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ABSTRACT

This paper describes a new Rayleigh-Ritz stress analysis methodology that

has been developed for composite panels containing cutouts. The procedure, which

makes use of a general assumed displacement field, accommodates circular and ellipti-

cal cutouts in biaxially loaded rectangular composite panels. Symmetric integral

padups around the cutout can be included in the analysis. Benchmark results are

presented to demonstrate the accuracy of the technique, and strength predictions

based on the average stress criterion are generated and compared with experimental

data. Finally, the stress analysis methodology is integrated into a design procedure

for sizing integral padups around circular cutouts, and a sample problem is solved to

illustrate its use.

INTRODUCTION

Cutouts of various shapes and sizes occur at numerous locations in typical

aircraft structures. These cutouts range in complexity from simple holes designed to

accommodate fasteners in bolted wing splices to large, reinforced openings that

provide systems routing and access in major fuselage bulkheads. The design of these

details in composite structures requires an accurate stress analysis technique and a

realistic criterion to predict structural failure.

The analysis of cutouts in orthotropic and anisotropic materials has been

the focus of numerous research efforts over the years. Both analytical and numerical

methods have been developed for a variety of cutouts under different loading condi-

tions. Many of the analytical methods are based upon the use of complex stress

functions from the theory of elasticity. Lekhnitskii (Reference i) developed analy-

ses for elliptical, triangular, oval, and square cutouts in infinite anisotropic

plates under in-plane loading. DeJong (Reference 2) extended this body of work in an

analysis of rectangular cutouts with rounded corners in infinite orthotropic plates.

i This work was performed under NASA/Northrop Contract NASI-18842, entitled "Innova-

tive Composite Fuselage Structures."

901



Recently, Prasad and Shuart (Reference 3) developed a general, closed form solution

for the moment distribution in infinite anisotropic plates containing circular or

elliptical holes and subjected to applied bending moments.

Numerical procedures such as finite element, boundary element, and boundary

collocation analysis have been widely used to provide stress analysis of finite

plates with cutouts. Hong and Crews (Reference 4) used the finite element method to

calculate stress concentration factors around circular holes in uniaxially loaded

finite orthotropic plates. The SY5 computer program (Reference 5) uses the finite

element method to provide stress analysis for finite isotropic or orthotropic plates

with circular, elliptical, square, oval, or rectangular cutouts. Generalized in-

plane loading conditions can be accommodated, and padups around cutouts can be mod-

eled using the first three rows of elements around the cutout. The CREPAIR computer

program (Reference 6) can be used to analyze elliptical, slotted, and rectangular

cutouts in finite orthotropic plates by the boundary element method. CREPAIR is

restricted to problems involving biaxial tension/compression or in-plane shear load-

ing conditions. The SASCJ computer code (Reference 7) uses the boundary collocation

method to provide stress analysis for loaded fastener holes in finite orthotropic

plates. Recently, Klang and Owen (Reference 8) have used the boundary collocation

method to develop a stress analysis for finite anisotropic panels containing circular

or elliptical cutouts and subjected to in-plane shear loading conditions.

Despite the substantial body of work devoted to stress analysis of

orthotropic and anisotropic plates with cutouts, several deficiencies remain in the

overall analysis capability. The analytical methods, which are often well-suited for

repeated design calculations, are usually valid only for infinite plates. The finite

element method requires elaborate preprocessing and postprocessing routines to pro-

vide specialized results for cutout problems. The boundary element and boundary

collocation approaches, which are especially useful for cutouts with irregular

shapes, are difficult to extend to problems involving reinforced cutouts. This paper

describes a new approach to cutout stress analysis that is being developed to over-

come some of these limitations.

The cutout analysis methodology documented in this paper is based on the

Rayleigh-Ritz structural analysis technique, and it makes use of a general assumed

displacement field that can be used to treat a wide variety of cutout problems in

finite orthotropic plates. This approach eliminates elaborate preprocessing and

postprocessing requirements, allows for direct calculation of stress concentration

factors at the edge of the cutout, and easily accommodates padups and reinforcements

around the hole. As presented here, the methodology is applicable to circular and

elliptical cutouts in biaxially loaded orthotropic plates, but it can be extended to

include other configurations and loading conditions.

The following sections of the paper provide a description of the Rayleigh o

Ritz analysis methodology and a presentation of benchmark results to demonstrate the

accuracy of the approach. Next, the analysis methodology is correlated with experi-

mental results and used to generate strength predictions for composite tension speci-

mens with open circular holes. Finally, a design procedure and sample problem are

presented to show how the analysis methodology can be used in the design of integral

padups around circular cutouts. A complete listing of the equations that are re-

quired to implement the cutout analysis methodology is provided in the Appendix.
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ANALYSIS METHODOLOGY

Consider an elliptical cutout in a biaxially loaded composite panel as shown

in Figure i. The panel is modeled as a thin, elastic orthotropic plate under in-

plane loading. Due to the symmetry of the cutout geometry and loading, the analysis

is confined to the first quadrant x,y > 0 of a rectangular coordinate system with

origin at the center of the cutout. Polar coordinates r,9 are defined with respect

to the rectangular coordinates x,y by the usual transformation relations r -

(x2+y2) _, 0 = tan-l(y/x).

The principle of virtual work for the loaded panel can be expressed as

IA 6I_}T{NIdA " I 6{u}Tlt}dS = 0
S

(i)

where,

{u} = vector of panel displacements

{N} = vector of panel stress resultants

{e} - vector of strains at the panel middle surface

{t) = vector of surface tractions applied along the panel boundary

In Equation i, A is the panel area and S is the curve that defines the panel bounda-

ry. The symbol, 6, represents an arbitrary variation of a quantity consistent with

the displacement boundary conditions, which require vanishing normal displacements

along the axes of symmetry.

Stress analysis of the panel can be carried out using the Rayleigh-Ritz

method. In this procedure, an assumed displacement field containing unknown parame-

ters is developed for the panel and substituted into the principle of virtual work,

Equation I, to yield equations for determination of the unknown parameters. The

stress analysis of circular or elliptical cutouts in biaxially loaded panels is based

upon the assumed displacement field

Ur i

N M k

y. y. qj fk(r)cos2j #
j-O k=l

(2)

N M M+k

u 0 = E Z qj fk(r)sin2j0
j=O k-1

k

where Ur, u0 are polar coordinate displacement components and qj are unknown parame-
ters. (NOTE that k is used here as a superscript.) The functions fk(r) are given by

fk(r) = r2(k-M)+l for k = 1,...,M (3)

where the superscripted quantity is an exponent. The displacement field of Equation

2 satisfies the symmetry conditions, which require vanishing normal displacement and
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shear stress along the x and y axes in Figure I. The parameters M and N in Equation

2 can be adjusted to give the required number of series terms necessary for accurate

solution of the problem. Substitution of Equations 2 and 3 into the principle of

virtual work leads to a system of linear algebraic equations of the form

[K]{q} = {T} (4)

where

[K] = stiffness matrix

{q} = vector of unknown coefficients

{T} = load vector

Details of the derivation of Equation 4 and the subsequent calculation of panel

stresses and strains are given in the Appendix.

The foregoing analysis procedure can be extended to account for the presence

of symmetric integral padups around the cutout. Consider an integral padup around a

circular cutout as shown in Figure 2. The reinforced region, AI, has thickness tp

and the unreinforced region, A3, has thickness t. These two constant thickness

regions are joined by a tapered region, A2, where the thickness varies linearly with
the radial coordinate. The stiffness matrix [K] for the reinforced panel is calcu-

lated by carrying out the integration over the panel area, A, in three parts for

regions AI, A2, and A3, respectively. In Region A2, a linear variation of the

extensional stiffness is assumed. Hence,

(I) (r-Rl) (3)
(2) (r-R2) Ajk + Ajk (5)

AJ k (RIoR2) (R2oR I)

(i)

where, RI, R2 are defined in Figure 2, Ajk are the extensional stiffness for region
i, and j,k = 1,2, or 6. The general procedure given in the Appendix for calculation

of the unreinforced panel stiffness matrix can be used for the reinforced panel as

well.

BENCHMARK RESULTS

The analysis methodology discussed in the previous section was implemented

in a FORTRAN computer program, and benchmark results were generated to test its

accuracy relative to well-established cutout stress analysis techniques. Figure 3

shows a comparison of results for the stress concentration factor at a circular hole

in a uniaxially loaded rectangular plate. Rayleigh-Ritz analysis results were checked

against results generated using the anisotropic finite width correction factors

developed by Tan (Reference 9). Both (25/50/25) quasi-isotropic (i.e., 25% 0 °, 50%

±45 ° , and 25% 90 ° plies) and (50/39/11) orthotropic laminates were considered. For

both types of laminates, very good agreement was obtained for a wide range of hole

diameter/plate width ratios. The Rayleigh-Ritz results shown in Figure 3 were gener-

ated by taking N=5, M=6 in the assumed displacement field given in Equation 2.
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Figure 4 shows benchmark results for the stress concentration factor at an

elliptical hole in a unlaxially loaded rectangular plate. In this comparison,

Rayleigh-Ritz analysis results were again compared with the anisotropic finite width

correction factors developed by Tan (Reference 9). The aspect ratio of the ellipse

was b/a_2.0, and a (50/39/11) orthotropic laminate was considered. Two different

versions of Tan's solution were used. The first version, designated as the basic

solution, was developed from an approximate stress analysis for an anisotropic plate

containing an elliptical cutout. The second version, designated as the modified

solution, was developed to obtain improved agreement between analysis and test data.

Figure 4 shows good agreement between the Rayleigh-Ritz solution and Tan's basic

solution for cases where 2b/w < 0.5. For cases where 2b/w _ 0.5, the Rayleigh-Ritz

solution lies between the two Tan solutions. The Rayleigh-Ritz results shown in

Figure 4 were obtained by taking N=I5,M-6 in the assumed displacement field given in

Equation 2.

Figure 5 shows benchmark results for the stress concentration factor at

circular cutouts with symmetric padups in uniaxially loaded rectangular plates.

Rayleigh-Ritz analysis results were compared with results for isotropic plates given

by Peterson (Reference i0). The Rayleigh-Ritz results were found to agree fairly

closely with Peterson's results for padup thicknesses of up to twice the unreinforced

panel thickness.

EXPERIMENTAL CORRELATION AND STRENGTH PREDICTION

The strength prediction of composite laminates with cutouts requires that an

appropriate stress analysis procedure be combined with a suitable criterion for

prediction of material failure. For practical applications, one of the simplest of

these material failure criteria is the semi-empirical average stress criterion origi-

nally suggested by Whitney and Nuismer (Reference ii). In the average stress crite-

rion for uniaxial tension loading, laminate failure is predicted when the average

stress over a characteristic material distance, ao, ahead of the cutout equals the

unnotched strength of the laminate. The stress is averaged along the line perpendic-

ular to the applied loading that coincides with the symmetry axis of the cutout. The

characteristic material distance, ao, must be determined by correlation with experi-
mental data.

To demonstrate the use of the Rayleigh-Ritz cutout stress analysis procedure

in an overall strength prediction methodology, the stress analysis was correlated

with experimental data to obtain an appropriate value of ao for use in the average

stress criterion. For this purpose, the strength data published by Tan (Reference

12) for 8-ply AS4/3502 (0/90/±45)s open-hole tension specimens was used. For differ-

ent hole sizes, the Rayleigh-Ritz stress analysis procedure was used to calculate

laminate stresses in the tension specimens, and the value of a o required to bring the

average stress criterion prediction into agreement with the experimental failure

stress was determined. The a o values were generated for circular holes with diame-

ters of 0.i, 0.25, 0.3, 0.41, and 0.61 inch. The specimen dimensions given by Tan

(Reference 12) for each of these cases were used in the calculations. The average a o

value for the entire range of hole sizes and specimen dimensions was found to be a o =

0.09 inch.

To verify the predictive capability of the strength prediction procedure,

the ratio of notched to unnotched laminate strength, aN/ao, was calculated and com-
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pared with experimental data published by Nuismer and Whitney (Reference 13). The

value ao-0.09 inch was used in the calculations, which were carried out for 16-ply

T300/5208 laminates with (0/±45/90)2s and (0/90)4s layups and nominal hole diameters

of 0.I, 0.3, 0.6, and 1.0 inch. The specimen dimensions given by Nuismer and Whitney

(Reference 13) were used in each of the eight analytical predictions. Figure 6 shows

a comparison between the analytical predictions and experimental data as a function

of hole diameter. For the quasi-isotropic (0/±45/90)2s laminate, the predictions

were i0 to 20 percent conservative for the range of hole sizes considered. The

predictions for the orthotropic (0/90)4s laminate were approximately 20 to 30 percent

conservative. A plot of predicted versus measured values of aN/a o for the eight test

cases is shown in Figure 7.

Based upon the limited number of data considered, the analytical strength

prediction procedure for open hole tension specimens seems to provide a conservative

estimate of the specimen notched strength. Improved agreement between analysis and

experiment can be obtained by adopting a more sophisticated form of the average

stress criterion in which the parameter, ao, is adjusted for different layups and

hole sizes. At the time of this writing, experimental correlation and verification

of this semi-empirical strength prediction procedure was continuing.

DESIGN PROCEDURE AND SAMPLE PROBLEM

The strength prediction methodology discussed in the previous section can be

incorporated into a design procedure for symmetric integral padups around cutouts in

composite plates. To illustrate this procedure, consider Figure 2, which shows a

circular cutout of radius R surrounded by a circular padup in a biaxially loaded

composite panel. The padup has a central region of radius RI and thickness tp which

tapers to the unreinforced panel thickness t at radius R 2. The object of the design

procedure is to determine the padup layup corresponding to a specific uniaxial panel

design strength aN*. It is assumed that the padup has the same ply percentages as

the parent laminate.

The design task can be carried out by (I) determining the padup region

thickness tp corresponding to aN* and (2) finding a practical padup layup that close-

ly approximates the calculated tp value. The solution to the first problem can be

obtained by iterative application of a strength prediction procedure based on the

average stress criterion. For this purpose, consider an unreinforced panel with unit

applied load, Nx,ap p (ib/in). The average value of N x along the x-axis over the line

segment hD _ x _ hD + a o is denoted as Nx,av. Due to the linear elastic behavior of

the panel, the ratio of notched strength, aN, to unnotched strength, a o, is

a N = N__ x.amm (6)

ao Nx,av

Next, consider a panel with a padup of the type shown in Figure 2. By similar rea-

soning, the ratio of the notched panel strength, aNp, for the reinforced panel to the

unnotched panel strength is

aNp - N t
-- _ -_ , (7)

ao N* t

x,av
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where N* is the average stress along the x-axis over the line segment hD _ x <, x,av

_D+a o. The * superscript indicates that the average stress resultant N*x,av is

computed in the reinforced region that has thickness tp. Since the value of tp

influences the operall load transfer into the padup region from the unreinforced

portion of the panel, N*x,av is a complicated function of tp.

In the design problem, the desired value of tp corresponds to the case where
aNp - a* N. For this case, combination of Equations 6 and 7 gives

N* (t) * t
x_av p a__N . ___ z 0

Nx,av a N t

(8)

Equation 8 must be solved iteratively to determine the padup region thickness, t_.

For this purpose, a design function, g(tp), equal to the left-hand side of Equatlon 8

is introduced. Using two initial estimates for tp, the secant method can be used to

find tp such that g(tp) < 6, where 6 is a sufficiently small number.

After the padup thickness, tp, corresponding to o* N has been determined, it

remains to find a practical padup layup with the same percentage of plies as the

parent laminate. For the case of symmetric integral padups, material of thickness,

(t -t)/2, must be added to each side of the panel. Therefore the practical padupp
layup for each side of the panel is the least number of plies that (i) maintains ply

percentages of the parent laminate and (2) has total thickness of at least (tp-t)/2.

A flowchart for the padup design procedure is shown in Figure 8. To

illustrate the use of this procedure, consider a sample problem involving the panel

geometry shown in Figure 2. The parent laminate is a 36-ply (25/50/25) AS4/3502

panel. The geometrical parameters are L-10 inches, Wz4 inches, R=0.5 inch, RI=0.75

inch, R2=I inch, and t=0.1872 inch. The unnotched panel strength is ao=71.7 ksi and

the panel design strength is a'N-40 ksi. A value ao-0.09 inch is assumed for the

average stress criterion.

For the unreinforced panel with cutout radius R=O.5 inch, the notched panel

strength ON= 27.1 ksi. Therefore, a padup is necessary if the panel is to withstand

the design strength O'N=40 ksi. Using the iterative procedure illustrated in Figure

8 with initial thickness estimates of tp=t and tp=l.lt, the necessary value of tp was

found to be tp_0.2996 inch. The practical padup-corresponding to this value of tp

has 12 plies (three 0 °, six ±45 ° , three 90 ° ) of material on each side of the panel.

For the practical padup, tp-0.312 inch. A strength analysis for this value

of tp gives a reinforced notched panel strength of aNp-41.4 ksi. Since this value of

aNp gives a positive margin of safety with respect to the design strength a'N-40 ksi,

the padup design procedure has achieved its purpose.

SUMMARY AND FUTURE PLANS

In the previous sections, a Rayleigh-Ritz stress analysis methodology for

composite panels with cutouts has been described, and its applications to panel

strength prediction and design of symmetric integral padups around cutouts have been

illustrated. In its current state of development, this methodology can be applied to
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circular or elliptical cutouts in rectangular panels under biaxial tension/ compres-

sion loading. The advantages of the procedure are its ability to provide accurate

numerical stress analysis solutions with a minimum of input data, and its capability

to accommodate cutout reinforcements, such as padups. Its disadvantage is its re-

stricted applicability, which currently includes only a limited number of cutout

geometries and panel loading conditions.

Future development efforts for the Rayleigh-Ritz cutout stress analysis

methodology will be focused on the incorporation of substructural effects into the

analysis, and the extension of the procedure to more complex cutout geometries and

loading conditions. The effect of integral stiffeners can be included in the analy-

sis by assuming strain compatibility between the stiffeners and the panel. The

strain in the stiffeners can then be calculated using the assumed displacement field

given in Equations 2 and 3, and virtual strain energy terms for the stiffener ele-

ments can be added to the left-hand side of Equation i. By this approach, the effect

of any number of stiffener elements can be included in the analysis without increas-

ing the number of degrees of freedom in the solution process. An effort to implement

the substructural effects analysis for the common case of a "picture-frame" stiffen-

ing arrangement around a cutout is currently underway.

Future analysis efforts will also include attempts to extend the existing

methodology to include more complex cutout shapes and loading conditions. The analy-

sis of complex cutout shapes, such as slotted holes and rectangles with rounded

corners, will require some modification of the basic analysis procedure presented

here. One promising approach that will be investigated is use of the penalty func-

tion method (Reference 14) in conjunction with the assumed displacement field of

Equations 2 and 3. This approach, which involves constructing penalty functions from

specified constraint conditions, will make it possible to closely satisfy stress-free

boundary conditions along the cutout perimeter without introducing additional degrees

of freedom. Further modifications will be required to enable the stress analysis

procedure to accommodate more complex loading conditions. For in-plane shear load-

ing, a different assumed displacement field will be constructed to exploit symmetries

in the deformation of the panel under this type of loading. This displacement field

will be implemented into the analysis using the procedures illustrated in the Appen-

dix. Stress analysis results for problems involving generalized in-plane loading can

then be obtained by superposing results obtained from the separate analyses for

biaxial and shear loading.

In future work, a concurrent approach to the development of design

procedures and enhanced stress analysis methodologies will be pursued. The initial

portion of this work, which consists of a design procedure for symmetric integral

padups around circular holes in uniaxially loaded panels, was illustrated in this

paper. A generalization of this design procedure to permit sizing of cutout rein-

forcements and stiffening elements will be developed as the extensions to the stress

analysis methodology are completed.
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APPENDIX

For problem solution, it is convenient to represent the assumed panel

displacements given in Equation 2 in the matrix form

ur } N(u} - - _ [U_]{qj}
u0 j=O J

(A-t)

where {qj} is a vector of dimension 2M containing unknown parameters and [Uj] is a
2 x 2M matrix of the form

[Uj] _ [ flcos2j0 fMcos2J8 0 ...... 0 ]
0 ..... 0 flsin2J 0 fMs in2j #

(A-2)

The strain vector {_} is obtained by applying the strain-displacement, relations for
polar coordinates:

I'r}
7r8

a__ 0
ar

1 i___
r r @6

!&_ i__l
r a9 ar r

{u} (A-3)

Substitution of Equations A-I and A-2 into Equation A-3 leads to a relation of the
form

N

{_} m Z [H{](q{ } (A-4)
j-O

where [Hj] is a 3 x 2M matrix whose entries are given by

f'cos2j8 for m - I ..... M
Hj,I m _ m (A-5)

0 for m - M+I .... 2M

ifmcos2j8 for m - I ..... MHj, 2m - r (A- 6)
2j!fm_MCOS2 j 0 for m - M+I .... 2M

r

-2j ifmsin2j8 for m- I ..... MHj, 3m - r (A-7)
(f' 1fro)sin2 j 0 for m - M+I .... 2M

m r

The superposed prime denotes differentiation with respect to r. The stress resultant

vector (N} is obtained by application of the stress-strain relations. Let Ex, Ey,
Gxy, Vxy be the orthotropic elastic constants for the panel. Let
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-- E t v E t
All - X AI2 - xy y

I-VxyWy x I-VxyUy x

- E t -

A22 - Y A66 - Gxyt
I-VxyWy x

where Vyx - Wxy(Ey/Ex) and t is the panel thickness.
given by

{N} - N 0 -

Nr8

All AI2 AI6

AI2 A22 A26

AI6 A26 A66

I'r}c8

Vr8

where

(A-8)

The stress resultant vector is

(A-9)

All - illCOS48 + 2(A12 + 2A66)sln20cos20 + A22sin48

AI2 - (All + A22 4A66) sin28c°s2# + AI2( c°s40 + sin4#)

AI6 - -(All - AI2 - 2A66) sinSc°s30 (AI2 - A22 + 2A66) sinBgc°s0

A22 - Allsin48 + 2(A12 + 2A66)sin28cos20 + A22cos48

A26 - "(All " AI2 " 2A66) sin30c°s9 (AI2 " A22 + 2A66) sinSc°s39

A66 - (All + A22 2A12 2A66) sin28c°s29 + A66 (sin49 + c°s48)

(A-IO)

Equation A-9 can be written in the compact matrix form

{N} - [A]{_} (A-II)

where [A] is the 3 x 3 matrix in Equation A-9.

For the rectangular panel of length L and width W shown in Figure i, the r

coordinate defining the boundary is a function of 9 given by

I L for 0 <_ 8 <_

2cos9

(A-12)
Rb(9) - _ for _ < 0 < -_

2sin0 - - 2

where 4 - tan-l(w/L). The r coordinate defining the edge of the elliptical cutout is

also a function of 8 given by

Rc($ ) ab (A-13)

(a2sin28 + b2cos28)h
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where a,b are the dimensions of the ellipse semiaxes. The surface traction vector

along the panel boundary is

t8

I Nx(l+cos28 )
tr =

i Ny(l-cos20)

for 0 < 8 <

for 4 < 8 < -_
2

(A-14)

(A-15)

t8 = {  xSin2'
i Nysin28

for0_8_4

for4_8_
2

(A-16)

Introducing Equations A-I, A-4, A-II, and A-14 into Equation i leads to a matrix

equation of the form

[K]{q} = (T} , (A-17)

where [K] is an M(2N+I) x M(2N+I) stiffness matrix, {q} is an M(2N+I) x i vector of

unknown displacement field parameters and {T} is an M(2N+I) x i load vector.

The stiffness matrix [K] can be represented in the partitioned form

[K]

[Ko0] [K01] [KON]

[KI0] [KII] [KIN]

[KN0] [KNI] [KNN]

(A-18)

where the partition [K00 ] is an M x M matrix, the partitions [K01 ]..... [KON ] are M x

2M matrices, the partitions [KI0 ] ..... [KN0 ] are 2M x M matrices, and the remaining

partitions are 2M x 2M matrices. The elements of a general partition [Kjk ] are given

by the relations

Kjk,m n = {[All_m n + Al2(6mn + 6nm) + A224mn]COS2jScos2k8

- 2k(A166nm + A264mn)COS2j0sin2k8

- 2j(A166mn + A264mn)Sin2jgcos2k8

+ 4jkA664mnSin2 j 9sin2k8 }d9

for I _< m _<M, 1 <_ n <_ M

(A-19)
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where,

Kjk,mn -

Kjk, mn

Kj k, mn

_ [2k(A126n'M'm + A224m,n_M)Cos2j0eos2k0

+ (Al6Am,n_ M + A26_m,n_M)COS2j0sin2k8

- 4jkA264m,n.MSin2 j 8cos2k8

- 2jA66_m,n_Msin2j 8sin2k0 ]d_

for I _< m _< M, M+I _< n < 2M

- [2j(AI26m.M, n + A224m.M,n)COS2j0cos2kO

- 4jkA264m_M,nCOS2 j #sin2k0

+ (Al6_n,m. M + A26_n,m_M)sin2jScos2k8

2kA66_n, m_MSin2j 8sin2k8 ]d9

for M+I _< m < 2M , i < n _< M

- [4j kA22_m_M,n.MCos2j 0eos2k0

+ 2jA26_m_M,n_MCOS2 j 0sin2k8

+ 2kA26_n_ M,m_Msin2j 8cos2k8

+ A66_m.M,n_MSin2 j #sin2k8 ]d0

for M+I < m < 2M , M+I < n < 2M

b , ,
/gmn = fmfnrdr

C

Rb
6mn - fmfndr

R c

4mn " ifmfndr
r

c

Amn
Rb , ,

- fm(fn - !fn)rdr

Rc r

_mn - 6nm

(A-20)

(A-21)

(A-22)

(A-23)

(A-24)

(A-25)

(A-26)
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_mn
Rb

fm(fn - !fn)dr

Rc r

= 6mn " 4mn (A-27)

_mn
Rb ,

- (fm " !fm)dr

Rc r

- _mn " 6mn - 6nm + ¢mn (A-28)

for i _ m,n _ M. In Equations A-23 through A-31, the prime denotes differentiation

with respect to r. Using the functions defined in Equation 3, the integrals in

Equations A-23 through A-25 can be evaluated to obtain

_mn

2(m+n)-4M+2] [2(m+n)-4M+2] }
[2(m-M)+l][2(n-M)+l] Ri__ - R c

[2(m+n) - 4M+2]

for m+n _ 2M-I ,

[2(m-M)+l][2(n-M)+l] In(Rb/R c)

for m+n - 2M-I

(A-29)

6m n z

2(m+n)-4M+2] [2(m+n)-4M+2] }
[2(n-M)+l] Ri__ - R c

[2(m+n) 4M+2]

for m+n _ 2M-I ,

[2(n-M)+l]in(Rb/R c)

for m+n - 2M-I

(A-30)

_mn m

[2(m+n)-4M+2] [2(m+n)-4M+2] }
I Rb Rc

[2(m+n) 4M+2]

in(Rb/R c)

for m+n _ 2M-I ,

for m+n - 2M-I

(A-31)

The quantities R b and R c are functions of 8 as defined in Equations A-12 and A-13.

The integrals in Equations A-19 through A-22 can be evaluated numerically using

Simpson's rule.

The load vector (T} in Equation A-17 can be represented in the partitioned

form
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{T}

{To}

{T I }

{Tj )

{TN)

(A-32)

where {TO } is an M x 1 vector and the remaining partitions are 2M x i vectors•

elements of a general partition {Tj} are given by the relations

I NxL 140 fm(Rb)COS2jSd#Tj ,m - 2

The

+ ! NyW fm(Rb) cos2j 9d8
2

for m - I,...,M (A-33)

Tj ,m 1 NxL 140fm'M(Rb)sin2jStanSd82

+ ! NyW fm_M(Rb)sin2jScot0d8
2

for m - M+I ..... 2M (A-34)

These integrals can be evaluated numerically using Simpson's rule. Finally, the

vector of unknown displacement field parameters {q} in Equation A-17 can be written

in the partitioned form

(q}

{q0)

(ql)

{qj }

{qN }

(A-35)

where {qo} is an M x i vector and the remaining partitions are 2M xl vectors•

Solution of the system of linear algebraic equations represented by Equation

A-17 yields the vector of displacement field parameters {q}. Displacements, strains,

and stress resultants at any point in the cutout panel can be calculated by evaluat-

ing Equations A-l, A-4, and A-9, respectively•
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