PROXIMITY OPERATIONS IN SPACE STATION ENVIRONMENT

by Brandt Rhodes / Senior Engineer Guidance, Navigation & Traffic Management - Proximity Operations McDonnell Douglas Space System Co., SSD (Houston) Phone: (713) 280-1500 x 3227 Fax: (713) 280-1583

Outline

347

- Introduction
- Requirements & Constraints
- Problem Formulation
- Proposed Approach
- Summary
- Panel Discussion

Space Station Freedom

McDonnell Douglas

•

GE

Lockheed

IBM

۰

Honeywell

° . පා 1 co - Januar, I 4 4

6

>Z

11/9/90- page -1

PROXIMITY OPERATIONS INTRODUCTION

- Proximity operations encompasses all free-flying vehicle relative motion within 1 km radius sphere of the Station, the proximity operations zone (POZ)
- U.S. efforts traditionally include manual piloting of an active chase vehicle about a passive target
- Primary active vehicle is the Shuttle
 - Greatest effects on Station components and operations
 - Highest frequency of interaction
- Station era may involve unmanned cooperative vehicles
 - Potential candidates for automated flight
 - Man-Tended Free-Flyer (MTFF) currently plans Station visits
 - Assured Crew Return Vehicle (ACRV)
 - Flight Telerobotic Servicer (FTS)
 - Remote manual piloting from Station cupola or ground
 - Shuttle- and Station-based OMVs / OTVs
 - Crew Equipment Retrieval System (CERS)
 - Flight Telerobotic Servicer (FTS)
- Direct influences on system design, SE&I and operations

11/9/90- page -2

.

Author: Brandt Rhodes

Filename: Fuzzy Logic/Prox Ops for SSF

PROXIMITY OPERATIONS TASK REQUIREMENTS & CONSTRAINTS

Flight techniques / procedures development accounts for

- Lighting / visibility constraints
- Trajectory and attitude control
- Plume impingement & environment effects
- Docking / berthing contact conditions
- Structural clearances
- Contingency planning
- Crew timelines
- Ground rules
- Fuel usage
- Flight performance directly dependent on
 - Flight techniques development and piloting skill
 - Control system authority, capacity and performance
 - Propulsion system functionality and effectiveness
 - Relative navigation sensor accuracy and precision
 - Orbital environmental effects

PROBLEM FORMULATION

- Control task is regulating the six degree-of-freedom (DOF) relative motion between vehicles to achieve the desired trajectory
 - Chaser performs translational and rotational maneuvers
 - Target drifts or actively maintains an attitude profile
 - Critical flight parameters wrt relnav sensor line of sight (LOS)
- Traditionally, flight profile manually flown by refined procedures -
 - Relative state control is split into three distinct aspects:
 - Rotational attitude and attitude rates
 - Range, closing or opening velocity
 - Cross range, bearing angles & rates

PROBLEM FORMULATION (CONTINUED)

Flight parameter flow / pilot interaction for proximity operations task

11/9/90- page -5

PROBLEM FORMULATION

- Cross range flown as function of LOS bearing
 - Translational burns ≈ normal to LOS
 - Data from CCTV, COAS, relative nav avionics
- Angle boundaries sized to subject vehicle and desired profile tightness
- Firing Decision Logic independent for azimuthal and elevation parameters in each zone

REGION	Phi dot State	Thrust Reaction	Theta dot State	REGION		
II, V	Constant or increasing	Induce neg rate	Constant or increasing	I, II		
	Decreasing	N/A, follow trend	Decreasing			
I, IV	Constant or decreasing	Induce pos rate	Constant or decreasing	IV, V		
	Increasing	N/A, follow trend	Increasing			
III	Phi dot > Phi dot max	Decrease rate to below max	Theta dot > Theta dot max	III		

- Space Station Freedom

McDonnell Douglas • GE • Honeywell • IBM • Lockheed

353

SUMMARY

- Techniques exist that model, augment, automate prox ops piloting
- Overall task requires flexibility for broad application and poses multiple requirements constraints
- Automation may be applied to specific aspects of the prox ops task
- **Traditional simulation paper pilots are tuned for their environment**
 - Contributing vehicle factors:
 - Digital autopilot (DAP) / RCS configurations
 - Propulsion system characteristics
 - Sensor data quality
 - Tuning parameters:
 - Frequency of response
 - Number of input impulses per response
 - Filtering and / or trend evaluation of the sensor data
- Could fuzzy logic provide a way to develop generic automatic flight control applicable to various active vehicles for prox ops?

	McDonnell Douglas	• GE	•	Honeywell	•	IBM	•	Lockheed	
11/9/90- page -8	Author: Brandt Rhodes				Fi	ename:	Fuz	zy Logic/Prox Ops for SSF	

Topic:	Proximity Operations				
Presenter:	Andy McGuire				

Comment: Work has been done during the last two years on automatic flight control with a demonstration in 1988. --> Rotational Controller containing 31 rules.