N93-30726

■ Office of Exploration ■

524 35 175319 P 10

EXPLORATION TECHNOLOGY PRIORITIZATION

NASA INTEGRATED TECHNOLOGY PLAN INPUT

REVISED PRIORITIZATION CRITERIA FOR THE NEAR-TERM SEI TECHNOLOGIES

= N/S/

Office of Exploration

Assumptions

- Two prioritized list are developed: one for early manned Lunar missions and one for permanently manned Lunar missions and Mars
- No priority is implied within a group
- First Lunar outpost, missions and design guidelines dated 1/7/92 and SEI Strategic Plan Dated 12/10/91 are used for mission requirements
- Early manned Lunar mission by 1999 with up to 45 day stay capability for a crew of 4
- No long-term cryo storage required for initial Lunar missions (storable return propulsion)
- Emphasize common Lunar mission Mars mission technology and H/W and S/W
- All technology will be developed to TRL 5 or 6 prior to project start (Phase C/D)
- Required permanent Lunar and Mars technology/advanced development will be initiated between now and 2000
- All technology/advanced development must have clearly defined cost/benefit justification or mandatory mission need rationale
- NTR development in critical path for manned Mars mission
- Mars missions will include stays of up to 500-600 days at Mars
- For each project advanced development starts before project start at Phase C/D and terminates within the year PDR is held

PRIORITIZATION CRITERIA

		Office of	Exploratio
- N/S/\			
NOTE: This chart is used to develop the technology needs for the	SEI missions		•
NOTE: This chart is used to develop the technology most of the		Rating	
	High	Medium	Low
Mission Leverage	nigii	Wiediam	•••
 Performance leverage of technology to system, mission, and crew 			
 Ability of technology to reduce risk to crew and mission 			
 Ability of technology to reduce cost by reducing Earth delivered mass and life cycle costs 			
- Evolution capability			
 Ability to support multiple missions (commonality) 			
• Timing	Long	Medium	Short
- Development time to reach TRL 5 (years)	T>=8	3 <t<7< th=""><th>T<=3</th></t<7<>	T<=3
 Time needed before project start (years) 	T>=8	3 <t<7< th=""><th>T<=3</th></t<7<>	T<=3
Special Factors	High	Medium	Low
- Transportability/spin-off to commercial sector	•		
 Ability to stimulate universities and public for support of mission 			
Bareau2/Smith/Technology Priorit; allion/Technology Need 2/5/92 Ver 1/1-31-82	•		
Districtions (agency) , transcription			

....

■ Office of Exploration ■

1992 - 1995 CRITICAL TECHNOLOGIES

PRELIMINARY CRITICAL TECHNOLOGY PRIORITIZATION FIRST LUNAR OUTPOST (1992 - 1995)

- N/S/

Office of Exploration

Category 1 Priority (Near Term)

- Lunar EVA Systems
 - Durable, lightweight, high mobility suit and EVA gloves
 Lightweight, serviceable, PLSS
- Autonomous Terminal Landing

 - Sensors S/W algorithms Hazard avoidance

- Cryo Fluid Systems
 - Cryo storage Cryo transfer (zero-g)

Heat rejection

Quick disconnect couplings

Long-life energy storage

Surface Power - Non Nuclear
 High efficiency thermal to electric conversion

Zero-g gaging

- Life Support
 Contamination and particulate control
 Contamination and particulate control
 Contamination and particulate control Trash & waste/collection & processing
 - Loop closure

Category 1A Priority (Mars and Permanently Manned Lunar Missions)

- NTP
 - Fuel development Turbo pumps

 - Test facility
 - Reactor dévelopment
- Surface Habs and construction
 - Radiation shielding Dust control

- Surface nuclear power
 - Power conversion Radiators
- ISRU (Technology demo capability)
 Oxygen process chemistry
 Mining
 Construction material test

Ver. 1/1-31-92

NASA

(1995 +)CRITICAL TECHNOLOGIES

PRELIMINARY CRITICAL TECHNOLOGY PRIORITIZATION PERMANENTLY MANNED LUNAR AND MARS MISSIONS

= $N \times \Lambda$

(1995 +)

Office of Exploration

Category I (Highest Priority)

- NTP
- Mars EVA Systems
 - Durable, lightweight, high mobility suit and EVA gloves
 - Lightweight, serviceable, PLSS
- Surface Power Nuclear

- Life Support Systems/Thermal Control Systems (Long-term use)
- Radiation Protection
 - Light weight shielding
 - SPE prediction
 - Transport code validation
- ISRU
 - Liquefaction
 - Materials compatibility
 - Electrolysis technologies

Category II

- Planetary Rovers
 - Motors lubricants (Long-term use)
 - Dust control
 - Power

- Telerobotics
 - Sensors
 - Vision
 - End effectors
- Aerobraking
 - TPS
 - CFD codes

ith/Technology Prioritization/Technology Need 2/5/92

- High temperature structural material
- Adaptive GN&C

Ver. 1/2-3-62

TECHNOLOGY NEEDS

- N/5/\

Office of Exploration

Technology Category

EVA Systems

Technology Areas

- · Durable lightweight dexterous high mobility suit
- · Lightweight, serviceable PLSS
- Highly dexterous gloves

Environmental dust control

Benefits/Leverage

- Increase crew safety and EVA productivity
- · Reduce suit servicing time
- · Enabling for use on surface
- Lower life cycle cost
- Evolvable technology baseline for Mars

Performance Goals

- EVA system lifetime: ≥ 5 yrs
- Duty cycle: ≥ 200 days/yr @ 6-8 hrs/day
- Suit oper. pressure: 3.8 6 PSIA
- Lunar EVA system mass: ≤ 110 Kg venting

≤ 125 Kg regen.

Mars EVA system mass: ≤ 90 kg venting

≤ 70 kg regen.

Technology Readiness Dates

- · Current TRL: 3 4
- Required time to reach TRL 5: 3 years

Need dates: Lunar: 1996

Mars: 2000

AM 1/1-21:

- N/S/

Office of Exploration

Technology Category

Surface power-non nuclear

Technology Areas

- Long-life energy storage, e.g., regenerative fuel cells (RFCs)
- Power management and distribution (low mass, long duty cycle, low maintenance)
- Thermal control (high efficiency, long duty cycle, long-lived, low maintenance)
- Generation: solar PV

Performance Goals

RFCs: Specific energy: 670w-HR (Lunar)

200 W.HR (Mars)

- Specific power: 250 w/kg (Lunar and Mars)
 System efficiency: 65% FC, 90% electrolyzer
- Lifetime: 500 4000 hrs (SOA) ≥20,000 hrs (advanced)

PMAD: 20 kg/kW

Generation: PV arrays 300 W/kg (Lunar)

80 w/kg (Mars) ≥40,000 hr.lifetime

Benefits/Leverage

- Reduced mass
- · Reduced maintenance
- · Improved reliability, lifetime
- · Increased performance
- · Applications to terrestrial systems

Technology Readiness Dates

Current TRL:

3 - 4 Storage

4 PMAD

4 Thermal

4 Generation

Years to TRL 6: 4 - 6

TECHNOLOGY NEEDS

— N/S/\

Office of Exploration *

Technology Category

Autonomous terminal landing

Technology Areas

- · Hazard avoidance
- Sensors
- · S/W algorithms
- Adaptive mechanisms and effectors

Performance Goals

- Landing accuracy: ≤ 100 m
- Hazard avoidance: ≥ 1 m (surface hazards)
- Hazard endurance: ≤ 1 m (surface hazards)
- Reliability: ≥ 99% probability of safe landing

Benefits/Leverage

- · Reduce ground support
- Reduce EVA support for vehicle mating
- Allow landing if crew unable to manually perform task
- Land at predefined coordinates
- Robotic Mars missions to return samples from rover is enabled

Technology Readiness Dates

- TRL: 3-4
- 2 4 years to TRL 5

Need dates: Lunar: Robotic: 1993

Outpost: 1995

Mars: 2000

$= N \wedge S \wedge$

■ Office of Exploration :

Technology Category

Cryogenic Fluid Systems

Technology Areas

- Cryo storage (Thermal & Pressure Control)
- Cryo management for propellant slosh control and acquisition
- Cryo transfer for in-space fueling/refueling
- Cryo zero-leak quick disconnect coupling and zero-G gaging system
- Cryo production on planet surface

Benefits/Leverage

- Enabling for in-space assembled space transfer vehicles (all Mars concepts)
- On-orbit fueling/refueling enables reusable vehicle concepts and significantly reduces vehicle departure mass
- IMLEO reduction of 25-30% for cryogenic propulsion system used for return from Lunar surface when compared to storables for direct Lunar injected missions

Performance Goals

- Cryogens: Hydrogen and oxygen
- Cryo system acceleration environment: 0 to high
- Lunar boil-off rate: 2 to 6%/month (mission dependent)
- Mars boil-off rate: ≤1%/month
- Transfer losses: ≤ 5%
- Unusable propellants (residuals):≤ 2%

Technology Readiness Dates

- Thermal control is TRL 4/5
- All other areas are TRL 2/3
- Cryo transfer and 0-G pressure control are 8 yrs. to TRL 6
- Thermal control is 3 yrs. to TRL 6
- All other areas require up to 5 yrs. to TRL 6

Lunar: 1998 Need dates: Mars: 2000

TECHNOLOGY NEEDS

= N/S/

Technology Category · Life support systems/crew accommodations

Technology Areas

- Contamination and particulate control
- Trash and waste collection and processing
- Water management
- Bio regeneration
- Food management and biomass production

Performance Goals

System lifetime: 7 - 15 yrs (Lunar)

3 + yrs (Mars)

System closure (water):

System closure (air): 95%

System closure (total): TBD

System power req: TBD kW/person

Operating environment: Lunar/Mars

Minimal servicing

Office of Exploration =

Benefits/Leverage

- Saves up to 40 lbs/day resupply
- Reduce trash build-up
- Integration of biological and physiochemical regenerative systems

Technology Readiness Dates

• TRL: 2-4

Development to TRL 5: 5 - 6 yrs

Need dates: Lunar: 1995

Mars: 2000

= N/S/\ :

Office of Exploration

OPS: 10 - 25 mT/yr

Technology Category

ISRU

Technology Areas

- Oxygen process chemistry
- Mining
- · Electrolysis technologies
- · Materials compatibility
- Liquefaction
- Construction material test

Benefits/Leverage Technology

- Reduce resupply
- Make up oxygen for safety and redundancy
- Increase stay time

Technology Readiness Dates

Equipment life time: ≥10 years

Duty cycle: ≥ 90% (day/night)

System mass: OPS ≤ 15 mT

Regolith mined annually: ≤ 5 KmT/yr

Liquid oxygen production: initial: .5 - 10 mT/yr

• TRL: 2-4

4 - 6 years to TRL 6

Performance Goals

Power: TBD KWe

Need dates: Lunar: 1995

Mars: 2000

Lunar robotic (demo): 1993

Sersos2/Smith/Technology Prioritzation/Technology Need 2/5/92

Ver.1/1-31-9

TECHNOLOGY NEEDS

— N/S/ •

Office of Exploration

Technology Category

NTP (Solid core)

Technology Areas

- Fuel development
- Turbo pumps
- · Test facility design/construction
- · Shielding and control systems
- · Pressure vessels and nozzle technology
- High temperature materials
- Reactor development

Performance Goals

- · Lifetime: 5 15 years, multiple flights
- Thrust: 25 75 k lbs
- Specific impulse: 900 1000 secSpecific mass: 120-240 kW/kg
- Thrust-to-mass: > 3 to 30
- Space base, limited servicing, multiple restart

Benefits/Leverage

- · Significant reduction in Earth delivered mass
- Reduce Mars trip times
- · Crew safety
- · Operational flexibility

2/Smrth/Technology Phonezation/Technology Heed 2/5/92

Technology Readiness Dates

- TRL: 4-5
- 5-10 years to TRL 6 (uprated NERVA technology)

Need date: Mars: 2000

Ver 1/1-31-92

- NASA

Office of Exploration =

Technology Category

· Surface power - nuclear

Technology Areas

- High efficiency thermal to electric conversion Power conditioning and transmission
- Heat rejection/radiator concepts
- Dust effects on system performance
- Generation: Reactor and isotope/Heat sources

Performance Goals

Stationary applications: 50 kg/kWe @ 100 kWe

(static conversion)

25 kg/kWe @ 500-800 kWe (dynamic conversion)

Mobile applications:

5 W/kg @ 300 We (RTG) 7 W/kg @ 2.5 kWe (DIPS)

Office of Exploration =

· Lifetime:

7 - 15 yrs

Benefits/Leverage

Technology Readiness Dates

3 - 4 SP - 100 Current TRL:

4 - 5 DIPS

>5 RTG

· Years to TRL - 6: 6 - 10 depending on system, subsystem

TECHNOLOGY NEEDS

N/S/\

Technology Category Surface habs and construction

Technology Areas

- Autonomous deployment of systems
- Surface/stability determination
- Dust control
- Hab to Hab IVA interface
- Inflatable structures

Performance Parameters

- Habitat lifetime: ≥ 10-15 years
- Habitat environmental pressure: TBD
- Heat rejection requirement: TBD
- Construction equipment load: TBD
- Set up time: TBD
- Crew required for set up: TBD

Benefits/Leverage

- Increase crew living/working area
- · Allow building of large structures
- · Prepare landing site
- Enhance crew productivity/safety
- Reduce launch mass/volume

Technology Readiness Dates

- TRL: 1-2
- 4-5 years to TRL 5

Need dates: Lunar: 1997

Mars: 2000

Ver 1/1-31-92

Office of Exploration 🖻

Technology Category:

Radiation protection Technology Areas:

Shielding materials (light weight) Prediction of SPE and monitoring Crew high z, high energy limits Transport codes enhancement & validation Active crew personal dosimeter Particle Spectrometer for GCR and solar flare particles Tissue Equivalent Proportional counter for charged particle detection Neutron Energy Spectrum spectrometer

Performance Goals:

Shielding lifetime: > 10-15 years

Shielding requirement: 20 gm/sq. cm. (200

gm/sq.cm. sleep quarters)

Prediction error: <20% (initial) <10% (final Mars)

SPE prediction: TBD hrs. prior to occurrence

Benefits/Leverage

- Crew protection from solar and cosmic radiation during transit and on surface
- Data to determine appropriate shielding strategy for crew and electronics to reduce

Technology Readiness Dates

TRL: 3

Development to TRL 6: 5-7 years

Need dates: Lunar: 2000

Mars: 2000

J. Brown:afutrev. 2/5/92

Ver 2

TECHNOLOGY NEEDS

Office of Exploration =

Technology Category

Telerobotics

Technology Areas

- · Joint actuators
- · Sensors
- Vision
- · Man-machine interface
- · End effectors
- · Intelligent controls

Performance Goals

- Manipulator dexterity: TBD Manipulator loading: TBD
- Radiation field: TBD

Benefits/Leverage

- · Reduce crew exposure to EVA
- Perform operations at a distance
- · Servicing of hazardous systems

Technology Readiness Dates

- TRL: 3-4
- 3 5 years to TRL 5

Need dates: Lunar: 1996

Mars: 2000

= $N \wedge S \wedge$

Office of Exploration ==

Office of Exploration =

Technology Category

Planetary Rovers (Long-term autonomous use)

Technology Areas

- · Motors/lubricants (Long-term use)
- Dust control
- Power

Performance Goals

Semi-autonomous traverse:

≥ 10M (early) ≥ 100M (interim)

Mobility (obstacle endurance): ≤ 1M

• Power system: ≥ 5W {kg (robotic)}

· Lifetime: 1-2 years

· Life support requirement: TBD

Range robotic: 100 km

Range manned: ≤ 100 km

Benefits/Leverage

- · Allow extended operations from base
- · Support science investigation

Technology Readiness Dates

• TRL: 2-3

4-6 years to TRL 5

Need dates: Lunar: Outpost: 1996

Mars: 2000

AR 111-21

TECHNOLOGY NEEDS

= NINSN

Technology Category:

Aerobraking

Technology Areas:

- Reusable and ablative TPS material
- Validated CFD Codes
- Adaptive GN&C
- · Lightweight, launchable structures

Performance Goals:

- Entry velocity range
 Lunar return -- 11 km/s
 Mars entry -- 5 to 6 km/s
 Mars aerocapture -- 6 to 10 km/s
 Mars return to Earth -- 12 to 15 km/s
- · Aerobrake mass fraction < 20%
- L/D ratio: 0 to 1.5 (Varies with mission application)
- Reuse for lunar permanent base 7 flights

Benefits/Leverage

- Required for Mars entry/landing and Earth entry/landing
- Enables Mars quick return trajectories
- Enhances all-chemical propulsive mission performance, reduces IMLEO
- Can backup or compliment NTP

Technology Readiness Dates

• TRL: 3-4

· Lunar: 4 years to TRL 6

Mars: 8 years to TRL 6

Need dates:

Lunar early: 1995

Lunar permanent: 2000

Mars: 2000

Ver.2:2/

'ete revisior

rafu:rev. 1/28/92