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Introduction

Damage tolerance is the most critical technical issue for composite fuselage structures studied in
ATCAS. The ATCAS program goals in damage tolerance include the characterization of impact

damage, models for impact damage simulation, and understanding the behavior of notches and
delaminations.

The characterization of potential impact damage states in fuselage is being accomplished through test.

Configured structure will be impacted in different locations with a number of different impactor
variables. Thc damage states will be assessed both nondestructively and destructively.

An approach for predicting the post-impact compressive behavior of laminated composites has been

developed at Boeing over the past several years. Dr. K.Y. Lin and Dr. Z.Q. Chen at the University of
Washington will be enhancing and generalizing this approach to account for the different potential

damage states and failure modes found in the test program described above.

Tension damage tolerance is currently being addressed through a test program and analysis

dcvclopmcnt by Dr. F.K. Chang at Stanford University. Future work with Dr. P.A. Lagace and Dr.

M.J. Graves at Massachusetts Institute of Technology will address dynamic fracture including pressure
effects.

Objectives

The objective of the work being presented is to understand both the impact damage resistance and

residual strength of laminated composite fuselage structure. An understanding of the different damage
mechanisms which occur during an impact event will (a) support the selection of materials and

structural configurations used in different fuselage quadrants and (b) guide the development of
analysis tools for predicting the residual strength of impacted laminates. Prediction of the damage

state along with a knowledge of post-impact response to applied loads will allow for "engineered"
stacking sequences and structural configurations; intelligent decisions on repair requirements will also
result.

] This work is being funded by Contract NAS1-18889, under the direction of J.G. Davis and W.T.

Freeman of NASA Langley Research Center.
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Potential Impact Damage States

A schematic diagram classifying characteristic damage states (CDS) that have been observed in flat

laminates following low-velocity impact by spherical objects is shown. Planar and cross-sectional

views of CDS are given in the figure. Three classes of CDS consisting of symmetric damage through
the laminate cross section are shown in this figure. Damage size and type (fiber, matrix, or combined)

depend on variables such as delamination resistance and impact energy. The most common damage

observed in experiments with a stacking sequence used for material screening tests (i.e.,

[45,0,-45,90,]nS) was matrix damage [1, 2].

Plate boundary conditions, laminate thickness, and material form are among the variables which may

suppress delamination, causing damage dominated by fiber failure. Fiber damage, when present, tends
to concentrate at the impact site. Matrix damage is also centered at the impact site, but tends to radiate

away from this point to a size dependent on delamination resistance. The most general classification

of symmetric damage involves both fiber and matrix failure.

Many factors can affect the CDS symmetry. Test observations have indicated thin laminates and
heterogeneous stacking sequences tend to have unsymmetric CDS with damage concentrated opposite

the impacted surface. Very thick laminates are also expected to have unsymmetric damage, but with

damage concentrating closer to the impacted surface. Work by the current authors has indicated that
delamination resistant materials have a stronger tendency for unsymmetric CDS than brittle materials

tested with the same impact variables [3].
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Damage Modeling Applications

The panel shown below is a carbon fiber reinforced plastic (CFRP) wing gauge panel impacted on the

stiffener cap. The impact damage located on this stiffener cap was nonvisible. An identical panel had

been impacted on the stiffener attachment flange edge. Both panels had significant reductions in
strength from their undamaged strength. Analytical tools developed to predict the post-impact

response of CFRP structure must have enough generality to account for different failure modes which

occur during impact. The approaches presented take into account both stress redistribution and

changes in panel postbuckling response due to sublaminate buckling [ 1-3]. The prediction of

post-impact response due to local fiber failures was presented by Cairns [4].

Impact Damage Discrete Modeling

Wing Structure with Integral Stiffeners
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Experimental Data ShowingPost-impact Compression
Performance as a Function or Laminate Stacking Sequence

Compression after impact (CAI) data axe shown as a function of the drop weight impact energy (i.e.,

drop height x drop weight). Data scatter for each type of laminate layup was small compared to the

total range of results. This indicated that laminate stacking sequence is critical to CAI. Note that all
other material, laminate, structural, and extrinsic variables were held constant for the tests. The one

exception was for the [452,902,-452,0212S laminate which had 32 plies instead of 24 plies. Despite the
additional thickness, this laminate did not have the highest CAI for a given impact energy, again

indicating the importance of stacking sequence. These data illustrate that models to predict residual

strength of impacted laminates must include stacking sequence dependent CDS details [3].

Experimental Data Showing Post-Impact Compression

Performance as a Function of Laminate Stacking Sequence
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SUBLAMINATE STABILITY/REDUCED STIFFNESS CAI
MODELING

The CDS for a set of impact variables used in material screening tests was described in earlier work

[ 1,2,5]. These tests use a [45,0,-45,90]nS laminate stacking sequence. As discussed earlier, any fiber
damage caused by impact tends to concentrate at the core of the CDS. A network of matrix cracks and

delaminations comprise the remainder of the CDS. Delaminations at each ply interface are connected

to those at neighboring ply interfaces by transverse matrix cracks. In a planar view, double-lobed

delaminations formed at each interface. These delaminations are wedge shaped due to the re/4

difference in orientation of neighboring plies, breaking the CDS into octants. The ply orientation

angles increase in n/4 increments from the impacted surface to the center. The stacking sequence and

CDS is reflected at the center. Ply orientations decrease by n/4 with each ply from the center to the

back side. This pattern causes a CDS with interconnected delaminations spiraling toward the center,
reversing direction, and proceeding out toward the back side.

The CDS described above splits the laminate into separate sublaminates. These sublaminates are

connected in a fashion similar to a spiral staircase, but are conceptualized as circular disks to simplify
the analysis. The sublaminates near the outer surfaces vary in thickness from 2 to 5 plies. The next set

of sublaminates are 4 plies in thickness with stacking sequence varying stepwise around the damage.

This type of sublaminate can repeat several times, depending on the number of plies in the stacking

sequence. Damage that occurs approaching both sides of the laminate midplane results in two
discontinuous sublaminates and a symmetric core sublaminate that varies in thickness from 2 to 8

plies. The total number of sublaminates for a [45,0,-45,90]n s laminate stacking sequence is (2n+1).

This can be generalized for other repeating stacking sequences which increment by either decreasing

or increasing ply angles if a sum of the difference between adjacent angles in the repeat element equals

zero (i.e., [ct, lg,t_..... 0]n S where {13-o_}+ {t)-_ }+ ... + {ix-0 } = 0.0). Absolute values of each difference
should also not exceed 90 ° .

The analysis method used for comparison with experiments is documented in [1,2]. In summary, five
basic steps are followed in applying the method. First, the CDS is identified and simulated as a

sublaminate with ply stacking sequence and thickness representing an average of those appearing in
the real CDS. Second, a sublaminate stability analysis is performed using damage diameter as an

independent variable characterizing the planar size of the CDS. This is done using a modification to
the buckling analysis method described in [6]. The modification accounts for sublaminates with

unsymmetric ply stacking sequences [ 1,2]. Third, effective reduced stiffness of the impact damage

zone is calculated using results from sublaminate stability analysis. Fourth, the inplane stress
concentration associated with the reduced stiffness is determined. Finite elements are used for this

step in order to account for specimen width/damage size interactions. Finally, a maximum strain

failure criteria is applied to predict CA1.

Note that steps 2 through 4 of the sublaminate stability analysis method should be modified for the

most general CDS in which sublaminate parameters (e.g., diameter, thickness and stacking sequence)

vary significantly through the laminate thickness. The more general model is currently being
developed.
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Experimental Determination of Sublaminate Buckling
and Strain Distribution of Impacted Laminates

Sublaminate stability and subsequent load redistribution of compressively loaded impact damaged

coupons are being examined experimentally. Moire interferometry was employed to measure both

in-plane and out-of-plane displacements of impacted coupons as a function of load. A micro-Moire

grid (600 lines/millimeter) used to measure inplane displacements was applied to the tool side while
the other side used shadow Moire (60 lines/cm) to measure out-of-plane displacements. A typical

Moire fringe pattern displaying out-of-plane displacements for a [45,0,-45,90] 3S specimen with a

damage diameter of 1.28" is shown. The in-plane u-displacements are shown next to it. By

examination of the in-plane displacement contours, one can discem that an inplane strain concentration

occurs near the damage area.

Out-of-Plane Displacement Contours In-Plane Displacement Contours
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E Sublaminate Stability/Reduced Stiffness and
xperimental Results for AS6/3501-6, (45,0,-45,90)ss

This figure shows good comparisons between predictions and experimental results using a

graphite/epoxy material (AS6/3501-6). The undamaged compressive strength was measured as 501

MPa (72.7 Ksi). Damage was created by both static indentation and drop weight impact. Finite

specimen width becomes important as damage diameters increase. As shown, the model accurately

predicted CAI throughout the range studied. The CAI lower limit for infinitely wide coupons would
correspond to the maximum stress concentration of three for a quasi-isotropic laminate (i.e., 167 MPa).

Sublaminate Stability�Reduced Stiffness Predictions

and Experimental Results for AS6/3501-6, (45,0,-45,90) 5s
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Impact Damage Behavior of Curved Laminates

The influence of laminate curvature on damage resistance and post-impact compression strength was

investigated for a "brittle" material system. The stacking sequence was (45/90/-45/0)3s and the
nominal laminate thickness was 0.38 cm. The dimensions of the flat panels were 10.2x15.2

centimeters with the 15.2 cm direction parallel to the 0 degree direction of the laminate. The curved

laminates were cylindrical in shape with a radius of curvature of 22.9 cm and dimensions of 10.2x15.2

centimeters. The impact procedure was performed by placing the coupons in a support fixture that

approximates simply supported boundary conditions. Coupons were held with clamps on both sides to

prevent rebound during impact. A special fixture was fabricated for the curved panels such that the
curvature of the fixture matched the curvature of the test coupons. Impacting was performed using an

instrumented impact tower. During the post-impact compression tests, the coupons were mounted in a

side-supported fixture developed by The Boeing Company for compression residual strength tests. A

special modification of the fixture was fabricated to enable compression testing of the curved panels.

Damage area as a function of impact energy is presented in the first figure below. The flat panels

exhibited a maximum damage diameter of approximately 4 cm, whereas the curved laminates

exhibited damage diameters of up to 8.5 cm before significant interaction with boundaries occurred.

Recalling that the total width of a coupon is 10.2 cm indicates that significant area of the coupon was

damaged. The massive increase in damage area in the curved coupons is believed due to the curvature
induced increase in laminate stiffness, which results in higher impact and shear loads. Further analysis

of curvature effects is continuing.

Post-impact compression strength as a function of damage area is presented in the second figure. The

curved panels exhibited higher CAI strength for a given damage area. This is assumed due to the

increase in stability imparted by coupon curvature..

Damage Resistance: Flat versus Curved Panel (45,90,-45,0) _s
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Residual Strength: Flat versus Curved Panel (45,90,.45,0)3 s
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LVDT Measured and STAGSC-1 Predicted
Specimen Post-Buckling for (453,903,-453,03)s

The large delaminations visible in the ultrasonic c-scan occur in the back half of the [453,903,-453,03]S
laminate, effectively breaking it into two sublaminates. The sublaminate located toward the back side

has octants containing 0, 3, 6 and 9 plies while the thicker, base sublaminate has octants containing 24,

21, 19, and 15 plies, respectively.

Despite a limited number of test results, post impact failure data trends were found to vary
significantly from sublaminate stability/reduced stiffness prediction for this laminate. The most

striking difference occurred for large damage areas where a finite width effect was not evident in the
data [3].

A STAGSC-1 [7] geometrically nonlinear finite element (FE) analysis was performed on a discrete
sublaminate model using damage details described above to better understand the observed behavior.

The FE results are plotted together with experimental measurements of out-of-plane displacement

versus load. The analysis demonstrated that specimen stability was affected by sublaminate stability.

Outward buckling in the +Z direction of the sublaminate forced overall coupon instability in this

direction. The change in specimen stability resulting from sublaminate buckling exhibits trends
similar to those observed in postbuckling analysis with increasing applied imperfections.

Out-of-plane specimen displacements were measured with a linear variable displacement transducer
(LVDT). It can be seen that the amount of "imperfection" imparted to the specimen increases with

damage size. The predicted displacements for 20.0 cm 2 damage area fall between experimental data

curves for 13.2 and 26.1 cm 2 damage areas in the figure below. Note that the out-of-plane

displacement corresponding to a surface stress of 478 MPa (undamaged compressive strength) in the

model was 0.95 mm. This also compares well with the experimental data for 13.2 and 26.1 cm 2.
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Effect of Damage on Stiffness and Stability

The previous chart demonstrated that impact damage can significantly alter panel stability. Analytical

studies on the effect of hypothetical damage on coupon stability were performed to examine this. Two
types of simulated damage were used in these studies, both having an axial stiffness reduction of 50%.

The symmetric damage was simulated with a 50% reduction in axial moduli, while unsymmetric

damage was simulated with 1/2 the laminate stacking sequence and an offset. Analyses were run with

damage simulations in the middle and on the edge of 24" by 12" rectangular plates. Damage size was
varied from 2" x 2" to 5" x 5".

Center damage was found to lower initial buckling load for small damage sizes. As damage size

increased the postbuckling mode shape changed from two halfwaves to a single halfwave. A stiffer

postbuckling response was associated with this switch in mode shape. Plates with unsymmetric damage

had a lower postbuckling stiffness than those with symmetric damage. Both symmetric and
unsymmetric simulated damage on the edge of a plate were found not to change postbuckling mode

shape. Postbuckling stiffness was found to decrease with increasing damage size. The difference in

postbuckling stiffness between symmetric and unsymmetric damage tended to increase with increasing

damage size, with unsymmetric damage having a lower stiffness.

The effect of hypothetical damage on stiffened panel stability was examined using analytical studies

similar to those described previously. The simulated damage used in these studies was symmetric and
had an axial stiffness reduction of 90% in a l"xl" core region surrounded by 4"x2" 50% reduced

stiffness zone. Analyses were run with the damage simulation at the edge of the stiffener attaching

flange for both hat and blade stiffened panels. There was negligible change in postbuckling response of

these panels for the described damage. Note: This was not nessessarily the worst case scenario, but a

demonstration of the concept. Other damage states and locations may have more effect on panel

response.

Effect of Damage on Stiffness and Stability
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Impact Designed Experiment Involving Multiple Variables

A statistically based designed experiment is being used to study impact damage resistance of fuselage
structure. A total of 16 variables are being investigated to determine their relative importance to

different potential failure modes. Interactions between variables are believed to be important;

therefore, the approach of changing one variable at a time is inadequate. A fully crossed experiment

would yield information on all main effects and all interactions, but would require 65536 tests (not

including replication) when studying 16 variables. A fractional factorial design provides an

understanding of all main effects and significant insight to interactions with only 32 tests [8].

A significant number of variables listed below relate to the impactor. Past impact studies have been

performed using aircraft assembly/maintainance tools and other inservice threats for evaluation impact
damage. The 1.0" diameter hemispherical impactor was found to produce the same results as the

majority of possible threats. "Brittle" materials of the day tended to absorb impact energy through the

creation of delaminations and transverse cracks which would dominate compression after impact

strength (CAI). The large delaminations effectively decreased the local flexural stiffness, reducing

contact pressures, and hence local fiber failures. Composite materials development concentrated on

increasing CAI by reducing damage size. Smaller damage sizes lead to higher contact pressures and
more fiber failure; thus impactor variables such as shape, size, and stiffness may be accentuated.

Results from this experimental study will guide material and structural configuration decisions for

aircraft fuselage structures. It will also provide guidance in the development of analysis tools for
predicting post-impact performance of composite structures.

Impact Designed Experiment Involving Multiple Variables

Material Variables Laminate Variables Structural Variables Extrinsic Variables

::::::::i:::i:i:i:i:i _'

D

Fiber Stiffener Layup Stiffener Type Impact Mass

AS4 Hard Bade 0.5 Ibm.

IM7 Soft Hat 12.0 Ibm.

Impact Energy (Skin/Stiffener)
Resin Skin Layup Stiffener Spacing 80 in Ib / 200 in Ib

938 (3501-6) Hard 7 in. 1200 in Ib / 2000 in Ib
977-2 Soft

12 in. Impact Temperature
Fiber Volume Thickness Stiffener Adhesive 70 ° F

0.480 Thick (Approx. 0.2 in.) Layer 180 ° F

0.565 Thin (Approx. 0.1 in.) With Impactor Diameter
Without 0.25 in.

Material Form 1.0 in.

Tape Impactor Tup Shape
Tow Flat

Spherical

Impactor Stiffness

0.5 Msi
30 Msi
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Fuselage Locations Represented by Test Panels

The panel configurations and materials chosen for the impact damage resistance designed experiment

are representative of a variety of locations around the fuselage. The fuselage crown is tension

dominated structure and hence a stiffener spacing of 12.0 inches and thin skin gages can be used. The

fuselage keel on the other hand is compression dominated and requires a closer stiffener spacing and

thicker gages. Matrix material toughness may be required for the keel when considering high levels of
impact energy resulting impact from runway debris. The crown, however has hail impact as a design

criteria and may not require costly toughened materials to resist damage. The panels built for this

experiment have combinations of the variables listed above covering a range of locations on the

fuselage.

Fuselage Locations Represented by Test Panels
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D Integrated Approach to Manufacturing
emonstration and Structural Performance

Design, manufacturing, and material selection for low-cost composite fuselage are made by the

Boeing ATCAS Design Build Team. The selection criteria is based on a potential for low cost and

weight in the fully assembled structure. The panels fabricated for ATCAS serve multi-functions
devised to develop and validate composite manufacturing and structures technologies. Manufacturing

trials and test articles for performance evaluation are coupled. This results in an efficient use of

contract funds and allows test evaluation of process anomalies characteristic of panels fabricated with

design details. To date, panel fabrication in ATCAS has evaluated (1) drape forming and tooling

concepts for a low cost stiffener fabrication process, (2) advanced fiber placement for skin panels that

include ply drop-offs characteristic of fuselage design, (3) process modifications for eight material
types identified as candidates for fuselage structures. The 110 in. stiffened panels fabricated will be

machined into specimens and test elements for assembly trials, impact damage resistance evaluation,

damage tolerance tests, and stiffness/stability measurements.

bTtegrated Approach to
Demonstration and Structural

Manufacturing
Performance

Representative panels fabricated
to support
• Low cost process development
• Tests of fuselage performance issues
• Material and design selections

_NASA/BOEING
ATCAS
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Critical Impact Locations

All 32 impact damage resistance panels will be impacted at the structural locations shown below.

These are thought to represent those most critical for stiffened panels of this sort. All impacts will be
instrumented to determine force/time relations. Each impact site will be nondestructively inspected to

determine the maximum extent of damage created. Final impact locations will be based on extent and

location of previous impact damage sites.

The impact damage states will be characterized both in terms of lateral extent and through-the-
thickness distribution of matrix and fiber damage. The impact sites will be inspected using

time-of-flight pulse-echo ultrasonics to map out delamination depth and extent. Resin burnoff will be

used to map out fiber failures which exist. Coupons will be machined and compressively tested to
failure. The variables will then be ranked versus the different failure modes and residual strength to

determine which variables and variable interactions are most significant to each failure mode.

CRITICAL IMPACT LOCATIONS

(1) (2) (3)

(1) Skin Midbay

(2) Edge of Stiffener Attachment Flange

(3) Base of Stiffener Web

(4) Top of Stiffener

(4)

(1) (2) (3)
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Impact Damage Resistance/Residual Strength

of Sandwich Structure for Aircraft Fuselage

Impact damage resistance/residual strength of sandwich panels will be investigated experimentally to

define impact damage related structural requirements for aircraft fuselage. Past investigations of low

velocity impact on sandwich structure have been performed on panels with thin gauge face sheets and
low density cores to support secondary structure applications. These typically have studied skin

gauges less than 0.05 inch and core densities between 3 and 6 lb/ft 3 [9,10]. Impact damage

resistance/residual strength studies will be performed on laminates with facesheets ranging from 0.15
to 0.3 inches and core densities from 6 to 18 lb/ft 3.

The response of tapered structure to impact damage will be studied. The 10.0 inch long tapered region
of the stiffened panel designed experiment will be fabricated into sandwich panels with a 3/4 inch

core, representative of the aircraft keel. Facesheet delamination/transverse cracking, fiber damage, and
core shear/crushing failures will be the measured responses.

Impact Damage Resistance�Residual Strength

of Sandwich Structure for Aircraft Fuselage

Constant Gauge

Variables

Core Type: Foam vs. Honeycomb

Core Density: 6 - 18 Ibs/ft 3

Core Thickness: 0.25 - 0.75 inches

Face Sheet Thickness: 0.1 - 0.3 in.

Fiber Type: AS4 vs. IM7

Matrix Type: 3501-6 vs. 8551-7

Impactor Shape: Flat vs. Spherical

Impactor Diameter: 0.25 - 1.0 in.

Tapered
Laminate Layup: Hard vs. Soft

Fiber Type: AS4 vs. IM7

Matrix Type: 938 vs. 977-2

Fiber Volume: 0.480 vs. 0.565

Material Form: Tow vs. Tape
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Summary

Models to predict residual strength of impacted laminates must include stacking sequence dependent

details of the damage state.

CAI for laminates with symmetric size distributions of matrix damage through the thickness was

predicted with a sublaminate stability/stress redistribution analysis method.

Post-impact performance for laminates with unsymmetric size distributions of matrix damage through
the thickness was best termed a change in specimen stability.

Variables most crucial to fuselage impact damage resistance will be identified.
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