FUZZY CONTROL/SPACE STATION AUTOMATION

1.17

by

Mark Gersh NASA Headquarters

14 November 1990

163675 p- 21

, 9 N

ယ

Office of Space Flight

OFFICE OF SPACE FLIGHT SPACE STATION FREEDOM

Last Modified 10/10/90

1-110-2

Code MT Organization and Responsibilities

FREEDOM

Space Station Engineering Organization

Last Modified 10/1/90

5

I-110-3

FREEDOM

Objectives

- Provide a permanently manned presence in space
- Enhance capabilities for space science and applications
- Stimulate advanced technologies

- Promote international cooperation
- Encourage private sector participation and utilization
- Provide options for future endeavors in space

Evolution

- Freedom is a permanent facility:
 - Upgrades and configuration changes will take place on-orbit
- During the operational life of the Space Station:
 - National priorities will change
 - User needs and mission requirements will change
 - Technology will evolve and components will become obsolete

SPACE STATION FREEDOM EVOLUTION FOR HUMAN EXPLORATION

Factors Pointing to Automation & Robotics (A&R)

- Space Station has a 30 year operational life
 - Operations costs, reliability are important concerns
 - Incorporation of new technology essential
- Crew is most scarce resource
 - Productivity is crucial in meeting assembly, user, and servicing requirements
- Evolution mission scenarios are crew-intensive
 - Science missions will grow and increase demand for crew time
 - On-orbit assembly, checkout, launch of Lunar/Mars vehicles

The A&R Promise

FREEDOM

- Increased Mission Safety, Reliability
 - Manage system complexity
 - Trend analysis, fault detection, isolation, and reconfiguration
 - Reduce EVA required
- Increased Mission Productivity, Services
 - Reduce "housekeeping" overhead
 - Reduce experiment overhead
- Increased Probability of Mission Success
 - Re-planning for contingencies, reactive science
- Reduced Operations Costs
 - Training, software maintenance, sustaining engineering

SPACE STATION FREEDOM Astronaut Office Inputs Concerning A&R Regarding Advanced Automation

- - Simple, standardized human interface (idiot proof)
 - Provide flexible operations capability
 - User (versus technology developer) oriented
 - Develop and implement easier applications first
 - Help the user do the job easier (don't make it harder)
 - Include "What if?" Capability (In-line simulation)
 - Backup mode of operation

- System must be able to explain conclusions and actions
- Automate tedious and repetitive tasks, time dependent tasks, calibration and alignment tasks, robotic set-up for EVA

Astronaut Office Inputs Concerning A&R

- Applications supported by crew for improving productivity:
 - Automated record keeping and documentation (100%)
 - Automated inventory management (96%)
 - Automated FDIR (93%)

- Improved human-computer interfaces (92%)
- Robotic construction (92%)
- Exception reporting and alarm filtering (88%)
- External camera and light pointing (87%)
- Robotic external repairs (85%)
- Automated trend analysis (incipient failure detection) (85%)
- Checklist automation (85%)

SPACE STATION FREEDOM Astronaut Office Inputs Concerning A&R

FREEDOM

- Applications supported by crew for improving productivity:
 - Systems Monitoring and Control (82%)
 - EVA retriever robotics (81%)
 - Payload-specific automation (79%)
 - On-board training systems (72%)
 - Internal camera and lighting pointing (58%)
 - Speech Recognition (56%)
 - Speech Synthesis (54%)
 - On-board scheduling/re-scheduling capability (52%)
 - IVA rack robot (50%)

19

- IVA housekeeping robot (46%)

FREEDOM

Advanced Development Program

- Objectives
 - Enhanced baseline Space Station Freedom capabilities
 - -- Improve productivity and reliability
 - -- Reduce operations costs
 - -- Prevent technological obsolescence
 - Enable Space Station Freedom evolution
- Products
 - "Engineering" fidelity demonstrations, evaluations
 - Detailed requirements, performance specifications
 - Mature technology, tools, applications

Flight System Automation and Ground Operations Applications

- Focused on Automated Status Monitoring, Fault Detection, Isolation, and Recovery (FDIR) using Knowledge-Based System (KBS) techniques
- Understand design accommodations ("hooks and scars")
 - Instrumentation, control redundancy, interfaces
- Identify KBS implementation issues
 - Integration with conventional techniques
 - Processing, data storage, communication requirements
 - Software development, testing, maintenance
 - Boundaries of KBS technology (performance, scale, brittleness)
- Applications under development for Thermal, Power, Life Support, Data Management, Mission Control

FREEDOM

Transition Definition Program Advanced Development - FY 1990

- Flight Systems and Ground Operations Automation Tasks
 - Focused on automated status monitoring, fault detection, isolation, and recovery (FDIR) using Knowledge-Based System (KBS) techniques
 - FDIR KBS applications under development for the Thermal Control System, Power Management and Distribution/Control Systems, Environmental Control and Life Support System, Data Management System, Operations Management System, Mission Control Center (MCC), and the Space Station Control Center (SSCC)
 - MCC applications were jointly developed with OAST and OSF and have supported STS-26, STS-29, STS-30, STS-28, STS-34 and STS-32; all will be transitioned to SSCC

SPACE STATION FREEDOM Advanced Automation Software Tools

- Focused on providing programming tools to enable development of integrated KBS applications within the Software Support Environment (SSE)
 - KBS programming tools which produce Ada code are under development and evaluation
- Develop and demonstrate advanced programming tools which reduce the cost of software development and maintenance for flight and ground systems
 - "Programmers Assistant" that uses KBS techniques to aid programmers in Ada software re-use under evaluation
 - Programming environment for Intelligent Computer-Aided Training (ICAT) applications under development

LUNAR/MARS TRANSPORTATION NODE

OSSTT 22K NASA HO SF 9 21 89

1.3

17.8.3

BALLA.

Some General Thoughts on Technology Transition

- In an ideal world, technology transition happens when...
 - The user is interested and involved in application development
 - The application and technology are consistent with operations concepts, procedures, and doctrine
 - Implementation is compatible with existing hardware and software and isolated ("firewalled") during initial evaluation period
 - "Success" metrics are defined early and guaranteed at some minimal level
 - "Bottoms up" and "top down" pressure is simultaneous and consistent

13

• Post deployment "care and feeding" issues are addressed early

i nation

Some General Thoughts on Technology Transition

- It's not an ideal world...
 - Organizational structure creates, encourages insular and myopic view of technology insertion opportunities and operational realities
 - Ego and fear of the unknown tends to reinforce status quo
 - Personnel and financial resources are limiting factors
 - Risk and schedule pressure are harsh realities

Summary

FREEDOM

- Automation is a key element in meeting Space Station Freedom baseline and evolution requirements
- Automation technology is sufficiently mature to warrant early use within the Program
- Scope and pace of automation applications will be determined by:
 - Success of early testbed prototypes

- Support and acceptance of managers and users
- Consistent implementation methodology and tools
- "Technology transfer is a body contact sport." John Muratore, JSC
 - People are a key factor in affecting or preventing technology transfer and utilization