the RIS opem_ cleanlydiffe,':ntiatesmembership functionsas
statistica]functions. Thas, the wedicate "ageis YOUNG"wonldnot be scaled andrequirethemembenhip
fmgtion be defined for • specific range of • ,,_,s,aad"age RISYOUNG" would dynmnicaByadjustthe
membershipfunction.

The ability to d_micaily scale the_ip functionto thedomainof an arbitrarysubsetof the data
is • significantdepenme fromapprmches thatdepeadon the_ defmidon of themembershipfma:tion.
A single _ definition for OLD canusedtoidentifyoldpeople,old computenkoldpets,orolddata
f_, and theages can be expt_ted in years, months,days, bonn or any unit. This appmaghenabtes

.................memingful fuzzyque_'yWOCeudngfor a roughlargersetof appUcatkms,and reducestbeanmumof datskme . •
Wecific knowiedp nxlui_ of a user.

5. Performance
We have generateda modest test databaseof 256,000 tuplesO2 Megabytes) to exercise the fuzzy query
functiom_ityandpopulstedseveral8ttH_teswithmanericda_.Tbe prototypecan handlelarg_ dalabases
with linear degradationin w.qxmse time (respoe_etimeis [mrgelya functionof databaseIm_dcast cycle
time).The largestdatabasewe can handle in ourcmTentrese_ prototypeix 128 Megabytesin • single
Datacycle pump;sufficientstmage to deal with I million128byte tuplesbecause the staragerequireatents
do notrequireadditionalspace for indexes. Larger_ requireperfitioning_e databaseovermultiple
pumpsand utilizingmultiple filters. This same appma:his usedto reducethe cycle timeof databasesto
engineer the system for faster resigme time. We have demmsuated the on-the-fly calculationof two
montbershipfmgtionsandthefuzzylogicnecessmy to performintev_ectionandu.qionoperationsto_
within the VLSIdataffiter. However, the geaeral_ing algorithmis to projectresultingmember_ip
vahtes to softwareoutside the VLSI where the resultslu_ sortedon-the-fly, A subsequentquery is then
executed against the datastreamto relrieve the "best"n tuples. Currentlywe select up to the best 50
recordsbecamewe can spscify theselectionofupm 27specificrecon_ina single cycle, andthe maxof 50
fits well in twocycles. The two cycle limit was chesea arbitrarily,the afchilectme can easily supig_ il_
selectionof any numberof records.

Figure5 provides respmse timeand throughputnmdtsfor fuzzyselectionqueriesagainstthe threediffermt
databasesizes (256K, 128Kand 64Ktuples). Sincethesystemscales throughputlinearlywith theaddition
of fdlering subsystems,queryprocesmg systems canbe _mstmcled to deal with arbitrarilylargenumbe_
of fuzzy queries. Figure5 indicates thequerythronghl_t(queriespersecond)for a single, fdter, rot rim-
fuzzy queries we have attainedquerythroughputsexceeding25 queries persecond for • single filler for
64,000 tuple databases.The resultsindicatethat the_ timeis largely determinedby the cycle time,
as is the query throughput. Response times for small(64K tuple)databasescan be as low as .5 seconds
with the full ad.hoc capability. A second result is indicatedby the two 64K tuplecurves and showsthat
both response time and throughputcan be largely independentof complexity. The two predicatecarve
re_estmts lXOCessinga selection basedon two fuzzymembershipfunctionsoperatingon differentatm'ha_
(SELECTWHERENAME=LEEAND HEIGHTIS TALLAND AGE IS YOUNG) and thecombination
of theirresults with fuzzy logic operators. Notice thatat low concurrency(1-3 queriesper setaxtd),the

time is nearlyidentical to the single attributepgedicate. The resixatse time rewosents the time
necessaryto receivean extended SQL request,passeandcompile it. load thedatafilteriasmgtion buffer,
evaluate every recordin the database,sort theresultingpo_bility values, select individuMrecordsm a

" subsequentcycle, move mugds into a private_ (buffet')in thedatamanagementprocessandnotify
theapplication of numberof reco_ selected. The timing of subsequentrecord fetch operatims is not --
included. Relative(RIS) ,_ ..cryl_essing addsanadditionalbroadcastcycle to the _ to collect
statisticsfor scalingandmarginallyin_ts perfc_.

These results,coupledwith our experienc_with non-fuzzyqueryprocessinglead us to theconclusion that
with multiple falters and multiple broadcast faems, we can achieve sub-second response time for
rcasonablylargedatabases(lOOsMB]fleto Gigabytc),complexqac_es, andhighlevels of query
(lOOsper second) in • databaseonv_ thatcan be sharedby gnattydiverseappficatims, includinga_.
hocfuzzyque_
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Fuzzy Query Performance - Single Filter

Select * wbere Name=Lee and height is taiJ

6. Future Work
Our work to date has cente_d aroundproroguingbasicqueryfunctionalityandimplementingthedynamic
fuzzy qucw capability. Thefull databasesearchandcoment-addrcssabilitycharacteristicsof theDatacycle
architecturemakeitparticularlyattractivefora numberof furtherextensions.

_..Mti.dimensionul membership Iuuctiou$
Membershipfunctionsinvolving mo_ thatone attrilmtccan be dealtwith efficientlyas a small change to
the system since the values of all _ tnple's attributesare available duringthe run-timeevaluationof a
membershipfunction. Thm pin_ surfacesdefinedasZ = clX +c2Y +c3 are apossiblealte_In_U/veto
lattice functions. Using multip_ dautt'ttte_multipleintersectingplanessuchasthosedepictedin Figure6
arc possible. We are l_rticnlady inttags_d in spatial and directional issues such as norlh and the
com_ of _ anddisumce.

HedSes
A mechanism for modifying membership functions with standardhedge [Zad72] terms as very and
somewhat needs to be addressed.These operatorstypicallyinvolve applyingnon-linearfunctionslike the
squareor squage-gootof a membet_ip vain¢. These operatorsmay Ix:approximatedu_ng piecewise linear
f_.

Concurrency Control in a Fu,_y Trausaction Processing Environment
The Datacyclearchitectmeandresearchprototypeincludesthe implementationof a full transactionmodel to
guaranteedatabaseconsistency andque_ cortectne_ in theface of concurrenttr_tsacdonexecution. The
implementationincludes optimisticconcm'gacy controlanda predicatebasedconflictdetectionalgodthm
thatmay Wove advantageousin identifyingconflictsbetweenfuzzy ttmuactionswhe_ standanlrecordbased
locking schemes may be inappmwiate. Relaxings_trictconcurrencycontrolseriafizafionrequirementsby
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using variousforms of flexible transactionsisan activeareaof cummtresearchinthedatabase¢ommm_ty.
The notionof low and highconflicts in read/will.or intersectionscouldutilizea mechanismtoevaluateset
inte_Jeclionsin a fuzzy domain. One _ can be the use of u thresh61dto limit inte_ectims to rely
these thatexceed a cev_in level of "cmflict'. Inthe Datacycle_y conm_ mechanism,thiscould
easily be implemented for tmnmctions involving madsetsthat include fuzzy predicatesby w-executing
readsetsagainstthe_g of datal_se changeactivitycoupledwitha thresholdsetto s particularconflict level.
Thus, only a subsetof the conflicts would be identifiedduringthe optimistic_y controlconflict

•: detectionphase, and onlythosethatz_z'esenthighdegreesofconflict.

_ NO_ NOR'I_WEST
('

-- W W E

S S

Figure 6
• Two Dimensional membership Functions

North = F(Aiongitude, AlatJtude)

Complex Nom.Limeur Members&ip Fumetioms
• We am cuffently investigatingtheuse of highpeffommncedigitalsignal pmceum3(DSPs) for use instead

of the custom VLSI datafilter. These processors include support for floaling point and multiply
instructionsin as tittleas 40 nanoseconds. This is especially impemnt since thecurrentVLSI datafiltet
prototype lacks a multiply instruction, The use of DSPs could permit a significant increase in the
complexityof membershipfunctionsthatareexecutedre.the-fly.

Learmimg
We have speculateA that the combinationof on-the-fly membershipfunctionexecutionand membership
functiondefinition at the query grammarlevel providetheprimitivesforan adal_ivefeedbackmec._mism
and eventuallylemning.

f

7. Conclusion
The cembinatkmof theDatacyclearchiteca_'s fulldatabaseb_ andefficientfilteringcanbe used for
both simple and complex dalabaseselectJm operations. This flexibility pennils variousapplications to
shama commondatalmsewhile requiringverydifferentviews of thedata(fullcvment-_lity), or
permita user to _ seaw.hesbeyond thecapabilitiesof currentdala"b_scmanagementsystems. The
work reported in this paper resulted in a fuzzy query capability in a high volume query processing

': enviro_nc The majorconlribetionsof thisworkincludea scalablequery envinmmemfor fu_y quexies
_, against smallto medium sizedalabases(low-order gigabyte), theuse of on-the-flyraemborshipfunction
_: executionthatpermitsad-hocfuzzyqueries,andthedefinitionandimplementatimof dynamicfu_xTqueries

thatadjusta statisticalmembershipfunctionto the attributedomain.
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GENETIC ALGORITHMS IN ADAPTIVE FUZZY CONTROL !
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i

U.S. Bureau of Mines, Tnscaloosa R_srch Center :i

P.O. Box I, Univq_rsityof Al,banm Cmmpus / _l _
. Tuscaloosa, AL 35486-9777 '

........................ ABsrcr i
J

Researchers at the U.S. Bureau of Mines have developed adaptive process -omtml systems in which.genetic
algorithms (GAs) ate used to augment fuzzy logic controllers (FLCs). GAs are sean:h aigo.,iflum thatrapidly locate
near-optimum solutions to • wide spectrum of p_'v_lems by modeling the search procedures of natund genetics. _
FLCs are rule based systems that efficiently manipulate • problem enviroament by modeling the "rule-of-thumb"
stralelD, used in human decision making. Together, GAs and FLCs possess the capabilities neces.UUTto produce !
powerful, efficieal, and robust adaptive control systems. To perform efficiently, such control systems require • _|

¢m_rol elememt to manipulate the problem environmeat, an amdy_ e/ement to recoguize changes in the problem _
environment, and • learning eltnnent to adjust fuzzy membership functions in response to the changes in the I
problem environment. Details of an overall adaptive comroi system are discussed. A specific computer-simulated 't!
chemical system is used to demonstrate the ideas presented, i

iNTRODUCTION

The need for efficient process control has never been more important thaa it is today _ of economic

forced on industry by processes of increased complexity and by intense competition in • world market. No industry
is immune to thecostsavingsnecessary to remain competitive; even traditional industries su_ as mineral processing
(Kelly and Spot_ood, 1982), chemical engineering (Fogler, 1986), and wastewater treatr, ent (Gottinger, 1991)
have been forced to implement cost-cutting measures. Cost-cutting generally requires Me implemeatation of

emerging techniques that are often more complex than established procedures. The new processes that result are
oflea characterized by rapidly changing process dynamics. Such systems prove difficult to control with conventional
strategies, because these strategies lack an effective me_ of adapting to change. Furthermore, the mathematical
tools employed for process control can be unduly compl_ even for simple systems.

In order to ,.xcomamdate changing process dynamics yet •void sluggish response times, adaptive control systems
must alter their control strategies according to the cuneat state of the process. Medern tedmology in the form of
high-speed comlmters and artificial intelligence (AI) has opened the door for the developn_mt of control systems
that adopt the approach to adaptive control used by humans, and perform more efficiently and with more flexibility
than conventional control systems. Two powerful tools for adaptive control that have emerged from the field of

- AI are fuzzy logic (Zadeh, 1973) and genetic algorithms (GAs) (Goidberg, 1989).

The U.S. Bureau of Mines has developed an approach to the design of adaptive coatrol systems, based on GAs and
FLC.s, that is effective in problem envi_ts with rapidly changing dynamics. Additional;y, the resulting
controllers include a mechanism for handling inadequate feedback about the state or condition of the problem
environment. Such controllers are more suitable than past central systems for recognizing, quantifying, and
adapting to c"hangesin the problem environment.

The adaptive ccotroi systems d_eloped at the Bmeau of Mines consist of a amtro/ele_ to manipuJatothe

problem envirommat, an ana/y_ ¢ltment to recognize changes in the problem envinmmmt, and a/sam/xgekment
to adjust m the changes in the problem enviroament. Each componeat employs • GA, a FLC, ,'r both, and each
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where q repref.mt_ the volumetric flow rates (I/s), C is the concemtation (mole_/I), r is the rate of reacfio_ (moles
of uu_onili s), V is the volume of the reactor (tank) (I), T is temperature (°K), &H is the heat of reaction (eal/gm ;_ .'_-_].._-:.:.i
mob..), TOis the heat transfer coefficicat (cal/cm _ °K s), AT. is the mean temperature difference for heat tmmfer h_ " IL_:.'_

the heat exchanger (and is a function of the voimnetric flow gate of water through the heat exchanger, q_), mid k "•-..
is the rate of reactiottconstant(12/mo1¢_ s) given by: - : _I':,"-

and themlncripts (A and F) indicate the ammonia and formaldehydewhereasthesalncript i repreamla material __-,_-_ "-
entering the reactor. The assumptionsassociatedwith tl_ model includeperfect mixing in the reactor, no heat - <l :..-.

losses,all physicalpropertiesthesame aswater, and a third-order, irreversible reaction. _ -. "

A reactor having a volume of 92.4 ! was simulated. The inflows of ammonia and formaldehyde, respectively , were _..._.__
allowed to reach maximum values of 1.885 I/s, while the maximum flow rate of the heat exchanger was 1.2 ils. "=--'_.:_T_: -_
The objective of thz _ntrol Problemis lwo-loid: (1) to develop • FL_ capableof maintaininga desiredreactor ".......... :,"
temperature in response to changes in the flow rate of fomuddehyde and (2) to maximize the _ti_ of _ " "'_""

while minimizing the waste in the amount of reactants used. The amount of water pt_luced was deemed _;_-!_-7
inconsequeatial to the control strategy. In this research, the desired reactor tempet_ure is 315.0 °K. Furthermore, - .-

• constraint is placed on the amount the valves contm|ling the inflow of ammonia can be opened or closed during

a given time step. The maximum rate at which the flow of au can be changed is 0.1885 Ila/s. This ,:'_.7.:: _......

constraint is e_forced to limit tramients in the system. . • _'_i_>_.

The hexamine system, as it has been described to this point, provides a challenging control problem, due mainly ". .......
to the nonlinearity present in the rate of reaction. It is a non-trivial task to maintain the temperature in the reactor
forvariousforcingfunctions(asdefinedby theintoatwhich theformaldehyde_terstlmreactor),much lessto i-"-:..__
ensuretheprocessproceedsefficiently(maximum hexamineproductionwithminimalwasteinammonia and ........-7--_-
formaldehyde). However, yet another complication is now introduced: the concentration of the reactants (the
ammon/a and the formaldehyde) can be altered randomly. Furthermore, _ is no mochanism in place for : _= =: - ....

providing the controller with feedback concerning the nature of these changes. Thus, an efficient control system _'. _.-..
must be able to recognize when the hexamine system has been altered (when the conceatration of the reactmts are _:;- :........
changed), it must be able to determine the new values of the concentrations, _d it must be able to alter its control ""- .... ';
strategyinneslxms_tothe changes; an adaptive control system is needed. ..._.

. ,\

STRUCTURE OF THE ADAFTIVE CONTROLLER " \ :

Figure 2 shows a schematic of the Bureau's adaptive control system. The heart of this couurol system is the loop _-:_=..-_:_...-
consisting of the control element and the problem environment. The control element receives information from ....
sensorsintheproblemenvironmentconcerningthestatusoftheconditionvariables,i.e.,qs,q_,q,,andT._,.It _:......._.._-"

then comllmtes mdesirable state for a set o_ oa/on mr/ab/ea, i.e., flow rate of ammonia (qa) and flow rate of water -:-'" _ _
through the heat exchanger (ok,). These changes in the action variables force the problem environmmt toward the _ --- "
setpoint{T..._= 315.0°K. Thisisthebasicapproachadoptedforthedesignofvirtuallyamyclosedloopcontrol " " _:......

system, tnd in and ofitselfincludesno mechmism foradsptivecontrol. _- ......_.-_-
_-=_ _ ....

u .
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Figure 2.-$h'uc.mre of the edaptive control system. •

The adaptive capabilities of the system shown in Fig. 2 are due to the analysis and kaming elemems. In general,
the analysis dement must recognize when • change in the problem envimnnm_t has occurred. A "change," as it '_":'_........

is used he_, consists of a change to the concentration of either of the reactants, The analysiselement uses :..: _.:!_-:-:.:"
information concerning the condition and action variables over some finite time period to recognize changes in the .... _..
environment and to compute the new performance characteristics associated with these changes.

The new eaviromnent (the problem environme_|t with the altered _) can pose many difficulties for the ...... ":
control dement, because the control dement is no longer manipulating the eavironm_t for which it was designed ........

Therefore, the algorithm that drives the control dement must be altered. As shown in the schematic of Fig. 2, this _

task is accomplished by the learning element. The most efficient approach for the learning element to use to alter -- '.;:.._....
the control element is to utilize information concerning the past performance of the umtre| system. The strategy
used by the control, analysis, and learning ele.m_ts of the stsod-alone, comprehendve adaptive controller being ....
developed by the U.S. Bureau of Mines is provided in the following sections.

Co.ntrol Element

The control element receives feedback from the hexamine system, and based on the cummt state of q_, q_, qw, and : .'
T__., must prescribe appropriate values of q^ and q,. Any of • number of closed-!oop controllers could be used
for this element. However, because of the flexibility needed in the control system as a whole, • FLC is employed.

Like conventional rule-bued systems, FLCs use • set of production rules which are of the form: ...:.

IF {condition} THEN (action} ......

to arrive at appropriate control actions. The left-hand-side of the rules (the condition side) consists of combinations _-_. :_
of the controlled variables (q_, OF,q,, and T=,t); the right-hand-side of the rules (the ac:ion side) consists of "
combinations of the manipulated variables (qA and q,,). Unlike conventional expe_t systems, FLCs use rules that

utilize fuzzy terms like those appearing in human rules-of-thumb. For example, • valid rule for a FLC used to ._- .--:"
manipulate the hexandne system is:

5O9
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IF {q_isVII-and_ isVL and q,,isL and T._,isVII} .....

THF.N(a_ is NBandq,, is Pe). -

The fuzzy terms aresubjective; they mean_Herem thingsto different "experts,"andcaameandiffe_nt things in
varyingsituations.Fuzzytermsareassigaedconcretemeaaingviafuzzymembershipfwgtioas(zedeh,19/3).

The membership functions used in the control element to describeammonis flow rate appearin Fig. 3. (As will
be se_ shortly, the learning ekatent is capable of changingthesemembership fu_tions in response to dmnges in
the pre61em eavironm_t.) These membership functiens are used in c_tju_tioa with the rule set to prescribe

..... single,. _sp values of the action variables (_ and q.). Unlike conventional exl_rt systems, FLCs allow for the
e.nactmmtofmore thanone ruleatanygiventime.The singlecrispactioniscomputedusingawei2htedaveraging

thatincorporatesbotha rain-maxoperatorand thecen:er-of-areamethod(Karr,1991).The following

fuzzytermswereesed,and therefot_"_" withmembershipfunctions,todes_ibethesipifiumtvariabl_in

the bexan0ne system:

qA Very low (VL), low (L), Medium (M), High (!!), Very High (VH)
qF Low (L), Medium (M), High (H), Very High (VII) -----
q,, Low (L), Medium (M), High (H)
T_ Very Low (VL)0 Low 0L), Medium (M), High (!!), Very High (VIi)
q,, Negative Big (NB), Negative Medim (NM), Negative Small (NS), Zero (Z),

Positive Small (PS), Positive Medium (PM), Positive Big (PB)

qA NegativeBigtNB), Negative Medium (NM), Negative Small (NS), Zero (Z),
Positive Small (PS), Positive Medium (PM), Positive Big (PB).

,,C

:i ' /
| ,
E ! i

Q | I .
|

IL ,.li I /
-%, -_-ot o _.-ot .oot -"

tm._ flow rat. (,/,)

Figure 3.-Fuzz), membership _ for the flow rate of ammonia.

An effective FLC for manipulating the hexamine system can be writtea that contains 300 rules,/,f the random
changes to the concentrations of the reactants are neglected. The 300 rules are necessary because them surefive
fuzzy terms describing TIn,t, five fuzzy terms describing qA, four fuzzy terms describing q_, aad three fuzzy terms
describing q. (5*5*4*3 = 300 rules to describe all possible combinatio_ that could exist indic hexamine system
as described by the fuzzy terms nqm_ented by the mendbefship functions selected). Now, the roles selected for the
control element are certainly inadequate to ctmtroi the full-scalebexamh_ system;theone that includesthechanging
_ons. However, the performance of a FLC can be dramatically altered by clumging the memimahip
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functions. This is equivalentto changingthedefinitionof the termsused_ describethevariablesbeingconsidered "--
by the coutroller. As will be seea shortly, GAs are powerful tools capableof rapidlylocating efficient fuzzy
membershipfunctions that allow the controllerto accommodateclumgesin the coaceatraticmof thereacumts.

A_lwis Element

The analysis dement recognizes changes in lmmnetm associated with the problemenvironmmt not takeninto
accountby the rules used in the control element. In thebexamine system, theselmmaaen are thecoeceatmfioa
of the two reacumts. Changes to the concmtrmions dmnmically alter the way in which the heumiae symnn

. .respondsto contro!actions, thus forming • new problemmviromuent requiringm alteredcontrolItr_'gy. Recall
thatthe FLC used for the control elementpresentedincludes none of thesepmmuete_in its 300 rules. Therefore,
some mechanismfor altering the prescribedactionsmust be includedin the controlsystem- Butbefore thecontrol
elementcan be altered, the control system mustrecognize thattheproblemenvironmenthasdmaged, sad compute
the natureand magnitudeof the changes.

The analys_selementrecognizes changesin the system parametersby comparingthe responseof thesystem being
controlledto the _ of • model of the hexaminesystem. In general, recognizingclmngesin the pmmneters
associatedwith the problem environment requires the control system to _toreinfofamtionconcerning the past
perfm'nmtceof the problemenvironment. This infommtion is mosteffectivelyacquiredthrougheithera database
or a comlmtermodel. Storing such an extensive data base can be _me and requires_tmmive computer
memory. Fortunately, the dynamicsof the beumine systemme well tm,knt_. In the_oach adoptedhere,
a computer model predicts the response of the hexamine system being controlled. This predictedresponse is
comparedto theresponseof thesystem beingcontrolled. Whenthe tworesponsesdifferby athresholdamountover
• finite periodof time, the hexamine system is consideredto have been altered.

Whentheabove approachis adopted, the problemof computingthenew system parametersbecomesa curve fitting
problem (Karr, Stanley, and Scheiner, 1991). , The parametersassociatedwith the computermodel produce a
particularresponse to changesin the action variables. The parametersmustbe selectedso thatthe_ of the
model matches the responseof the problemenviromnent.

An analysis elementhasbeen forged in which • GA is used to computethevalues of the parametersassociatedwith
thehexaminesystem. When employing • GA in • searchproblem, thereare basicallytwo decisions that mustbe
made: (1) how to code the parametersas bit strings and (2) how to evaluatethe meritof eachstring (the fitness
functionmustbe defined). The GA used in theanalysis elementemploys concatenated,mapped,unsignedbinary
coding (Karrand Gentry, 1992). The bit-stringsproducedby this coding strategywere of length 16: the first**
bits of the strings were used to representthe concentrationof the ammoniaand the second $ bits were used to
represent theconcentrationof the formaldehyde. The 8 bits associatedwith each individualpmang_ were read
as a binary number, converted to decimalnumbers(000 ---0, 001 = 1,010 = 2, Oil ---3, etc.,), and mapped
between minimumand qmximumvalues accordingto the foUowing:

c. c..,.. _ (c.. - c..) (7) .
O" - i)

where C is the valueof the parameter in question, b is the bhuu'yvalue, m is thenumberof bitsuscd to represent
the particulK inmmteter(8)_and _ and _ are minimumand smximumvaluesassocistedwith ew.h pmuneter
that is being ceded.

A fitness function has beea employed that represents the quality of each bit-string; it provides• qmmtitative
evaluationof how ao_umtelythe responseof • model using the new modelparametersmatchesthe responseof the
system beingcontrolled. The fitness functionused in this applicationis:
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With this definition of the fitness function, the problem becomes • minimization problem: tha GA must minim/zo
f, which as it has been defined, repmt_ts the difference between the response predicted by the model mai the
response of the system being controlled.

4

............... JS.

.12

iI
1oo 12o 14o tGo tll0 290

Fun¢|len Emluations

Figure 4.-A GA is •ble to compute the concentrations of the reactants.

Figure 4 demonstrates the ability of • GA to select the appropriate parameters associated with the problem _-
environment. A GA is •hie to reduce the difference between the response of the hexamine system being continued,
and the response of the hexamine system predicted by the model virtually to zero after only 150 function
evaluations. Once new parameters (and thus the new response characteristics of the problem env_onment) have been
determined, the adaptive element must alter the control element.

The learning element alters the control element in response to changes in the problem e_viroament. _ does so by
altering the membership functions employed by t_e FLC of the control elemeat. S_e none of the ran(_omly altered

appear in the FLC rule set, the only way to account for these conditions (outside of completely
revamping the system) is to alter th_ membership functions employed by the FLC. These alterations consist of
changing both the position and location of the trapezoids used to define the fuzzy terms.

Altering the membership functions (the definition of the fuzzy terms in the rule set) is consistent with the way
humans control complex systems. Quite often, the rnles-of-thumb humans use to manipulate • problem environment
remain the same despite even dramatic changes to that envirenmmt; only the conditions und_ which the rules ate
applied are al_. This is basically the approach that is being taken when the _ _ip f_sctions ate
altered. "

The U.S. Bureau of M'_nes uses a GA to alter the member_ip functions associated with FLCs, _ _his technique
has been well documented (Karr, 1991). A learning element that utilizes • GA to locate high--eff_ciency membership
functions for the dynamic bexamine system has been designed and implemented.

512
D

I



The perfommnceof • coutroi systemthat uses a GA to alterthe membershipfunctions of its conUoi elemm_
demonmmed for the situiaioe in which the concentrationsof both mtctaatsm_ altered. Figwre5 comptret the
perfommnceof theadaptiveconUoi system (one that clumges its membenifip functionsin nspome to changes in

..... the system _) to • nontdap¢ive control system (one _at ignoresthe changesin thesymem lmmmmen).
In this figure, the concentrationsof both reactantslave been altered510 secondsinto thesimulation. In this case,
not only is the adaptivecomrollerable to bettermaintainthedesiredtanktemlmamre, but it also pracdbes control
_tiom that allowfortheprodu_lionof morehaxamine.
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Figure5.-The adaptive controller is much moreeffv.ient.

SUMMARY

Scienti_ at the U.S. Bureau of Mines have developed sumAI-bued strategy for adaptive process control. This
strategy uses GAs to fashion three components necessary for a robust, comprehemive adaptive pcocess control
system: (1) a control element to manipulate the problem envimmnent, (2) an analysis element to recognize changes
in the problem environment, and (3) a learning element to adjust to changes in the problem environment. The
application of this strategy to a computer-simulated hexamine system has been described.
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Abstract

a spacevehicle. This problemwas thenre-examinedto determinetheeffemiveneu ef geneticalgorithms_ _
tuningthe cotta_lleg. Thispaperexplains theproblems_t,yd withthe designof this fuzzycontroller and
oilers a teghniquefartuningfuzzy logic ccmmllers.

A fuzzy logic cmm)ller is a ride-based system thatuses fuzzy linguimicvadabks m model humanrule-o_-
thumbaplxmches to ccmtnda:tims withina givea system. Thb "fuzzyexp_ _mm" feaum_ roles tim din_
the decision process and mem_ip functionsthat cmvm the linguistic variables into theI_ecise numedc
valuesused forsystem cmuel [7].

Defining the fuzzy membersMpfunctiam is the most time _uming aspect of the conueller design. Oue
singlechangein themembershipfunctionscould dgnifica_y alter the perfm,uum_ of thec4m_iler.
membemhip_ defmidonmn beacmm_ by ruinga Irialandmor techniqueto alter the_
Ragtions creatinga highly tunedcontroller.This aplmmchcanbe time_g and requkesa greatdeal of
_ _ hunmexpem.

In orderto shotzn developmenttime, an iterativeprocedurefor alteringthe membershipfuncdmmto createa
tunedset that us_ a rain/realamotmtof fuel for _ ve_r approachand slafiowkeep maneuve_ wu
developed. Genet_ algorithms,a searchtechniqueused for ep//mizali_ wl the methodutilizedto mire this
problem.

I. PREVIOUS WORK

A _ effoa in theSoaware TechnologyLabJrNASA/JohnsonSpaceCaster wasdim:ted mwanlsczeadng
a control system thatmacmdsimilarlyto a pilot in theexecution of rendezvousprofiles [3]. (discussedlaterin
section 1.1), It was realized thata model of a man flying thespace shuttlecoald be developedby aUowingthe
system ,o processonly informationthatthe arew hadavailable.Sucha _smn would dmm,ewate feasibilityof
utilizing fuzzy conm311e_forautomatedtendezvo_ _ for fuaue spa_ missims.

I.I SCENARIO

An automated s/x degree of freedom(6-DOIDfuzzy cmtmller was developed [4] thatperformsfour m_
translalim_ ca_rol segmeat$as shown in figure1: 1) The _h to thetat,get en thevelocitTvect_, 2) the
approachto the taW,et on the radialreck, 3) targetfly-arran/at a given range,md 4) __ _
constantIme_m relativeto the target_ mainminat, The comrollef comrols the clodng ratesa_i relative
pmifiem of the dmltle with t'espe_ m thesmtiom_ target.The velocity vectm"aundradial_ _
teq_e nm_e tarecomml along withmaintainingtheelevadoa anda_nuth angl_ at _. _ _
o_erafionreqmimsthenmgeu_becmstant,themn_erotem benearzero,amlthe_ _ _ m_
m be zero. The fly-aroundepe_on fromthevelecity vectorto thenegative radialvevm_Rquims mainudning
constant range, elevation and azimuth angles. In figure ID. the elevatien and azimuth angles a:e being
maimined at zem.
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Figure IB draws tl_ velocity vec_ approach,whex_¢he_uttle ap_mdtes from400 feet to _0 feet _ _
target on the velocity veclor, ma/mtainingthe target in the center of the l'_Idof view of the Crew Optic_
Alignment Sighting(COAS)device.,as shownin figure 1A.Figure IC shows theradialv_'ux appmsch,
the shuttle_ from400 feetIgiow d_ targetm r._.0feet below the mq_ m _ _ _. H_ _,
the shuttlemaintainsthe target in the cente_of the COAS field of v_,w. FigureID _mw$ thefl¥-m'ound from
the velocity vector axis to the negativ_radial vector axis, maintaininga rangeradiusof 200 feet duringthe
uansitim, and stationkeeping at200 feet on theradialvector, mainudningpositionandattituded_- reaching
thedesi_ radialvecuxpositiot_

_- 200ft

R__ axis

,O00fx _ R_.blz_axis

(B) (c) (D)

Figure 1:AutomatedRemJezvousSys_n

2. CURRENT WORK

The translationalfuzzycontrolsystemis usedto geacra_ handconu'oikro_nmandsso thatthedesiredrangeand
rmngeraw are maintainedduringproximity operations. Typically, a shuttlepilot _ these inputs and
controls the _lmivc uajectm-y.Thus, the fu_ logic based control systemsimulates the crew input via me
u',mslatimmihandcommilcr [3].

In evahming the _ of the fuzzy contmikr, fuel consexvadcmwas oneof themain criteriaused. The
shuttle frights_geptmndfor pow_ syslen_, i.e., for every poundof on-orbitfuelctmsetved,anequalamountof
h_1_aseta thepa,/imdcapa_ty nmms.

During the tuningof the contmner, the mmbership func_ were alte_ manuallyto improvethe control
sualegy. Definingthe fuzzy m_ functionsis themost time ceaanni_g aspectof the controllerdesign.
One single change in the membe_hip functionssi_dficandy akexcdtheperf_ of the conuroller.This
mean_ defn'fi,dcn was accomplishedby usingtrialandm'mm*techniques.

In ordm"to stmctendevelopmentlime, an itemtiveIm3Cedu_was developedf¢¢allex,ing themembe_ f_
t.ocreatea umed se_ thatreducedtheamountof fuel for velocity vecu_ appcmchandstation.keepmam_vem.
Genetic algodduns, a search techniqueusedfor optimization,is themethoduaul m automatethe fine-umingof
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, the _ fuac_m in on_ to mhtimize fuel _ l:ilme 2 shows Ihe final nmlleI_amelen
memben_ ftmcems _m the nmeally-tmed cemmUeraaer atemive fme.4mi_

-10 -8 4 -2 0 2 4 8 I0
t_mee (lea}

-5 -1 -.5 -.15 0 .15 .5 1 5

Range Ram (feet/so:)

-1 -.5 -.2 ..1 0 .1 .2 .5 1

Commanded D v (feet/see)

Figure2: Range ParmuetersManba_p Fumions Set

Membership Functions Constraints

A eAumnom_ su.ing whichcmsists of 38 peintsdefined thenmgeand rangerate_ _ The
fitness funclion regulmed the membershipfunctionspoims to float aleq the unive_e of discoursewithin
cemin coasuaints. F_ 3 shows the labeled Ix_ints.An exampleof thecon.wainu algorithmplaced on the
individml lmims at'eas foUows:The positive lat_ (Iq.) vertexfor ranl_ labeled 3, _ _ m a _
betweea the vesw,x of the ixmitive medium membershipfemm and themaximum value of tl_ umiven_of
discotme. The _ atedium(PM)vertex f_ hinge,laludedZ is _ Ioa valee betwemlhe _ex ¢_
the Ixmidvesmall (PS) nxmberd_ ftmaion aadthe nmimm value or'abemiveme d _ _ _
labeled 4, $. and 6 also follow this algm.ithm.The right leg e( the _ mediummmbmhip femiou.
labekd 13. is cousuaiaed to a value between theve_x of theposhive me6mt _ _ _ _
maximumvalue of themiveme ot dis:ome. The leg of thepositive farmmantership _ _ _, m
cemmtined m a value between dz vertex of d_ezero membemJ_ functim aJxlthe vine: of theposai_ _
membership function. The points labeled 9, le, 14, 15,16, 17, and 18 also follow this algoridmt.The
poimslabeled O,7, 8, are _utedat zmoand arenotanowed to i]mt. Thememl:m_ip funaions foxthe_ _
_ me symmet_ aadfollow the_une aig_llan for tkisal_ma¢_

P
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18 1716 1514 7 $ 9 10 1112 13

l_aqe

37 36 35 34 33 2627 2829 3031 32

Range Rate

Figure3: SelectedPoints

Figuxe4 showsthefunclics_flowofthegeneticalgorithm_ _eJectionprocess.Theprocessbegins
with tmtdmn generationof a ix)lmletionof SOstrings(chromosomes),eachofkngth190 bits. Each notarized

_ point was given a 5 bit n_olution and decodedaccordingto thecomtams describedabove. _ _
regnsents a pos_le solution to theproblem oi findinga set of highly eta-lent _ functions (with
respect to fuel coasumpfion ). Each of these chromosom_ which is a binaryslring, is demded [o ]o_Jd_

_. actualmembenhipfunctionpmuaeten.Each_ isseattotheOrbi_lOperafitmSimutator((X363
[61(discus_ ing_er deuillaterinthispaper),whezesimulatedrunson _e _ vect_andstation-
keepingateoerfcgn_ Thebitmingswhichrepresent_e penunetersof thesearchproblemwezetheejudged
and assisned a some (a fimess-fuact_ value),thatisa non-negativemeastweof relativewonh,_g _
degree to which they accoml_Sh the goal of det'mingthe high-performancefuzzy commllex. The central

"_ panmtel_ fuel and time. forboththeapproachmm_ver mtdstatic_keepin$,were _ m _ _ _ as
shown in equation (I). These cMomosomes with a high fitness value measured by theequationare given a
_y higheriaoi_bility for_ duringthe teWeseatat_ phase.

• I

Fitness= (I+ (Ap1_chFud • App_Ting) + (StationKeepFud* Stati_KeepTing)) (I)

Thoseparame__ we_give_thehigherpmbabilie:wensplacedinthenew_ ac_ossoverand
. mma_mprocesswasI_"femed onthenewchi_omosomesandtheprocesswasre-iu::ausdemila_ solution

" wasfound.

•. _,;::_-
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. ,, , .

Total Parameters = 38 String Length = 190 Population Size= 50 Iill , i, i •

i Created Performed

I

Ir

• Best Fit I ..............Cssover / | MembersareI

,; Mu_tion _ Placed :.-Process the New ]

IPopulation

F_re 4: Flow Chart of the _ Pttxa_

- 3. SPECIALIZED SOFTWARE TOOLS USED

Splicer

' Splicer(1.2],a p_ex/callmr/dunmotdesignedfar_Zvelo#ngcodefor_uing c_nnz_m_ wasusedin
this pro_'t. The objectives of this appreQchwere to cvalual_ the capabilities of gene_ _lgefiOm_ for the

use in automating t_fine tuning of the fuazy logic _ ft_gt/oas.

If succe_ul this type of approach would be applicable in a variety of domain_ e.g., _l_h planning mgl
job _p scheduling.Spliceris aflexible,generictootthatallowsfw.

• _mmjng _ _/c ge_ic algmithn_definedin thefitenum_
• Defining the imerfacasfor andallowing usersm develop

ingle fm,_
• Pm_ng a gtat/_ evem--C_ivenu_,r_

"- Splicercoypu of a geneticalg_i_n _ thatcominis_ all functionsnecessaryfor thenumipulaficmof
populations including, the creation of polmlatio_ and the polmlal/on member, fitness _ am/random
number genemt/on, lta{_ im)vi¢_ tttmmmtat_ _ for {wmatymzrinp and for Immmtatimt. Tim fitness
modulesar_theonlycompome_tM theSplic_systema usorwill be n_lUigedto ca_w or al_r to solve a
panicula_problem.Withina fitnessroutinea usercancreatea fime_ (scoring)functiona_l set theinitial

--7'-.. . valuesforthecontrollmmmelers.Splice_isavailableinX-Windows and MnCinlO_hve_io_, aswellasa

m,,ricC tm_u_geo0mma_ Uneve,s_[Z._].

•_.',. Orbital Operations Simulator (OOS)

' For tl_ing the 6-DOF controller,NASA's OOS was usedwithitsgraphicsintafacctothcIriswogkstat/on.
.... The OOS isa high fidelity, multi-vehicle s{imcecr{_[$operations sinudafion that provides 6-DOF equations of

•" modonwithinano,biudenvironn_t includinggravitygradientandae,,xlynamicdrag.

The OOS hasa highfidelitySpac_Shuttlemodel withthefuzzy6-DOF controller and ,be required orbital
:.. " environment mmh models. The OOS also has the capability of simulating m tim_ines act:tm_g to crew
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Wocedums.T_ 6-DOF fuzzylogicshuttlecouuoR_rwasimplen_.r._u:dintheOOS cnvimomentandde,sailed
simulationtestingwasusedtoevaluateitspe_'omwc_

4. RESULTS

Table 1 shows the resultsof the two designs. A comparisonwas made between the Cmlpulsfrom thepiloted
__ simulationrims,themanuallytunedcouumUeroutputsandtheautomat/caIlyfme-umedcommUerouqmts. • "

Ascan be seen, tlmperfo_ance of the fuzzy controllercomparesquite weftto thepilotedresults.Themanually
tunedfuzzy controllero_q_r_orms the piloted con_relfor rateof fuel usage on the velocity vector approach
maneuvorby .001 lbs/scc, and for stationkeep by .0133 Ibm.

Membershipfunctions automaticallytunedby the genetic algorithmproduced resultscomparableto those
achievedwiththemanuallytunedfu_ycontxollor,TheFuzzyGear.ticAlgorithmconuoll_used.002Ibs/sec
mo_ fuelthanthe_y tunedfuzzyconh-ollcrbutused,001Ibs/seclessthanthefuelrequiredforapiloted
velocity vector approachmncuvcr. For stationkeep_heFuzzyGone.ticAlg_xiduncomroil_rused.004 lbstscc
less fuel thanthe pilotedresults. However,the FuzzyGenetic Algoridun used .0093 I1_ more fuelthanthe

..... n_aUy tu_dfuzzyconu_.

Theaboven_suhsfromtheseneticalgorit,'untuningaplxoacha_ promising.It is mticipaled that th_ future
work, improvedperformanceof the controllercan be achieved by allowing the heightof thevertexpoints to
floataswellasthepositionsin_c domain.

Piloted Results

Automatically Tuned Fuzzy Controller

Table 1:ResultsSummaryTable

Thegraphin t'_que5 showstherelationshipbetweentheamountof fuel usedversus thenumberof genenttions.
As can be seen, severalminimawere foundby the algorithm.The concernhe_ was thatthegeateticalgorithm
neverstabilized.Results thatcomparedquite well to the manualwexe achieved, yet convergenceto a minimal
amountof fuel was notachieved.
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5. ISSUES/CONCERNS

The problem domainparametersdef'Lemifor this apprmch are, Sampling Olzrator (TOURNAMEWY),
Popu/a_onSize(50),andMutat_t_tity (0.001).

A tournamenttype samplingopentt_ is used to samplemembevjof thepop_ for mating.Sampling uses
. targetsamplingratea(ge_ by IrAection)to crcate a matingpool of mem_ f_emthe_ _ _
_ size 50. Member3may be chcmmfor mating multiple times or not at al!, accordingto their ta'lgetmnpling

rates.The mutationprobabilityoperatorwas set to .001[L2].

These geneticopaamrswere applied to the memben of the population,and theirstrings,while the genetic
algorithmswerenaming.

As a feasibility study, the population size of fifty was chosen _o free.tune the membership functions.
Considering the size of the c_c string, a largerpopulationmay havebeen beneficial, _. the
complexityof theevaluationprocessresultedin an evaluationtimeof severalm_it_ 1_ popukti_ member.
Due to thiscomputationtime,a populationsize greaw tim fifty waslxel_tive. New thatfeasibilityhasbeen
ascertained,a larg_ _lation size would be mote _ to make the vsnous nmson the varioustest

For the testcases ix:rfotmedin this paper,the orbiter'sstanin8 ix_ilion was at 41)0feet fromthe lingeron the
velocity vector.It is possible the testcases used for evaluationmy haveexercisedocdyttlxa_on of thecoatmi
system. Mote test cases where the sta_rfingposition of them'bitexis randomlyinitializedwould have given a
moreaccurateevalmtim of thegetteticalgodtlun'seffec_iveneu.

Finally,theorbiter'sstartingposition was al_ys 400 feet fromthemget on thevelocityvector,o,_lythreeout
of theseven sets o{ member'aMpfunctionschangedby thegeneticalgorithms foreachof thepmametershadmt
effect ¢xl the controller. The controller was controlled by the NS, Z and PS membenh_ ftugfions. The
membershipfunctiemNL, NM, PM, andPL were neverused. Havingrandomseiningpositionsof thembitef
would thengequiretheuse of all _ of themembe.'_p fmgtims.

It is integestingto note thatall tlueeapptmches (piloted,numuallytuned,andhtzzygene_ alsmitlun)_
the same results for the velocity vector approach(- 0.02 lbs/sec). A possible teamn for this is that the
contmUe_'is also commlled with bgeakinggates. Whenapproachinga target,theorbiteradheresto a def'med
speed limit which is a functionof thedistance to the target.These rangedependentratesarecalled "breaking
gates"and areshownin figure7. Outsideof 400 feet theapproachspeed is 0.4 ft/sec.At 300 feet theallowable
approachratedropsto 0.3 ft/sec.The 0.2 ft_ rate is maintained_ 200 feet to ei_h te_OtL Since
thepethtaken on theapproachis coastrained,the resultsof all threeappmw.besmaybethe minimal fuel usage
possible.

Range Rate
(Ft/Sec)

0.4--- | .....
im

J, 0.2 .......
I I f f. I I

I I I I I I I

i_: 50 200 300 400 500 (sO0
./.-

Range (Ft)

, Figm'e7: BreakingGatesApproach

.... " 0....... _ _._'f's#_._t_,_"_';'_'c'_'---'-_....



6. SUMMARY

We havedemmsemuxltheuseofgeneticalSmithmstoaemmam thefreetuningoffuzzylogicmemlmnhip
functions for a spacecraft proximityoperations controller.The cemplexiW of the problemand the reml_ z
COmlmlalionalintemityof the 8ene,dc algofithra polmlafioa memberevaluationsdid placemine _ on
otwimplementationof the lxoblem. However, a solution COmlmmbleto highly trained_ and a nmmaUy
Freeumedcomrollerwas oblainedin a reasomble amountof time. Geneticalgodlbms _ a _k _
fortheautomaticfme,-umingof fuzzy logic basedcontrolsystems. . ,
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INTRODUCTION

Conventional regression analysis is a statistical tool for describing relationships betweenvariables.
If a large and representative data set is available, a "good" relation might be established using an

: appropriate model. If the statistical properties such as the coefficient of determination (R2) meet certain
criteria of "good" fitting, the relation obtained from the regression analysis may then be used fat""making
predictions." The regression technique is, indeed, a very useful tool for solving many engineering
problems. However, there are situations where use of the conventional regression analysis is not feasible.

_, For example, when data are imprecise, as is usually the case in many geotechnical engineering problems
such as predicting the conductivity of clay liner, the conventional regression analysis is not applicable
(Bardossy, et al., 1987, 1989). Another example concerto rules of thumb otien used in engineering
practice. These rules of thumb are, in loose sense, relationships between linguistic variables.

Fuzzy regression was perhaps first introduced by Tanaka et al (1982). Fuzzy regresskm an_/sis,

:, as the name implies, uses the tools of fuzzy set theory to analyze fuzzy variables. Bardossy et al. (1987)
: extended fuzzy linear regression method by Tanaka et al. (1982) into nonlinear cases, in contrast to the

statistical least-squares criterion, a fur_ criterion based on a "vagueness" measure for the goodness of
the regression was used in their approach. While this approach has been applied to solving many
engineering problems, some questions remain to be answered. Among them are questions regarding
uniqueness of the fitting, selection of the vagueness criteria, and the interpretation of fuzzy regression.

"-.......... N_ This paper presents a new computational approach for performing fuzzy regression. In contrast
to l_dossy's approach (1989), the new aporoach, while dealing with fuzzy variables, follows closely the
conventional regression technique. In this approach, treatment of fuzzy input is more "comlmtatimal"
than "symbolic." The following sections first outline the formulation of the new approach, then detail
the implementation and computational scheme, followed by examples to illustrate the new procedure.

Suppose that a set of limited number of observations, (y, x_, x2,.... x,)'s, is to be used to
determine a relationship. If all variables are non-fuzzy, the conventional multiple linear regression
involves fitting to the given data the following equation:

y =ao+a_xl"_... +a_x_ (1)

where ao, a, ..... a_are the coefficients that minimize the sum of the squares of the residuals. These
coefficients may _ determined by solving the following equation:

.J
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i The coefficientof determination(R=),a handymeasureof goodness-of-fit(butnotan absoluteindicator),
' is defined as follows:

R: = (S,- S,) / S, (3)
. where

" S, = E [y_- (_y._/n]_- -- (4)
and

_ S, = E [Yi"(no + a, x, + ... + a, x.)i = .... (5)

_z

: In the above equations,all the summationis performedfor i from 1 to n. Equations1 through5 define
! the conventionallinearregressionbased on the least-squarescriterion. Theseequationsoperate on non-
: fuzzy data. As such, interpretationof resultsof a regressionanalysisis straightforward.

__ Now, suppose all the givendata are fuzzynumbers. In orderto follow the above least-squares........
: approach,new mathematicaloperationsmustbedefined forprocessingthese fuzzy numbers. Although

_.:. fuzzy arithmetics(KanfmannandGupta, 1985)suchas addition,subtraction,multiplicationanddivision
i_ of fuzzy numbersalongwith manyotheroperationshave beenintroduced,theeffortsrequiredto directly
_ implementthe above regressionanalysis by fuzzyarithmeticswouldbe overwhelming, it appearsthat
i _ a simpler approachis warranted.

Inthe presentstudy, the JHEmethod (Juang,et al., 1991)is adoptedto createa new procedure
for performing regression analysis of fuzzy data. In the JHE method, fuzzy numbers are often

_: characterized by beta-M membershipfunction,f(z), definedbelow (after Juang, et al., 1992):

f(z) = C (z-b)"(d-z)j, (6)
where

C -- {a"1_j [(d-b)/(_+ll)]'*8}', (7)

Cg =- _32(l-p)/q 2 - (l +p), (8)
"" and

i fi = (¢_+l)/p - (ct+2), (9)
and where

.:, p = _-b)l(d-b), (10)
! and

i q = a/(d-b). (11)

(i Notice that the parametersb, d, _t,and a in the aboveequationsare the minimum,maximum,mean,and
standarddeviation of the variablez. The parametersa and I_arepositive real numbers. The beta-M
function is essentially a beta probabilitydensity function normalized with respect to its maximum
functionalvalue such thatits maximumfunctionalvalue atthemode is 1.0. It is a boundedfunctionand
satisfies the conditionsfora fuzzynumber(i.e., normalandconvex fuzz),subset). The beta-M function
can be symmetric, skewed to right,or skewedto left in shape,andis suitablefor representing various
engineering parameters-withambiguity.

I The regressionanalysis involvingequations 1 through5 is basicallya deterministicmodel, Ina deterministic model, if the inputis fuzzy numbers,the outputwill also be fuzzy numbers. For the
problem at hand, the coefficiet,ts no,at..... g,, andR2obtainedfrom regressionanalysis will be fuzzy
numbers. Thus, the predictedvalue, y, obtainedfromEq. 1for a givenx-vector (xt, x2..... x_) will be
a fuzzy number. Since the dataare imprecise,the "goodness-of-fit"may be measuredby some "fuzzy
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• indicator," perhapsin an analogousform of the coefficientof determinationused in the conventional
regressionanalysis.

In this study, the approachforperformingregressionanalysisof fuzzydata is illustratedin Figure
I. Each fuzzy numberinputis first "de-fuzzified"beforebeingproces,_l by regressionequations(Eqs.
I through5). The Monte Carlo simulationtechniqueis usedto selea a non-fuzzy, random value for a

i fuz_ variablebased on its membership function. Havingde-fuzzifiedfuzzy numbers into non-fuzzy
values, a set of coefficients includingno, a_..... a. an,d R_can be obtainedthroughthe conventional
regression analysis. After a large number of se_ of the coefficients are obtained, fuzzy numbers
representingthese coefficientscan be "re-constructed."Detailedprocedureto implementthis approach
is presentedbelow.

PROCEDURE FOR FUZZY MULTIPLE LINEARREGRESSION ........

The proposedprocedurefor performinga fuzzy multiplelinearregressionis based on the $HE
method. This procedureis detailedin five steps as follows:

_YdLI..For each inputfuzzydata(membershipfunction),determineits cumulativefunctionby
integration. Determine also the maximumfunctionalvalue of these cumulativefi:nctionsin this step.
Repeatthis step for all inputfuzzy variables.

fS.g,D.._.Begin the simulationby generatinga uniformrandomnumber. Then normalizethe
generatedrandomnumberwithrespectto the maximumfunctionalvalueof the correspondingcumulative
functions obtained in step #1, followed by equatingthe normalizedrandom value to the cumulative
function, a non-fuzzy value for each inputmembershipfunctioncanbe back-calculated. This step de-
fuzzifies all inputfuzzy datainto non-fuzzydata.

_.¢p._. Performthe conventionalmultiple!inearregressiondescribedin Eqs. I through5. _Ihis
step results in a set of coefficients, includingno,a,..... an,at_ R2. Thiscompletes one iterationof the
computation.

f_l_. RepeatSteps 2 and 3 a large numberof times. Thenumberof repetitionsor simulations
needed for a satisfactoryresultmay be estimatedby a trial-and-errorprocedure.

_YdL,5.. Determine the minimum, maximum, mean, and standarddeviation of each of the
regressioncoefficients basedon the values obtainedfromSteps3 and4. For each of these coefficients,
the fourparameters(b,d,#,and _) are usedto definethe beta-Mmembershipfunction(Eqs. 6 through ! 1).
This step resultsin a groupof membershipfunctionsthatdefinethe wantedfuzzynumbersthat represent
the coefficientno,a_..... a_, andR2.

INTERPRETATION OF FUZZY MULTIPLE LINEAR REGRESSION

Fuzzy mult:,p;_,linear regression may be interpretedjust as we would in the case of the
conventionalmultiple linear regression. For a given vector of fuzzy numbers(xj, x2, ..., x_) , the
correspondingvalue of the dependentvariable y canbe predictedwith Eq. 1. Althoughthe predicted
value will be a fuzzy number rather than a crisp number, the principleand the procedure are no
difference from tbeir well-establishedcounterpartsof theconventionalregression analysis. Fuzzy output
reflects the uncertaintymostly in the inputin this case.
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Interpretation of the "goodness-pf-fiz" is swaightIbrward in principle. The coe_cient of
determination (R_) in the conventional regression is renamed, teatativeLy here, as "f_vj coefficient of
determination" (FCD) in the _ resression. The FCD is a fuzzy number describing the goodness-of-
fit. This fuzzy amn_q" may be intefpreeed accordingto ks maximum ntembership grade, by a makoping
model which maps _e resulting ficzzy number into a non-fuzzy value, or by mansiadng the fitzzy number
into a proper linguistic grade.

- This exampleis to performa multipleliaearregressionof a setof noo-fuzzydata as shown
in Table 1. Here. d_e amount of water flows throep a pipe per unit time. called discharge rate (Q). is
assumed to be related to pipe diameter (D) and dope of the pipe (S) in a manner de_'ibed by the
following equation:

Q = _, D" _ 02)

Taking the |ogarb,_n of thisequationyields

• _:| log Q = log a_+ a_log D + _ log S (13)

_i! Fitting this equation to the data shown in Table i yields the following results:

i
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ao - 1.746, a_= 2.616, a2 - 0.536, and R2 - 0.999 (14)

The solution presented above was obtained using a computer program called FMLR (Fuzzy Multiple
Linear Regression). The program FMLR implements the procedure and equations for performing fuzzy
multiple linear regression presented earlier. When a non-fxtzzydata get is input, the program functions
like one which performs the conventional multiple linear regression. When the data is nowfuzzy, the
relationship obtained from regression analysis is non-fuzzy, as reflected in this example. Equation 12
(with ;he coefficients determined through a regression analysis) is a form of Hazen-Willimns equation
commonly used in civil and mechanical engineering.

Table I IV'on-FuzzyData of Diameter, Slope, and Discharge Rate

D S Q D S Q D S Q
fit) (ft/f_) (fPIs) (f_) (ft/ft) (tPJs) (t_) (f_ft) fit'/s)

1.0 0.001 1.4 t.o o.ot 4.7 1.0 0.05 11.1
2.0 0.001 8.3 2.0 0.01 28.9 2.0 0.05 69.0
3.0 0.001 24.2 3.0 0.01 84.0 3.0 0.05 200.0

- The problem to be solved is the same as the one described in Example ! except that the
input data is fuzzy. The given data is shown in Table 2 where each datum is a fuzzy numbe_. Each
fuzzy number here is defined by four parameters b, d, a, and B (F.q. 6). in addition, the mode m (the
point at which the membership grade is 1.0) of each fuzzy number is shown. Note that an approximation
of the fuzzy number used is a triangular fuzzy numberdefined by the parametecs b, d, and m. Since the
input data are fuzzy, a fuzzy regression analysis is performed. Results of the fuzzy regression analysis
using FMLR are shown in Table 3. Each coefficient (a_ a_, a_, or R2) is a fuzzy number characterized
by the four parameters (b, d, el, and _) of the beta-M function defined earlier. The mode of the beta-M
function is also shown as a reference.

Table 2 Fuzzy Data of Diameter, Slope, and Discharge Rate - Gicen as logarithnu

log "3 (R) log S (fl/fl) log Q (_ls)

b d mode b d mode b d mode

-0.10 0.10 0.00 -3.30 -2.70 -3.00 0.132 0.161 0.146
0.27 0.33 0.30 -3.30 -2.70 -3.00 0.827 .I.011 0.919
0.43 0.52 0.48 -3.30 -2.70 -3.00 1.245 1.522 1.384

-0.10 0.10 0.00 -2.20 -1.80 -2.00 0.605 0.739 0.672
0.27 0.33 0.30 -2.20 -1.80 -2.00 1.315 1.607 1.461
0.43 0.52 0.48 -2.20 -1.80 -2.00 1.732 2.116 !.924

-0.10 0.10 0.00 -1.43 -1.17 -1.30 0.941 1.149 1.045
0.27 0.33 0.30 -1.43 -1.17 -!.30 !.655 2.023 1.839
0.43 0.52 0.,18 -1.43 -1.17 -1.30 2.070 2.530 2.300

Note: In this example, the parameter_ ct and 6 for all fuzzy numbers are set to be equal
to 2.42. According to luang et al (1992), in this case, these beta-M fuzzy numbers

" take the form of a w-curve, a bell-shape bounded function.
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Table 3 Results of the Fuzzy Regression Analysis for Example 2

For the coefficient ao: -
b= 1.743, m= 1.746, d= 1.749, ct= 1.27, II= 1.20.

For the coefficient al: .....
b-- 2.587, m= 2.616, d= 2.643, _-- 1.26, 8-- 1.22 _

For the coefficient a_:
b= 0.531, m'- 0.536, d--- 0.54[, a= 1.26, B= 1.22

For the coefficient R2 (FCD):
b= 0.999, m= 1.000, d= 1.000, a= 1.01, 8=-0.00

In many engineering problems, the basis for deriving a solution often is some rules of thumb
provided by experts. For example, the possibility of meeting the EPA requirements for construcxing a
clay liner for the purpose of containing hazardous wastes is often assessed with a set of rules of thumb.
Symbolically, each of these rules of thumb is expressed as follows:

IF Xt is Ali and X2 is A_ and X, is A_

THEN Y is Bj.

Here X_, X2, and X_ are linguistic variable_ representing some factors that are thought to have an
important influence on the possibility of meeting the EPA requirements, such as the plasticity index,

colloid percentage, and swelling potential of the clay used. The values of these linguistic variables, AIj,
A_, A3i, and Bj, are some descTiptions commonly used in the assessment of clay liner. For examp!e, a
rule of thumb may state:

IF the plasticity index is mediu,_, and the colloid percentage is high,
and the swelling potential is lo_,

THEN the possibility of meeting the EPA liner requirements is very high.

Now let's assume a group of rules of thumb on ',his subject are available, as listed in Table 4. These
..... rules may be used to establish a predictive equation for assessing the possibility of meeting the EPA liner

requirements. To begin with, all possible values of the linguistic variables used in the model need to be
translated into fitzay numbers. The linguistic terms and their corresponding fuzzy numbers used in this
example are listed in Tables 5 and 6. With dala given in Tables 4, 5, and 6, a fuzzy muitipie linear
regr_sion can be performed. The results of this analysis are listed in Table 7.

INTERPRETATION OF _'rs OF FUZZY REGRESSION

If the domain or range over which the FCD (a fuzzy number) is defined is small, the mode of

this fuzzy number may be used to represent the FCD. On the other hand, if the FCD is quite fuzzy, an
interpreting model is required. For example, the centroid of the membership function may be used to
represent the fuzzy number.
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One possibleapproachfor interpretingtheobtainedFCD is to traasi_e the resulting fuzzy numbcr
intoa linguisticgrade. A dictionaryof linguisticgradesfor the goodness-of-fit,with their membership
functionspre_Jefined(suchas the one showninTable 8), maybe usedto describethe "goodnessof fit."
This may be doneby calculatingand comparing"Euclideandistances"betweenthe resultingFCD fuzzy
number and the pre-defined fuzzy numbers of the linguistic terms. The Euclidean distance isa measure
of "similarity" between fuzzy numbers. Thus, the most appropriate translation is the one with the
smallest distance or highest degree of similarity. A simple model for the Euclklea,-Idistan.'e is as follows
(Zimmermann, 1987):

dj = _] E [Pc,_P(x) - P-/(x)]z (:1.5)

where dj = distance between the FCD and the pre-defined fuzzy number j,
#vcD " membership function that defines the FCD, and

Pi = membership function that defines the fuzzy number j2

Table 4 Rules of Thumb for Assessing the PossibiP,ty of Meeting the EPA Requirements

Plasticity index Colloid Percentage Swelling potential Possibility of
(PI) (CP) (SP) meeting the

EPA requirements

high high high low
high high medium medium
high high low high
high medium high low
high medium medium low
high medium low medium
high low high very low
high low medium low
high low low medium
medium high high medium
medium high medium medium
medium high low very high
medium medium high low
medium mediuw medium medium

medium medium low very high
medium low high very low
medium low medium low
medium low low medium

low high high low
low high medium medium
low high low • high
low medium high low
low medium medium medium

low medium low high
low low high very low
low low medium low
low low low medium
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In Example2, thedegreeoffuzzinessinthedataissmall.As a result,thefuzzinessinthe

resulting coefficients is small, and interpretation of the "good'_-of-fit" is easy. In this case, R_ _
essentially equal to 1.0, and the fitting (regressien)is rat_! as "excellent." In Example 3, the input data
is fuzzier, and the resulting coefficients reflect this fact. The FCD fuzzy number is between the fuzzy
numbers representing "very good" and "excellent" listed in Table 8. The Euclidean distance between the
FCD and "very good" is larger than that between the FCD and "excellent." Thus, the fitting (regression)
is rated as "excellent."

Anotherapproachto interpret the "goodness-of-fit"isto plotthe predictedversusobservedvalues
of the dependentvariable. However, the predictionsand observations,both as fuzzy numbers,needed
to be first "de-fuzzified." In this case,the "centerof gravity" approachmay be used.

Table 5 Linguistic Terms and Their Corresponding Fuzzy Numbers - Independent Variables

Linguistic Fuzzy number Linguistic Fuzzy number Linguistic Fuzzy number
Term Term Term

(PI) b d mode (CP) b d mode (SP) b d mode

high 25 40 30 high 20 30 25 high 25 40 30
medium 10 30 20 medium 5 25 15 medium 10 30 20
low 0 15 10 low 0 10 5 low 0 15 10

Note: In this example, the parameters ¢xand 6 for all beta-M fuzzy numbers are set to be equal to 2.42.
Other membership functions such as triangular or trapezoidal shape function, if desired, may be used.

Table 6 Linguistic Terms and Their Corresponding Fuzzy Numbers - Dependent Variable

Linguistic Grade for "Possibility"
Fuzzy number
parameters very low low medium high very high

b 0.00 0.00 0.25 0.50 0.75
d 0.25 0.50 0.75 1.OO | .00
mode 0.00 0.25 0.50 0.75 1.00

Note: In this example, the parameters (x and 6 for all beta-M fuzzy numbers are set to be equal to 2.42.
Other membership functions such as triangular or trapezoidal shape function, if desired, may be used.

Once a satisfactory fuzzy relation is established through a regression analysis, it may be used to
predict the value of the dependent variable for given values of the independent variables. For example,
the equation obtained in Example 3 for predicting the possibility of meeting the EPA requirements is as
follows:

P --- ao + a, (Pl) + a2 (CP) + a_ (SP) (16)

where P = the possibility of meeting the EPA clay liner requirements,
Pl = the plasticity index,
CP =- the colloid percentage,



SP = the swelling potential, and -
ao, at, a2, and a_ = the coefficients defined in Table 7.

With this equation, the possibility of meeting the EPA liner requirements may be estimated for a given
set of conditions regarding the plasticity index, colloid percentage, and swelling potential of the clay used.
Since the values of the three independent variables Pl, CP, and SP, and the coefficients _ at, a2, and
a3are all fuzzy numbers, the evaluation of this equation involves fuzzy computations. However, this can ......._.,_
easily be done using the JHE method-simply replacing step 3 in the FMLR procedure presented' earlier
with ordinary addition and multiplication (Eq. 16). The result of such computation would yield a fuzzy
number as the possibility of meeting the EPA requirements. The methods used for interpreting the FCD
may be employed to interpret this resulting fuzzy number, and the possibility of meeting the EPA liner
requirements is thus assessed. /

/

Table 7 Results of the Fury Regression Analysis for Example 3 .............. l-

For the coefficient ao:
b-- 0.351, m= 0.702, d= 0.905, ¢x-- 1.29, I_= 0.75

For the coefficient al:
b-- -0.0028, m= -0.0025, d= -0.0019, ¢x-- 0.41, I_- 0.83

For the coefficient a2:
b- 0.010, m= 0.014, d= 0.014, oe= 0.77, lI= 0.00

For the coefficient as:
b= -0.020, m= -0.020, d-- -0.016, ¢x= 0.00, 1$-- 1.20

For the coefficient R_-(FCD):
b= 0.69, m= 0.90, dffi 0.91, ct= 1.76, I_ffi0.13

Table 8 Fuzzy Numbers and _nguistic Grades for Describing Goodness-of-Fiz

Linguistic Grade for Gcodness-of-Fitting

Fuzzy number
parameter poor fair good very good excellent

b 0.00 0.00 0.25 0.50 0.75
d 0.25 0.50 0.75 1.00 1.00
mode 0.00 0.25 0.50 0.75 1.00

Note: Here the parameters ot and 6 for all beza-M fuzzy numbers are set to be equal
to 2.42. According to Juang et al (1992), in this case, these beta-M fuzzy numbers
take the form of a _r-curve, a bell-shape bounded function.

DISCUSSIONS

it is observed that the modes of the membership functions of ao, as, and a2obtained in Example

2 are practically identical to the coefficients obtained in Example 1 where standard'regression was
performed. As such, it might be speculated that a general relationship may be established between the
r_ge or dispersion in the membership functions of fuzzy variables D, S, and Q and the dispersion in the
membership functions of the resulting coefficients, ao, at, a_, and R_. However, a series of sensitivity
analyses performed in this study (not shown here) seem to reject existence of such a general relationship.
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The numberof simulationsrequiredto reacha "steady"resulxis about1000for the examples
studied. The maximum numberof simulationstriedwas 10,000. The effect of degreesof fuzzinessin
the inputdataon the regressionresultswasalso studied. The resultsindicatethatthe fuzzier the input
dataare, the fuzzier the resultingcoefficientswouldbe. Morestudyto verify_ese points is needed.

SUMMARY AND CONCLUSIONS

A new approachandprocedureforperformingfuzzymultiplelinearregressionis presented. The
procedureis based on the JHE method forprocessingfuzzy informationin the sc_ng of multiplelinear
regression. By treatingthe conventionalregressionas a deterministicprocess(model),theJHE method
can be applied to performthe regressionanalysisof fuzzydata. While inputdatamay be fuzzy, as is
often the case in many real-worldapplications,the new approachincludingthe computationalgorithms
is preciselydefined and is non-fuzzy. The newapproachappearsto be able to properlyestablishfm_zy
relationsfrom a givenset of rulesof thumb,basedon limitedstudy. Morestudyis needed to further ......
verify the proposedapproach.

ACKNOWLEDGMENT

The study on which this paper is based was supportedpartiallyby the National Science
Foundationunder Grant No. MSS-9020252to Ciemson University. Dr. W. Bridgesof Clemson
University,a statistician,reviewed the manuscriptandprovidedmany constructivecomments. Mr. P.
Ghoshof Clemson Universityprovidedthe rulesof thumb on assessingthe possibilityof satisfyingthe
EPAclay liner requirementslistedin Table4.

REFERENCES

I. Bardossy, A., Bogardi, 1. and Kelly, W.E., "Fuzzy regression for resistivity-conductivity
relationships,"Proceedings,NAFIPS-87,PurdueUniv., W. Lafayette,IN., 1987, pp. 333-346.

2. Bardossy, A., Bogardi,I. and Kelly, W.E., "Gcostatisticsutilizing imprecise(fuzzy) information,"
Fuzzy Sets and Systems31, 1989, pp. 311-328.

3. Tanaka, H., Uejima, S. and Asai, K., "Linearregression analysis with fuzzy model," IEEE
Transactionson Systems, ManandCybernetics,SMC-12, 1982, pp. 903-907.

5. Kaufmann,A. andGupta, M.M., Introductionto Fuzzy Arithmetic- Themy andApplications,Van
Nostrand ReinholdCo., New York, 1985.

6. Juang, C.H., Huang, X.H. and Elton, D.J., "Fuzzy informationprocessingby the MonteCarlo
simulationtechnique,"Journalof Civil EngineeringSystems, Vol. 8, No. I, 1991, pp. 19-25.

7. Juang, C.H., Huang,X.H., and Elton,DJ., "Modelingand analysisof non-randomuncertainties-
fuzzy set approach,"J. NumericalandAnalyticalMethods in Geomechanics,Vol. 16, 1992.

8. Zimmermann,HJ., FuzzySets, DecisionMaking,andExpertSystems,Kluw_ AcademicPublishers,
Boston, 1987.





.oiS-

N93-295.75

) , i_ Incorporation of Varying Types of Temporal Data in a Neural Network

M. E. Cohen*,D. L Hudson#

*CaliforniaState University,Fresno,CA 93740
#University of California,San Francisco, 2615 E. ClintonAvenue, Fresno,CA 93703

ABSTRACT

Most neural network models do not specifically deal with temporal data.
Handling of these variables is complicated by the different uses to which
temporal data are put, depending on the application. Even within the same
application, temporal variables are often used in a numberof differentwa_.
In this paper, types of temporal data are discussed, along with their
implications for approximate reasoninf,. Methods for integrating
approximatetemporal reasoning into exisung neuna ne.two.rxstruct_,es are
presented. These methods are illustrateo m a meotcal appncauon mr
diagnosis of graft-versus-host disease which requiresthe use of several types
of temporal data.

INTRODUCTION

Neural network modeling has received renewed attention in recent years [1].
Advances in both hardware and software have made the use of these systemsfor large-scale
_ractical purposes feasible [2]. Neural network use is expanding rapidly in numerous

omains [3-5]. Medicine has been a prime area of applicationof decision supportsystems
based on neural networks for a number of reasons [6-8], including the difficulty of
developing a traditional knowledge-based system for complex medical appli.c.c.cafioas.A
number of researchers have also investigate¢l incorporation of fuzzy .van.ables.ana
techniques of approximate reasoning into neural, netw_k structures.[9-14], mcludm_ a -
number dealing With medical decismn mat_. _ ti3,t_l, umy recem!y n_ some.auenuon
been paid to the incorporation ot temporal imormation in neural networ_ moaets p/-i_l.
Temporal data have different interpretations depending on the.applicatio.n, thus general
techniques cannot be successfully implemented Without.exami'mngthe uluma_ usage of
each of these variables. For exampte, me most stralgm-mrwaro usage oz tempora|
variables is in partial differential equations in which the time variable is clearlydefined in
mathematical terms and requires no further interpretation. However,..oniy .a few
applications are well-understood enough to lend themselves to moae|mg mrougn
differential equations. For other less well-understood subjects, other approachesmust be
taken.



' One of the strengths of the neural network approach is that their basic smlcture
relies on the architecture of biological nervous systems,concemrating on the structureof
the individualneuron, as well as the massivelyparallelnature of biological nervoussystems
[20]. Unformna_ly, the processing of temporal informationis only partially understoodin
a biological sense. The operation of sho_-term temporal influences can be explainedby
inhibitory and excitatory bi.ochemical influences at the synapses, which account for the
handling of confiictin$ signals within ve_ short time intervals. However, the longer term
handling of temporal reformation, including memoryitself, is still a majorarea of cognitive

' research. Unforttmately, the current level of knowledge pertaining to this aspect of
," _iological nervous systems cannot provide a clear model for handling temporal

information.

In the next sections, different types of temporaldata are examined, followed by the
_ definition of structureswhich will allow the incorporationof these variables into an cresting

neural network structure pre_.ouslydeveloped by the authors, followed by a discussionof
the use of fuzzy variables to represent both temporaland state variables.

-i

TYPES OF TEMPORALDATA

In traditional applications, temporal data have been handled in a number of ways,
depending on the application. In well-defined models,partial differential equationscan be
used to represent temporal variables in the same wayas state variables. Another valuable
approach Is the use of state-space diagrams,using transition functions to lead from one
state to an.other. In the development of decision making _g0rithms for areas such as
medicine, m general not enough reformation existseither to define a differential equation
model or state-space diagrams, For applications such as this in which the majorityof
available information is contained in accumulated databases, neural networks offer a
natural means for development of decision models. Toward this end, it is useful to analyze
the manner in which temporal information is importantto medical decision making,andit
fact to other areas of decision making which rely on numerous findings which are utilized
to differentiate among categories.

Temporal data can be divided into the following categories, depending on which
aspects of the data are important:

1. A Data: The change in value from the previous recording (examples: blood
pressure, cholesterol);

2. Normalized A Data: The change in value relative to the time interval (examples:
weight gain or loss, hemoglobin level);

3. Duration Data: The duration of time for which the finding persisted (examples:
chest pain, fatigue).

--. 4. Sequence Data: A particular sequence of events (examples: fever occurring
before rash occurring before generalized fatigue, noun occurring before verb
occurringbefore adjective).

Each of these variable types requires special handling,each of which is discussed in the
following section.

i



A. A Data,NormalizedA Dat&andDunm'onData

These data types can be handled in a straight-forwardmanner, according to the
following schemes, l._t n(ti) be the value of the nth wariableat time ti, and let

An = n(ti)- n(ti.1). (1)

At = (ti - ti-1) (2)

Assign a new node in the neural network forA data such that

Pn = _ (3)

The original_ network is then expanded by the number of nodes requiredto accommodate
the items for which the change is important. For normalized a data follow the same
procedure asbefore, except let

qn = An/A t. (4)

Durationdata can also be handled simply,by establishing

rn = _to = (ti - tO) (5)

For durationdata, the importantparameter is _e length of persistence of a findin_ Thus
th¢ &tOin this case is the difference between the currenttime and the time to wtlen me
findingoriginallyoccurred. It should also be noted thattime measures (e.g. minutes,hours,
days, months,y_ars) should be normalized for each application.

B. Sequence Data

This is the most difficult problem in that a new variable cannot be created to deal

with this entity. A major modification must be made to the neural network structurefor
accommodating this type of reasoning. These data are handledby embeddin_ a pr.ocedur_at each of the sequence nodes. To analyze mr the presence ot a sequence, let ti, 1= l,...,
be the ith findingout of k and let ti be the ith time interval. Define the square k x k matrix

S = [sij]where

sij = I iff i occurred at time ti0 otfierwise. (6)

For a propersequence,

sij = lifi =j

Thus tr IS] = k if the proper time sequence occurred,where tr IS] is the traceof the matrix
S. The value of node Unaccording is then determined by:

Un = 1 iftr IS] = k
0 otherwise (7)



IMPLICATIONSFOR APPROXIMATEREASONING

The above constructs assume crispinput• The following modifications can be made
to accommodate fuzzy input.....

A. A Data, Normalized A Data, and Duration Oata

For these data types, there are twoparemeters which mayassume fuzzy rather than
crispvalues: the time dependent findingn(ti) and the time interval itself ti. The n(q)'s can
be of four types: binary, categoric, integer, or continuous. In fact, for these types of
temporal data, the values themselves are not important,only the differences in the values.
(If the value itself is important, it is incluoed as a separate node in the network.) Thus the
generalization of the difference operation is required. The most straight-forward
generalization appears to 0e extended subtractionfor _ sets defined in [21]. Aggording
to the algorithm established by Du.bois and Prade, thin o._.mtion can be applied to
continuousvariables, with a slmpmr, otrect c.o.mputationpossibte mr me aiscrete .case. tt
the dataitself is binary or categoric, these .v_.ables can fi._t be .f_'fied, if approlmme. In
the case of normalized data, tl,.eextended dmston, also dmcussedxn[21], can be applied. It
can be shown that if M and N are fuzzy numbers[21],then

MoN=M e(-N) (8)

will also be a fuzzy number, where M, N is extended addition, and

MoN=M ®(N "l) (9)

likewise is a fuzzy number, where M® N is extended multiplication.

B. Sequence Data

For the sequence data, whether or not a series of events occurredin a given orderis
a crisp result. However, the de_ee to which the sequence occurred in the correct order
can be considered. Instead of setting nooe un as in equation (7), consider

un = {_[S]}/k (10)

The definitionprovidesa degreetowhichthesequenceoccurredintherequiredorder.
Forexample,considerthekxk matrix

- 1 0 0 0 ...0
0 0 1 0 ...0

S= 0 1 0 0 ...0
0 0 1 1 ...0

• (11)

' 0 0 0 0 ...1
o

Then un = (k-2)/k, the degree to which the required sequence was met. Each row in this
i matrixrepresents a point in time, and each column representsa symptom, sij = I if at time
i I symptomj mpresent.

....... i



EXAMPLE

The method is illustratedon a problem for graft-versus-hostdisease (GVHD) taken
from [22],and used as the basisfor a recentworkshop[_]. GVHD is a disorderwhich can
occur after any kind of transplant operation, ranging trom an organ transplaflt to tissue
transplants, such as bone marrow. The disease exists in three forms: acute, chronic, and
_mgeneic. It is a coml)lexdisease in which changes in symptomsover time are extremely

portant for diagnosuc purposes. The. objective of the neural network decision aid is todetermine if the disease exists in any ot its three forms,o: not at all.

Fig. 1 shows a neural network for this problem. Nodes nt through nkl are standard
nodes, Pl through Pk2are A nodes, qx throughqk3are normalizedA nodes, rI throughrk4
are duration nodes, and ul throughUk5are sequence nodes. The following are examples of
each type of node for GVHD:

nil: presence of total body erythroderma (standardnode)

ni2: thrombocytopenia (standard node)

pj: change in numberof B cells (4 node)

qk: sudden weight loss (normalized A node)

rl: continued thmmbocytopenia (durationnode)

urn: uml: pruriti¢maculopapular rash(sequence node)
urn2: gastrointestinal abnormalities

urn3: liver dysfunction ....

Um4: bleeding

Note that thrombocytopeniais important both for its presence and for the l,. _gthof
time for which it has been present. In th|s application,all times will be considered to be in
months or fractions of months, and are given as offsets from the initial visit, which is
considered to be 0.

To illustrate,consider the following values for the above example:

nil = 0.9 (degree of presence of total body erythrodermac

!_ ni2= 1.0 (degree of presence of thrombocytopenia)
f

pj = Ani3 = n(ti3)-n(ti3-1)= 300 -170 = 130(assumes crisp,_'alues)t_

(change in number of B cells)

" qk = Ani4//xti4 = (nti4- nti4-1)/(ti4 - ti4-1)(assumescrisp values)

= (140 - 130)/(4 - 2) = 5 (weight change/month)

rl = ti5"tiSo= 4 - 1 = 3 (assumes crisp values)

- (continued thrombocytopenia)
I"



Um: uml urn2 urn3 urn4

tit1 1 0 0 0

U - t_2 1 1 0 0

:- tit3 0 1 0 1

ti64 0 0 0 1
m m

um = tr [U]/k = 3/4 = 0.75

: These values then become the values of the input nodes. Along with known classification
values, the appropriate weighting factors are determined through the learning algorithm.

The network is trained on data of known classification to determine weighting
factors for each of these nodes, both from me input layer to the intermediate layer, and
from the input layer to the output layer. The result of the process is a differential diagnosis

..... in which the degrees of presence of each form of the disease can be ranked.

_ ! FUZZY NEURAL NEIWORKS

Another issue in the establishment of fuzzy neural networks is the role of linguistic
quantifiers [24]. Considering the above example, the entry for qk "sudden weight loss"
refers to the normalized & data node. Although the linguistic variable "sudden" is not
handled directly by the neural network learning algorithm, this concept is adequately
represented by the amount of weight loss over a given time interval. The algorithm uses

• this information through the supervised learning process to assign an appropriate weight to
this finding.

f-

For the example in the previous section for A data, comider the B cell count. Due
to inaccuracies in laboratory analyses, these results can be considered fuzzy numbers. If we
assume each reading to be a fuzzy triangular number centered around the given values,
with an experimental error of 5%, then the fuzzy values would be:

n(ti# = (285,315)

n(ti_l ) = (161.5,178.5)

Then equation (8) can be applied. Similar results may be obtained for the other variables.

In order to handle fuzzy triangular numbers for standard nodes which do not
represent A data, the algorithm for handling input interval data described in the next

- i section can be applied.
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Acute GVHD Chronic GVHC Synge.neic.GVHD No OVHD
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Figure 1: Neural Ne.+workStructure Showing Temporal Data
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" NEURAL Ni_TWORK MODEL AND LEARNING ALGORITHM

The heart of the neural network model is the learning algorithm. The topic of
learning with fuzzy information has a long histoq, beginning with Wee and Fu's
consideration of a fuzzy automaton in 1969 [25]. Kaufmann also considered fuzzy

per ce_a_ons in 1977 [26]. Zadeh suggested a different approach which used linguisticallyvalued features [27]. Fuzzy isodata clustering algorithms have also been developed [28].
i- All of these approaches have relevance for neural net_ : algorithms.

Following the learning algorithm previously developed by the authors, the temporal
nodes are added, as shown in Fig. 1. If the node Is fu2zy, an interval approach is taken, as

" previously described [29], in order to accommodate all extreme values. The algorithm
permits the input of binary, categoric, integer, or continuous data, as long as an ordering
exists for the categoric data. Variables which are not independent can also be handled
directly. A summary of the interval data handling is given here.

I

I Handling of Interval Data

In order to handle interval data as input, the following is proposed. For a data set
_ with n variables, define a vector
r

, x -- [(xl,Yl), (x2,Y2),---,(Xn,Yn)] (12)

.... where (xi,Yi) represents the interval range for the ith variable. The values for (xi,yi) will be
determined, by..the input data in. the training, set for the learning,al g_orithm..The 0b ective, is
to obtain a dec_lon _arface which roll separate data at any point m the interval. _'s can
be accomplished if the extreme values are accommodated. In order to do, this all possible
combinations of interval endpoints must be considered. For a data set with n variables, 2"

...... . combinations will be produced. A new set of 2n vectors is then defined:
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Zk - [Zl,Z2,...,Zn] k -- 1,...,2n (13)

where zi _ (xi,Yi) _ all possible combinations of xi,Yi are generated for i,j = 1,...,rn The
learning alsorithm is _ for each of the 2" eases, iThe weights atta_:hed to the dec/s!on
surface whnch produces _e poorest classincafion is cnosen in oroer m form a robust mooeL

, CONCLUSION

The neural network al?]proacb for development of decision support systems offers a
•,umber of advantages _ncludin_ easy development of the knowledge base As illustratedl,_tJt_tA _ • , • * *,

above, temporal data of sever_rtypes can be acco,.,mmodale.d,into _e ex_tmg franl.e_,ork.
Variables can a._s'umeeitl3er crisp or mzzy values, tne resulUng,s_tem can De useo alone,
or in conjunc_i'on with a knowledse-based e)q_rt system to urmg to bear _l tel .evant
information whether from e_.rt input or aaxaDases, m oroer to tmpnemenx pract.t.cat
systems using interval data wl.t.hlarge numbers of variables, R may be necessary, to uunze
parallel processing to estat_lisn mooem, tne mooels memselves _ De _,ppneo to new
cases using standard sequential computers. Work is _ .minuing in _/S area to streamline
algorithms and to accommodate other types ot mzzy oata into me system.
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_ FUZZYOPERATORSAND CYCLICBEHAVIORIN FORMALNEURONAL
NETWORKS.

.: Fuzzinessmaylead to chaotic dynamics.
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Leeds, Center for Nonlinear Studies,Leeds LS2 9JT,UK; 3: LudwigMaximilien
Univ., KlinilmmGrosshadem, Neurologische Klinik Munchen, GERMANY and

Central Res. Inst. of Physicsof Hung. Acad. Sci., HUNGARY

ABSTRACT- In formal neuronal networks (FNN) built of threshold gates, a unit
step function is applied. It is regardedas a degenerated distribution function (DDF)
and will be referred to here as a non-fuzzy threshold operator (nFTO). Special
networks of this kind generating long cycles of states are modified by introductton of
fuzzy threshold operators (_FTO)i.e. non-degenerated distribution functions (rtDDF).
The cyclic behavior of me new nets is compared with the original ones. The
intereonnection matrix and threshold values are not modified. It is concluded that the
original long cycles change: (1) fixed points, (2) shorter cycles or (3) as computer
simulations demonstrate, aperiodic motion or c_aaotic behavior appears. The
emergence of the above changes depend on the steepness of the threshold operators.

INTRODUCTION
A formal neuronal network (FNN) means now more than a McCulloch-Pitts

network (1943): - (1) - the states of units and nets are fixed; - (2) - an interconnec:ion
matrix is fixed and synthesized through some process, here not by "learning";- (3)
thresholds are specified for each unit;- (4) a threshold function (a unit step function
or a softer "S-shaped function" is finally applied. Thus the computation of the new 1
network state is as follows:

Sold = s ----->sM--->sM-O---+T(sM-O) =Sne w (1)

The sequence of si states can be generated by the iteration of this N network

mapping which incorporates: (1) - intercon_,ection matrix M;- (2) - threshold vector {}
; and- (3) - threshold operator T. The networks may differ from each other by these
objects. In learning processes an (M,O) sequence is generated in the hope of reachinga fixed network. In case of simulated annealing related to Boltzmann machine., the
steepness of a T - like function is changed to reach the limiting result.

In this study, the matrix M and threshold vector is fixed, the iteration is the only
change. External input vectors which would transform the machine into a non-
autonomous (open) system are not introduced. Learning (or adaptive synthesis) is not
present. The network are however, very special. They were originally (I._bos, 1980-
1987) synthesized in order to generate long finite cycles or to design networks of
minimum number of required elements to a given length of cycles. The aim is to
investigate the influence of the thresholds o__rator T to the length of cycles which
appear during the iteration. For,this reason S-shaped (still monotonic) operators are
introduced as it is done in the 'neurocomputer-science". This is the "f-uz_ aspect of
the study.
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I. MULTIPLEAND PRESENTMEANINGOF FUZZYOPERATORS.

Among the poss_le meaningr of" .f_zy" objects (sets, lo_c, .yan_.ar,, languages,_',,
progr.ares,envlronment, grap_, topology, etc.; see m z_aoen etaL, t_13) only me.
foUow_ destination will be applied: as a membership function or degenerateo
distributtonfunction.The non-fuzzypossibilityis as follows:

ulrl = lifr Oandur =0ifr O (2)

Such a function is used in threshold logic or formalneurons and in their networks
by coordinates. Since the 70-ies the concept was extended to "S-shapedfunctions"or
the application of such non-idealized steps became a necessi.ty.However, the
consequenceswere not fully considered.

IAbos (1975) regarded the real nerve cells as special measuringdevices"included
in their activitya special measuringprocedure,generating a "measurespace"(MS) in
mathematical sense (IAbos, 1988; Halmos, 1974). The MS-s are closely related to
distributionfunctions. Thus this generalization is plausible.

DEFINITION: - A real valued function F is called a diqribution function if the
following conditions are satisfied:- (1) F is increasing monotonically;- (2) - 0 F I ; -
(3) F is semi_ntinuous from the left, i.e. lim F(r) = F(0) if r tends to zero from
negative direction. The o.pJ_,ire continuity is not demanded, but permitted; - (4) -
Optionally the differentiabilityof functionF is also supposed.
REMARK: All distribution functions, including the discrete ones, belong to this
category. Certain text-books demandone sided continuityfrom the opposite direction
which does not make essential differences.

DEFINITION: A degenerated distributionfunction (DDF) is the function defined
in eq. (2) and widely used in threshold logic. It is here called non-fuzzythreshold
operator (nFl'O). An arbitrary, non degenerated distribution function defining a
Lebesgue-Stieltj_.smeasurings_ace may have the name of fuzzythresholdoperator.

REMARK: The "fuzzy"attnbt_te makes the nomenclature applied in measure
theory, logic or for membership-functions uniform. The semantical background is
arbitrary.E.g. a response curve which may occur in a single natural or artificial
neuron can be regarded either as a temporalaverageor it may representa response
of population of cells. A normalization to remainbetween O and 1 is useful, but can
be omitted.

2.METHOD:COMPARISONOF BINARYTHRESHOLD.
GATEWITH FUZZYTHRESHOLDGATES (FTO-s).

The FTO-s or non-DDF-s appliedhere are as follows:

Tl(x ) = ekx/(l+e kx) = 1/(1 + •"kx) (3)

T2(x) = 0.5 + 0.5(ekx- e'kx)/(e kx + e"kx) (4)

The binary threshold gate nets used here belong to a rather special class of
networks (IAbos, 1980-1987). These are capable of .generating transient-free
behavior. In a more special moreover rarely occurring- Le. non-generic - case the
network, may gene_te long or even maximal cycle lengths. This means in an n-neuronal nets L = 2, the numberof binaryvectors in the state space. The nets were
synthesized on the basis of a Theorem (IAbos, I984, 1987) and were searched with ....
computerized selection. Examplesare presentedin the quoted worksfrom n = 1 to



n ffi 9 dimensions (the number of neurons in a network). These finite nets in the
actual autonomous ease are non-chaotic. We will see however, that the behavior of
these nets may become suspiciously chaotic as soon _ FTO-s like.TI and T2 ar.e
introduced. In Fig 1. - 3. the so called code-trajectoryot SUChnetworksIs presenteO-
as a reference - which is the diagram built of the consecutive states as decimally
coded numbers based on the separatevectorial states of the net (e.g. code(011011)=
27 and n = 6. The diagramconsists of the lines of (x,x)-(x,y)and (x,y)-(y,y).wherex
and y are successive state codes, This is simple of a method representation, similarto
Poincare and Lamerey diagrams used in dynamics.In "chaotac"cases the next state
plot of (x,y) pair of state is used only by coordinates...

3. BASIC OBSERVATIONS,(Figure 1-6).

The observations refer to the FrO cases, since the binarycase is more explored and
plays here the role of reference for the new behavior.The comparisonsof the two
situations are here the essential methodical and conceptualprocedure.The computer
simulations of which examples are given show that the "exponentially"long (L = 2_)
or maximal (_L= 2n) cycle len_s of s_te flows change radicallyif FTO2,sare applied
instead of the unit.step-function, tt me parameter _ in tunctions t_? or (,t) are
suitable an originally long cycle of a coordinate-flow - after transientstates - may
become a fixed-p0int, a pair of fixed states or four clusters or tour points. The four
clusters occur at hi#er values of k and corresponds to the (0,0), (0,1), (1,0), (1,1)
quatemio of pairs,of successive coordinates of state vectors. Thetr transitions (i.e..a
next:coordinate plot) in the bina_, non=_..c,_e, a_e not.sointer_t_.g since om.y
tl3efew(8) transitions may occur:,to,u)-tu,u), tu,u)-tu,1), (u,l)-(1,.u),(u,t)-(,.1,1.),(hu)-
(0,0), (1,0)-(0,1), (1,1)-(1,0), (1,1)-(1,1). In the mz_ case (,see au tqgures) me state
space becomes a .continuum set and not only the coded vectorial flows shows
interesting picture Outalso the coordinate-flows. For this reason and also bemuse of
hard representation, these phase-diagraras,by componentswere displayed.

Bifurcation diagrams wtth the contro; parameter k of the steepness are also
fabricated. The ugual routes to chaos-like dynamics can be demonstrated. Such
systems include n';+n+ 1 numerical parameters because of the matrix, threshold
vector and S-shaped operator where n is the dimension. E.g. at n=9, 91 different
bifurcation diagrams are possible.

The study of non-monotonic operators instead of the distribution functions or
threshold operators here is neglected since by chan_gin_the norm of matrix and
threshold or value of k.Thus the workingdomain remmnsreside a bounded set.

The insight which can be gained from the various diagrams is a possibility of _
categorization of the diverse dynamicalbehaviors.

4. SHORTERCYCLE LENGTHSWITH FUZZYOPERATORS.

The most radical shortening of the cycles is the case when a maximal finite cycle
becomes a fixed point. This occurs at very small absolute values of k. "Very small"
seems to be different at different values of dimensions of the state vectors.UsuaU_,at
higher dimensions smaller k-s still are capable of displayingcomplicated dynarmcal
behavior.

5.OCCASIONALLOSS OF PERIODICITYBYAPPLICATIONOF FUZZY
OPERATORS.

As we cannot analyticallyprove that in such complicated dynamical systems which
are presented here an apo/iodicity in fact occurs, therefore the statement of the
emergence of chaos is based on computer experience. This is a frequentsituation in



dynamics of chaos. The appearance of strangemotion of coordinateflows is relatively
stmple at the investigatedlow dimension. These attractorsfrequentlyco..nsistof one,
two, or a few disjoint or intersecting line'like plots.At certainregions the lines display
thickenings (Birkhoff) which suggest complicated finer structuremay be explored by ---
zoom-

It is an undedded question whether in the cases whichbecame chaotic(aperiodic), • •
an infinite number of (un)stable periodic attractorsdepending on the ini_l value
may occur or not. It is a question, what species of chaos occur (see e.g. in Holden,
1986;Kohda andAihara, 1990, etc.).

6. OTHEREFFECTS.

Several phenomena were not detailed here: (1) Emergence of chaos from short
cycle generating binarysystems with or without transients; (2) How small the value of
k could be, i.e. how "soft"or "elongated"S-thresholdoperator might coexist with the
chaos; (3) It is to clarifythe influence of the initialstateto the attractor i.e. a studyof
the basra size of attractor.It is especially interesting if two or more loops or dusters
occur in a next coordinate plot. It is often observedin suchcases that the behavior is
vibrating.Retgu]ar- JumPSoccur between two cycles andthereforetwo cycles mayhave
a unified basra of attrai:tion.

7, ADVANTAGEOF FUZZY OPERATORSOR NOT?.

The formal neuronal networks with the presented special class of matrices and
thresholds are suitable for coding or for economical (small network) control of
exponen.tiallylarge number of effector organs. The advantageof _ decisions for
which thts generalized truthfunctions can be used (see in Zadeh-Fu-Tanaka-Shimura,
1975) compared with the bina_ or many-valuedlogics is not yet completely explored,
No doubt, the finite valued logical decisions can beplayed back to the binarycase at
least syntactically.The numerous values are justified if more than two meanings can -
be attributed to the variables.

However, in the case of continuous operators, the numberof possible decisive cases
becomes infinite or moreover continuumset. In technicalimplementation this can be
a handicap or can be tolerated. Tolerance may be introduced by "digital (staircase-
shaped)" decision operators dividing again the domains into sharply distinguishable
subdomaius.

The concept of fm_ziness seems to be more applicable in contexts beyond those
which were touched by this work (see in Zadeh, 1975;Bezdek and Sarkar, 1992).

No doubt, the present form of "soft threshold logic"as a continuous generalization
of binary threshold logic and its relationship to the chaos appears to be a most
promising theoretical subject. At the sa_; time it might occur that chaos caused by
the introduction of fuzziness or non-degenerateo measuringoperators may restrict
the range of possible applications.

8. DISCUSSION

The main conclusion is that fuzziness - which is ubiquitously applied in
neurocomphters - may introduce chaos (or even confusion; Mendes France, 1989)
into the behavior of formal neuronal net or neurocomputer. After synthesis a tuning
of operator is required to avoid chaos and implications.However, the transition
between the sharply decisive dynamics of finite binary systems and chaos can be
controlled by the slope parameter k. Chaos may occur in model networks (Labos,
1986; Den'ida and Meir, 1988), the connection between the two paradigms merits
attention. The message for neuromputer sdence is that it is not suffident to



tS_ethesizea net let say by learning process, but still is necessary a tuning of the
shold operator. The real neural systems, display aperiodic but stable behavior. !,

The presence of chaos in real nervous systems seems to be plaus_le (e.g. Freeman,
1987). But stabilityand reliability requiredeeper explanations.
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FIGURE I - Network of seven neurons. Next state plots. Left - (1) The matrix and

,_ threshold vector; Middle - (2) A code of vector sate trajectory of the cycle going
•_ through the zero vector, length is. L = 90; binary case ;-(3) Right: the flow of the first

_ component is given with fuzzy operator T 1. The v due, _fslope factor is k = 0.7.
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FIGURE 2 - Network of eighl units. Next state plots. (1) Upper left: The binary
-: reference code trajectory ot L = 256 length maximal cycle. (2_] Upper ril3ht and

later: Fuzzy operator of T1 is applied. The matrix and threshold _s inserted mw the
upper right frame, k = 0.865; component 1; O) k = 0.72; component 4; (4) k = 0.8;
component 1. ........



FIGURE 3 - Nine units. Next state lots. - For the non-fuzzy threshold operator: L = 
512 (maximal). The matrix is in 'Figure 4. For fuzzy cases the components are 
successively as follows: 5th 3rd, 4th. 
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FIGUF, E 4 - FTO-next-state-plots. - Same as in Fig 3 but the flows of component
6th, 7th, 8th and 9th are displayed. In all cases the FTO is T 1 and k = 0.7.

553 a



FIGURE 5 - Corn onentwise temporal diagrams: - (A) - n = 9, B-matrix, 579243168; 
40; 0; k = 0.7. - (BY- n = 13; B-matrix, 123456789ABCD; 0; 0; k = 0.5. (C) - n = 13; 
B-matrix, 12W6789ABCD; 7; 0; k = 0.5. - (D) - n = 13; B-matrix, 123456789ABCD; 
5207); k = 0.5. See also Fig 6. 

FIGURE 6 - Bifurcation 
dia ams. Control parameter is 
k. 6): n = 6; c = 2; Matrix A; 

= 351264; ng = 4; is = 0; 8): n = 8; c = 4; matrix A; 
= 42856137; ng = 6; is = 0. 

Son-fuzzy cycle length is 
maximal. Values on Y-axis are 
between 0 and 1; X- axis: goes 
is k and goes from -0.5 to 4 . 5 .  
More detailed matrix speci- 
fications in Fi 5 and 6 see in 
the quoted pu lications of the 
first author. 
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_ NEURAL NETWORKS : A SIMULATION TECHNIQUE',, UNDER UNCERTAINTY CONDITIONS

: " M._ NicosiaMc Allister

- Iv_hexmticsDeportment.MoravianColl_e.
, Bethlehem.PA lSOL8

•, Tel, 215 8653187

Abstract
THIS PAPER oROPOSESA NEW DEFINITIONOF FUZZY GRAPHSAND SHOWS HOW

.... TR._NSMISSION THROUGH A GRAPHWITH LINGUISTICEXPRESSIONSAS LS,BELS PROVIDE
AN EASY COMPtrrATIONAL TOOL THESELABELS ARE REPRESENTEDBY MODIFIED
KAUFFMANN FUZZY NUMBER_

$1 Intr .cduct4on

Ever since F. Harary introduced the concept o£
implication digraph in his 1965 text, much of the theory
developed has been o£ interest to applications involving
transmission. In this era of knowledge engineering,
artificial intelligence, and neural networks, the interest in
graph theory has grown because it provide_ a source for
problem solving techniques; see[15,18,21]. How do we include
uncertainty in the representation and evaluation of
transmission through a network? To answer this question, it
is necessary to review some basic terms associated with well-
known techniques used in the evaluation of the flow through a
special type of graph. We want to emphasize that in using
[13,141 the mathematics needed to incorporate uncertainty
leads to easily applicable techniques which necessitate the
discussion of fuzzy graphs. Thus we propose here to combine
the principles of fuzzy set theory with those of graph
theory. This combination may be applied to the problem of the
evaluation of a transmission through a neural network, what
imprecision do we have here that it is not handled by
probability means? Because of the vagueness and uncertainty
which occur in the simulation of realistically complex
situations, we have to resort to techniques which can handle
the vagueness of linguistic assessments. The modeling of
neural networks is thus proposed by assuming that the
concept of vertices being members of the vertex set and of
arcs being members of the arc set is not crystal clear. It is

susceptible to imprecision because of uncertain numerical
evaluations, see[13], or because of linguistic assessments,
see[14]. Thus using an approach according to fuzzy set theory
in [12], it is possible to generate a simulation representing
the impre.cision, w._ch is not of a probabilistic nature.

$2 Some basic terminoloqT



The t e r n  g r a ~ h  i n  t h i s  context  w i l l  be used t o  mean 
directed graph o r  digraph; see [I]. 
Definition 1s A graph is called s tochas t i c  i f  t h e  following 
information is associated t o  each arc: 
(1) The probabil i ty  t h a t  this arc is selected; 
( 2 )  A random var iab le ,  such a s  ^.he, is associa ted  to  each 
arc. 
~ e f i n i t i o n  2s A s t o c h a s t i c  graph is  c a l l e d  a f j ,pwara~h  if 
t h e r e  e x i s t s  a s i n k  and a source,and if two boolean 
opera tors  are associa ted  t o  each vertex. The two opera to r s  
are usually t h e  AND or  t h e  ORELSE. 

. . Why -da we n e e d  these  operators? These o 'wra tors  cont ro l  
t h e  flow between ve r t i ces .  The evaluat ion of t h e  flow is  one 
of t h e  problems of i n t e r e s t  when flowgraphs are implemented 
i n  a s imula t ion  procedure. General ly,  i n  t h i s  t ype  of 
a p p l i c a t i o n s ,  each a r c  e n t e r i n g  a v e r t e x  r e p r e s e n t s  an  
a c t i v i t y  t o  be completed; see [2c]. When the AND operator  is  
associa ted  w i t h  t h a t  vertex,  it means t h a t  no new a c t i v i t y  
can be pursued u n t i l  a l l  previous a c t i v i t i e s  a r e  completed. 
When t h e  boolean operator  is  the CBELSE then only one of the 
enter ing  a c t i v i t i e s  must be completed before any new a c t i v i t y  
can be pursued. An addi t ional  requirement f o r  a digraph t o  be 
c a l l e d  a flowgraph is t h a t  t h e r e  ought t o  exist two spec ia l  
v e r t i c e s .  R e c a l l  that i n  graphs w h e r e  more than one arc 
e n t e r s  o r  l eaves  a vertex,  w e  de f ine  f o r  each ve r t ex  its 
indeuree, t h e  number of a r c s  en te r ing  that vertex,  and its 
outdecree, t h e  number of arcs leaving t h a t  vertex. 
~ e f i n i t i o n  3: If t h e r e  e x i s t s  a ver tex  whose outdegree is 
equal  t o  ze ro  t h e n  it i s  c a l l e d  a s i n k .  A v e r t e x  whose 
indegree equals t o  zero is  ca l l ed  a source. 

A flowgraph can concisely be defined as a s t o c h a s t i c  
digraph w i t h  two s p e c i a l  v e r t i c e s ;  a s ink  and a source. 
Flowgraphs have been successfully used to  model t h e  execution 
of a c t i v i t i e s  as depic ted  by t h e  digraph. I t  i s  then a 
natural extension t o  inves t iga te  t h e i r  use when the network 
under i n v e s t i g a t i o n  is a neural  network. Surpr is ingly ,  no 
research e f f o r t s  i n  such di rec t ion  are known to this author. 
However, t h i s  is not  t h e  focus of t h i s  paper. A s  s t a t e d  i n  
t h e  abs t rac t ,  we propose here t h e  use of fuzzy graphs as a 
technique t o  experiment with. The t ransmit tance through a 
flowgraph were considered and solved by s e v e r a l  authors ,  
pr imari ly using Mason's r u l e  which is t h e  best known; see 
121. A br ief  review of Mason's r u l e  is  given i n  t h e  next 
s e c t i o n  with some details. For a d d i t i o n a l  d e t a i l s  on 
algorittuas and examples see[2,2a,2b,3]. 

$3. Path ~ransailkance in Flowcrra~hs: Mason's Rule 
Let R be an n x n matrix where t h e  value of each e n t r y  

r i j  depends on a random variable.  These values are obtained 
from t h e  c h a r a c t e r i s t i c  moment-generating funct ion  f o r  t h e  
d i s t r i b u t i o n  of t h e  random v a r i a b l e .  Let P be a n x n 
probabi l i ty  matrix where p i j  equals t h e  probabi l i ty  t h a t  the 



arc (i,j) is selected. As a brief summary, basically, the
computation of the total transmittance along each path
requires the search of all paths in the flowgraph from source
to sink to be completed first. If we construct a new ma_.rix,

called the transmittance matrix, and denoted it by T = (tiJ)
where each entry is the product of the a random variable with
the corresponding probability which is associated to that

arc_ namely tij is the product of rij Land Pij. If we assume
that the search of all paths from source to sink has already
been made so that we know all the paths and that there are q
paths from source to sink, then the total transmittance is
computed according to Mason's Rule

q

Wk (I - det(Tk) } • (I - det(T)),
k-1

where Tk is a submatrix of T which is obtained from T by

removing from it the row and the column that correspond to
each vertex in the k-th path. The quantity Wk is the path
transmittance of the k-th path. Let the fuzziness of each set
be measured according to [4] ; a method specifically designed
for graphs.

$4. l_.zz 7 Graphs
The first to consider fuzzy graphs were A. Rosenfeld in

[5,6,17],and R.T. Yeh with s. Y. Bang whose work is also
included in reference [17]. Most authors, including this
author in [2b,2d], defined a fuzzy graph as simply a graph
whose adjacency matrix is replaced by the membership matrix M

= (mij) under the convention that if the entry mij _ 0, then

the arc (i,j) has mij as the evaluation of the membership.
There are two types of evaluations: the numerical , where we

generally have 0 < mij < 1, and that based on a

interpretation, namely, mij = 0 is a mapping, or more
specifically a fuzzy number.

Definition 4: A fuzzy number is a convex, normalized fuzzy ._
set. At the conclusion of this work the suggested fuzzy .....

number will be denoted Zn. We define a fuzzy graph as

follows: Let V be the support set of the vertices. Let

mv : V _-[0,1].
Then the fuzzy vertex set is denoted by

vZ= (v,my).

Similarly, let the fuzzy arc set be denoted by Af = (A, m_)

where m& maps the support set A, which is the crip subset of

the cartesian product of V with itself, into the interval
[0,1]. A fuzzy qraDh is then the pair of fuzzy sets, written

as, G£= (Vf, Af ). In all of the above and in the sequel, the
superscript f is used to remind us that the set is assumed to

be fuzzy. In this way, if mij= 0 then it means that there is

m



no link between the vertex i and the vertex j. If the
connection between the two links is not crystal clear then

mij is either equal to some value between 0 and I or it is a
fuzzy number.

A fuzzy graph was at first defined as a labelled graph,
often without ever clarifying the necessary path algebra. A
natural path algebra to use here is the MIN or the MAX
operators which are commutative, associative, and
distributive. For a full discussion on path algebras with
examples, see [19;pp.85-88]. Note that the set of labels can
consist of numerical values or of functional interpretations
of linguistic expressions. In the former case, i.e. for
numerical evaluations, the use of the MAX or MIN operators is
fairly straightforward. If functional interpretations of
linguistic expressions are used as label, then fuzzy numbers
are used. However, in this case, the use of the MAX and MIN

operators is not simple to use unless we devise a method for
ranking fuzzy numbers.

A totally different definition of fuzzy graph is
proposed here after a brief review of the homology of graphs.

S5 Backqrq._nd on the HcI0ol_ of Graphs
Given a classical graph G = (V,A), we recognize two

vector spaces. The first is the vertex vector space, Vf,and

the second is the _dqes vector sp_ce Af.

Deflni_ion5 A fqzz7 Graph is a pair of vector spaces GS =

(Vf,A f ). Is this definition conflicting with the previous

one? No, it simply identifies VS and AS for what they
actually are: two vector spaces with the vector space
operations defined by

(m+h)(v) = m(v) + h(v) and (am)(v) = a m(v)

for every v in v and for any real or complex number a. The

dimension of the vertex vector space V f equals the cardinal-

ity of V. Note that in such case, the mapping mvmaps the set

of vertices V into the set C of complex or real numbers and

- the mapping mA maps the set of links A into C. Denote these

vector spaces respectively by VS and AS. Thus a fuzzy graph

is a pair of vector spaces, GS = (V_,&f)..Having_ stated that
the use of the MIN and MAX operators is difficult when
functional expressions are associated with each arc, it seems
necessary to investigate how it is possible to solve the
difficulty. Some authors have worked successfully on the

ranking of fuzzy numbers; see [4] or the many papers by s.
ovchinnikov. Here, we propose the adoption of a somewhat
easier solution because of a special type of fuzzy numbers we
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adopt. First we define the fuzzy numbers which will be used.
They are called the Kauffmann integers.

17 Some reasons for the term: Kauffman Inteqers

First, they are called Kauffmann as they were introduced ....
in [20]. Secondly, they are called inteqers because Kauffmann
shows in his book that they form a Peano system. A brief

review, for clarity of exposition, is given in $9. Note that
this derivation is the same as the one given in [20]. The
only new content given here consists of the propositions
below and the fact _.hat eince the convexity requirement is
satisfied but not the normality r6quirement. This is included
in the definition of a fuzzy number. The functional repre-
sentation is changed slightly.

58 The Kauffman imteqers Kn

In this section a brief review is given mostly following

Kauffman's derivation, first, a set denoted (Kf)u is

constructed for which we then derive some useful properties.

They are called inteqers because Kauffmann also shows,

see[20], that by defining a suitable operations (Kf)a is

essentially like the set of whole numbers N.

19 The constrnction of the set t.Kf)a

Let the elements of a set (Kf)u be denoted by

(Kf)a = { KI,K2,K3 ,...... ,Kn, ..... }

where the subscript _ is used because it is a parameter; any

positive real number may be used. In this section, the

elements K n will be derived by defining a unary operation

called the 'successor' operation. First we will define K1 and
then we will obtain Kn recursively from K1 and Kn-1 for n

2. Then an explicit expression will be obtained for Kn.

(A) Comstruqtion via Recurslon: Let the first element K1 be

defined according to the following: fl(X) = u e-_x, u > 0 and

let

_:1 = { (x , fl(x))}. (1)
Denote the next element by

K2 = { (x ,f2(x)):xE [0,®)},
where the function f2(x) is computed according to the

following procedure:

xf2lx)= _ flltlfllx_t)dt = ee-ate-_(_-tld t = _2 xe-_x (21

• " I I I I .... _ !- i Be Jii - I I • • ii , i--. - -_ "._



for x _ [0,_). Any element of the set (Kf)a is computed

recursively according to the following:

fn(X) = _ f(n_l)(t)fl(x-t)dt -.- (3)

with

, Xn = { (X,fn (x)) : x6 [0,®)}

for n > I. Note that (3) essentially defines the desired

recursion operation to derive the elements of (Kf )a"

(B) Construction of an explicit Expres.sion:Both K 1 and K2

• have an explicit formula for f1(x) and f2(x). _ Can explicit

formulae be found for the other _-lements, _ . (x, fn(X))?

If so, we must be able to find an explicit expression for

fn(X). Then, after a graphical interpretation, a few other
facts will be established so that comparison operations can
be easily identified and fairly simple to code.

Proposition 1: For all n a 2_ we have

unxn-le-eX

fn (x) = (n-l) ! "
Proof: The expression of fn(x) holds when n = 1 and n = 2.

Assume that it holds for (n -1) so that we have

un- Ixn-2e-UX

fn-I (x) = (n-2) ! "
From the recursion definition it then follows that

_n x= f(n-l)(t)fl (x-t)dt = (n-2)! e-UX _ in-2 dr.fn (x)
v

Completing the evaluation of the integral we obtain
precisely the statement of the proposition.

The advantage of the explicit form is that we can find
the sketches of the membership function and its extrema and
so might devise a method for ranking these numbers in the
easiest possible way.

Proposition 2: For n > I each fn(x) has an absolute maximum
Mn, with

(n- I)n-1

Ms = '(n- li! en-1'
n - 1

and this occurs at x =--.

Proof: Letting the derivative of fn(x) equal to zero gives
the equation n - I - a x = 0 which has the desired value.



Since the second derivative of fn(x) is negative for this
value of x, we have a maximum. It is an absolute maximum

because l_n__ fn(x) = 0.

Note that this maximum needs not equal one.

Proposition 3:The sequence {Mn}, n > 1, is monotonically
decreasing.

a u 2

Proof: We have M2 = _ and M3 = _ _. Therefore, M 2 > M3. To

show that the statement of the proposition is true, we must
show that Mk < Mk-1 for all k > 3. Namely, we must show that

(k -1) k-1 e-(k-l) < (k - 2)(k-2) e-(k-2)
(k - i)I (k - 2)Z '

To show that it is monotonically decreasing we have to show

that the inequality Mk > Mk+1 holds for all k. Specifically
we must show that the inequality

(k - i)k-I e-(k-l) (k)k e-(k)
(k- I)! > (k)'! (5)

is true by algebraically reducing it to a true statement.
After simplification and taking the natural logarithm of each

side, we have reduced the proof of the inequality (5) to the
verification of the inequality ....._

k- I w- i
(k- l)in k + I > 0 or (k-l)in _ > -I (6)

k
If (6) holds, (5) is true. Let p(k) = k In _ . Since

k

p'(x) = (k + 2) 2 > 0, then p'ik) • 0 because k is a positive

integer. In addition, limk__w p(k) = 0 and it follows that

p(k) •- 1. Thus (6) is true.
f

To visualize the elements of (K)a, namely some of the

pairs (x,Kn), it suffices to sketch the functions fn(x) in
the first quadrant since x, n, and u are all non-negative.

The sketches in the figure at the end of this section provide
a graphical interpretation of three elements: the fuzzy sets

K1, K2, and K3. In fact, the regions on the plane over the x-

axis under the curves corresponding, respectively, to fl(x),

f2(x) and f3(x).

SI0 The Modified Kaufe_-- Fuzzy N_-_rs ZL

Note that there is no value of x for which fn achieves

the value i because there is no solution to x = ex. Thus
these numbers Kn are not normalized, and therefore are not

fuzzy numbers either. Since convexity holds it is easy to
verify that a minor modification of the membership function
satisfies the normality condition. _



In fact, let gn(x) = I + fn(x),so that if x = 0, then
gn(0) =I. Thus, the element Zn = (x,gn(x)), x > 0 are convex

normalized fuzzy sets, and are therefore fuzzy numbers. The
letter Z is used to remind us that Prof. L. A. Zade first

introduced the concept of a fuzzy number and its computa-

tional application to fuzz.y quantifiers in natural languages.
See a detailed exposition in the text [4] ....

Can we define an ordering for the fuzzy numbers Zn? This

can be done, besides using its maxima values, also by other
methods which are based on the next definition.

Definition 6- The heiqht, of the fuzzy set Sf on any interval

[a,b] of the real line is denoted by h(S f) and it is defined

by h(Sf) = max{f(x): x e [a,b]}.
we can apply thls definition to the modified Kauffman

integers Zn because of the propositions above. We not only
know what their maximum value is but we also know where that

maximum is. since the maximum need not equal one, the use of
the height is an alternative method which might be preferred
over the use of the maximum. We can order these integers

according to their height or according to the maximum Mn. We
know what this maximum Mn by the previous propositions. Thus

we have an easy computational method for their ranking.

Sll Some Concludinq Renarks
It is a well-known fact that graph theory lends itself

to applications. Often, we find computational techniques that
are proposed without paying much attention to the coding,
complexity, or storage difficulties. How do we store and

manipulate graphs with so much information? If the coding
language is Pascal, then it is recommended that each vertex
is represented by a structure which contains information of
the typez indegree, outdegree, etc. A similar structure is
used for the set of links. All structures are linked to one
another via linked lists.

A procedure called putnetwork outputs the graph and all
information about it. The determination of paths is simpli-
fied because of recursion. The recursion is guaranteed to
stop because there is a finite number of links; as branches
are chosen, an array is passed down the recursion. Can we
make use of fuzzy graphs? In previous work, we found

applications for similarity relations which are important An
building practical programs for fuzzy inferencing. We focus
on what happens to the concept of similarity relations
between distinct sets. The idea of similarity is no longer
obvious. We find that k-partite graphs offer an alternative.
An example of an application is included in previous work.
Fuzzy bipartite graphs were a problem solving tool for
J.Dockery and L. Mc Allister [2c,2d]. For example, in [2c|,
the authors focussed on what happens to the concept of
similarity relations between distinct sets. The idea of

_2



similarity is no longer obvious. They find that fuzzy

kpartite graphs offer a pictorial and computational alter-
native. _m example of an application was included there.
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Abstract

In this paper, the implementation Of a -fuzzydata processing system using an artificial neural net-
work (ANN) is discussed. The binary representation of fuzzy data is assumed, where the universe of
discourse is decartelized into n equal intervals. The value of membership function is represented by a
binary number It is proposed that fuzzy data processing be performed in two basic stages. It is pro-
posed thai incomplete fuzzy data processing be performed in two stages. The first stage performs the
"retrieval" of incomplete fuzzy data, and the second stage performs the desired operation on the
retrieved data. The method of incomplete fuzzy data retrieval is proposed based on the linear approx-
imation of missing values of the membership function. The ANN implementation of the proposed sys-
tem is presented. The system was computationally verified and showed a relatively small total error.

1 Introduction

Fuzzy data processing systems that perform fuzzy operations can be implemented using standard
or specialized software, but the ultimate way is to implement them in hardware. In fuzzy data pro-

: cessing systems, the major functions are performed by fuzzy processing elements like Min, Max,
Bounded or Absolute Difference, etc., which can be connected in different ways (for instance, Min-

Max-Min), depending on the desired structure. Building fuzzy data processing systems is attractive;
however, in practice (i.e, in control systems) many inceming data to the system are incomplete (e.g.,
disturbed, noisy, or damaged). As a result, the output data generated by the system ate wrong or con-
tain an unacceptable errors that may cause a series of problems, especiaUy in real critical applications.

Signal processing using a fuzzy approach has become more attractive during the last few years,
when fuzzy sets and tools have been applied successfully to a variety of tasks. These tasks cover dif-
ferent areas of applications from speech and image processing to various pattern classifications [3].
Although the early stages of fuzzy signal processing mainly involving pattern recognition have been
successfully developed, fuzzy methods for data processing (such as operations on various patterns)
are yet to be developed. In the previous paper [2], ANN (Artificial Neural Network) realization of the
fuzzy operations addition, subtraction, multiplication, division, minimum, and maximum, using neu-
ral networks, was studied. The conclusion of [2] indicates that the best results (in terms of average
erro0 for fuzzy operations using ANN can be obtained when _e operations are performed on nonde-
generated fuzzy data. In contrast, the results of fuzzy operations using ANN performed on degener-
ated fuzzy data contain relatively high error. To overcome these disadvantages, the two-stage fuzzy
data processing system is proposed in the present paper. The first stage performs the incomplete fuzzy
data retrieval, while the second stage produces the results of a desired fuzzy operation.

The paper is organized in the following way. First the theoretical background for the reirieval of
incomplete fuzzy data is given. Then the ANN realization of the retrieval stage is presented. The prac-
tical example, discussed in Section 2, shows the two-stage fuzzy data processing system (preproces-
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sor performing fuzzy data retrieval and processor performing one of the discussed tbzzy operations).
Finally, the simulation results for the system.are presented, followed by the conclusions.

2 Fuzzy data retrieval
The discussion of the fuzzy data retrieval begins with the definition of the fuzzy number[1].
Definition 1. A fuzzy number X={ xi } is defined over a normalized set A on the real line R such

that: -

3xiER, suppA(xi)=l 0EQ1)

The _tA(.)denotesa membershipfunctionof xi inA andthe x0 referredto as the meanvalueof A if
 a(xo)=l.
Assuming the discreterepresentationof the fuzzy number,the ordinaryfuzzy numberI can be
described in the following way: .......................

f Definition 1A. Any fuzzy number X can be described in a finite domain {xi}, by

x=_U_x), (EQ2)

where i = 1..... n andn definesthe numberof equalintervalsinto whichthe fuzzy numberX is dis-
cretizedand_ denotestheunionoperation.

Basedon the Definition IA, there mustbe a meanvalue for the ordinaryfuzzynumber,andthe
EQ2 car,berewrittenseparatelyfor the leftandright intervalsaroundx0 asfollows:

i • I Xi XO i=/:+2 Xi

(assumingXk+l=Xo).Sucha representationiscalledthe "discreterepresentation"of fuzzy number.
The special case of discrete representation, digital representation, is commonly used in most current
applications of a fury technology. Hence, universe of discourse is discretiz_d into n intervals, each
of which will be called "bit" by analogy with a digital representation of a number. However, any
value from the interval [0,1] can be assigned to each btt of a digital fuzzy number. Additionally, it is
assumed that the unimodal fuzzy numbers are discussed in this paper.

Definition 2. The degenerated fuzzy number T is the number with missing membership values I.ty
of one or more bit positions 2 (Fig. I).

1 (x) I (Y)

o ,li!ili, o,1111,,
x0 x Y0 Y(a) (b)

Figure 1. Digital representation of ordinary fuzzy number (a), and degenerated fuzzy number
(b).

f

It is assumedin th;.spaperthat thediscussedfuzzy numbersare unimodal.Let usnowco.-siderthe
degeneratedfuzzy number¥' andtheir retrievalsystem.

1. The _ ot_ fuzzy number is usedfor fuzzy numbers in thesen._,of Definition 1.

2. A special cgte of the degenerated fuzzy number with missing mem_xship function valuer for all bits are not discussed in this paper.
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Definition 3. The fuzzy number retrieval system (_----_also [6]) is dcfinml by a triplet:(r, F", p),
where Y"is a degenerated fuzzy number, le"is a muicved fuzzy number, and p is timretrieval func-
lion:

P:P-A(Y')"_ _tA(Y"):VYpe Y'and y"e Y" (EQ4)

where --->rcprcscn_ a mapping relation.

Hereafter w¢ use a simplified notation: _A0') =_.mprcscnting the membership function value of
Y at the bit position i.

Definition 4. The fuzzy dataretrieval function is defined by

P("r) - "r z_r (EQ5)

where F is suppose to be an original fuzzy number which is frcc of missing bits (se_ Fig 1).

]1,illill i
Yi Y0 Yn Y"I Y"0 Y"n

Figure2.Interpretationofthedefinitionoffuzzyretrievalsystem.F representstheoriginal
number.

The characteristicoftheretrievalfunctiondependson theparticularapplication.The implementation
ofalinearapproximationtechnique,whichseemstobcgoodenoughformostpracticalapplications
offuzzylogictothefuzzydataretrieval,isdescribedbelow.Intheprocessofapproximationofthe
missingvaluesforthemembershipfunction,twobasiccasesshouldbcdistinguished.
Case I.

The membershipfunctionmissingvalucsco:respondtothebitswhicham not:first[Yl},last{y,,}
nor mean {Y0}-The number of bits with missing values in the left or right intervals can be arbitrary.In
this case, the retrieval function simply extrapolates the membership function missing values based on
the existing nearest values:

• = _ +Ys

Assumingthatthemarck missingbits,whichstartfromsthbit,tlmmembershipfuncdonvaluescan

beobtainedby incorporatingYs,Ys+l.....Ys+kintoEQ7.Notetha_insucha case,itisnecessaryto
approximatethemembershipfunctiontothenearestavailablelevelofquandzation.Letusconsider
thesimpleexamplewhcm thenumberofbitswiththemissingmembershipfunctionisequaltoone
(re=l).The bitnumberwitht_,emissingmembershipfunctioninthedegeneratedfuzzynumberis
denotedbyk.Insuchacasethemembershipfunctionforthebitk canbeapproximamdby1:

• ( p_,_,,-la_,.,

= ,ntl)'k_ *Yk-,j (£Q7)Jly. _' YJt*l-Yk-I

I.In this contexttheintfunction means the ev:duation to the rotates!quantization level.
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If for any i, k the _,. l , then the _:, is set to I (see Fig.l.a).

Case 2.
The membership function missing values correspond to the bits which are: first {Yl}, last {Yn} or

mean {Y0}, or contain these bits. In this case, the retrieval function simply extrapolates the missing
membership values.

tt
ttCy ).] retrieved _ ttJ retrieved

g(Yk-l) On _(Yk-l)

| function | _ _r_..- _appmx'unation .
' function Y

(a) Yk-1 Yk Yk+l (b) Yk-I Yk Yk+l Yk+2 Yk+3

Figure 3. Example of membership function retrieval by linear approximation for a single bit
_..._ (a), and for three bits missing (b). Black square represents known value and empty square

represents retrieved value.

Let us consider the example where only single bits {Yl}, {Yn},or {Y0}arc missing. In such a case

the missing membership function values can be calculated using the formula given in EQS. The only
difference is that instead of calculating the membership function for the center bit, the one for the

/ boundary bit is calculated.
The case where several bits have missing membership function values is not trivial and needs more

discussion. It is proposed that the missing membership function values for the boundary bits (for left
and right intervals) can be evaluated using the linear (prediction) function calculated based on the
membership function values lbr the last two boundary bitsI. A_ume that there are two finear func-
tions calculated for left and right intervals with the intersection point below 1 (see Fig.4 a). In such a
case the mean value of a membership function is approximated to the nearest neighbor for any miss-

ing values of Yiand finally for the mean value _t(y0) is set to 1: _t(y0) = 1.

" "l , , , •
(a) YlI-I Yll Y0 Yfr Yfr+l (b) YlI-I YLI Y0 Yfr Yfr+l

Figure 4. Example of membership function retrieval by linear approximation for several bits
including _e mean value: intersection point below 1 (a), intersection point above 1 (b).

Then new approximation functions are obtained based on the parameters of point (1, Y0),and last
left [P(Yil),Yn], and first right[ll(Yfr),Yfr]bits (see Fig.4 a). Assume that there are two linearfunctions
calculated for left and right intervals with the intersection point above or equal to 1 (see Fig.4 b). In

l. The procedurefordeterminingmissing valu_ formembershipfunctionisdiscussedlaterin this sectio._.
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such a ¢,as¢the x coordinate for the mean valuo is approximak_Io the neare_ Yineighbor:.Ihcn Yi= YO
and I_(YO)is set to I: IJ.(YO)= 1. Then new approximation functions areobtained based on the parame-
ters of point (1, Y0), last left [i_(Yll),Yll],and first right [l_(Yfr), y_] bits (see Fig. 3 b). With Ih¢,_ func-
tions already calculated, the missing membership function can be evaluated using the formula giv
in EQT.

Case 2a.

The subcas¢ 2a relates to the situation when the unimodal fuzzy number might have trap_zoidai
membe_hip function. If such a case may origin when approximation functions (calculated based
upon the existing values) "clamp" more then one quantization inlervals (s¢_ Fig. 5). In this case the
membership functions values can be simply approximate by setting their values to one.

t
P(YlI.I) J -/ functions .

| I , , , , Y
YU-I YII Y0 Yfr Yfr+l

Figure 5. Example of membership function retrieval for the fuzzy number with trapezoidal
membership function.

3 Linear approximation procedure and neural network
As it was proven in [5], any continuous function can be uniformly approximated by a continuous

ANN using one hidden layer and with arbitrarycontihuous nondecreasing function. Such characteris-
tic can b¢ utilize to a task of the approximation el"missing p.embership function values by the linear
combination of existing values. Theret'or¢, the linear approximation procedure should be used to
obtain the training dataset for ANN. Note that only selected membership function values arc used for
evaluation of missing values. The following architecture was assumed for the ANN implementation
for fuzzy data retrieval. ANN consists of an input neuron layer (1), a hidden neuron layer (H) and an
output neuron layer (O).

II 12 13 Ik-I lk
Input (k---1,2 ..... N)
Layer

"jk

Hidden
Layer Hj 0=!.2 .....M)

vii

Outpu! "' (ill,2 .....O)
Layer el 02 03 Oi-I Oi

Figure 6. Structure of the ANN.
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Each layer is completely connected, meaning that each neuron from a given layer is connected to
all neurons of the next layer. A unique weight is associated with each connection. It was assum_l that
for fuzzy data retrieval the number of neurons in each layer equals to the number of bits in fuzzy
number.Figure 6 illustrates the details of the discussed ANN configuration.

Now, the problem can be reformu 'l_od into whether it is possible to obtain s_ts of weights which
minimize the total error of the linear combination of all existing membership function values with
respect to the linear combination procedure. In the proposed method the output of thc ANN which
represents a retrieved membership function value _ for i-th bit can de described by:

,, r xxM N

la_---
"j=l "t=1 "

where g(.) denotes activation function, p denotes p-th inputpattern, _ denotes the memba'ship func-

tion value, Vij represents weigh between i-th output layer element and j-tfi hidden layer element,
while Wjkrepresents weigh between j-th hidden layer element and k-th input layer element (Fig. 6).
The proposed linear approximation procedure used for i-th bit membership function value retrieval
can be formally described as:

i.l

la_= E (_la_) (EQ9) --
ini-I

whereo_isan arbitrarycoefficient(fori_j).Then thetypicalerrorfunctioncanbegivenby:

i.l .._2 - .

2£ = Z gVij I'W" --
• j=i-I

This is absolutely continuous, differentiable function of weights, so matrices w and V can be found "-
minimizing the error using backpropagation method. For hidden-to-output and for input-to-hidden
connections the steepest descent rule (which is a base for backpropagation method) gives:

r,f: {" ))'" " '" '"E.' Z..,, - Z o12)p _ ")=i I'=l j-i-I ..l *'2-1 "t-I "-- "tsl --

Therefore, the system proposed before [2] was extended by the preprocessing stage incorporating
ANN for degenerated fuzzy numbers retrieval followed by the Fuzzy Data Bus and tl_ system for
realization of fuzzy operation. The result also shows that it is not necessary to implement a special
type of ANN, like that one suggested in [7], in ordcr to obtain a good approximation of a fuzzy oper-
ation supplemented with the retrieval stage.

4 Computer simulation results

The data for training the retrieval ANN was prepared incorporating the linear approximation pro- ._-
cedure in such a way that the degenerated fuzzy numbers were set to the input pattern and retrieved J
fuzzy numbers were set to the output pattern. Up to 70% of bits with missing membership functions
was included in the set of 1024 degenerated fuzzy numbers (32 bits each). The PlaNet [4] simulator
was used to train (with backpropagation procedure implemented for updating the weights) the ANN
to the moment when average error (for all patterns) was less than 0.0001.
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The fuzzy data processing system consists of two stages, the first stage performing fuzzy data
retrieval (described in Section 3), and the second stage performing six basic fuzzy operations
(described in [2]). The original architecture of the system described in [2] is illustrated in Fig. 7. In
order to incorporate the retrieval stage, the original architecture was extended, by incorporating the
additional stage.

The main goal of the application of this stage is to obtain retrieved fuzzy numbers available on the
Fuzzy Data Bus for further processing. Note that the Subsequent stages can perform simple (such as
addition)aswellascomplexfuzzyoperationssuchasinference,sosucha systemperfectlymatches
thegeneralfuzzymodelingrequirements.In thepresentedsystemthesecondstagenetworksa.,_
designedtoperformaddition,subtraction,multiplication,division,maximum andminimum (tobe
consistentwithpreviouslydesignedsystem)."PableI summarizesresults(averageerrors)obtained
fromthetrainingpatternandtestingpatternThe trainingpatterncontainsrandomlygeneratedordi-
naryfuzzynumbersforsixsecond-stagenetworksperformingfuzzyoperations.Thetestingpattern

containsonlydegenerated,randomlygeneratedfuzzynumh.ers,_w!thmissingmembershipvaluesran-
domlydistributed over the bit positions.

TABLE1. Comparison of averageerrorsfor testin8 (degenerated)patternobtained fromsecond-stage
AHNspes_ormlng:addition,subtraction,multiplication,division,maximum,and minimum.

Pattern Addition Subtraction Multiplication Division Maximum Minimum

Training 0.000353 0.000335 0.000395 0.000219 0.000382 0.000331 ........

Testing(d) 0.004032 0.005630 0.009541 0.007680 0.006516 0.0057_

Input 1 Input 2

|1 II

! Input Fuzzy Data Bus ]

I ou, utFuryD,,t,bus I ......I I m II I I I II I Jl I n I

Figure 7. Architecture of the original fuzzy data processing system based on the ANN [2]. (*
denotes the different data bus width as a result of fuzzy operalions).

As one can see, the errors obtained from testing patterns including degenerated fuzzy numbers are
five to ten times greater than original training errors. If we include in the simulation the ANN retrieval
stage (average training error less than 0.tXX)4),then the results obtained for testing patterns can be
summarized in the Table 2.
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Figure 8. General architecture of fuzzy data processing system using ANNs.

TABLE2. Comparison of avezage errors [or :estinj_ (degenerated) pattern obtained from the proposed fuzzy
data processing system including fuzzy data retrieval stase. Second-stage ANNs perform: addition,
subtraction, m_tipllcation, divisi , maximum, and mimmum.

Pattern Addition Subtraction Multiplication Division Maximum Minimum

Testing 0.000643 0.000"761 0.000577 0.000867 0.000742 0.000522

Figure 4 illustrates a fragment of the fuzzy data processing system, extracted from the original
design (see Fig. 3), including the retrieval preprocessor. The values of membership function are coded

in forms of sequence of squares. The area of a single square for a specific bit relates to the member- /
ship function value in such a way the largest square represents I and the smallest 0.1 (the empty place
indicates 0). Two 32 bits long fuzzy numbers are set to Inputl and Input2 (data on Inputl is degener-

ated: missing membership function values for two bits). Then they are processed in the retrieval ANN
(Hiddenl(32b) and Hidden2(32b)). Finally, the retrieved numbers arc displayed in Hidden3 layer

(compare Inputl&Input 2 and Hidden3(64b)). Then, these two ordinary numbers (first retrigved and
second original) are processed in the subsequent network (Hidden4 (64b), Hidden5 (64b)), producing

the result of operation (in this case, addition) at the Output (64b) [4].
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Figure 9. Example of the fuzzy data processing system applying fuzzy data retrieval
preprocessor and the network performing fuzzy addition. (At the top, the trace of average error

for training this part of a system is shown).

5 Com:lusiom

In this paper the implementation of a fuzzy data processing sysl_m using artificisl neuralnetworks
is described. As it was verified in [2], the average errors l'or the testing patternscontaining degener-
ated data were about two to five times greater than the average errorfor the normal lcsting data. In
order to support fuzzy addition, fuzzy subtraction, fuzzy multiplication, fuzzy division, maximum
and minimum for the _gcnemled fuzzy numbers the pr_proce..ssingstage devoted to fuzzy dam
retrieval was designed, trained, and inco_'poratcdinto the fuzzy dataprocessing system. The retrieval
process was based on the linear approximation and prediction of theexisting data for the incomplete
fuzzy numbers. Such an axchite.ctur_significantly improves the accuracy (up to ten times) of the
results of operations performing on the degenerated fuzzy numbers; however, with the increa_ of
roLe,dugmembership fancdon vaIues, the average error also increases. The results of testing of the
proposed system show that when up to 30% of membership function values arc missing, the average
error slighdy increases (up to five times). Consequently, from 30% to 50%, the error is one order of
magnitude higher. Finally, from 50% to 75%, the errorcan bc Pento one hundred times grea_r than
that for the trainingdata. Du¢ to these advantages the proposed architecturefor fuzzy damprocessing
systemsmay be very attractive in practical applications, especially in the case of pmo_dng heavily
damaged fuzzy databy tic _al-time fuzzy logic controllers.

One should also stated the main advantage of ANN applicationto the real-time control consisting
of the adapdve changing of the fuzzy model implemented throughANN, _long with changing of tic
process under control. Such a feature is necessary when fuzzy controller is suppose to control
dynamic, dine-variant system.
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Abstract ........................

An expandable stochastic digital architecture for recurrent
(Hopfield like) neural networks is proposed. The main features and
basic principles o_ stochastic processing are presented. The
stochastic digital architecture is based on a chip with n fully
interconnected neurons with pipeline, bit processing structure. For
large applications a flexible way tO interconnect many such chips
is provided.

Introduction

The analog implementation Gf Hopfield neural network is of
actual interest [5]. Due to the great complexitF of the
interconnecclons and to the presence of parasitic coupling path,

analog recurrent networks are prone to follow incorrect trajectory
or to oscillate. This reduces by an order of magnitude the nu_er
of neurons that can be built on a chip. In the same time, large

applications require to interconnect many such chips. Due to the
parasitic capacitance that distort the analog signals, this becom_
another difficult task. A digital stochastic architecture avoids

these problems. Here the signals are more easily passed between
chips and are less modified by noise. By using a tlme-aultlplexed
structure, the connectivity is greatly reduced and so leads to
flexible multl-chip systems. Recurrent networks operate by
accumulating small changes into the neural state. This integrative

process has a lowpass filtering effect, reducing also the inherent
stochastic processing noise [2).

Following, an overview of the methods for information digital
stochastic encoding, as well as some arithmetic computing elements,
are presented. In the next sections our approach is detailed by
providing, the algorithm, the block diagram of the proposed neural
chip, and a detailed description of the synaptic and neural
processors. Finally, the system expendability, reliabllitF and
reconflgurabillty are treated along with discussions on execution
speed.

Digital stochastic encoding of information

A stochastic encoder is basically a tunable random pulse
generator. The probability of occurrence for a pulse, i.e. the mean
pulse rate, is controlled by the input to be encoded in such a way,
that



,s • ] .... ,.....

p(x) - S,. I S.,, (1)

! In equation (I) p(x) is the probability :h&t. the binary random

pulse train assumes a value of 1 at a moment. Sis Is the value to
: be encoded, and S..s represents the maximum posslble value for the

" " signal S. Thus the probability of a pulse in the pulse train is
proportional to the normalized input signal. The basic circuit for ....
encoding a digltal signal (number)-into a random pulse train with
appropriate probability is shown in figure i.

The number N is compared with a random number R, uniformly
distributed over [Rmln.Rmax]. The output of the comparator will

pulse if R < N, crating a stochastic firing signal X, whose mean is
proportional to N provided N is in [Rmin,Rmax]. The stochastic
encoding represents an analog signal mapping. By using non-weighted
bits in a code of infinite word length, it is extremely noise _ ....
proof. In the same time it has an adaptive accuracy. As information
is recovered through a pulse counting process, one can at any
moment decide for a fast but imprecise or for a slow but accurate

response. The computations are easily performed on such signals
using space- and speed-efflcient digital logic [4].

Arithmetic computing elements

The basic arithmetic computing elements used in this approach

are= multiplication, countlng/accumulatlon and llnear/nonllnear
transfer functions.

For example, if two statistically independent binary random

pulses, x and y. with probabilities p(x) and p(¥} are ANDed, the
result has the probability=

p(r) - p(x) AND p(y) - p(x)*p(y) {2]

That is. a multiplier in a stochastic architecture is a simple AND

gate.
The easiest way to perform the accumulation function, which is

equivalent wlth an integration operation, is to use a counter. For
a neural processor, this wlll count the number of pulses which
results from the multiplying operation between weights and neural

outputs.
In simulating neural nets, the most tlme consuming operation

is to apply the transfer function, which usually is a nonlinear
one, to the neural state and obtain the neural output response. The
use of stochastic encoding provide significant tlme galn in

performing ilnear/nonllnear transfer functions. Returning to the
dlgital-to-stochastic converter, one can see that the mean value of
the output binary pulse train is_

<x> - Pr {R < N} (3)

which is the cumulative distribution function (CDr) of R. If N is
the value of the neural state u(t), and x is the neural output

pulse train, then the transfer function can be modified adjusting
the probability distribution f_'..ctlon (PDr) of the random number
generator (see figure 1.a,b,c}. While a uniform PDF gives a linear
transfer function with hard llmits, a PDF llke in figure 1.c gives
the more used slgmoidal transfer function.
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The stochastic architecture

The equation governing the integration of charge in the
Hopfield network is8

du_ m.t

........ a

If the time slice dt Is much smaller than the naln integration
period, so that the capacitor voltages do not change too much,
equation (4) can be approximated by|

(s}
uj(nd_ d_) • uj(ndt) _ _j_(ndt)dt

Therefore in dt time, for each neuron J the summation of only one
product TijVi, to the state u I, is performed.

The architecture based on (S) has N neurons operating in
parallel, at the clock frequency f0, and an execution speed of M*£e
connections per second.

As long as the time-multiplexing implied by (5) has not
prevented proper convergence or caused fault operation [1],
equation (6) also holds true,

t #

uj(n_t, dc) • u,(ndc) , _ _ (_.,,.l,,.,_.,,.,,,(ndc))_= (6)

where n*b < N. Thus• in dt tise the summation of (n'b) products
(THVj), to the state uj, is perforaed. In this way the state update
speed can be enhanced n*b times.

The digital stochastic architecture proposed in this paper is
based on equation 6. The basic building block is a chip with n
fully Interconnected neurons, operating in a pipe-line, bit serial
manner on words of b bits length. The chip t8 depicted An figure 2.
There are two types of processors_ Synaptic Processors (SP) and
Neural Processors (NP). Each synaptic processor, SPj_• perfo_ls one
product and two summations An parallel in a clock period. I_
contains a comparator Comp and a counter Count which are organized
on bat serial, pipe-lane structure (figure 3). The weight shift
register (WSR) has a set of K registers on b bits word length.
Skewing the outputs of the WSR and of the random number generator
(RNG), every clock period T0, a pulse with probability proportional
to JTjjJ, results at the output of the comparator. The weight
multiplication is performed by aND£ng this signal with the neural
output value received on Vl line. The result is added or

substracted• to/iron Count if TH! is positive respective negative.
This represents the summation over r Index An equation 6. After b
clock periods the content of Count is tras£ered to the shift
register (8R), and Count is reset. The value in SR is added

serially with the value u'j(t-1)0 resulting u'j(i). The value u'j(i-
1) is a partial sum of the neural state uj(t) computed in the
previous cFcle in the (i-1)th stage.
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The neural processor NP! has a bit serial adder, a digital-to-
stochastic converter and a shift register which store the neural

state value (figure 4). Every b clock periods_, a new partial sum !tl

u'i(n ) is added to the neural state u}(t). This process represents.
the summation over h index in equation (6).

" " The lines Vi ,i-l,n, are internally connected to SP H, _-l.n,
and are also used to interconnect chips forming large systems.
External logic is needed for recovering the-mean value of the
signals which are the neural activity information.

Expendability. fault tolerance and speed

In large applications, which require a grate number of
neurons, say N. K chips must be used (k - [N/n] + 1}. By providing
the SP with K,,, weight registers, the neural network will-be .........
extensible to N_,Rneural processors. E,u is also the maximum number

of chips that can be connected in a system. Such a system is
organized around a n bits bus. In a period T0, only one chip puts
on the bus the output values of its neural processors. All chips
will read these values, performing the state update function. This
is done once, for each chip, after what the cycle is repeated.

This type of architecture, implying the connection to a unic
i bus, allows the number of neural processors to easily be changed by
/ inserting or removing chips. In the same time, if a chip contains

too many defective elements it may be bypassed by desselectlon. In
this moment, an idle, unused, chip will replace the defective one.

The weight update speed can be evaluated taking into account
that the total number of neurons in a system is N - K'n, and the
number of weights is W - (k'n) I. In each chip, for each neuron,

(ntb) connections are computed in b clock periods (to), the speed
being,

S - (K*n_)IT, " n*N*f, connections/second (7)

For example, a system with n - I00, K - 10 and f0 " i00 MHz,
has the execution speed S - I0_:connectlons/second. This value is
well above any reported implementations.

p

A tlme-multiplexed architecture performance parameter, is the
_ neural state update speed (NUS). NUS is the number of products

_* (TilVl) added to the neural state in unit time. For the previous
reported implementation [I], the NUS was equal to f0 values per
second. In our architecture NUS reach (n'f0) values per second.

Conclusions

A stochastic digital architecture for networks of the

recurrent type has been described in this paper. The low-pass
filterlng, integrative nature of these networks was well-suited for
an implementation based on stochastic techniques built from
entirely digital circuitry. The combination of all-dlgltal signals

and plpe-llne, bit serial processors led to a system which could be
spread across multlple chips. The reduced interconnectlvlty of the
VLSI system madedynamic reconflgurability and fault tolerance easy
to achieve.
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HIERARCHICAL MODEL OF MATCHING
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Abstract The issue of matching two fuzzy sets becomes an essential design aspect of many .....
algorithms including fuzzy controllers, patternclassifiers, knowledge-based systems,
etc. This paper introduces a new model of matching. Its principal features involve: (i)
matching carded out with respect to the grades of membership of fuzzy sets as well as
some functionals defined on them (like energy, enh.'_py,transom), (ii) concepts of
hierarchies in the matching model leading to a straightforward distinction between
"local" and "global" levels of matching; (iii) a distributedcharacterof the model red,red
as a logic-based neural network.

Keywords matching, hierarchical model, local and global level of matching, logic-based neural
networks

l.lntroduction

Defining and handling problems of matching fuzzy sets (linguistic quantities) has become a
domain of intensive research dating from the very emergence of fuzzy sets.The abundance of the
matching methods available nowadays is evident Different approachesstemming from measurin_
distances between membership functions, calculating possibility and necessitiy measures, using
fuzzy measm'e_ and integrals, to name a few among them, give a good impression about their
variety, cf. [4], [5], [6].

The proposed model embraces three new features being nonexistent or not fully adcL,essed in
the framework of the previous methodology. They are, however, important in dealing with fuzzy
sets. One should stress that fuzzy sets form a collection of objectsb-'longing to a given category to

a certain degree. As such the grade of membership at x0 ¢ X does not exist in isolation and is
usually related(affected) by othermembershipvalues thatthe fuzzyset takes on in the neighbourhood
of this poinLThisfact implies that this phenomenon should havea direct impact on the development
of matching procedures.

Firsdy, the two levels of hierarchyat which the matching processis carded out are distinguished:
(i) a local level of matching dealing with the grades of membershipof two fuzzy sets pertaining to
the same element of the universe of discourse, and (ii) a global level of matching where all those
"local" characteristicsare summarized(aggregated).

Secondly, the local level of matching should also handleseveralcriteria of matching not being
exclusively restricted to the aradysis of the grades of membership of the objects. Some other
functionals defined over the membership values (like entropy,energy or transom) might be worth
considering in this context.

The discussed model of matching is fully distributed and utilizes logic neurons [8], [9] to
constructively accomplish matching at the indicated levels.

•In the remainder of the paper we will consider fuzzy sets defined in a finite universe of
discourse, say X = {x I..... x,}. The discussion regarding the local level of matching will be
covered in Section 2. In Section 3 we will proceed with the global level of matching showing hgw
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different elements of X interact within the process of matching. The learningalgorithm leading to
parametricadjustmentsof the connections in the model will be studied in Section 4. -_ ....

2. The pointwtse level of matching of fuzzy sets

Let us discuss two grades of membership at a certain element of X, say a _A(xt), b = B(x l)
where A and B are fuzzy sets, The general questionarises:why are these fuzzy sets similar or what ':"_---,,.....
makes them different? First of all it is likely that a very preliminary answer to this problemcan be _.-..7"-:>-

formulated by studying the corresponding values of the membership functions of A and B.They _.....:.
are usually deemed essential in expressing similaritybetween fuzzy sets. • .
One among existing alternatives useful in describing similarity of fuzzy sets could be the use of the
following equality index cf. [7]:

I _--._.--

a-= b _-_ a = b = _ [(a ¢Pb) ^ (b q_a) + _ q_b)^ (b _pa-)] (I) _:_.....

where the _operation (pseudocomplement) is defined as follows: .._ :

aq_b=sup{cE [0,1] late<b} _"

and "t" denotes a triangular norm while "^"stands for minimum. The equality index attains 1 if y=:.-=--/_-
and only if the arguments are equal, a = b. It should be stressed that the values produced by the ,,-.
equality index are not context sensitive,viz.this index produces the same result once a mutual : :--
position of the arguments is the same.This means, for instance, that 0.1 = 0.1 = 1 aad 0.9 = 0.9 = t?,:-.,----'-
1. This could cause undesired lack of discriminatory propertiesof this definition. On the contrary, _----_. ....
it could be propitious to discriminate between situations where matching achieved for the higher
membership values such as 0.9 and 0.8 is more significant than the one reported for the lower ,-,,_- :,.
values ,say 0.05 and 0.2. One of feasible solutions to this deficiency would be to perform (1) not :._: -,_
only on the membership grades but also on their functionals. We will study throe well-known ._-=::-::...i_:
familiesofthesemembership functionals: .......

energy-type functionals [1], [2] compute values of a certain,monotonically nondecreasing " ,_:'..:i
function defined over the original membership values, sayq_: [0,1] --) [0,1] where V_ is a ......
monotonically nondecreasing function. For instance, one can refer to polynomial-type /::
energy functionals of the form V_(u) = up,p > 1; _--:_'-:._:.:_.

entropy-type functionals, cf. [1] [2],are defmed as mappings V2: [0,1] --_ [0,1] such that -_ -_----_-

(i) _2 is monotonically increasing over [0, I/2] and _ "

(ii) ¥2 is monotonically decreasing over [1/2, 1]. : ::_ _i

Moreover one assumes that the functionals attainmaximum at 1/2, _2 (1/2)=1. ._ ......
- transom-like functionals [10], [11] remind the functionals oftbe first class .The modification ........

is such that low and high grades of membership (i.e., the values lying around 0 and 1) are =._:-.:. :--

ignored. One can _haractcrize these functionals as _3: [0,1] -_ [0,11, such that .:__.:_-.:_

_s(u)= O,ifu _:_, :::::..._..-:."

ys(u)= Wl(u),ifU ¢ (Og_),and _--.....:. .___ .:.L.

¥3(u)= O,ifu > [_ _ ---_:.;....

where a and [$are threshold levels. __.::. =":...'
The examples of these functionals exp_ssed with the aid of linearor piecewise linear '----- - :-_7 -.

relationships are included in Fig. 1. :! ::_:_1%

.... ,:_ .-:'-_..
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1. 1°

1. u u u
1.0 1.0 a P 1.0

Fig.l.Examples of functlonals _1,_2,_3

Here we have- 7

¥_(u)= u,u ¢ [0,II

_'2(u)= 2u,u ¢ [0,I/2]and¥2(u)= 2(I-u),ue [I/2,I]
and

%(u)=¥_(u)[l(u- a) -l(u - [_)l
where I denotes the unitstep function i.e. l(u - _) = 0, u < _ and 1(u - _) = 1, u > _.

Generally speaking, the result of this "local" (pointwise) matching can be summarized
(aggregated)inalogicalway as: ..

... Wp] ¢2)
where wt, i = 1,2,...,p arc weights (connections associated with the consecutive degrees of
equality, while "z' denotes an overall level of matching obtained at x_. The weights modulate
influence of the individualcomponents on the local result of matching.

From a structuralpoint of view (2) can be treated as an AND logical neuron, cf. [9], see also :'_.:-. '
Fig. 2. :_ : :-:

Yt[^(xO]-'Wj_(xO]

"
w I ._ ....

m .....

Vp [A(xi)]m_l_['B(xl)] .... _.=:-

Fig.2.AND logic-based neuron _---_-
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The appropriatevaluesoftheconnections can be derivedthrough_x_sed learning.We will ..discussthisissueingreatdetailinSection4... _"
Inordertoemphasizethelocalcharacterofmatchingandexpligiflyindicatethearguments

standingthere(elementsofX) we willintroduceatwo-variablepredica_MATCH J..OCAL(xi,xj)
whichisdefinedasfollows, - ........

oRw,]
i,j= 1,2.....n

3.Global level of matching

When it comes to the global level of matchinginvolving all theelements (pairs)forwhich the local
matchingoperationhasbeenaccomplishedwe canthinkofthefollowingmodel, ................

y= OR [MATCH__ (xi,xj)AND v_] (3) --:
i,j= 1,2.....n

wherevlj,i,je [0,I]areconnectionsmodellingtheinfluencetheresultsofthelocalmatchinghave
on the global level.

't

A m_ MATCH_LOCAL(xi,xj)

R&.3.OverolJmmc/zb_gmodel "_- _

- The complete structure composed of the processing units describedby (3) is given in Figure
3.The gridofpointsshown[hereisformedby consideringaCartesianproductofX's. "" ..

The entiremodelcanbeviewedasa heterogen_usOR-AND logicneuralnetwork,see[9].
Thecompactnotationappliedtoitwillthenlooklikethis.........

y = MATCH(A, B) = OR [MATCH LOCAL(x,,x_AND v,j] (4) : _
(xl,xj)eXxX .:..:.........._.

wheretheOR operationpertainstotheargumentsoftheCartesianproductXxX. The AND and •,_ ":--

- _.7_:: ..../*-

I" _:- ....'"_-_'_""
.. h,_ . .

-. :._-_-- :. -_-'_'_'7__- " _ 5_. _'-- _ -- . "_ " -- - _-- " _ __" " "



OR operations are modelled by triangularnorms (t- and s-norms, re,sl_tively ). This implies the
following system of relationships, •

. = S [MATCH_LOCAL(xb xj) t vifl - (5) .....MATCH(A,B) i_ = 1,2,...,p

T [¥_(X(xO)'_w(B(xp))swd (6)MATCH..LOCAL(xi, xj)) = i = x.2,....p

Expressions(5)-(6)formabasicdistributedandhierarchicalmodelofmatching. " "
Intheforegoingsectionwe willinvestigateaproblemofparametriclearningin(5)-(6).This

willincludetheconnectionsvuandw,.

4. Specializing the model of matching- a parametrle learning in: rite network _ ......

Since the structure of the model has been already developed ,now one has to determine its
connections w = [wt], 1 = 1,2,...p and v = [vjfl i,j = 1,2,...,n .This is carded outon the basis of
a training set of data. It consists of pairs of fdzzy sets At, B_ and _ results of mawhing I:
reported there. Denote them by It, k = 1,2.....N. Usually we can concentrate on a simple scenario
in which tte {0,I }. If It = 0 the corresponding pair (A t, Bt) delineates two fuzzy sels whkh are

different. On the other hand, if t_= 1, Akand B_ are viewed as be_.g similar....
The learning (adjustments) of the connectmns is compnew,a in the supervised mode. One 1"

presents A k and Bk to the model and comparesthe obtainedresultMATCH(Ak, Bk) with tk:if these i_
are differentthen w and v have to be modified to reduce this difference. A convedient performance
measure guiding the adjustments of the connections (parametric learning) is a sum of squared _" - ....!i

errors.
i,
¢

Q = _ lit-MATCH(At, Bk)]2 (7)
k=l "

Then a standard Newton-like method is exploited to produce the requiredmodifications of w and
v,namely,

w =w -q_w

v=v-h/_Q/_v

whereq isa learningratecontrollingaspeedofchangesof w andv.
The derivativesatecomputedinastandardway,

_Q N _MATCH(At,SO
= -2_ [tk- MATCH(At, Bk)]

avtj kft . avii

()MATCH(Ak, Bk) :_) [MATCH_LOCAL(xit, xii) W_|_t]]=

a
= -- [[MATCH_I.,OCAL (xi, xj) tvq]sSt]

_vq
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where $1 abbreviates the result obtained for the computations c._.-niedover the elements of XxX
different from x_and x_. The detailedcalculations can _ pursued furtherupon specification of the
triangularnorms.For0reconnectionsw we derivesim_arly, !-_

N
aMATCH(At, Bt)

= -2_ Its-MATCH(At, Bk)
_wz t_l _wz ........

and

_MATCH(Ak, Bk) = Z _)MATCH(Ak,Bk) × _)MATCH_LOCAL(xi,xj)
_W 1 i,j=l,2 .....n 0MATCH_LOCAL (xi, xj) _vl

Subsequently we conclude .-.

_MATCH(Ak, Bk) = _$2 tMATCH_LOCAI?(xi,x)).tyi)]

_MATCH_LOCAL (xt,xj) _MATCH_LOCAL (xi,xj)
with

$2 = S [MATCH_LOCAL (Xn, xjt) tvtt_t]
il, jl, il#i. jl#j

and finally

_MATCH_LOCAL(xi, x_)= [Tlt(gtl(A(xi) ) e ¥1(B(xj))) swl]

Tt = T [_tll(A(xla)) _ _12(B(zl,))) swl, l]
Ii#l

The following example serves as an illustrative materialshowing how the hierarchicalmodel of
matchingcan be developed

Example The fuzzy sets used in this simulation experiment aregiven below:.

Matching
X 1 X2 g 3 X t g 2 g 3 It

At =[0.95 0.71 0.2 ] BI =[0.4 0.9 0.05] 1.0 --
A2=[0.1 0.3 0.58] B2=[0.15 1.0 0.01] 0.0
A3=[0.25 0.4 1.0 ] B3=[0.5 1.0 0.7 ] 1.0
A4=[0.45 1.0 0.75] B4=[l.0 0.2 0.45] 0.0

This synthetic dataset includes some pairs of fu,.zy sets exhibiting equality (It=l) and difference

between A kand B_'s (tk=0). We will consider the functionals ¥1, ¥2 and ¥3 shown in Fig.l(for
the transom functional we set a = I_= O.1).

The network is described with the use of (5) - (6), the performance index is given by (7) and

= 0.2.THe process of learning is visualized in Fig.4.
The results generated by the network aregiven below

k Matching (tk) MATCH (A_,Bk)
1 1.0 0.71
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2 0.0 0.33
3 1.0 0.64
4 0.0 0.43

Eventhoughtheoutcomesinthesetwocolumnsarenumericallydifferent,theybecomequalitatively
equivalentafterthresholdingappliedtotheresultsproducedby thematchingmodeLLetusdeft_,a ....
thresholdoperation

_ (a, _,) = I if a>_,and _(a, _,)=Oif a < X, -....

a,_,e [0,I].

where _.standsforthethresholdvalue.Onecaneasilyverifythatforall_.from(0.43,0.64)tlm
resultsproducedby themodel(afterthi_holding)areequivalenttothetheseincludedinthe .
trainingset

t.11

1.S
pelrformnnce

Indmc 1.0

.S

|

0 100 tO0 300 400

leu,cmem

Fig.4.Results of learning in the network

S. Conclusions '

We havedevelopedadistributedmodelofmatchingoffuzzysetsutilizingAND andOR basic
computingelements.Ithasbeenshownthattheycarryout"local"matchingwhichisrealizedat
thelevelofeachelementoftheuniverseofdiscourseandincludesbo.th_ ofmemlx_shipas
well as some of their funcfionals. The global level aggregatesthem m a disjunctive form.

The idea of the distributod logical processing canbe also found useful in developing models of
fuzzy set connectives or designing non-pointwise decision-making procedures.
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Abstract

This paper addre_es the issue of applying • globally convergent optimisation algorithm to the training of multi-
layer pe_ceptrons, a daes of Artifidal Neural Networks. The multilayer perceptmB are trained towards the solution

of two highly nonlinear problems: i) Signal detection in a multi-user communication network and ii) Solving the
inverse hinem_ics for a robotic manipulator. The research is motivated by the fact that a multihyer percoptron is
theoretk_Ily c_pable of approximating any nonlinear function to within • spedfied accuracy. The algorithm that has
been employed in this study combines the merits of two well known optimization algorithms, the Conjugate Cradients

and the Trust Regions Algorithms. The performuce is compared to • widely used algorithm, the Bachprop_ation
Algorithm, that is l_/cally a gr_lient-b_ed algorithm, and hence, dew in converging. The performmac_ of the two
algorithms are compared in terms of the convergence rate. Furthermore, in the case of the signal detection problem,

performances are also benchm_rked by the decision boundaries drawn as well as the probability of error obt_m_ in
either case.

I Introduction

Artifldal Neural Networks (Neural Nets for short) _re densely interconnected layers of relatively simple processing

units called nodez, that are interconnected through links called weiyht_, (_ represents the we/ght vedor). Theoutput
of any node in • layer is a no•linear function of • weighted sum of inputs from nodes in the previous layer. Due

to the nonlinear characteristi_ of these networks, they Lre used for • wide variety of nonlinear mapping problems.
This paper deals with two spedlic applications : detection of a single user's s/glal in • multi-user commmdcation

channel and solution of the inverse kinematic, for a robotic m_ipulator. The neural net used in these problems is
the multilayer perceptron.

Multilayer perceptrons are a dus of feed-forward artificial neural networks [I, 2, 3] with one or more layers

(termed hidden layers) between the inputs _d outputs. Their use in this context is based on the fact that mu!til,yer
percepuons with a single hidden layer are theoretic211y capable of approxim&ting any nonlinear function to • desired

accurrcy [4]. The general dusific&tion/mapping problem c_ be reduced to solving an optimizLtion pnd_lem as
shown below

_w.ffi_g raine(_) : R" ---. _. - (I)
._En"

The opt_i_ation algorithm used .J calculate to. that solves (I) is termed the/ruimng a|9ohlhm d the mldtil•yer
perceptrou. The error/unct/on e is typically taken to be an average of the sam of the squares of the diferences

between the desired _nd _:tual (produced by the neural net) outputs to given inputs

P M_
I

c(_) = _ _ _(,_,(v; _,) - d,_,))_, (2)
pet i_t

where d_(p) is the i'_ component of the the desired output vector, i.e., the desL,_ output at the _h node (of Mr.
output nodes) corresponding to the fa input pattern, d,(p; to) represents the actual output and p -- I.... ,P
represent the total number of training patt_/ns presented to train the neural network.



General optimisation problems as in (1) have no analytic mlutimm and hence, iterative optimdsatioa _Jaemes

that yield a series of converging approximations to to. are employed to solve (1). The focus of this research in

the development of an effidext training algorithm that performs "sipificantly better _ than the widely employed

back_/_m algorithm [1, 3, 5, 6]. Since the backprop_ation algorithm is • gradient_-lumed algorithm (it is based
on the steepest descent alsorithm) it exhibits very poor convergence pmpertie_, being zt best liae_iy conveqgext [7,

8, 9]. We investigate a_aoptimization algorithm that combines the men/to of two well known optimis&tlos algorithms
: the trust region arbor/thus sad the conjugate gradient a/gohthm. The resulting algmithm, termed the Conjasate

grsdiext_Ttnst region (CGTR) aJsorithm has been shown to exhibit superllnetr convergence properties [10, 11]. The
CGTR algorithm significantly outperforms the backpropagation a_lorithm in the applications considered.

"" II Multilayer Perceptrons
Multilayer perceptrons form a pacticular dram of neural networks and are ctpeble of approximating say nonlinear
measurable functions. Specifically, it has been shown by Hornik, St_.achcomhe and White (4| that a two-layer

perceptron, i.e., t perceptroo with an input layer, one bidden layer and en output layer of nodes, is sufficient
to achieve this .approximation. This capzb_.lity hu been exploited in various fields including speech recosxition,

signal and pattern claBification and universal approximation (see references in [1]). With reference to a single-user
detection problem in a multi-user communication chnuel, wherelu the optimal decision boundary has been shown
to be a highly noalinear curve in the sisnal space [12, 13], multilayer perceptron receiven have been observed to

pe_orm better than conventional techniques [14]. In this study we apply the muitilayer perceptrou, which is trained

using the CGTR alsorithm as opposed to the conventional backpropagation, to the two specific problems at hand,

signai detection sad nonlinear mapping.
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Figure I: Typical Structure of a ?.-Layer Neural Perceptron

These networks consist of an input layer of nodes, one or more layers of hidden (i.e., intermediate) nodes and
a layer of output nodes (Figure(l)). The nodes in a given layer are connected to ,II the nodes of the next (upper)
layer. Therefore in an/,-layer perceptron, the output of the 7h node of the _h layer takes the value

M_.t

jasl

where M_ denotes the number of nodes in the t_h layer, _) denotes the weight associated with the connection

between the j,h node of the (l - 1)'* layer to the i'h node of the _h layer and w(_) is the cor|esponding tkresho/d.
The function g(-) is the noulinns_ transform&tion st the output of the ,_s node of the t_h layer, called the actieation

or squashing function. In this model, s,j(-°) represents the j*h input to the network and M0 is the total number of

inputs. The menenze of the error e(.) that arises n.-turally from the network configuration is the averse sum of
squared errors which is calcul-ted as in (2) with d_(p; to) = s,_)(_) representing the actual perceptron output.

IFor details regarding the d/Kes_nt types of conveslgence nee [7, 8].
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III Conjugate Gradients/Trust Regions Training Algorithm
The CGTR algorithm is a nested combination of the trust regions algorithm and the conjugate Sradients alSmitkm

that attempts to circumvent the limitations o( both schemes. |n order to illustrate the properties of the l_posed
*.rninfl_ a_orithm, a brief overview of iterati_e optim_ation algorithms is presented below, with emph--_, on the

trust re_ions model and the conjugate gradient algorithm.
The basic optimization problem can be formulated as in (I), where e(_) is a twice continnomdy differentialde

function of_. The main strategy in mmt optimisation algorithms J8 to approximate the noalmear functiom e(J_)
about the point _k by a second order Taylor series expansion, called the _admfic model of • at _h

_,(_.,+s)=c(_,)+v_(_.)Ti+_i (4)

where H represent_ the Hessian matriz of • Le., [H]_.j = _¢/_,,_o_3. One optimi_ation scheme is to succemdvely
minimize the function along the steepest descent direction, i.e., the negative gradient at each point. This algorithm

hun been found to possess extremely slow (linear) convergence properties. The prevalent 8ackpropagu6on alsoritlun
is based on the steepest de_emt algorithm.

An alternative clans ,'.f algorithms that axe extremely robust with respect to the wide variety of functions to

which they are applicable are the trust region algorithms. The main idea behind these methods is that the given

nonlinear function is approximated fa_ly accurately by a Taylos's series quadratic model unly m some reg_o a_oud

the currcut point. This leads to the following formulation of the optimization problem

min m*(i_ +L), subject to _l[ __ 6a, (5)
£EIg_

where m,(i_ +£) is as defined in (4), s is the step taken and 6_ is a parameter that can be interpreted _ aa

estimate of huw far we "trust" mk(_., +i) to accurately model the actual function ¢(_) in a neighborhood ahoy:

w h. The parameter 6_ is accordingly called the fr,st ra,_w. The trust region algorithm can then be succinctly
stated as minimizing m(._.+ s) over a compact domain ins at each iteration. This problem has been shown to have

a unique solution [7, 15, 16] for arbitrary H, but is numerically intractable.
The conjugate gradients algorithm is an algorithm that arrives at the minimizer of a p_tive delinite n-

dimensional quadratic function (i.e., the Hemian H is pos/tive definite) in at most n stepe [9, IT, 18, I9], take-,
along mutually H-conjugate _ directions. It is a computationally simple and elegant algorithm that hns ralnimal stor-

age requirements. The rate of convergence of the conjugate gradients algorithm is found to depend on the condition
number _cof H [9, 17, 20, 21]. Therefore, the convergence rate could be enhanced by suitably modifying the Hessian,

clustering its eigenvalues and thereby decreuing _. This technique, known us preconditioning, is achieved by al_ect-
ing a linear transformation of the variable space. Notwithstanding the attractive features of the conjugate grudieats

algorit]un, it is shown to be numerically un_talde when applied to non-positive definite functions [20, 17, 18, 22].
Therefore it has to be used in conjunction with a method that allows for indefinite Hessians,

The proposed CGTR algorithm effectively c_mbines the merits uf both the above stated algorithms _I0, 11]. The

problem addressed is as posed by (5), with the imp._ed constraint being ILdlc< 6_, whc.-e _11_ = (_, _), C

being the preconditioning matrix. The conjugate gradients _dgorithm is embedded in the trust region model ud

serves to arrive at the minimizer of m, _(._.,+_) at each iterate cot, while the trust region part decides whether a
particular _ reached is a %uitab_e" point or not. The trust fusion algorithm governs the global convergence ud
thus enddes the CGTR algorithm to effectivdy deal with non-poeitive definite Hessians. Tid_ algorithm has been

theoretically shown to be superlinenrly convergent to • minimizer of the nonlinear function t [10, 11].

, IV Applications
In view of the deficiencies in the existidg attuning algorithms, there is a nee_ for the development of faster mad

more robust algorithms. This paper discusses the application of the CGTR algorithm to the training of m_ltilxyer
perceptroas for signal clusi/ication a-d nonlisear mapping (inverse kinematics) problems ba_d on their universal

approximation capabilities [4]. The multilayer perceptron is trained in both cases by presenting a set of input dat_
ud minimising the resultant error function between the desired and _ctual outputs of the network to arrive at an
optimal weight configuration _w,. The iaput-ostput set in the signal detection scenario consist* of P pairs of the

sampfed received signal vector and the corresponding classificxtion, while in the solution of the inverse kinematics

of a robotic manipulator, the inpat-o,_t * • set consists of P pairs of end e/_ector (see Section 13/.2) coordinates and
the corresponding joint angles. Figure 2

_Two directimm Pl snd p$ are said to be H-conju_wte d/rectlons if p ,Tlfpj = OYi_ j.
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Figure2: Structureof a NeuralNet P_eceiverforSingleUserDetectionin MultinserChauneb.

IV.1 Single User Detection in a Multi-user Communication Channel
Wz investigate the feasibility of using multilayer perceptrons with the proposed training algorithm for the detection

o,_ signals transmitted by • single user in a multi-user channel with additive Ganssian noise. The neural net receiver
is configured todemodulate the particular user's signal in the presence of other interfering signals. This is shown to
be equivalent to Lppro_g a nonlinear function, the optimum decision boundary [12, 13]. Figure 3

In the general multiple-access communication network [14], K transmitters are assumed to sh_re a radio band
in time and code domalmL A particular user's transmitted signal is a binary signal set derived from the set of

coded waveforms assigned to that user. We assume that we are interested in the demodulation of the iirst user's
informsLtiou packet. The signal st the receiver is the sum of the K transmitted signals in additive channel noise

(which is assumed to be Gassian here).

sk_sp_a

.: (-i.J) I (tj)

Figure 3: Optimum Decision Bonndazy for the Detection of a Single User in &2-userChannel

The sampled input vector R, to the neural net receiver (see Figure 2) can be written so that the demodulation
of the first .Agnal is viewed as the following classification problem:

-% :/g = +A;s<')+__+L

//, : R = -A_a('_+__+L (6)

wher_ 9.(1) is the spreading code vector of the first uses and .qis a lensth-N vector of _te:ed Gums/an noise samples, lu
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this settinx. / represents the multiple-access interference vector, i.e., the interference due to the Immence of the other
transmitted signals. The optimum decision bound_y for the general shsSle-user detection problem in the presence
of interferin_ unere has been loud to be • higldy nonlinear sudad:e in the signal spa_13]. Tliere_re conventional
m_tched fil_r techniques, which genezate only linear detection boundaries (see Fignre 3) fail to accurately demodulate
the desired _er's signal.
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Figure 4: Decision boundaries drswn alter trainin Kwith the CGTR and BP algorithms.

Performance Analysis

To illustrate the potenti_ of the multi-luyer perceptron fox signal detection, • relatively simple e_ample involving the
detection of • single user's signal in presence of only one other interfering user is considered. The network used for

this problem is • two-layer perceptron with three nodes in the middle l_yer. This is based on workdone by Azzhan8,
Orsa_ ud Puris [14] who h_ve conjectured that, since the optimum decision boundary can be ,q_proxim•ted by three
straight lines, three nodes in the middle lzyer are sufficient for near-optimum demodnlat_on.

Tra/n;ng of the multi-lzyer perceptron is performed by presenting z fixed number of input vectom to the network
ud spec/fying the corresponding desired outputs. The error function obt;aflte_ is then mini,;'_.d with respect to
the network weights usin_ the CGTR method. In the case of the signal clmudficztionproblem, the P input d•tz
represent observations of R, i.e., actual signs/loc_tions with additi__ noise. The relevance of usiml _dgnal with noise
as tra/ninK d•t_ lies in the fact that in • practical applicution the neural net receiver would he receivin_ noisy da_
and would hzve to detect the _resence of • p_rticulzr user in the presence of additive noise u wellas interfering
signals. Therefore. training the multil•yer perceptrou with noisy d•t_ makes the detector insenmtive to peztnrb_tions
in the incoming signals.

The performance of the multil•yer perceptron trained by • paxticular algorithm in the case of the detection of
• single user in the presence of interfering users, is assessed by the proximity of the dec_0a bondury dr•wn by
the multil•yer perceptron to the optimum and the zvcrzge probability of mis-clmmificztion. Figure 4 shows the
decision boundaries dr•wn by the neural net receiver trained with the CGTR ud beckpropagation alKorithms.
As can be seen, the decision boundazy drzwn _fter training with the CGTR al$orithm closely approximaXes the
optimum decision bounds'y, while the neural net trained with the backpropeg•tion algorithm is only able to line•fly
approximate this noulinesr function. Further compazisons of performance can be made by observing the plots of the
p¢oimbility of error for the rece/ver vemsnsthe r•tio of the signal-noise-ratice of the two signals after training with
both the algorithms, as seen in Fig 5. The first plot in Fig 5 depicts the probability of error (Pc) Kr•phed _dnst
tire .-•rio of SNR1 (signal-noise-r•tio of user 1) to SNR2 (signal-noise-r•tio of user 2), with SN][t2fixed ut 6dB. The
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Figure 5: Probability of error vs ratio of the SNR's of the two signals.

second piot depicts Pe graphed against the ratio of SNR2 to SNRI, with SNR1 fixed at 6dB. As cam be seen in both
plots, the receiver trained with the CGTI_ algorithm yields a lower probability of exror compaxed to the receiver
trained with backpropagation.

IV.2 Inverse Kinematics for a Robotic Manipulator

The capability of the multilayer perceptron for function approximation is fur*.her tested by training it via the
preconditioned CGTR algorithm to approximate the inverse kinematics for a robotic mamilmlator. We briefly
describe the inverse Idnematics problem for a robotic ma-ipulator. For _urther details the reader is referred to

[23, 24, 25]. A mechanical manipulator or arm can be modeled aa an interconuection of several links, each of which
is connected to its predecessor through • joint. One end of the azm is attached t_ a base ud the other end, to an
end.e_ector or c/_p_-_r. Robot ma_pulator kinematics dea/s with the analytic study of the motion of the robot _rm
with respect to _ particular coordinate system. The inver._e _nematics problem for a robotic _mmipulato_ involves _

the determination of the individuLl joint angles (angles between successive joints)O(/) = [81(t) ..... en(t)] T, siren
the spatial location of the end-effector z (t). This problem is solved using the equation

•_(t) = f(0_(t)), (7)

where f is ,, nonlinear function. In general, for most muipuln_re there does not exist a continuous ualytic f-i

over the whole sp_ce c_d even if it does, its solution can be ana;ytically and numer_flly cumbersome.
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I t* p w r  we attefflpt to solve the inverse kinematia problem by t r d m g  the maltilaycr ~>Ã§~Ã§ptr  to 
approximate /-I. Tile lobotic manipulator uu considefed in tU. study is a ptuu biiluked urn, i.e., an um with 
two Â¥egment coutrabed to lie in a single pluie, an depicted in Fig 6. The joint uidu &(t)  and & ( t )  are alculuÃ§ 

-m of nonlinear equations. The neural net is trained using the CGTR dgorithm to appnirimate the above wn. 

Performance Analysis 

Figure 7: Multi-layer perceptron error function with i~~cteuuig t r a i n i ~ ~ f  set size. 



The training is cnzfied out by pre_entinK pairs of input vectors and the corresponding desired joint angles to the .... _-_ "_-
neural net and minimising the cormspooding error function, u in (2), using the CGTR algorithm. The network .:_--_-_-7 "

configuration considered for this example is z three-lsTe_'d network with 4 nodes iu each of tke middle ILyers. It has
been observed that a three-layer network with as few as four nodes in each of the middle laym yields much better "_'-___-_

performamce thin • two-fLyer network with as mLny as 30 nodes in the middle lLyer. The number of input sad _-- -_-.......

output nodes correspond to the dimension of the work-space tad the number of joint angles respectively. Figure 7 _'_:_ ./.
shows t_e change in the perceptron training error (for the three-layer perceptron with 4 nodes in each middle ILyet) ..... _-_-

with increasing training set size and as can be seen, the error stablizes trier z certain point (400 points in this case). _._._:.:--' ....

V Conclusions ,i,i__.__.

We _:,_e demonstrated the potential of the CGTR trtining algorithm for multilayer perceptrons tad compared it to ..... :: i .

the _,isting b_ckpropagation algorithm. The CGTR algorithm performed significantly better than beckpropagztion _--_=. _-_-"

in the appilc•tions comddered. Specifically, in the case of the detection of • single tr_nsmitter's signal in the presence ..... : - =;
of interfering users, the network trained with backpropagation was _ble to draw only 8 linear decision bonndLry : --_ ._": --

compared to the near-optimum decision boundary obtained by training with the CGTR algorithm. CorrespondlBgly, _7_ -:-.
training with CGTR resulted in a lower probability of error. In the solution of the inverse kinematics problem, our _-..::._ _

precursory results have demonstrated the effectiveness of the CGTR algorithm in enabling the multilayer perceptron .... :<;_. -.
to successfully approximate the nonlinea_ functions involved. Further research is being carried out using two-layer i__"=:-_;- _: :--
perceptrons with a larger number of nodes in the middle layers as well as four-layr perceptrons. !_-I _'=_--'"

.... i. ........

-_..:. _.
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Several probability-possibilitytransformationsare compared in terms of the
closeness of preservingsecond-order properties. The comparison is based on

experimentalresults obtained by computer simulation. Two second-orderpropertiesare involved in this study: noninteraction of two distributionsand projections of a
joint distribution.

1. Introduction

During the last three decades or so, science has been undergoinga major
paradigm shift involving attitudes towards uncertainty. The many facets of this
paradigm shift are well described in a book by Smithson[1989].

The old paradigm is characterized by the pursuitof absoiutely certain
knowledge or, if impossible, by resortingto probability theory, as the only legitimate
mathematical tool to deal with the lack of certainty. The new paradigm,on the
contrary,is not only tolerant of uncertainty, but it views uncertainty as an important
resource in pursuing knowledge. While uncertainty is not desirable for its own sake,
its role to counterbalance complexity is crucial when complexityis unmanageable or
when dealing with it is prohibitively expensive [Zadeh, 1973]. When the solution to
a problem is not required to be uncertainty-free, the computational complexity
involved may often be substantiallyreduced _Traub,et al., 1983].

In order to utilize uncertaintyas a strategic resource, we need to understand
it as broadlyas possible. It turns out that probability theory does not facilitate •
sufficiently broad framework for this purpose [Klir, 1989a]. As a recognition of the
limitations of probability theory, two generalizations in mathemat/cshave emerged.
One of them is the generalization of classical set theory into fuzzyset theory, which
allows us to deal with sets that do not have sharp boundaries [Zadeh, 1965;Klir and
Folger, 1988]. The second is the generalization of classical measure theory into
fuzzy measure theory, which allows us to deal withmeasures that are not additive
[Sugeno, 1977;Wang and Klir, 1992]. These two theories can be combined.

Fuzzy set theory and fuzzy measure theory, as well as their combination,
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provide us with a very broad mathematical frameworksfor investigating uacertainty,
within which various special theories of uncertaintycan be formulated. Onlytwo of
these special uncertainty theories are of our interest in this paper:,classiail
probability theory and possibility theory. We assume elementary knowledgeof these
theories [Klir and Folger, 1988].

,M we argue elsewhere [Klir and Parviz, 1992a], probabilitytheory And
possibility theory are complementary, but not comparable. They are capable of
describingdifferent types of uncertainty. It is often desirable to transform
uncertaintydescribed in one of the theories to the complementary descriptionin the
other theory [Dubois and Prade, 1986;Bharathi-Devi and Sarma, 1985; Leung, 1982_ I
Moral, 1986; Kilt, 1991]. Several distinct, transformationshave been prolmsedin t

the literature for this purpose. Our aim in this paper is to compare these
transformations in terms of the closeness of preservingsecond-order properties. The
comparison is based on experimental results obtained by computer simulation.

The paper is a continuation of a previous study [Klir and Parviz, 1992b].
While the previous study focuses only on one second order property,joint
distribution calculated from two noninteractive marginaldistributions, this paper
covers also projections of given joint distributions. Furthermore, it descn'oes results
based on a slight]),different measure of uncertaintythat the one employed in the i
previous study. The new measure of uncertaintyemerged recently as a better

justified alternative [Klir and Parviz, 1992@ i

2. Pmbabilib/-PossibUity TransfonnaUons Investigated

In order to describe the probability-poss_ility transformations that are the
subject of our experimental study, let

P = (.vl, P2, .--,P_), ....

r = (rl, r2, ..., r_),

denote, respectively, an ordered probability distributionand the corresponding
ordered possibility distribution. We assume that Pi > Pi+l and ri _ ri,l for all i = 1,
2, .., n-l. According to normalization requirements of the two theories, Pl + P2 +
•.. + Pa = 1 and rt = I.

The first type of probability-possibility transformations p _ r that are covered
by our study are transformationsbased on ratio scales. They are expressed by the
equations

r_---,p' (I)
Pl

Pi= ri (2)
rt +r2 +.- +ra

The second type of transformations p _, r, which are often cited in the
literature, were proposed by Dubois and Prade [1982, 1983, 1986]. They are defined



by the equations
D

,,-Emm(p,pe), O)
j-X

n

Pi"_ (re-"re"I), (4)
' e-i J

where ro+1 = 0 by convention.
° The thirdt_l_e of transformationsp -* r, which are asymmetric,were

proposed by Dub0is, Prade, and Sandri [1991]. In one direction, p --*r, they are
defined by the equation

It

r,=E Pc. (5)
j-i

Intheotherdirection,r-,p,theyaredefinedbyEq.(4).
The fourthtypeoftransformationsp _.r,whichwereproposedbyK1ir[1989,

1990],aretransformationsthatpreserveance1_tainty.ItwasshownbyGeerandKlir
[1992] that unique transformations of this kind exist only under log-interval scales.
They are defined by Eqs. I and HI in Figure I. The vaine of a in these equations is
determined by solving Eq. H in Fig. I, which expresses the requ/rementthat the
amount of uncertaintybe preserved when p is tmndormed to r or vice versa.
Functions H, N, S in Eq. H are defined by the following formulas [K]irand Parviz,
1992c; Klir, 1993]:

H(p) =-_ pilosp,, (6)
i°l

N

N(r) = _ (r i - ri. 1)l°gz i, (7)
i°2

S(r) (ri-ri.1)log. (s)
"" rj

e°1

FunctionH isthewell-lmownShannonentropy_ andFolger,19_],and
flmctionsN,Sarereferredtoasno_ci_ ,rodstrife,respectively.

Sincethevalueof_r) isseverelyrestrictedwhencomprtredwiththevalueof
N(r), as shown by Geer and Klir [1991] and Klir and Parviz [1992c], the term S(r)
plays a relatively minor role in Eq. H. To studythe effect of this term on results, we
performed experiments both with and without the term. Furthermore, we performed
also experiments in which function S in Eq. II is replaced with function D defined by
the form



O- 1).i]
This function, referred to as discord, was employed prior to the discovery of the ;
latter justified function S (Klir and Parviz, 1992c]. We have performed experiments i
with both functions in order to compare their performance. ,,.

That is, our experiments involve six distinctprobability-possfln_ty '
transformations. The following are convenient abbreviationsof these
transformations: • i

I
• RC - ratio-scale transformationsdefined by Eqs. (1) an.d (2); I "

• • DP - transformationsproposedbyDuboisandPrade[1983],which i:
are defined by Eqs. O) and (4); _'

• AS - asymmetrictransformationsdefined by Eqs.(4) and (5) ' .
[Dubois, Prade, and Sandri, 1991];

• NS - transformations that preserve uncertainty,which are defined by

Eqs. I- HI in Fig. 1; .

• N - same as NS except that S(r) is excluded from Eq. H;

• ND - same as NS except that S in F.q. H is replaced with function D .
defined by Eq. (9).

3. Des_plion of Experiments

Two classes of si.,nulationexperiments regarding the six types of probability-
possibility transformations are reported in this paper. The purpose of experiments
of the first class is to compare the transformationsby the estimated average degree
to which they preserve joint distributionsconstructed from noninteractive marginal
distributions. The estimates are obtained by experiments of two types.

In each experiment of the first type, marginalprobability distribution Pl and
!)2are chosen for some n z 2. Assuming that i)1and Pz are noninteractive, we
calculate the joint probabilitydistributionp by taking the pair-wiseproduct of their
components. Next, we convert Pl, P2into the corresponding marginalpossibility "
dism'butionsrl, rzby each of the transformationmethods and combine each pair of
distributionsby taking the pair-wise minimum of their components. This results in
one joint posu'bilitydism_outionfor each transformationmethod, which we convert
(using the same method) to the correspondingprobabilitydistributionp'. Now, we
determine the closeness of p' to p in terms of these criteria: Hamming distance,
Euclidean distance, and the maximumerror.

Experiments of the second type are similar,but they begin with given
marginalpossibility distributions,rI andr2, for which the joint posm'bilitydism'bution
r is calculated by using the minimumoperator. The given dism'butionsare also
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transformedinto the correspondingmarginalprobabili,'ydism'butiom 1_ and Paby
each of the method. Joint probabilitydistributionp i_.then calculated for each pair
p_,p_andu'an_ormed(bythesamemethod)to thecon'espondingpom'bility
distribution r'. Finally, r and r' are compared in termsof the same criteria as in .
experiments of the first type.-

The purpose of experiments of the s_ond class is to compare the six
transformationsby the estimated average degree to which they preserve marginal

• distributionscalculated from given joint distributions. Two types of experiments are
again distinguished,depending on whether the inputs are probability distributionsor

" possib/I/tydistributions. The results are compared in terms of the same cr/ter/aas in
the experiments of the first class.

•4. Expedmenta[ Results

Experiments of the two classes andboth types were performed for selected
values of n, from n=2 to n = 25. In each category and for each particular value of
n, the performance of transformationsRS, DP, and AS was compared with the three
variants of uncertainty-preservingtransformations,ND, NS, and N, in terms of the
Hamming distance, the Euclidean distance, and the maximumerror.

Results of experiments of the first class that are based on ND are published
in a previous paper [Klir and Parviz, 1992b]. They demonstrate, with considerable
consistency,that the uncertainty-preservingtransformationperforms best according
to each of the three indicators and that its relative performance increases with
increasing n. The results also show that AS is substantiallyoutperformed by all the
other transformations.

After these initial results,we extended the experiments of the first class to NS
and N. We discovered that NS also performs better than RS, DP and AS, but it is
slightly outperformed by ND. However, the differencebetween the two
performances decreases with increasing n.

The behavior of N, which is illustratedby the selected data in Table I, is
more interesting. While N is comparablewith or even slightly weaker than RS and
DP for smallvalues of n (approximatelyn < 5), it outperformsall the other
transformations(includingNS and ND) for largevalues of n (approximatelyn
10). For both types of experiments,the table is divided into three parts that contain
values of the Hamming distance, the Euclidean distance,and the maximum error (in
this order). Each column in the table represents one of the four conversion
methods, as applied in experiments of either the first type or the second type,. All
entr/es/11 the table are average values based on I00 experiments for randomly

- selected marginaldistributions.
Results of experiments of the second class for n = 5, 10, 15, 20, 25 are given

in Table II (first type) and Table 11I(second type). As h,.Table I, the three pans in
either table contain values of the Hamming distance,the Euclidean distance, and the
maximumerror. Covered are all the six transformationsintroducedin Se.,c.2.-

We can see from Table H! that each of the uncertainty-preserving
transformationsheavily outperforms trandormatious ItS, DP, and AS in experiments
of the second type. The order of the transformationsby their performance is
consistently N, NS, ND, DP, RS, AS accordingto each of the three indicators. The
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strongperformance of _msformations N is rathersusIn'isins.
According to experiments of the firsttype (Table I1), the transformationsare

less discriminatedby the__rl_rformance, but NS (and ND, to a lesser degree) _ .
consistently outperforms the other transformations. The perf_ of N, RS, and
DP are comparable and consistently higher than ".heperformance of AS. :

S. Conchadml

From all experimental results obtained in this experimental study, which are
exemplified by five selected values of n in Tables I - HI and in our previous paper
[Klir and Parviz, 1992b], we may conclude that the uncertainty-preserving

........... transformationsare superior in terms of the degree to which they preserve the two
second order properties investigated. This is not surprisingsinc_ the uncertainty- _
preservingtransformationsneither loose informationnor add extraneous information :
by the transformation process itself. It is reasonable to expect th_**._the same
conclusion will be obtained for other second order properties, such as conditioning
or joining of overlapping distributions. We intend to validate this conjecture by
additional experiments.

Although we consider three variantsof uncertainty-preserving
transformations,NS, ND and N, the differences amongtheir performances are not
large. This is a result of the fact that functionsS and D are bounded from above by
the same value, which is rather small [Geer and Klir, 1991]. One the whole,
transformationN appears to be the best choice, not only due to its high performance
in most cases, but also due to its simplicity. •

Functions S and D (and the associatedfunctions NS andND) are still
somewhat controversial as measures of poss/b/listicuncertainty,while function N
alone does not represents the whole uncertainty[IGirand Parviz, 1992c; Kilt, 1993].
If this controversyis resolved by determininga fully-justifiedmeasure of total
uncertainty, the performance of the resultinguncertainty-preservingtransformation
will almost certainly outperform all the three currentlyconsidered uncel_ainty-
preservingtransformations.

Transformations NS, ND and N are based on log-intervalscales and, as a
consequence, they are unique. Uncertainty-preservingtransformationsmay also be
based on ordinal scales. Such transformations,which are not unique, may give us a
greaterflem_oilityin achieving desirable results,such as preservingbest certain
second order properties of the given distn_oution&maximizingthe degree of
probability-posm'bilityconsistency, and the like. A formulationof ordinal-scale
transformationsthat preserve uncertainty and discussionsof several other issues
regardingprobability-possibility transformatiousare included in another paper [lair
and Parviz, 1992a].
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TABLE L Experiments of the fast class (from marginaldistributionsto joint
distributions).
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TABLEIL Experimentsof the secondclass and first type.
i
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1 Introduction ......

Inference based ou fuzzy 'If ... then' rules has played a very important role

since when Zadeh [13] proposed the Compositional Rule of Inference and,
especially, since the first succesful application presented by Mamdani et al.
[I0 I. From the mid 1980's when the 'fuzzy boom' started in Japan, numerous
industrial applications appeared, all using simplified techniques because of
the high computational complexity. Another feature is that antecedents in
the rules are distributed densely in the input space, so the conclusion can be

calculated by some weighted combination of the consequeats of the matching
(fired) rules. The CIU works in the following way: If R is a rule and A = is
an observation, the conclusion is computed by B* = R o A ° (o stands for the

max-rain composition). Algorithms implementing this idea directly have an
exponential time complexity (maybe the problem is NP-hard) as the rules
are relations in X x Y, a kl x k2 dimensional space, if X is kl, Y is k2

dimensional. For a detailed analysis of the complexity see [3].

The simplified techniques usually decompose the relation into kx pro-
jections in Xi and measure in some way the degree of similarity between
observation and antecedent by some parameter of the overlapping. These

parameters are aggregated to a single value in [0, i] which is applied as a
resulting weight for the given rule. The projections of rules in dimensions

"This work was done while • visitin 8 appointment at the Department of Computer
Science, Pohan S Institute of Science and Technology, Pohang, Kyougbuk, P.O.Box 125,
790-330, Kore•
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l_ axeweightedby theseaggregatedvaluesand thenthey=recombinedin

ordertoobtaJ_a resultingconclusionseparatelyineverydimension.

" Thismethod isunapplicablewithsparsebasesasthereisno guarantee

thatan arbitraryobservationmatcheswithanyofthea_tecedents(cf.[14])-
Then, thedegreeofsimilarityis0 and allconsequentsareweightedby 0.
Some considerationsforsuchasituationaresummarizedinthenextsections.

2 The semanticalinterpretationofinference

The ruleswe dealwithinthispaperhavetheform

'If X is A_ then Y is Bi'
Such a ruleisrepresentedby relation

y)= B,(y)}

This interpretesRi as a 'fuzzypoint'inX x Y and so the whole rule

systemdescribesinsome way a fu'zyf,mctiony --_(z). For a thorough

analysisofruleinterpretationssee[1].

An observation'X /aA*' isa fuzzyv'alueofX and istransformedto

X × Y intheformofitscylindricextension

o(=,= A'(=)

•For rulesystemR = {Ri :iE N,} thefuzzyconclusioninX x Y is

C(z, y) = mazi{min{Pq(z, y), O(z, y)}

in X x Y, and its projection to Y is

B'(y) = sup=_{mazi(min{B.i(=, y), O(z, y)}

This algorithm of inference estimates the value _/ = 7_(A'(z)) by B'(y).
B'(_/) _ 0 only when the antecedent parts Ai cover the input space, i.e.
for every z there is always at least one such rule Ri that z E Jupp(Ri). In

sparse rule bases [14], this kind of inference results in no conclusion.
The approach of Tiirk§en dealing with this kind of problems [11] uses the

similarity measure of two fuzzy sets: similarity measure = ( l +distance measure) -1.
With the usual crisp distance measures of fuzzy sets, the s'tmil_ity measure

defined in this way has its range in [0,1], but it results in 0 when the two
fuzzy sets have disjoint supports. In the next, this ide,_ will be extended to
arbitrary rule bases.
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3 Gradual metric variables and fuzzy distance of
fuzzy sets

Variables in real control applications have usually comparable and measur- -

able values. In some other examples like when classifying tomatoes according
to ripeness on the basis of their colours (see [4, 6]), a similar comparability .....
and at least some 'pseudo-measurability' appears.

In [2] a very interesting interpretation of the semantic contents of fuzzy
rules is proposed:

'If X is A then Y is 23' "- 'The more X is A the more Y is B'

The idea of gradual rules in [2] is in accordance with the analogical reasoniDg
in [II] can be interpreted as:

'The more similar is z to A the more similar is _i to B.

Gradual rules exist because the variables appearing in them are gradual.
Graduality means mathematicaly that a full ordering can be defined over the
variables. In practical cases, domain and range of the variables are finite, so
max{X}, rain{X}, etc. exist. If X and Y are compound, their components
are bounded sets with a full ordering, so a partial ordering exists in both X
and Y:

xl < x2 iff Vi : x_,i < x2,i etc.

Also the overall minima and maxima exist.

Beside ordering, measurability can be observed: as e.g., 1Gr'*C is far-
ther from 12°C than from 670C, etc. So the distance of two values can be

expressed. In the case of many originally non measurable vari_._,les,some
natural mapping of the range to the interval [0,1] provides virtual mea-
surability. Variablesmeasurableinany sensewillbe named metric.Even

tomato coloursor degreesof ripenessare metricso,as a mapping from

[deep green, deep red] to [0, 1] can be introduced.
The fuzzy distance between linguistic (fuzzy) sets is defined with help of

the Resolution Principle, for pairs of fuzzy sets satisfying the partial ordering
A -4 B. -4 is introduced over _(Xi), the set of all convex and normal fuzzy
sets of Xi, so that for A, B E 7_(Xi) A -<B if

Va E (0_ 1] : inf{Aa} < inf{Bc,} and sup{An} < sup{B=}

7_.<, a subset of _52(X), is the relation of all comparable pairs:

r
• 7_.< = {(A,23)IA, B e P(X),A -< B}
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Given two fuzzy sets A and B in 7_._(A,B), the lower fuzzy distance of
A and B is

alL(a,B): -. and

_gL(am}(6)= '_. a/D(inl{Aa},inf{Ba}),6 E [0,I]or6 E [0,_/_l] .....
_,e[oa]

Similarly, the upper distance du(A , B) can be defined. In the above, D
stands for the Euclldean (or, more generally Minkowski) distance of A and
B. (For more details see [9].)

Considering R from the point of view of the Resolution Principle, every
rule is resolved to a family of a-rules:

'If X is Aia then Y is Bia'
The ,_-cuts are represented by kz- and k2-dimensionaIhyperintervals in X x
Y. Every hyperinterval has its infimum and supremum, so if a is set fix,
every rule can be unambiguously describedby a pair o/paints in X x Y i.e.
one for the intlma ('lower point') and one for the suprema ('upper point').
With finite level sets of Ai and Bi it is sufficient to represent every rule by
2{ Ui(Ag, u ABi)_ points. In such a way every rule base consisting of r rules
is represented in X x Y for given a and £ or U by exactly r points.

4 Linear interpolation of rules

Extended gradual rules can be interpreted by the simple linear ratio:

dist( A°, A1) : di,st(A', A:) = dist( B', Bl ) : dis_(B', B2)

if Al _ A" -_ A_ and Bl -_B2

Interpreting dist as the fuzzy distance, the fundamental equation of linear
rule interpolation is introduced:

d_(a_, a'): d_(.4", a2) = do(B_, B'): do(B',B2)

where a E A.,txUAa2 UAsx U AB.,

Applying the definition of d° for L and U separately, altogether 21A[
equationsareobtained.Thesecxnhesolved:

...1 inf._{BX,a} + dat,(A_,_4_,o)in/.<{B2,_)
inf._{B;} = d,,{a_ °,a_) 1 1

do/, (AI.o,A_) "_"do/, {A_,A2,o)

i
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) + !
dou(A_.o.A_) Jou(A_.A2.,) .....

So the a-level set of the conclusion is given for every cz:

B;=

and sothefuzzysetB* can beconstructed.Fig.i depictsasimpleexample

forinterpolatingthecoclusionbelongingtoa non-overlappingobservation.

On Fig.2.athea-distance(lower)fortwocomparablefuzzysetsisindicated,

b shows thefuzzydistancesets.

Itispossibletoextendtldsideatotheinterpolationof2k rules,further

on tovariousmodifiedtechniquesof:uleinter-and extrapolation.Formore

details, see [4, 5, 7, 8].

5 Approximation of the conclusion by regression

A verydifficultquestioniswhat happensiftherulebasecontainssome in-
ternalconflicts.An extremalexampleforthisisifforanya and L orU there

are two different rules in the base for which min/mazA_z_ = mi_/mazA_2o
but min/rnazBit_ _ min/mazB;2a. Then, any 'interpolation' results into
a 'perpendicular' line in 1 + 1 dimensions and no defined extrapolation out-
side the two rules. Also, in the case of simply applying the interpolation

technique for two flanking rules it is not cleax, which of the two must be
taken into consideration.

Although there is no formal strict contradiction still we face conflict-

ing evidence where the hypothetical approximation curve (e.g. polynomial
interpolation) has a too large 'amplitude' sad the interpolated parts are
very far from the area in X x Y where the _ctual rules are located. Fig.
3.a presents a case with 6 rules where the approximation carve (using the

extension of the above interpolation technique) fits the rules very well. In
b however, the curve is rather different from the obvious behaviour of the

rules, it goes outside of the 'rule area' and is rather far from the expected
. 7_(z). In such cases, instead of eliminating conflicting rules the situation

should be accepted, as it is and the solution should be looked for in the
form of some compromise and simultaneous consideration of the conflicting
rules.
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How can conflicting rules be calculated with simultaaeously? A',possible
technique is based on linear regression (see e.g. [12]). As the rule system is
representedby a setofpointsinX x Y itisreasonabletocompute thebest

• fittingstraightlineby theleastsquaremethod.In1+ Idimensionsthisis

definedby

y= ax+ b= _ x_ - _..x__..y_Irg - =p/, •+ z,/,,)
Itismuch more complicatedto treatcompound variables.IfX has kl

and Y has ks components,theleastsquareregressionwillresulta kl x k2

dimensionalhyperplane.The problemcan be alwaysdecomposed intok_
kl + 1-dimensional problems where Yi is appro.,dmated by _,_-i aljzj + bi.
So it is sufficient to examine the case with compound X but simple Y.

The solutionofthisproblemisgivenby

a = [ai] and a = _ _+lr - aT[E zij] where
j

.=(I..-E +./.l'k..-E.,/.l)-'I+,-E +.].l't,,,-E ,,,],1
j j j i

i = 1...r, j = 1...kx, [ ] stands for indicating a matrix, T is the transposed.
It is clear that this regression line or hyperplane gives a very rough

approximation of the rule base except if it has a really linear tendency.
(Seee.g.the rulebaseon Fig. 4.) So itismore reasonableto calculate

y = az + b onlyfora givenenvironmentoftheobservation:a 'window'
aroundtherespectivevalueofA'. Then,we obtainthebestfittingstraight

lineonlyfors restrictedarea.Ifthewindow isnot toolaxge,thisleadsto

a rathergood partiMlylinearapproximation.(SeeFig.5 forthesame rule

base.)
Letuscomparethewindow-regressiontechniquewiththepreviousinter-

polationlextrapolatlonmethod. WhileintheL_tteritis sufBcienttocalcu-

latethe approximationcurve(maybe partiallylinear)oncebeforestarting

theinference/controlalgorithmbasedon therules,itseemsthatbecauseof

shiftingthewindow itisnecessarytocalculatea new equationfory every
timewhen we havea new observation.Thisispainful,especiallyinthecom-

pound caseasthematrLxinversiontakesa verylongruntime.Ifthisistrue,

thecomputationalcomplexityofthenewlyproposedmethodisnotcompet-

itivewith other techniques. Luckily enough, in the case of simple variables
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and a rule base with r rules it is sufficient to calculate rnaziraally 2r different
regression lines for any fized set of points and even in the compound vari-

/" -7

able case the space X x 1_ can be divided into rnazirnally 2rkz areas where
the regression hyperplane would be different. (o and lower]upper), Proof of
thisstatementisnotverydifficult.Fig.6 depictsa simpleexamplehow to

, divideX, fortherulebaseofthepreviousfigures.A cot:sequenceisthat

when usingtrapezoidalrulesand kl+ ksvariables,altogether8k2r_regres-
sionhyperplanesarenecessarybeforestartinga realtimecontrol.So itis

guaranteedthatcomputationaltimeduringtheactualcontrolisnothigher
thaninthecaseofstraightforwardapproximation.

Significantdisadvantageofthistechniqueisthatthefunctionobtainedis

not continuous:itisa brokenllneorbrokenplaneand sotheapproximated

conclusionmightchangeabruptlywhen theobservationisonlyslightlydif-

ferent.(SeeFig. 7 as illustrationto this.)A solutionof thisproblemis

presentedby the applicationofthefuzzywindowtechnique,i.e.theabove

method ismodifiedso thattheenvironmentofeveryobservationhasfuzzy

ratherthancrispboundaries.So the abruptappearanceofa new rulein

thewindow when theobservationismoved slightlyiseliminatedcompletely:

everyruleappearingin the window isweightedby the membership value

attachedto the locationof thatrule- dependingon the locationofthe

observation- thisweightishoweververysmallifthe window isdefined

by a membershipfunctionsmoothenough.Forthispurpose,a trapezoidal

window israthersuitable.(SeeFig.8. The areaswith/_--0 and I axe

indicated,inbetween,0 </_ < I.)

It isa new problem now, how theleastsquaremethod works with

weightedpoints.Clearly,thegaininthesmoothnessand continuityofthe

approximationfunctioncostsconsiderablecomputationaltime.Becauseof

theintroductionofthefuzzy(continuousmembershipfunction)window,no

equivalentor extensionoftheabovestatementconcerningthefinitenessof

thenumber ofpossibleregressionlinesexists.The regressionllnecalculated

intermsoftheobservationiscontinuouslychanging.An exactexamination

ofthecomputationalcomplexitywillfollow.

Insteadofexaminingjustthecaseofthe fuzzywindow regressionwe

presentthe solutionof the generalfuzzyregression,where pointscan be

weightedby arbitrarymembershipdegrees.

- Supposethatwe havepoints(zi,Yl) (i = 1...r)and eachhas themem-

bershipdegree Pi. The straight line with least square sum of difference is !
then _
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Proof of this statement is by partial differentiation of the residual sum of

•. squares according to a and b.
Using the above, it is possible to approximate a L or U points of the

conclusion in _ highly flexible way: evp.nflexible windows can be applied

- as a matter of course with the computational time following from the
above equations. It is not difficult to extend the above result for compound

variable cases. Instead of giving the rather complicated equation we just

: indicate that the mean values _j zlj/r and _i yi/r must be replaced by

_,j #jzij/_.,_ I_i and _i I_iYi/_i_i, resp. further on, in all the sums zi is
replaced by pizi. It is a rather serious problem here that computational

• complexity is high, in every step of inference the inversion of several r × kl
dimensional matrices is to be done - depending on the cardinMity of hvel
sets at least 3 or 4 of them.

A further direction of this research is that ¢r_ be calculated inside the

crisp window, moreover, by using pi for weighting, fuzzy variance is obtained
which can be used for measuring the degree of conflict in the evidence of the

given rule base - on level a and L or U.
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Abstract. In rare situations like fundamental physics we perform experiments without knowing
what their results will be. In the majority of real-life measurement situations, we more or less know

beforehand what kind of i'esult_ we will get. Of course, this is not the p;edse knowledge of the
type "the result will be between a - 6 and a + 6=, because in this case, we would not need any
measurements at all. This is usually a knowledge that is best represented in uncertain terms, like
"perhaps (or "most llkely_, etc.'l the measured value z is between a - 6 and a -I-6".

Traditional statistical methods neglect this additional knowledge and process only the mea-

surement results. So it is desirable to be able to process this uncertain knowledge as well. A
natural way to process it is by using fuzzy logic. But there is a problem: we can use different
membership functions to represent the same uncertain statements, and diffdrent functions lead to
different results. What membership function to choose?

In the present paper, we show that under some reasonable assumptions, Gaussian functions
p(z) = ezv(-_z 2) are the most adequate choice of the membership functions for representing
uncertainty in mea_qrements. This representation was efficiently used in test.:ng jet engines for

airplanes and spaceships.
1. INTRODUCTION

Usually in measurement situatior,.s there is some prior knowledge. In rare situations like
fundamental physics we perform experiments without knowing what their results will be. In the
majority of real-life measurement situations, we more or less know beforehand what kind of results
we will get. Of course, this is not the precise knowledge of the type "the result will be between
a - 6 and a + 6", because in this case we would not need any measurements at aJL This is usually

a knowledgethatisbestrel"esentedinuncertainterms,like"perhaps(or_mostlikely_.etc.)the
measuredvaluez isbetweena - 6 and a + 6".

Traditionallythe uncertain prior knowledge isnot used in measurement processing.
Traditio,lalstatisticalmethodsneglectthisadditionalknowledgeand processonlythemeasurement
results.So itisdesirableto be abletoprocessthisuncertainknowledgeaswell.

#

The usage of fuzzy logicand relatedproblems. A naturalway toprocessuncertaintyisby

usingfuzzylogic[Z65].Thisway we representeverystatementofthetype"mostlike!y,[z-a[< 6"

by a membershipfunctioPp(z)thatforeachz givesusa degreeto whichwe arecertainthatthis
particularx satisfiesthegivencondition.But thereisa problem:we canusedifferentmembership

functionsto representthesame uncertainstateme_nts.What membershipfunctiontochoose?

What we are planning to do? Inthe presentpaper,we show thatundersome reasonableas-

sumptions,Gaussianfunctionsp(z)= ezp(-/_x_)arethemost adequatechoiceofthemembership

functionsforrepresentinguncertaintyinmeasurements.Thisrepresentationwas efficientlyusedin
', testing jet engines for airplanes and spaceships.
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2. MOTIVATION OF THE FOLLO_r:iNG DEFINITIONS

We must have in mind that different experts can have different opinions. Therefore

the final resulting knowledge about the value of a physical quantity does not consist of a single
statement, but can be formed by adding severM statements of several expert, e.g., "most likely,

•" Iz -al] _ 61", "most likely, ]z- a21 <_6:", ... The resulting statement is "most likely, Ix-all _<61,
and most likely, Iz-a:l <_8: .... " In order to represent this resulting knowledge we must choose some

operation * for _z. Then the resulting membership function will be equal to p(z) = _l(z)*_:(z)* ....
where/_i(x) corresponds to the opinion of i-th expert.

What &-operation to choose? Experimental results given in [HC76], [077], and [Z78], show
that among all possible operations a,b --* min(a,b) and a,b -, ab axe the best fit for human

reasoning. •

The rain operation does not seem to be adequate for our purposes, because if we use rain, then,

e.g., the degree, to which a function z(t) satisfies the condition "for all t, most likely Ix(t)[ _< M',
is equal to the minimal of the degrees of the statements "most likely, Iz(t)l <_M" for all t. This
minimum is attained when the value of Iz(t)l is the biggest possible. Therefore, the function zl(t)
that is everywhere equal to 2M, gets the same degree of consistency with the above-given rule, as
the function that is almost everywhere equal to 0, and is attaining the value 2M only on a small
interval. Intuitively, however, for the first function, for which the inequality is not true in a single
point, our degree of belief that zl(t) satisfies this condition is pr;.ctically 0, while for the second
function, for which this inequality is almost everywhere true, our degree of belief must be close to
1.

So, using rain in our problem is inconsistent with our intuition, and therefore we must use the
product for &.

Comment. Other arguments for choosing different & Operations are given in our previous publica-
tions [KR86] and [KQLFLKBR92].

We want to describe membership functions for the following statements. We are inter-
ested in describing statements of the type "most likely, [z - a[ _<6", where z is unknown, and a, 6
areknown values.So we must describe,towhat extentany givenvaluez satisfiesthiscondition.

All these membership functionscan be obtained from one ofthem. Evidently,z satisfies

the inequalityIx- aI<_6 ifand onlyifthevaluey = (x - a)/6satisfiestheinequalityIYl_ I.

Therefore,itisnaturaltoassumethatthestatement"mostlikely,Iz- a[_ 8"hasthesame degree

ofbeliefas thestatement"most likely,]Yl-_I",where y = (::- a)/6.So,ifwe willbe ableto

describea membershipfunction/_(!/)thatcorrespondstothestatement"mostlikely,IYl<-1",then
we willbe ableto describeour degreeof beliefPl(Z)thatz satisfiesthecondition"mostlikely,

Ix - a[ <_8" as p((x - a)/6). So the main problem is to find an appropriate function/4(z).

What if we ask several experts. A statement "most likely, [z - a} _<8" means that an expert
estimates z as a, and his own estimate of his precision is _ 8. Since such estimates are often very
crude, it is reasonable to ask the opinion of several experts. After we have asked k experts, we get
k statements of the same type: "most likely, Ix -ai] _<6_', where i = 1,2, .... k, and ai and 6i are

the estimates of the i-th expert. The corresponding membership functions are Iz((z - ai)/6i).

Since all of them are experts, we believe in what all of them say, and therefore our resulting
knowledge is: "most likely, Ix - all <_ 61, and most likely, Ix - as[ <_ 62, and ..." Since we
agreed to represent "and" as a product, the resulting membership function is equal to v(z) =

- - -
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Incasewe havea preciseknowledge,and eachoftheexpertsdescribesan interval,inwhich

theunknown valuez must be,theresultingknowledgeisthatz belongstotheintersectionofall

theseintervals.Thisintersectionisitselfan interval,and thereforetheonlyeffectofaskingseveral

expertsisthatwe decreaseuncertainty.We do notchangetheformoftheknowledge:itisstillan

interval,and inprincipleone smartexpertcouldhavenamed itfromtheverybeginning.

Ina similarway,itseemsreasonabletoassumethatinthegenerMfuzzycase,by combining

theopinionsofseveralexperts,we do notseriouslyadd any additionalknowledge;we may diminish
slightlyan uncertaintydomainfortheunknown z,but that'sall.

How to describethisargument mathematically:we must apply normalization.Inmath-

ematicalterms,we would liketopostulatethattheresultingmembershipfunctiono(z)coincides

withone ofthe functionsp((z-a)_),and inprincipleitcouldrepresenttheopinionofjustone _i
smart expert.

We cannot, however, postulate precisely that. The reason is as follows. The bi_er _, the
smaller is our belief that _most likely, lYl -_ 1". So, the function #(y) must be monotonously
decreasingfory _ 0. Itsmaximum m isattained,when y = 0. So,when we combinethe two _

statements"most likely,Ixl__ i",and _most likely,Ix- 0.31__I_,the resultingmembership
function v(z) -- p(z)p(z - 0.3) is always smaller than ms, because both factors are _<m, and for

_ 0 the first factor is < m, and for z = 0 the second. So even if m = I, the function _,(z) never
attains m, and thus it cannot be equal to p((x - a)/6.

The solution to this problem is well known in fuzzy logic: we can normab'ze t/(x), i.e., turn

from v(z) to z/(x) = Nv(x), where the normalization constant N is equal to N = l/(maxva/(y)).

Comment. A motivation for using namely this type of normalization is given in [KQLFLKBR92].

Now we are ready to formulate our demand.

3. MATHEMATICAL FORMULATION OF THE PROBLEM
AND THE MAIN RESULT

Definition 1. By a membership function we will understand a continuous function #(z) from the
set R of all real numbers into the interval [0,1].

Definition 2. We say that two membership functions p(x) and v(z) are equivalent if #(x) = Cv(x)
for some constant C > 0.

Definition 3. We say that a membership function #(x) is adequate for describing uncertainty of
measurements if it satisfies the following conditions:

• it is symmetric (p(-x) = i_(x)),
• p(z) is strictly decreasing on (0,co) and tends to 0 as x --* co
• for every finite sequence of pairs (al, _1), (as, _2), ..., (ak, _k) there exist a and 6 such that the

product p((x - al)/_l )l_((x - a2)/_2)...p((x - ak)/_k) is equivalent to/_((z - a)/_). /_

THEOREM. Any membership function, that is adequate for describing uncertainty of measure-
ments, is equivalent to ext_-_x) for some _ _ O.

(The proof is given in Section 5).

Comment. So we conclude that Ganssixn functions are the only adequate membership functions.
These functions are really widely used [K75], [BCDMMM85], [YIS85], [KM87, Ch. 5], etc. Al-
ternative explanation of why Ganssian functions are used is given in [KR86] and in Section 8 of
[KQLFLKBR92].
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4. HOW THIS RESULT CAN BE USED AND HOW IT WAS USED

How it can be used. If for some physical quantity z several experts give their estimates at, a2,

•.., ak, and they estimate the precision of their estimates as correspondingly 61,62, .... 66, then the .
resulting membership function is equal to p(z) - ezp(-_(z - a)_/62), where

6 = (_-2 + _-2 + ._.+ _-2)-t12 and a = (al_ "_ + ... 4- ak_'_2)/(_ 2 4- ... + 6_2).

Comments.
1. These formulas can be easily obtained by explicitly computing #(z) as a result of normalization

of the product #l(x)#2(x)...pk(z), where #i(x) = ezp(-_(z - ai)2/_).
2. These formulas are surprisingly identical with the statistical formulas that correspond to the

case when we have k statistical estimates ai with precisions 61 and apply the least squares

method _,i(a - ai)2/5_ --* maza to get the resulting estimate for a. This is not such a big
surprise, because least squares method is based on the assumption of a Ganssian distribution.
The positive side is that not only the resulting formulas are extremely simple to implement, but
maybe there is no need to implement them at all, because we can copy the existing statistical
software.

How this result was actually used. Expert estimates are extremely important in testing the

jet engines. The reason is that an important part of this testing is trying to figure out what is
going on in the high-temperature regions, and the temperatures are so high there that we cannot
place any sensors. So the only available information about these regions consists of the experts'
estimates.

One of the authors (L.R.) used this fuzzy representation of uncertainty in designing softwale
for the automatized jet engines testing system IVK-12 [KR86]. This system was actually used to

test jet engine f_r aircraft and spaceships.

Possible other applications. One area where we believe this approach can be useful is when
we determine the position of a Space Shuttle. The existiug systems use several different types of
sensors, with different precisions, and often with only experts estimates of that precision. In order
to make appropriate control decisions we must combine these estimates into a single value. Fuzzy

approach allows us to do that.

5. PROOF OF THE THEOREM

Comment. This proof contains some mathematical ideas from our previous publications [KR86]

and [KQLFLKBR92].

1. Assume that p(z) is an adequate function in the sense of the above definition. It is easy
to check that if/J(x) is an adequate choice, then the result p(z)/(rnaz p(y))of its normalization is .
also an adequate choice. Since p(z) is monotone, this maximum is attained for z = 0, and therefore
the result of this normalization satisfied the condition p(0) = 1.

So, without losing any generality, we will f_lrther assume that p(0) = 1.

2. From the definition of an adequate function it follows, in particular, that p(z)#(z) =

C#((z - a)/5) for some a,C and 5. The left hand side attains its maximum (= 1) at z = 0, the
right-hand side attains its maximum (that is equal to C) for z = a. Since these two sides are one
and the same function, we conclude that a = 0 and C -- 1, i.e., that #2(z) = u(k._z) for some
constant ks (= 1/5). For l(z) = logp(z) we conclude that 2/(z) --/(k2z).

Likewise, if we consider 3, 4, etc terms, we conclude that 3l(z) = l(kzz), 4l(z) = l(k4z), etc.

621

_._1



3. The function p(z) for z > 0 is monotonously decreasing from 1 to 0. Therefore, I(z) is
monotonously decreasing from 0 to -oo. Since p is continuous, the function/(z) is also continuous,
and, therefore, there exists an inverse function i(x) = l-l(z), i.e., such a function that i(l(x)) = x
for every z.

For this inverse function, the equality nl(z) = l(k,_z) turns into i(nl(z)) = i(l(knz)) = knz =
kni(l(z)). So, if we denote l(z) by X, we conclude that for every n, there exists a k_ such that
i(nX) = k,i(X).

If we substitute Y = nX, we cov.clude that i(Y) = kni(Y[n), and therefore, i(Y[n) =
(l/k,Oi(Y).

From these two equalities, we conclude that i((m/n)X) = (1/kn)i(nX) = (k,n/k,)i(X). So,
for every rational number r, there exists a real number k(r) such that i(rX) = k(r)i(X).

Therefore, the ratio i(rX)/i(X) is constant for all rational r.

4. Since i(X) is a continuous function, and any real number can be represented as a fimit of
a sequence of rational numbers, we conclude that this ratio is constant for real values of r as weil.
Therefore, for every real number r there exists a k(r) such that i(rX) = k(r)i(X).

All monotone solutions of this functional equation are known: they are i(X) = AXP for some
A and p [A66]. Therefore, the inverse function l(x) (z > 0) also takes the similar form l(z) = Bx m
for some k and m. Taking into consideration that #a(z) and hence l(z) are even functions, we
conclude that l(x) = BIzl_ for all x.

5. Now, from the demand that a function p(z) is adequate, we conclude that for every a > 0 we
have/z(x - a)p(x + a) "" Cp((x - ai)/6) for some al and 6. The left-hand side of this equation is an
even function, so the right-hand side must also be even, and therefore al -- 0. So,/_(x -a)#(z+a) =
Cp(x/6). For x = 0 we get p(a)p(a) = C. Turning to logarithms, we conclude that for every a,
there exists a k(a) such that l(x-a)-kl(x+a) = l(k(a)x)+21(a). If we substitute here l(x) = Blx["_,
and divide both sides by B, we conclude that Iz - alm + I_ + alm = k(a)'alzl ra+ 2a 'n.

6. When z > 0, and a is sufficiently small, then x + a, x, and x - a are all positive, and,
therefore, (x - a) TM + (3 +a) 'n = k(a)'_x '_ + 2a '_'. If we move 2am to the left-hand side, and divide
both sides by x 'n, we conclude that (1 - (a/z)) m+ (1 + (a/z)) ra- 2(a/z) 'n = k(a) m. The left-hand
side of the resulting equality depends only on z = a/z, the right-hand side only on a. Therefore, if
we choose any positive real number A, and take a' = Aa and x' = As instead of a and x, then we
can conclude that the left-hand side will be still the same, and therefore, the right-hand side must
be the same, i.e., k(a) "_ = k(Aa)'. Since A was an arbitrary number, we conclude that k{a) does
not depend on a at all, i.e., k(a) m is a constant. Let us denote this constant by !¢.

So the equation takes the form (1 - z) '_+ (1 + z)'n = k + 2z m. When z -. 0, then the left-hand
side tends to 2 and right-hand side to k, so from their equality we conclude that k = 2.

The left-hand side is an analytical function of z for z close to 0. Therefore the right-hand side

must also be a regular analytical function in the neighborhood of 0 (i.e., it must have a Taylor
expansion for z = 0). Hence, m must be an integer.

The values m < 2 are impossible, because for m = 0 our equality turns into a false equality
2 = 3, and for rn = 1 it turns into an equality 1 - z + 1 + z = 2 + z, which is true only for z = 0.
So m__2.
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Since both sides are analytical in z, the second derivatives of both sides at z -- a must be

equal to each other. The second derivative of the left-hand side at z - 0 is equ_l_to _(ns-- 1). The
second derivative of the right-hand side is equal to 2rn(m - 1)z 'n-2. If m > 2_ then lffaisderivative
equals 0 at z = 0 and therefore cannot be equal to m(m - !). So m > 2, and m cam_ be greater
than 2. Therefore, m = 2.

So, l(x) = Bx _ , and hence p(x) = exp(-/3z 2) for some _ > O.Q.E.D. i
t

6. CONCLUSIONS I

How to represent in mathematical terms uncertain numeric statements about _he _ue z of
a physical quantity, e.g., statements of the type "most likely x is between a -_ annl a + 6"? I
Reasonable arguments lead us to the conclusion that the most adequate members_ fumctions for 1

such statements are Ganssian functions p(z) = ezp(-_(z- a)2/62)" t .
I

If we use these membership functions, then we can apply simple algorithms _ cannbines the !
opinions of several experts. Namely, if k experts give estimates al,..., ak, and the2ves_thnate the J
precision of their estimates as correspondingly 61,/_a, ..., 6k, then the resulting memlm_l_ function i
is equal to p(x) = exp(-fl(x - a)2/62), where 6 = (6_"2+ 6_"2+ ... + 6"_k)-112 and

• a (al_ 2+ ...+ ak6"_)/(_: + ...+ _).

These formulas coincide with the ones that result from applying the statisticdl _ squares
method, so we do not even have to write a new software.

This approach was applied to testing jet engine for aircraft and spaceships, md _t may be
useful in many other applications, e.g., in combining the results of several coordinal_ annl distance
sensors "_nspaceship navigation.
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Life Insurance Risk Assessment Using a . .

Fuzzy Logic Expert System

-t Luis A. Can_no and Roy A. Steel
Togal Infr_ogic, Inc.

Abstract "

In this paper, we present a knowledge based system that combines fuzzy
processing with rule-based processing to form an improved decision aid for evaluating
risk for life insurance.

This application illustrates the use of FuzzyCLIPS to build a knowledge based
_: decision support system possessing fuzzy components to improve user interactions and
:: KBS performance. The results employing FuzzyCLIPS are compared with the results
_, obtained from the solution of the problem using traditional numerical equations. The
_: design of the fuzzy solution consists of a CLIPS role-based system for some factors
: i combined with fuzzy logic roles for others. This paper describes the problem, proposes a

solution, presents the results, and provides a sample output of the software product.

L0 Introduction to FuzzyCLIPS
. FuzzyCLIPS adds fuzzy processing capability to CLIPS 5.1. The architecture is a

separate processing element similar to that used to incorporate object-oriented
programming into CLIPS. The basic fuzzy constructs and function calls can be written
intermixed with usual CLIPS statements. Principal fuzzy constructs define rule bases and

, membership functions. A fuzzy membership function can be associated with a universe
of discourse. This improvement allows readable terms such as "high" and "low" t be
used in different contexts. There are also functions by which a CLIPS program can test
the degree of membershipof a sensor value, execute a fuzzy rule base that returns
defuzzified control values to CLIPS and, optionally, assert facts giving belief values for
the possibilities that might be useful in an expert system. In addition, C interface
functions support embedded fuzzy applications that can invoke the fuzzy processor
directly for speed in embedded control applications. FuzzyCLIPS is designed to be
compatible with future CLIPS versions. Like CLIPS, it can old,rate as a stand alone
programor be embedded in a larger application.

2.0 Problem Statement •
An insurance company needs to assess the degree of health risk associated with

each client based on physical characteristics such as height, weight, and age and exercise,
smoking, drinking, and eating habits. The output risk value serves as the basis for the
determination of insurance premiums billed to clients. Those premiums have a base rate
(perfect health, good habits, 35 years old) and an increment to adjust the premium based
on the risk. A system that produces a risk value between 0.0 and 1 suffices to set a net
rate. The equation is

Cost to Insure#

Client = Base Rate + ((Risk/Base Risk)-l)*Increment (1)

J
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The relation between decision factors and the ratechange need be neither incremental nor
linear, i.e., separate consideration of the decision factors may not determine a change in
rate that can be simply summed to determine the net rate. This means that the questioning
of the cfient must be controlled; it makes mysense to continue to ask a client about all
factors ff a decision on rates is possible at some intermediate point-in the interaction.
Complex nonlinearity and interdel_endenc¢ of the factors mean that computer-based

,, decision aids are useful to a hum_ agent and that sharp decision bounda_es such as
those produced by a normal rule based system am sensitive to small uncertainties in the

. input data. Fuzzy logic provides a basis for _ting such unc_tinty with
finesse.

...... The input variables of the system areof two different types: base and incremental.
The _;e type of input variables are Age (A), Weight (W), and Height (H). A derived
internal variable is the body mass index (BMI) thatestimates fimess or body fat content.
Incremental input variables deal with particularhabits and characteristics of prospective
clients. The following are considered such variables in the present example exercising
(E), _ products intake (DI), red meat intake (MI), vegetable intake (Vl), fat/sweet
intake (FSI), smoking (S), and drinking (D). The output of the system is the degree of
risk (R).

3.0 Traditional Numerical Solution
For the traditional method solution, we treat all of the variables as a number input

or a selection from a finite, discrete, closed set of possibilities. Each variable is
represented as a lookup table of intervals where the value of the corresponding is
specified for each interval. The following table presents the values of the contribution to
risk due to Age,

ale a_e-risk
0 to 30 0.25
31 to60 0.5
61 to 90 0.75
> 90 1.0

We note that this table could be used in a rule-basedknowledge system (KBS) to provide
rules of the form

,t

(age ?age&:( <= ?age 30) => (assert (age-risk .25))

(age ?agel&:( > ?agel 30))
(age ?age2&:(<= ?age2 60))(test (!- ?agel ?age7.))
=> (assert(age-risk= 0.5))
etC.

For discrete selections, the table contains the risk value assigned to each value. An
example corresponding rule is
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(smoke-_abit?input&((eq?inputO)ll(eq?input-S)...))
=> (ass_rt(smoke-factor025))

When each factor has been evaluated, the total risk is evaluated as a weighted
co--on of the risks due to various factors where the value of the weights provide
another knowledge component of the decision support system.
3.1 Body Mass Index .,

The inputs, Height and Weight, are used to obtain the body mass index (BMI).
This measure determines if a person is overweight or not. BMI is calculated by dividing

...... the Weight in kilograms by the square of the height in meters, BMI = Weight/(Height)2.
The following table shows the scale used to measure BMI and the corresponding

BMI-risk that is used latex m calculate risk.

BMI Omdititm BMl-ri_k
under 23 Underweight 0.25
23 -25 Ideal 0.0
25 - 30 Ovc:_ueight 0.75
over 30 Obese 1.0

3.2 Mathematical Model for Traditional System
In a traditional system, the first stepinthe solution of the problem is to defme a

mathematical relation between the inputs and outputs of the system. The objective is to
obtain a numerical value thatrepresents the risk of a person having medical problems due

i: to his physical characteristics and eating habits. Risk is defined as having a range of
[-0.357,i].The variousfactorsarealsoassumedtohavevaluesinthe[0,1]rangeby
mappingssimilarto thosepresentedaboveforage and BMI. A riskmeasureof I
representsthemaximum degreeofrisk,on thecontrary,a measureof0 orlessrepresents
theminimum degreeofrisk.

Ingeneral,

Risk = WBMi*(BMl-risk) + ws*(Smoking-risk) + WD*(Drinking-risk)+

WE*(Exercise-risk) + wvi*(Vegetarian-risk) + WDl*(Dairy-Products-

Intake-risk) + WMI*(Red-Meat-lntake-risk)+ WFSi*(Fat/Swcet-lntake-

risk) + WA*(Age-risk) (2) t

Constants wE and wvi a_ negative because they reduce total risk. The other weights are

- expected to be positive. Values of the weights are based on the corresponding factor's
effect on the overall degree of health of a person.

3.3 Effects of Habits (Incremental Inputs)
In addition to age and BMI, factors reflecting a person's habits contribute to risk

assessment. These are generally harderto quantify and are often described by qualitative
terms such as "I smoke a little" or "Icat lots of vegetables." There are two approaches



that are used to handle such data. The normal one is to attempt to quantify the habit in
terms of frequency of participation and quanfi_ of mamrial, time, or activity concerned,
much as the sc,:entistwho studies effects of various habitson health risk quantifies inputs
to the evaluation experiments. The other approach is tc classify estimates of activity
frequency and level into literal categories from options to the respondent For example,
exercise might be analyzed from a more complicated userinterface

Level Freq,_-_ "i",_,_
" _aerobic _very frequent _w_g or treadmill
• _strength building _frequent _jogging

_other _ sometimes _lift weights
• _active work _occasionally _exercise machine

do not exercise _never _water sports
_team sports
_skating
_skiing

The disadvantage of such an approach is that a need for understanding the respondenfs
meaning for a term means ambiguity in the input data and stress for the respondent in
deciding which category fits his case. In gencral, more complex interfaces are required to

• provide sufficient detail or correlations from which to extract information about whether
the user understandsor is trying to bias answers in his favor.

A user interface in which the user chooses values for frequency and intensity

against an arbitrary scale (e.g., "on a scale of I to I0, how much do you drink?)
introduces the potential to fuzzily the input to conduct reasoning with correlation and
interpolationbetweenbenchmarksorway points.

Qualitative values indicating the change in risk due to various habits is shown
below.

Health Risk
l_i_Iclncrea_-_ Neutral Ri_k Decre_ces

Smoking High Med None
Drinking High Med None
Exercising Low Med High
Vegetable Intake Low , Med High
Red Meat Intake High Med Low

.: Dairy Intake High Med Low
- Fat/Sweet Intake High Med Low

Q

,..__. 4.0Fm_y LogicSolution
Ina fuzzy!ogicbasedsystem,an expertdefinestherules.Suchrulesarcusedto

describethecharacteristicsof theriskassessmentforeachfactor.Lateron,theinput

" variables are matched against the set of roles to .producethe appropriateoutput.Each one
of the fuzzy variables contributes to the output of the system depending on how many
rules are fired for each particular input vmiable. Fig. 1 depicts aschematic fuzzy decision
support system. For fuzzy reasoning we use a max-dot inferencing technique, and
centroid defuzzificafion technique.
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For thi_ particularexample, four different sets of fuzzy rules are defined. The first
rulebasc relates a risk_l to age and BlVff.The scco .ndrulc.b_screlates a risk_7,to smoking

and drinking habits. The third rulebase relates a risk_3 to the amount of exercise and
intske of vegetables. The last rulebase _lates a risk_4 to intake of dairy products, red
meat, and fat and sweet products. A fifth rulebase relates risks 1-4 to the overaltrisk to
complete the risk assessment. The importance of breaking down the problem into smaller
related groups is the fact that the number of rules needed to control the system decreases %

dramatically. In our example, the number went down from 4* 37 (8748) roles to a
maximum of 313 rules.

After calculating the BMI and having obtained the age from the user interface, an
" initial measure of risk, risk_l, is obtained. This measure serves as the basis for

subsequent decisions. If the risk obtained is considered by the system as very high, no
further inquiries of the user axe necessary. On the other hand, if the risk obtained is
considered low, medium, or high, furtherinquiries into the client's habits arenecessary to
produce a more meaningful result.

The output of the system consists of a crisp valuc for Risk in the range [0, 1]. The
system also produces a truth value associated with each output fuzzy set, i.e., the degree
to which each fuzzy set defining risk contributes to the output value of risk.

Fig.lA schemadcviewofthefuzzylogicriskassessor
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4.1 Membership Functions
.... In-order to solve the problem using fuzzy logic m_xls, we defined sets of

membership functions associated with each variable

A LO,Med,Hi
BMI Under, Ideal, Over, Obese
Risk_n Low, Medium, High, Very High

f

The universe of discourse for each of the above fuzzy variables is [0,1] for each risk
• (Fig. 2), [0,40] for BMI (Fig. 3); and [0,100] for Age (Fig. 4).

Low, Med Hi VeWHI

RiskIml

Fig. 2 Risk Membership.Functions

Under Ideal Over Obese

BMI

Fig. 3 BMI Membership Functions

0 so 10o _e[_

Fig. 4 Age Membership Functions

4.2 Rules

A sample of the fuzzy logic rule set for Risk, based on all the inputs as a whole,
can oe seen in the following table.
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RISK A BMI E VI DI MI FSI S D

Lo Ideal Med Hi Med Lo Lo Lo Lo
Low -Lo Ideal Hi Med Lo Lo Lo Lo Lo

Lo Ideal Lo Hi Lo Lo Med LO Lo

Med ideal Lo Lo Hi Hi HI Lo Lo ._
Medium Med Over Med Med Lo Lo Med Med L9_

Lo Over Lo Lo Med Hi Hi Lo Med •

M_ Obese Lo Hi Lo Lo Hi Hi Lo

High Med Over Lo Lo Med Hi Hi Hi Med
Hi over Lo Lo Hi Med Med Med Med

..... Med Obese Lo Lo Lo Hi Hi Med Hi ....
Very Hi Obese Lo Lo Hi qi Hi Hi Med
High Hi over Lo Lo Hi Hi Hi Hi Hi

As explained earlier, a mlebase with that many inputs is difficult to implement
due to the large number of possible combinations of the input variables. Examples of
fuzzy rules, using the alternative approach of breaking down the input variables into
smaller and related groups, is shown next.

IF A is Hi and IF S is HI and
BMI is Obese D is L

THEN Risk_l is Very High THEN Risk..2 is High

IF E is Hi and IF MI is L and
VI is M DI is M and

THEN Risk 3 is Low FSI is M

THEN Risk_4 is Medium • "

In the application, five mlebases are defined. As explained earlier, each one produces a
partial risk that is merged at the end of processing to produce a final assessment of risk.
Such risk is compared with an ideal risk called base risk. The base rirk is the risk
a_sociated with a 35 year old with the following physical characteristicsand
drinking/eating habits ideal BMI, non smoker, low consumption of alcohofic drinks, low
consumption of dairy products, red meat products, and fat/sweet products, high
consumption of vegetables, and high amounts of exercise. The total risk of a particular
person is calculated and substituted in Eq. (1) to produce a premium amount.

4.3 User Interface

There are two special cases in the processing ot the problem. First, if the initial
risk, based on age and BMI, is greater than 0.8 the risk is considered very high.
Therefore, no need for further processing of the system. Second, if the initial assessment
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of BMI is greater than 30, meaning the person is obese, questions n:laled to the habits of
consumption of dairy products, red meat, and fat/sweet products areomitted. Otherwise,
the user interface is the same as L_atfor the numerical method.

5.0 Results and Conclusions
To compare the methods, sample datawas created andprocessed by both versions

of the program. The sample data consists of a group of persons with the same esfing and
exercise habits, the only variant is the age of the individuals. The constantcharacteristics
can be seen in the following table.

BMI S D VI FSI E DI MI
Ideal no L H L H L L

.... The values of age used were m the range [20, I00]. The results wexe as expired. For the
traditional method, we can see abruptchanges in the value of risk associated with ages at
the edges of the intervals, as observed in figure 5, the value of risk jumps from age 30
and then continues constant until it reaches the age of 60 where it jumps again. The
process is _'epeatedat age 90.

For the fuzzy logic solution, as observed in figure 5, no sharp diffezences are
produced a: any specific age, i.e., the values of risk increase smoothly along the whole
universe of discomse. The fuzzy system produces more realistic values for different ages,
specially for those cases in which the age..varies h'om 30 to 31, 60 to 61, or 90 to 91.

[q]sk _

TradNonal Method

Age 1

24 25 30 31 40 41 50 51 60 61 7071 60 61 90 91

Fig. 5 Risk for Traditional Vs Fuzzy Logic Method
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6.0 Sample Output
The application program described in this document, was writtenusing the alpha

version ot FuzzyCLIPS. It generates an interactive session, m which the user is
questionedin order to gather infmmation about a client's physirxd characteristics,
exercise habits, and eating and drinking habits.
Aft¢_receiving all of the informatibfi needed, lhe partial values of risk are determined,
and a final summary report is produced. It consists of the four partialrisks and its values, -_
the total value of risk, the value of the base risk, explained earlier_the ratio of the total to

risk, the annual insurance premium, and the individual coctribufions of each
membership function by risk and its predicatevalues.
*************************************************

SUMMARY

basedon

age andbmi > 0.318
smoking/drinking .> 0.600
exercise/vegetable intake > 0.400
fat intake -_ ,> 0.842

total risk --> 0.547
BASE RISK => 0.344

RATIO total/base risk => 1.59
*************************************************

YOUR ANNUAL PREMIUM IS _> $ 1941.13
*************************************************

INDIVIDUAL MBF CONTRIBUTIONS BY RISK
*************************************************

Fat intake Risk -_--_> MBF VH Degree of Truth 1.0
Exer/Veggies Risk =>MBF H Degree of Truth 4.2e-005

Exer/Veggies Risk =>MBF M Degree of Truth 0.99
Srnoke/DrinkRisk _>MBF H Degree of Truth 0.99
Smoke/Drink _ -->MBF M Degree of Truth4.2e-005

Age/BMI Risk _---_--->MBF M Degree of Truth 0.587
Age/BMI Risk --_-> MBF L Degree of Truth 0.412
**************************************************

7.0 References

1. FuzzyCLIPS Reference Manual, Vol. 1, Basic Programming Guide, Alpha Release,
Oct. 19, 1992.
2. CLIPS Reference Manual, Vol 1, Basic Programming Guide J$C-25012, NASA/JSC
Sept. 10, 1991. .
3. The ",IewGood Housekeeping Family Health and Medical .......
Guide, section three, p. 608-615, (Hearst Corporation, New York, 1989).
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