N93-30721

Office of Aeronautics, Exploration and Technology

=29-35 175312 P. 5

Workshop Conclusions Technology Transfer and the Civil Space Program

John C. Mankins OAST Space Technology Directorate Program Integration Office

March 19, 1992

NASA

National Aeronautics and Space Administration

WORKSHOP OBJECTIVES

- WORKSHOP OBJECTIVESINCLUDED:
 - REVIEW THE INTEGRATED TECHNOLOGY PLAN (ITP) AND CIVIL SPACE RESEARCH AND TECHNOLOGY PLANNING, AS WELL AS CURRENT CIVIL SPACE TECHNOLOGY TRANSFER ACTIVITIES
 - ---- DEVELOP A COMMON FRAMEWORK FOR ANALYSIS AND DISCUSSION OF THE PROBLEM
 - IDENTIFY GENERAL ISSUES, SPECIFIC TECHNOLOGY TRANSFER BARRIERS AND OPPORTUNITIES FOR IMPROVEMENT
 - IDENTIFY CURRENT & POTENTIAL ROLES IN TECHNOLOGY TRANSFER
 - ASSESS EXPERIENCES AND OPTIONS ACROSS A BROAD RANGE OF PARTICIPANTS, AND IDENTIFY ALTERNATIVES FOR ACTION

Technology Transfer

WORKSHOP PARTICIPANTS

NASA

- OAST, OAST/Space Technology Directorate, OAST/HPCC, OAST/NASP
- Office Of Commercial Programs

GOVERNMENT

- Department of Commerce (Tech., Space)
- Department of Transportation (Space)
- Department of Energy (Tech., Space)
- Department of Defense (SDIO, USAF, ONT, DDR&E)

EXTERNAL

- Boeing
- Rockwell
- Lockheed
- **McDonnell Douglas**
- General Dynamics
- GE & GE Aerospace
- Allied Signal, Inc.
- **David Sarnoff Research Center**
- 3M/National Media Laboratory
- Grumman
- TRW
- Futron
- Hughes

NASA Field Centers: LeRC, LaRC, JPL, GSFC, JSC, MSFC, SSC, KSC

- DOE Labs (SNLA, LANL, ORNL, INEL)

- DOC Organizations (NIST, NOAA)
- Office of Management and Budget
- Congressional Budget Office
- Aerospace Industries Association
- University of Texas, Austin George Washington University
- University of Florida (RTTC)
- National Technology Transfer Center
- Johns Hopkins University (APL)
- Harvard/Smithsonian Center for Astrophysics
- **Electric Power Research Institute**
 - Chemical Waste Management, Inc.
- PSI
- BDM

Martin Marietta

Technology Transfer

and The Civil Space Program

THE WORKSHOP WAS A "SUCCESS" EACH OF THE WORKING GROUPS PROVIDED SIGNFICANT NEW INSIGHTS A CONSENSUS WAS REACHEDON SUMMARY FINDINGS AND **RECOMMENDATIONS FOR A "PLAN OF ACTION"**

WORKSHOP RESULTS SUMMARY

- SOME OF THE RESULTS OF THE WORKSHOP ARE SUMMARIZED IN A MATRIX. IT PROVIDES CURRENT OR POTENTIAL MECHANISMS DISCUSSED AT THE WORKSHOP MAPPED INTO: nitār s
 - (1) TECHNOLOGY TRANSFER SECTORS (E.G., NASA TO NASA, GOVERNMENT TO GOVERNMENT, ETC.), AND
 - (2) AREAS OF TECHNOLOGY TRANSFER STRATEGIES (E.G., INFORMATION & COMMUNICATIONS, INSTITUTIONAL, ETC.)
- IN ADDITION, STRUCTURAL (OR PROCEDURAL) FACTORS ARE LISTED WHICH CUT ACROSS MULTIPLE SCTORS AND STRATEGY AREAS

Technology Transfer

and The Civil Space Program

Ē Ī

Ē

Ī.

Ξ

Ī

ľ

Ξ ì

STRATEGIES AND MECHANISMS SUMMARY MATRIX

	COMMUNICATIONS	INSTITUTIONAL	COORDINATED R&T	
TRANSFER WITHIN NASA	STRATEGIC PLAN'G (ITP) SYSTEMS ANALYSES	GUEST RESEARCHERS GUEST PROFESSORS	DEMONSTRATIONS FLIGHT EXPERIMENTS TECH'TRANSFER PILOT EXPERIMENTS	GUEST INVESTIGATORS
TRANSFER WITHIN THE GOVERNMENT	SPACE TECHNOLOGY INTERDEPENDENCY GRP PLANNING COORD. DATABASES	TRANSFER-FOCUSED INSTITUTIONS	FACILITY UPGRADES DEMONSTRATIONS FLIGHT EXPERIMENTS	SPACE TECHNOLOGY INTERDEPENDENCY GRP JOINT R&T (WITH NASA)
TRANSFER WITH THE AEROSPACE INDUSTRY	PUBLICATIONS IRAD REVIEWS SYSTEMS STUDIES	CLEAR TECH' TRANSFER CHARTER SBIR PROGRAM R&T FACILITIES POLICY TECH' TRANSFER TRAIN'G	DEMONSTRATIONS FINANCIAL INCENTIVES CONTRACT R&D TECH*TRANSFER FUNDS	PERSONNEL EXCHANGE
TRANSFER WITH THE GENERAL ECONOMY	INFO. ON COMMERCIAL TECHNOLOGIES WORKSHOPS RFPs INQUIRY SUPPORT	TRANSFER 4: DUGED INSTITUTE NIDL, NML, AMTECH SDIOMMC OPTICS LAB NTTC, RTTC'S	SPACE QUALIFICATION OF COMMERCIAL TECH. CRADA'S TECH'TRANSFER FUNDS	DIRECT TECHNICAL ASSISTANCE
STRUCTURAL FACTORS	REWARDS TECH*TRAN PERSONNEL ISSUES/POLICY PROCUREM INTELLECTUAL PROPERTY RIGHTS STANDARDS		SFER MEASUREMENT ENT PRACTICES	· · · · · · · · · · · · · · · · · · ·
Technology Transfer				

and The Civil Space Program

SUMMARY FINDINGS

PRINCIPAL FINDINGS

- TECHNOLOGY TRANSFER, INCLUDING THAT SUPPORTING U.S. COMMERCIAL COMPETITIVENESS, NEEDS TO BE A MISSION OF NASA AND CIVIL SPACE PARTICIPANTS FROM ALL SECTORS
 - THIS IMPLIES A NEED FOR BOTH NEAR-TERM ACTIONS AND A LONG-TERM COMMITTMENT TO TECHNOLOGY TRANSFER EFFORTS
- A COMMITTMENT MUST BE MADE TO PLAN TECHNOLOGY TRANSFER INTO SPACE R&T EFFORTS — INCLUDING:
 - POTENTIAL RESOURCES
 - MEASUREMENT SYSTEMS
 - SENIOR MANAGEMENT FOCUS
 - CUSTOMER INVOLVEMENT
 - PERSONNEL TRAINING

Technology Transfer

SUMMARY FINDINGS (CONTINUED)

ADDITIONAL FINDINGS

- her det and a ca

- TECHNOLOGY TRANSFER REQUIRES MEANINGFUL CUSTOMER INVOLVEMENT EARLY AND THROUGHOUT THE TECHNOLOGY DEVELOPMENT PROCESS
 - INCLUDING ALL TYPES OF 'CUSTOMER" (E.G., INDUSTRY)
- THERE IS A REQIREMENT TO PROVIDE REAL INCENTIVES/REWARDS TO MOTIVATE TECHNOLOGY TRANSFER (AT ALL LEVELS OF THE ORGANIZATION, AND WITHIN ALL SECTORS)
- THERE IS A NEED TO FOCUS MANAGEMENT ATTENTION AT ALL LEVELS ON REMOVING TECHNOLOGY TRANSFER IMPEDIMENTS, INCLUDING PERSONNEL, ORGANIZATIONAL, LEGAL FACTORS, AND PROCUREMENT PRACTICES
 - ORGANIZATIONS MUST AGRESSIVELY PURSUE IMPROVED COMMUNI-CATIONS RELATED TO TECHNOLOGY TRANSFER (BETWEEN ALL SECTORS)
- THERE IS A NEED FOR CLEAR POLICIES (AND MECHANISMS, AS APPROPRIATE) TO IMPLEMENT 'BRIDGING' EFFORTS - INCLUDING DEMONSTRATIONS, FLIGHT EXPERIMENTS, AND REQUIRED FACILITIES DEVELOPMENTS

Technology Transfer

and The Civil Space Program

ł

Ī

ł

Technology Transfer

WORKSHOP SUMMARY: REPORT PLAN

- DRAFT WORKSHOP REPORT IS DUE TO THE PARTICIPANTS IN 45
 DAYS OR LESS (STARTING ON MARCH 19, 1992)
- PARTICIPANTS WILL REVIEW AND RETURN COMMENTS WITHIN APPROXIMATELY THREE WEEKS FROM THE TIME THEY RECEIVE THE FIRST DRAFT
- GOAL: WORKSHOP REPORT WILL BE PUBLISHED WITHIN 120 DAYS

Technology Transfer

ŧ

١.

Ī

.