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Abstract

A source of space station attitude disturbances is identified. The
attitude disturbance is driven by internal space station motions
and is a direct result of conservation of angular momentum.
Three examples arc used to illustrate the effect: a planar threc
link system, a rigid carrier body with two moveable masses, and
a nonplanar five link system. Simulation results are given to
show the magnitude of the attitude change in each example.
Factors which accentuate or attenuate this disturbance cffect are
discussed.

Introduction

A variety of nonclassical, inherently nonlinear dynamic modelling
and control problems have been investigated recently. These
investigations have revealed new possibilities for controlling
certain systems and new explanations for certain sources of
disturbances. These ideas are directly related to control and
disturbance analyses for the space station.

For example, a planar multilink system can be reoriented to an
arbitrary attitude using only internal motions [1], [2]. Interal
motions are executed in the shape space, defined by the relative
angles of the links, to achieve a desired change in the absolute
orientation. This effect can be extended to nonplanar multibody
systems (as shown in an example given later) to allow arbitrary
reorientation.
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This paper illustrates these cffects for the space station through
several examples. These examples serve to illustrate the
magnitude of this disturbance effect, as well as to distinguish this
disturbance from other disturbances such as atmospheric drag and
solar wind. The emphasis in this paper is on internal motions of
the space station, driven externally or internally, which can resuit
in an attitude change of the space station.

Space Station and Large Space Structures

Design of the space station (or other large spacecraft structures)
is presented with competing requircments. Of particular focus
here is the requirement to maintain stable pointing of the overall
structure in the presence of additional requirements to point
antennas and payloads, stabilize appendages, and conduct internal
operations.  For instance, the momentum management and
attitude control system for the space station must provide space
station attitude control within § deg of the local vertical and local
horizontal lines, with an attitude rate boundary of 0.02 deg/sec.
The design goal for nominal operation is to maintain the station
attitude excursion to less than 0.2 deg from the average
equilibrium attitude and the total attitude within § deg of the local
vertical and local horizontal lines. The attitude excursion is
relaxed to | deg during attitude seeking [6]. Nominal operations,
however, include astronaut activities, solar panel actuation,
antenna actuation, and many other potential disturbances.

We are interested in exploring a particular class of disturbances
that can modify the attitude of the space station. Some elements
of the space station that may produce such attitude disturbance

effects include:
An example [3] of a rigid body with point mass oscillators also
illustrates this effect. In this example, point masses move in slots

m‘-«“rﬂ:ﬂ%ﬂu motivated by the attitude drift
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1) Motions of flexible bodies, such as solar arrays, connecting
beam structures, and laboratory modules, excited by external or
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into place to define new overall configurations.

3) Internal motions of astronauts, servicing robots,
centrifuges, and circulating pumps. For the space station, a
servicing robot has been discussed that would traverse the beam
sections of the space station.

Effects of the above three classes of configuration changes are
illustrated by three examples.

Example 1: Planar Three Link Model

Consider a planar model of a space station with central body and
two rigid appendages (figure 1). Appendages could represent
mechanical links, such as the space station beta joints, or they
could represent a lumped parameter approximation of a large
flexible structure. The model is characterized by (1) the distance
between each link center of mass and the connecting link hinge
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Figure 1: Planar Three Link System

points, (2) the mass and inertia of each link. The appendagesare
restricted to move as rotational links only. The configuration
space is given by the two hinge angles (¥,, ¥;) and the overall
orientation of one of the links, §. The shape space is given by
the two hinge angles. This type of dynamic system has received
much attention in the literature [1], [2}, [7], [8). We are
interested here in a modification of the special kinematic case
presented in [7]. Our modification includes an offset of the
middle link center of mass from the line connecting the two hinge
points. The model can also be extended to include additional
links; however, three links are sufficient (and necessary) to
illustrate the attitude change effect.

The primary relation of importance for our discussion is the
angular momentum expression for the system. Since we are
considering zero external torque on the system, angular
momentum is constant throughout the motion of the appendages.
The angular momentum g is written as:

BT (W, 92) 0N, (W, 90 ¥, oMy (9, 90 %, (1)

where

J(¥,, ¥,) =k, +k,co8 (¥,) +kycon (§;) +kcos (¥, +¥,)
+kgsin(y,) +ksin(y,)

N (¥,.9,) sk, +k,con (§,) +k,cos (¥,)
+kiocos (¥, +¥,) +k,,9in(¥,)

N, (¥,,¥,) =k, +k,co8 (¥,) vk, ,cos (¥,)
+k;qco8 (¢, +¥,) +k qain(y,)

The constants k, through ks are functions of the link kinematic
parameters only [8]. Note that the angular momentum is not a
function of the orientation angle. The Lagrangian function
constructed for this system would show that 8 is ignorable. We
assume that the appendages are excited according to:

Further, this excitation is persistent for a long period of time
(several orbital periods). The excitation is characterized by (1)
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¥,(¢) =asin( @) +¥y,

(2)
2 +$,) ¥y

¥,(t) =asin(

a phase difference between the two appendages (¢, = ¢.), and
(2) a nonzero mean value (Y, # 0 and Yy # 0). The
importance of these two assumptions is explained later.

In order to make our results concrete, a set of parameters is
selected for this example, representing an approximation of a
large space structure with two flexible appendages (see table 1).
For this example, ((,®y) = (0.0, 7/2), (Y10,¥n) = (78, 7/8),
and a=x/8 rad. For this system, sinulation results clearly
indicate that there 18 a small but steady dnift in the orientation
angle of the base link (figure 2).

Table 1: Parameters for 3 Link System

. L= 2 Lok 3
311 = 0 m 21 = 20 m 432 = 20 =
@2 = 20 m q23 = 20 m 93l =20 m
jm1 = 30CO kg a2y = 0= m3 = 3000 xg

PY = 2 3 @e5 xg-m"2 m2 = 8000 g
1 2 =20 @6 kg-m2

13 2 3 85 xg-r2
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Figure 2. Orientation Change for 3 Link System

Example 2: Rigid Body with Moveable Point Masses

Consider a model of a rigid space station module with two
internal moveable masses, for instance representing astronaut
motions, mobile robot motions, or a centrifuge facility (figure 3).
This model is an adaptation of a model originally presented in
(3]. The model is characterized by (1) the path along which the
masses move, and (2) the carrier body inertia matrix and the
masses of each element. For this model, R € SO(3) represents
the orientation of the carrier body with respect to the inertial
frame and q, and q, are the position vectors of the oscillators
with respect to the carrier-fixed frame. Also, Q is the angular
velocity of the body in the carrier frame, I, is the inertia matrix
of the carrier body, and (™) represents the skew symmetric matnx
formed by the components of ( ) under the standard isomorphism
“:R? = s0(3) given by:

6 -Xx, x1}
- 0 - 3
(%5 25, X4) _g Y 3)

The important relation here is the angular momentum expression.






are integrated to obtain the base body attitude, expressed in Euler

coordinates:
W . sin(é)
rotation \E v '- uy sin (0)
rotation \“
Jirection
direction T
i
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o : Several cycles of the joints were used in order to illustrate the

Figure 6: Five Link Nonplanar System orientation change. The resulting motion of the orientation
angles is shown in figure 8.
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A sequence of three major motions is performed. Each motion
segment consists of 8 movement of the two coplanar hinges while
the other two hinges are held fixed. For simplicity, we choose
motions that consist of square paths in the shape space. The
entire sequence consists of a segment using the inner joints, then Q‘k R ) )
the outer joints, and finally the inner joints again (figure 7). ° > Rt "> 200 220
Parameters for this example are shown in table 3.
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Figure 8: Attitude Drift for Five Link Nonplanar System
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M-”( 2, 1, 4y 9) Some planni_ng for "controllable” .motions like robot and astronaut
Ty, o9, 0 paths can mitigate some of the disturbance effects. These might
be analyzed using equation 9 or the enhanced disturbance map

givenin [11]. The investigation of attitude changes from internal

where
N motions is important to minimize fuel required to operate the
f\-—i‘ momentum management system on the space station.
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