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ABSTRACT

Recently, a variational mechanics approach has been used to determine the thermoe]astic

stress state in cracked, [0n/90m], laminates (J. A. Nairn, Y. Comp. Mat., 23, 1106 (1989)). This
paper describes a generalization of the variational mechanics techniques to handle other cross-

ply laminates ([90n/Oral,), related laminates ([+O/90m],, [90m/-t-0],, etc.), and to account for

delaminations emanating from microcrack tips. Microcracking experiments on Hercules 3501-6/AS4

carbon fiber/epoxy [90,_/0m], laminates show a staggered cracking pattern. These results can be

explained by the variational mechanics analysis. The analysis of delaminations emanating from
microcrack tips has resulted in predictions about the structural and material variables controlling

competition between microcracking and delamination failure modes.

INTRODUCTION

Many observations have confirmed that the initiation of damage in multidirectional laminates is often

by microcracks in the off-axis plies that run parallel to the fibers in those plies [1-8]. These microcracks have

typically been studied in cross-ply laminates in which the cracks form in the 90* plies [1-8]. Microcracks

form during static testing [1-8], during fatigue testing [3,9,10], and during thermal cycling [11]. Because
microcracks cause a reduction in stiffness [3], a change in the thermal expansion coefficient [12,13], and

provide sites for the initiation of delaminations, it is important to gain a quantitative understanding of the

formation and propagation of microcracks. Two important factors that must be understood are

1. The formation of microcracks in 90* plies is dependent on laminate structure. That is, the cracking

process depends on the thickness of the 90" layers, the support provided to the 90* layers by other plies,

and whether the 90* plies are on the inside or are adjacent to a free edge.

2. The residual thermal stresses in the 90 ° plies of cross-ply lanunates are typically tensile and of sufficient

magnitude to influence the microcracking process.

STRESS ANALYSIS TECHNIQUES

Several attempts have been made at the stress analysis of cross-ply laminates using simplistic analyses

(e.g. shear-lag analyses [2,4,6,7,14,15]). While these simplistic models often yield qualitatively reasonable
results, they are unsuitable for a thorough understanding of microcracking. Hashin [16,17] was the first

to apply variational mechanics techniques. He solved for the modulus [16,17] and the thermal expansion

coefficient [18] of [0,/90m], laminates as a function of microcrack density. Nairn et al. [19,20] have extended
Hashin's analysis to include residual thermal stresses and to the fracture mechanics analysis of microcracking

in [0,/90m], laminates. This paper describes the variational mechanics approach, how it can be extended to
more difficult problems involving [90n/0,n],, ['4-0/90,],, and [90,,/-t- 0], laminates, and how it can analyze

delaminations emanating from microcrack tips. In this section, we outline the variational mechanics stress

analysis techniques.
Consider a laminate plate with the x axis parallel to the zero degree fibers, the y axis parallel to the

90 ° fibers, and the z axis normal to the plane of the plate. When the 90° plies have through-the-width

microcracks (as is invariably observed in static testing), a two-dimensional analysis of the x-z plane suffices.

The x-z plane, or laminate edge, can conveniently be divided into multiple layers (n layers). The layers may
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be assigned to individual plies, ply groups, or portions of a ply, depending on the nature of the problem
being solved and on the desired accuracy. For the stress state within any layer, we make one and only one

assumption -- that the z-axis tensile stresses depend only on x and are independent of z. A general stress

state for the i th layer that fulfills this assumption and equilibrium is [19,20]

: )- (1)

,q? = -gg,(,',O (3)

where superscript (i) denotes stress in the i th layer, v_-'(i)0is

Ai = tilt., ¢i(_) is a function of the dimensionless x direction

of _ and of the dimensionless z direction coordinate (( (z
start of the i th layer. In these equations, ti is the thickness

arbitrarily chosen normalization thickness. The functions fi,

the x axis tensile in the uncracked laminate,

: f, andg,arecoordinate functions

- Z(oi))lti), and z_ i) is the z coordinate at the

of the i th layer and t, is the thickness of any

gi, and ¢i are interrelated by

cgfi _ c3gi (4)
O( O(

' 0_'-----1_= Of----L_ (5)

We consider a unit cell of damage of a multilayered sample that extends from x = a to x = -a or from

= p = a/t. to _ = -p. We further consider each layer to be orthotropic with at least one symmetry axis

aligned with either the x or z axes. Generalizing the two-layer results from Ref. [19] to n layers, the total

complementary energy in the unit cell of damage per unit depth (y direction dimension) can be written as

f d¢
(6)

r : ro + t] : [2E,,

/a(1)v.
+ _3 / to-,

k Exi

where Ezi, Ezi, Gi, ui, a_i, and azi are the mechanical properties of the i th layer, being, respectively, x and

z direction tensile moduli (Ez_ and Eel), in-plane shear modulus (G_z), in-plane Poisson's ratio (u_z), and
x and z direction thermal expansion coefficients. The term AT = To - T, is the temperature differential

between the stress-free temperature (To) and the specimen temperature (T,). The term F0 is a constant

energy term that does not enter energy minimization procedures.

The analysis procedure for a large variety of problems are similar:

1. From observation of experimental results, model microcracking damage by a unit cell of damage extend-

ing fromx=-atox=a.

2. Divide the laminate into n layers where the divisions are chosen for sufficient accuracy.

3. Using boundary conditions and stress continuity conditions, express the fi and gifunctions in terms of

the ¢i functions and explicit functions of ( (this step is always possible).

4. Rewrite the total complementary energy in integral form involving only the ¢; functions.

5. Using the calculus of variations, minimize the complementary energy to solve for the tbi functions. The

principals of variational mechanics state that these functions will provide the best approximation to the
true stress state.

6. With knowledge of the ¢i functions, it is possible to find the sample modulus [16,17,19], the thermal

expansion coefficient [18,19], the total strain energy [19,20], and the cnergy release rate due to the

propagation of damage [19,20].
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When n is large, solving for all the ¢i functions will necessarily involve numerical calculations. The solution

of such problems can be viewed as a complementary energy based finite element (or layer) analysis. When

n is small (n < 4), however, it is often possible to eliminate all but one or two of the ¢i functions. In
such situations, the resulting calculus of variations problem can be solved in closed form. Fortunately,

many interesting and relevant cross-ply laminate problems can be expressed with four or fewer layers. The

remainder of this paper outlines the solutions to some of these problems.

MICROCRACKING IN [0"/90m], LAMINATES

When loaded in tension, [On/9Om], laminates fail in a nearly periodic array of through-the-width mi-
crocracks in the 90" plies. The unit cell of damage is shown in Fig. 1A. Because the problem is symmetric

about the midplane, the laminate can be divided into two layers of thicknesses tl and t_ (see Fig. 1A). Layer
1 is half the 90* ply group and layer 2 is one of the 0* ply groups. We need to solve for ¢1 and ¢2, one of

which can be eliminated by force balance. As shown in Ref. [19], the total complementary energy in the unit
cell of damage per unit depth can be written in terms of ¢1 as

P C .I..J." _ .,.,n. '2 - 2Ac_AT¢l]d_r = r0 + [c1¢ + + c4¢,
--p

(7)

where Aa = aT -- OtA, and

C, =_+ AE-'-_ C2=_ A+ 3EA

I A3 1 A

C3 - 60ET (153"2 -4-20A + 8) + 20E----_ C4 - 3GT + 3GA

(8)

Here, E, G, v and a denote tensile and shear moduli, Poisson's ratio, and thermal expansion coefficient,

subscripts A and T denote axial and transverse properties of the ply material, and _ = t2/tl.

Minimization of the complementary energy in Eq. (7) has been accomplished in Ref. [19]. We quote
some useful results. Consider a sample with N unit cells of damage characterized by crack spacings Pl, P2,. • •,

PN. The sample compliance is [16,19]

C = Co + 2tiCaLE_ EN=l X(Pi) (9)
B2WE_ EiN=, P,

where W is the sample width (y-direction dimension), L is the sample length (x-direction dimension), E¢ is

the modulus of the uncracked sample, and Co = L/BEcW is the compliance of the uncracked sample. The

new function X(P) has a physical interpretation as being proportional to the excess strain energy caused by

the presence of the microcracks. Defining p = (C2 - C4)/Ca, q = C1/Ca,

where for 4q/p 2 > 1

cosh 2ap - cos 23p for 4q
X(P) = 2aa(a2 +fl 2) 3cosh2_p7 asin23p _- > 1

2, tanh/_p tanh ap 4q
X(P) = ,3(32 _. _Zt_n--h--_=_,p for _ < 1

a = - p and
1

Z=

(10)

(11)

(12)

and for 4q/p _ < 1

ct = I-2 + v/'P@ - q and /3 = I-2 - (_- - q (13)

We note that the expression for sample compliance (Eq. (9)) has no adjustable parameters and is applicable

to any distribution of crack spacings (not just periodic arrays of cracks). Hashin [16] has shown that this

expression is in excellent agreement with experimental data.

499



Table I: The critical nficrocracking fracture toughness, Gmc, for five different carbon fiber composite material

systems. Details of experiments given in Ref. [20].

Prepreg Material Gm_ ( J/m s)

Hercules 3501-6/AS4

Fiberite 934/T300

DuPont Avimid ® K Polymer/IM6

Fiberite 977-2/T300

ICI PEEK/AS4

240

690

960

1800-2400

3000

The total strain energy in the N crack intervals can be written as [19]

(14)

where a0 is the total stress applied to the laminate. The longitudinal thermal expansion coefficient of the

cracked sample is [19,20]
o C-Co Ao,

o,L = a L Co CIET (15)

where c_° is the longitudinal thermal expansion coefficient of the uncraeked sample. Finally, combining

all expressions, we can derive an expression for the energy release rate due to the formation of additional

microcracks [19,20]

Gm=(_-_Te _° Ac_AT') 2CaQ _-_ (D<X(p)))-_I] (16)

where (X(P)) is the average value of X(P) over the N crack spacings and D = _- is the crack density. We
note that Eq. (16) is slightly different than the result from Ref. [19] and corrects an error in that paper. The

correct result is derived in Ref. [20].

If we assume that the formation of microcracks is governed by a critical energy release rate or a mi-

crocracking fracture toughness, G,,,c, we can use Eq. (16) to predict the initiation and the increase in crack

density in [0,/90m], laminates. To use Eq. (16), we must evaluate the density derivative of D(X(p)). The

formation of a new microcrack between two existing microcracks is sh,_wn hi Fig. 1B; the crack is shown to
form in the middle because that is the location of the maximum stress and because of the tendency of these

laminates towards periodic crack spacings. By a discrete evaluation of the required derivative

Gm= "_e ao C1 ,1 Catl(2X(p/2) - X(p)) (17)

Given a value of the fracture toughness of a material system, Gmc, we can solve Eq. (17) for applied

stress, a0, and predict the crack density as a function of applied stress. This approach was applied in Ref. [20]
to five material systems; for each material system, two to five cross-ply laminates were used. Some typical

results for Hercules 3501-6/AS4 carbon fiber/epoxy laminates are given in Fig. 2. For this material, G,,_¢

was found to be 240 J/m s. An important result for this and other materials systems is that a single value

of Gmc for a given material system suffices to predict the results from all cross-ply laminates tested. Some

measured values of G,n_ are given in Table I.

The variational mechanics analysis of microcracked [On/9Om]s laminates has been useful. Without any

adjustable parameters it gives an excellent prediction of the sample modulus as a function of crack density

[16]. When implemented into a fracture mechanics analysis of microeracking, it can predict the crack density

as a function of applied load [19,20]. Combining experimental results and the energy release rate expression

in Eq. (17), it is possible to measure Grnc. Gm¢ appears to be a useful material parameter characterizing
microcracking or intralaminar fracture toughness of composite materials.
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MICROCRACKING IN [90./0m], LAMINATES

The damage process in [90n/Oral, laminates is more complicated than in [On/9Om], laminates. When

[9On�Orals laminates are loaded in tension, the 90* plies on either side develop nearly periodic arrays of

through-the-width microcracks. Comparing the crack patterns on either side, however, we observe that the

cracks on one side are shifted by half a crack spacing from the cracks on the opposite side. Thus, any

given microcrack is located approximately midway between two microcracks on the opposing surface. The
unit cell of damage for such "staggered" microeracks is shown in Fig. 3A. Because the problem is no longer

symmetric about the midplane, we must analyze the entire laminate; we thus divide the laminate into four

layers according the ply groups (see Fig. 3A). Layers 1 and 4 are 90" ply groups and layers 2 and 3 divide

the 0* ply group into two layers. We need to solve for ¢1 to ¢4, two of which can be eliminated by force

balance and transverse stress free-edge effects. Finding the complementary energy for this system is a much

more difficult than for the [0n/90m], laminates. The details will be described in a future publication. In this
paper we give the key results. The total complementary energy in the unit cell of damage per unit depth in
terms of ¢1 and ¢4 is

r = r0 + t,
J0

_ X.2C1X 2 + C2aXX" + _a. + C4X '2 - 4AaATX

+ C_Y 2 + C_YY" + C*Y"23 +C_ Y'_*_ d_
/

where X : ¢1 + ¢4, Y = ¢1 - ¢4, C1 and C4 are given in Eq. (8), and the new constants are

3ET + _ 1+ C3a - 20ET + _ (8A2 +20A+15)

, 1 (1 + 2A) 2 , VT VA [(1 + 2A)(2 + A)]C1 = _ + A3EA C2 - -3ET --k _ 3A

1 A (2A2+7A+8) C_- 1 I+A+A _c; = + 3GT+ 3 cA

(18)

(19)

Minimizing the complementary energy in Eq. (18) would be an intractable problem if it were not for

the following symmetry relation between ¢1 and ¢4:

{¢,(_ - p) for _ > 0¢4(_)= ¢,(_+p) for_<0
(20)

With thisrelation,itispossibleto minimize the complementary energy inclosedform. The details(which

are more complicated than the [0n/90m]s problem) will be described in a future publication.

Because the stress analysis of [90n/0,_], laminates is a new solution, we begin with a brief discussion

of the resulting stresses. The tensile stress 0"0)_, or the tensile stress in the 90 ° ply on the left of Fig. 3A is

plotted in Fig. 4; the plot is for a Hercules 3501-6/AS4 carbon fiber/epoxy [90_/0], laminate with a crack

spacing characterized by p = 3. At the two crack faces o'(_ = 0 as required by boundary conditions. Midway

between the two microcracks and directly opposite the crack in the 90 ° ply on the opposing surface (see

Fig. 3A) there is a local minimum in tensile stress. This local minimum is caused by a bending effect that
results from the asymmetric arrangement of microcracks. Two local maxima in stresses are located near

p = +1 or at positions roughly ½ and _ of the way from the bottom microcrack to the top microcrack. The

form of the stresses in Fig. 4 can be used to explain the tendency towards staggered microcracks. In Fig. 3B,

we show new microcracks formed at all local stress maxima. It is observed that the new microcrack pattern

is equivalent to three unit cells of damage and thus the distribution of the stresses naturally leads to the
propagation of staggered microcracks.

We next quote some useful results of the new [90n/0m], laminate analysis. It is possible the cast these

results in a form that is reminiscent of the [0n/90m], laminate results. Consider a sample with N unit cells

of damage characterized by crack spacings Pl,P2,..., PN. The sample compliance is

2tlC3_LE_ __,.N,=1 Xa(P,) (21)
C= Co + B2WE _ y_N=I p'
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where the new function Xa(P) has a physical interpretation as being proportional to the excess strain energy
caused by the presence of the microcracks; it is defined by

1+
(22)

In Eq. (22), X(P) is defined by Eq. (11), except that C2_ and C3_ replace C2 and C3, and X'(P) is a new
function. Defining p* = (C_ - C_)/C_, q* = C_/C_,

) cosh 2o'p + cos 2/3"pX*(p) = 2a*fl* a'2+/3"2 fl*sinh2--_p--a*sin2/3*p

1

X*(P) = a*/3* (/3.2-a.2) /3* tanha*p- a* tanh fl*p

4q*

for p-TY > 1 (23)

4q*
for p-_ < 1 (24)

where for 4q*/p .2 > 1

and for 4q*/p .2 < 1

1 L
/2 * p"and z': (25)

or'---- _--_-+_/_ 2 q* and /3"=I-_--_/_- q" (26)

As with [O,_/90m]s laminates, the expression for the compliance of [9On/Ore], laminates (Eq. (21)) has no

adjustable parameters and is applicable to any distribution of crack spacings (not just periodic arrays of
cracks). We do not yet have experimental data that can be used to compare predictions to observations.

The total strain energy in the N crack intervals and the longitudinal thermal expansion coefficients are

given by expressions identical to the [0,_/90m], laminates (see Eqs. (14) and (15)). A difference between
[90n/0m], and [0,_/90m], laminates occurs because the expressions for compliance, C, that must be used

with Eqs. (14) and (15), differ. Finally, combining all expressions, we can derive an expression for the energy
release rate due to the formation of additional microcracks

C_ ]

where (Xa(P)) is the average value of Xa(P) over the N unit cells of damage.

If we assume that the formation of microcracks is governed by a critical energy release rate or micro-

cracking fracture toughness, Gm¢, we can use Eq. (27) to predict the initiation and the increase in crack

density in [90n/0m], laminates. To use Eq. (27), we must evaluate the density derivative of D(X,_(p)). If we

consider the cracking process in Fig. 3B, which perpetuates the staggered arrangement of microcracks, we

can evaluate the derivative by the methods used for [0n/90m], laminates [19,20]. The result is

1 2Gm= _ --_cero C1 ] C3atl (3Xa(p/3) -- Xa(P)) (28)

Given a value of the fracture toughness of a material system, Gin,, we can solve Eq. (28) for applied

stress, c%, and predict the crack density as a function of applied stress. Our first experiments have been

with Hercules 3501-6/AS4 carbon fiber/epoxy laminates; the results for a [902/0/902]7" laminate are given

in Fig. 5. To be useful, Gin, should be a material constant that is independent of stacking sequence. We

thus fit the [902/0/902]T laminate results using the Gin, of 240 J/m s found during experiments on [0,/90m],
laminates [20]. The results in Fig. 5 show that Eq. (28) fits the experimental results at high crack density
and at zero crack density (microcrack initiation) but shows some deviations at crack densities between 0.0

and 0.4 cracks/ram. The cause of the deviations will require more analysis. We speculate, however, that it is

related to the discrete evaluation of the density derivative of D(Xa(p)) inherent in Eq. (28). When the crack
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density is low and the microcracks are far apart, the local stress maxima located at +p/3 become diffuse and
move away from +p/3 towards +p/2. In other words, it is only at high crack densities that the distribution of

the stresses causes cracks to form at -t-p�3, that damage is driven towards a staggered cracking pattern, and
that Eq. (28) gives the true energy release rate. At low crack densities, the cracks will be more random and

the expression for energy release rate needs to be modified. Experiments which measure the crack patterns

at low crack densities can be used to confirm this speculation and to suggest ways to modify Eq. (28).
Although much more difficult than previous analyses, a closed-form variational mechanics analysis of

[9On�Oral, laminates has been obtained. Literature results concentrate of [On/9Om]s laminates to the near

exclusion of [90n/0m], laminates. Clearly more experimental results for [90n/0m], are desirable. It is

our expectation that the variational mechanics analysis will provide the tools necessary for a quantitative
understanding of those results.

MICROCRACKING IN [+fl/90m], AND IN [90n/± 8], LAMINATES

The results in the previous two sections can readily be adapted to handle problems of microcracking in

90* plies supported by any orthotropic sublaminate. One simple example is microcracking in [+0/90,,,]_ and
in [9On� 4- 0],. In these laminates, 0 should be relatively small (e.g. 0 < 45) or else microeracking of the 90*
plies may not be the dominant failure mode. The adaptation of the variational mechanics analysis consists

merely of adjusting the constants C1 to C4, C2a, C3,_, and C[ to C_. We note that each of these constants,

defined in Eqs. (8) and (19), is the sum of two terms. In all cases, the first term results from the 90 ° plies

and the second term results from the 0* plies. To construct a solution for laminates in which the 0° plies are

replaced by a [+0] sublaminate, we merely replace the mechanical properties of the 0 ° plies in each second
term with those of the [±0] sublaminate.

DELAMINATIONS EMANATING FROM THE TIPS OF MICROCRACKS

All variational mechanics analyses of cross-ply and related laminates can be extended to account for

delaminations emanating from the tips of existing microcracks. We illustrate the delamination analysis using

[0n/90m]s laminates. Figure 6 shows the region between two microcracks separated by a distance 2a having
delaminations of length dl and d2 emanating from the top and bottom microcracks and propagating into
the region between the two microcracks.

We consider the right half of the symmetric laminate in Fig. 6. We split the area between the two

existing mierocracks into three regions. Region I is the region within the top delamination or the region

from x = a - dl to x = a. Region II is the region between the tips of the delaminations or the region from
x = -a + d2 to x = a - dl. Region III is the region within the bottom delamination or the region from

x = -a to x = -a + du. Within each region we divide the right half of the laminate into two layers. Layer
1 is the 90* ply group and layer 2 in the 0* ply group.

We begin with the stresses in the 90 ° plies in regions I and III. By symmetry, the shear stress at

the sample middle must be zero (a(x_)(0) = 0). Because of the requirement for stress free surfaces on the

delamination crack face, the shear stress and the normal stress at the right edge of the 90* plies must also

be zero (a(x_z)(1) = 0 and a(_)tl_zz_j = 0). From these boundary conditions and the form of the stresses in

Eqs. (1)-(3) which assume that the normal stress _r_(_ is a function of x only, the stresses in regions I and
III are uniquely determined to be

o-(1) = 0 a(2) _ 1 + A
A _0 (29)

(r(1) = _(1)_= 0 _(2) = _(_1 = 0
,_Z ZZ

The boundary conditions in region II are unaffected by the length or even the presence of the delaminations.
With or without the delaminations, the x direction tensile stress and the shear stress are both zero at the

top and bottom of region II. The stresses in region II are therefore identical to the stresses calculated in

Ref. [19] except that the crack spacing needs to be adjusted. We introduce the dimensionless quantity

dl + d_

(_ -- _1_1 (30)
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The stresses in region II are identical to the stresses calculated in Ref. [19] for two microcracks whose spacing

is characterized by p - 8.
With the stresses completely determined, we can follow procedures similar to those in Ref. [19] and

evaluate properties of microcracked and delaminated cross-ply laminates. Consider a sample with N unit

cells of damage characterized by crack spacings Pl,P2,..., PN and by extents of delamination within each

crack interval of 81,62,... ,6N. The sample compliance is

N
where d = _]]i=1 2tx6i is the total sample delamination length. Although we have no experimental evidence

to verify Eq. (31), its limiting values are appropriate. In the limit of no delaminations, or d = 0, Eq. (31)

reduces to Eq. (9). In the limit of complete delamination, or d = L, the sample compliance reduces to

Coo = 1 +_.__.A____L (32)
BEA W

This is the compliance for a sample in which the 90* plies carry no load. In terms of compliance, the total

strain energy is found to be

U _____ + XdB w
(_ tl_X._AT _ ¢L_,,)BW+ a_ 1
\2E_ + C1B 2Ea A

B WE¢ [" TO,2 Aa2AT _
+ C - C0 - _ (Coo - Co) 2E_ \_-_2 0 C_

(33)

and the thermal expansion coefficient is found to be

d Ao_ Ao_ (C_Co_ d(c _Co)) (34)aL = Oc° L _EAC1 C1CoET "-L

The above two-dimensional analysis can immediately be used to find the energy release rate for the

growth of a through-the-thickness delamination -- Ga. The energy release rate is

OU _o,st.ai,p. 1 OU .... t.ai,p. (35)Ga = --O-A - 2W Od

where A is total delamination area which is equal to 2dW. We differentiate Eq. (33) realizing that a0 and

C will depend on d. The result after much simplification (details can be found in Ref. [20]) is

Gd=(_---_Ta0 AaAT) 2c3t_YD(_,6 )_] (36)

where the function Yo(P, 6) depends on tY= (,01, P2,-.', PN) and on g = ((_1, (_2,..., (_N). It is given explicitly

by

YD (P' 6) - 4E_ C3t l + Od -_i --[ -_

Imagine a sample with N crack intervals characterized by dimensionless crack spacings and delamination
lengths defined by the vectors _ and 6". Imagine further some delamination growth confined to the U h crack

interval. The YD(£ 6) function for this delamination growth simplifies to [20]

1

Yo(#,g)= (x'(0)- x'(pk - (38)

The differentiation of X(P) is with respect to the variable p.
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If we assume that delamination will propagate when Gd > Gd¢ where Gdc is a critical energy release

rate or interlarninar fracture toughness, we can use Eq. (36) to predict the initiation and growth of micro-
crack induced through-the-width delaminations. One possible problem of this approach is that it uses total

energy release rate instead of partitioning it into the various modes -- mode I, mode II, and mode IIl. We

suggests that the assumed x-direction propagation of a through-the-width delamination will be mostly mode

II deformation. The distinction between using total energy release rate and the mode II part of the energy

release rate will therefore be minor. Experimental results are required to determine the adequacy of using
total energy release rate as a failure criterion. For the purpose of this discussion, we assume that the total

energy release rate failure criterion is valid.

We can use the delamination analysis to discuss competition between microcracking and delamination.

The first form of damage in cross-ply laminates is always microcracking. Once the first microcrack has
formed, we can ask if a delamination will initiate at that microcrack or if instead another microcrack

will form. Comparing the energy release rate for microeracking (Eq. (17)) to the energy release rate for

delamination (Eq. (36)), the predicted failure mode will depend on the values of G,nc and Gdc and on the

relative magnitudes of 2X(p/2) -X(P) and ½ (X'(0)- X'(P)). Assuming G,n¢ and Ga_ are the same (they
both represent crack growth through the matrix, albeit possibly by different fracture modes -- mode I vs.

mode II), the predicted failure mode can be determined by plotting the latter two quantities. Figure 7 plots

1 (X'(0)- X'(P)) for a typical [0/902]s laminate. The conclusions that can be drawn2X(p/2)- X(P) and
from this and other similar plots are as follows:

1. At low crack densities, microcracking is preferred. At some critical density, the energy release rate for

delamination will surpass the energy release rate for microcracking and delaminations will be expected
to initiate at the tips of the microcracks. Once delaminations begin, microcracking will cease and the

delaminations will grow.

2. The critical density depends on the laminate structure. For a fixed number of 0* plies, the more 90*
plies there are, the lower will be the crack density required to get delamination. For a fixed ratio of 0*

to 90* plies, the more plies there are, the lower will be the crack density required to get delamination.

3. If the relative toughnesses for microcracking and delamination are different because of material prop-

erties of because of different deformation modes, the critical density for initiation delamination will

change. For example, as the delamination fracture toughness gets lower than the microcracking fracture

toughness, the critical crack density to initiate delamination will get lower. In the limit of relatively low

delamination fracture toughness, delamination will begin after the first microcrack.

When delamination is not through-the-thickness, the problem is no longer two-dimensional and requires

a three-dimensional analysis. Although a complete three-dimensional variational mechanics analysis seems

intractable, it appears possible to construct a quasi-three-dimensional analysis based on the two-dimensional

analysis and a lumped spring model of a laminate containing an arbitrary profile of delamination growth.

This problem will be considered in a future publication.
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Figure 2: The microcrack density as a function of applied load in Hercules 3501-6/AS4 carbon fiber/epoxy

cross-ply laminates. The symbols are experimental data points and the smooth lines are best fits using

G,nc of 240 J/m 2.
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Figure 6: Edge view of a [0n/90m]_ cross-ply laminate with rnicrocracks and delaminations emanating from
the tips of those microcracks.
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