
Measurements Over Distributed High Performance

Computing And Storage Systems

Elizabeth Williams

Supexcomputing Resem_ Center

17100 Science Drive

Boa.e, }hry_nd 20715-4300

Tom Myers

Department of Defense

9800 Savage Read

Ft. Meade, Maryland 20755-6000

1.0 Introduction

The rapid pace of technological change and the move toward "open systems" is making the pro-

cess of acquiring systems much more complex. Traditionally, functional and performance require-

ments have been carefully described for systems to be acquired and the systems usually have

come from a single vendor. The process worked as long as the requirements remained nearly

static and systems changed slowly over their life time. There generally has been no need for a

requirement to provide measurements and performance monitoring to see that requirements were

met over the long term. Measurements that were available were often left over from development.

In the future the requirements for many systems are expected to change more quickly, and parts of

the systems, acquired from multiple vendors, will evolve to meet those changing needs. There is a

desire to ask for life-time measurements of systems in request for proposals (RFPs) when systems

are being acquired. Thus, there is a need for measurements and performance monitoring as an

integral part of the system to ensure that requirements are met over the long term after acceptance.

This paper gives a strawman proposal for a framework for presenting a common set of metrics for

supercomputers, workstations, file servers, mass storage systems, and the networks that intercon-

nect them. Production control and database systems are also included. Though other applications

and third party software systems are not addressed, it is important to measure them as well.

The capability to integrate measurements from all these components from different vendors, and
from the third party software systems has been recognized and there are efforts to standardize a

framework to do this. The measurement activity falls into the domain of management standards.

Standards work is ongoing for Open Systems Interconnection (OSI) systems management; AT&T,

Digital and Hewlett-Packard are developing management systems based on this architecture even

though it is not finished. Other efforts include the Storage System Management Sub-committee of

the Mass Storage System Working Group and the UNIX International Performance Management

539

Working Group [1]. In addition, there are the Open Systems Foundation's Distributed Manage-

ment Environment and the Object Management Group. A paper comparing the OSI systems man-

agement model and the Object Management Group model has been written [2]. Though most of

the standards effort has been on the mechanisms for gathering and reporting measurements, we

expect to cooperate with these standards making efforts. The work reported here is ongoing.

The IBM world has had a capability for measurement for various IBM systems since the 1970's

and different vendors have been able to develop tools for analyzing and viewing these measure-

ments. Since IBM was the only vendor, the user groups were able to lobby IBM for the kinds of

measurements needed. However, in the UNIX world of multiple vendors, a common set of mea-

surements will not be as easy to get.

In this paper we distinguish between metric and measurement. A measurement is a quantity that

is directly measured while a metric is a quantity that can be derived from a set of measurements.

Our focus is on using low level vendor specific measurements to support a set of higher level met-

rics that are common across a variety of vendors. The set of measurements to support the common

metrics should in general be the minimum that is provided. Most systems should also make avail-

able measurements of unique aspects of the system that are not covered by the common set. For

example, measurements on vectorization and hit ratios for memory hierarchies may not be in the
common set of metrics but such measurements are desired.

2.0 Uses for Measurements

Measurements of systems are, of course, useful in many other ways than just to support system acquisition.

They can be used to support day-to-day operations, management decisions and planning, and performance

monitoring. The following are seven types of uses we have identified:

(1) distributed computing system scheduling,

(2) fire-fighting - solve immediate problems to provide acceptable response time and resource

allocation to all processes,

(3) tuning systems for current workloads,

(4) capacity planning,

(5) allocating resources,

(6) looking for trends and characterizing workloads,

(7) verifying system strategies are working or assumptions about workloads are valid, e.g. lo-

cality of reference,

(8) validating accounting reports.

In analyzing how measurements are used, the following three points are very important. (1) For

fire-fighting and tuning, a systems administrator must be able to link a particular "event" to a set

of user commands.The systems administrator should be able to know when a resource is respond-

ing slowly and which process is causing the problem. We stress that it is important to be able to

link particular events of interest back to user commands though we know that it is sometimes dif-

ficult. (2) Process as well as system-wide measurements are needed. (3) Accurate time stamps or

54O

other timing information is necessary so that various independent measurements can be correlated
with each other as a system is observed over time.

3.0 Measurement Collection Techniques

It is also understood that taking measurements and collecting them cause overhead and may in

extreme cases affect the performance of the systems measured; this is not specifically addressed in
this paper. However, data can be collected at various levels of detail depending on how much

overhead is involved. The most complete level of measurement is a log or trace of each transac-

tion or event. The next level of measurement is a set of counters that produce a histogram, which
is an approximation to the distribution, of the metric of interest. The least detailed level of mea-

surement is a simple counter from which the average, variance, maximum and minimum of the

metric of interest can be derived. The level of measurement for any component depends on the

overhead associated with the workload. When possible, the ability to selectively choose a differ-

ent measurement level allows users of a system to manage how much overhead is given to mea-

surement activities. Another way of managing the overhead associated with measuring a system is

to sample a measurement at some interval that is frequent enough to observe interesting behavior

but with reduced overhead. The sampling rate should be adjustable.

For measurements to be useful, they must be well documented It must be clear exactly what is
being measured. The documentation should specify how much overhead is involved, what tech-

nique is being used to generate the measurement, and if there are user selectable parameters such

as a sample rate or an enable/disable switch. Information about how a system is configured must

either be statically defined or recorded along with a set of measurements.

541

external supercomputer
distribution storage visualization

input processing

NASA EOS

Seismic Exploration
DOD
NCAR

Medical Imaging

NASA Aerospace

DOE Labs

NSF Centers

Figure 1: Model of Network Computing System

4.0 Model of Distributed High Performance Computing Systems

In Figure 1 we present a model of a distributed high performance computing system. The model

identifies the five highest level functions of external input sources to indicate the collection of

data for processing in the system, distribution for the network among components, supercom-

puter processing for high performance computing, storage for distributed mass storage, and

visualization for user support processing. The distributed characteristics of this model are not

depicted specifically but one can think of NASA's EOS system as the basis for this model. The

other high performance computing systems listed at the bottom of the figure will all have similar
models.

The five model functions are made up of various hardware and software system components. The

hardware system components include supercomputers, mainframes, workstations, mass storage

devices, file servers, networks, input machines and other network devices such as disk arrays. The

542

softwaresystemcomponentsincludeoperatingsystems(OS) (includesfile systemandprotocols),
massstoragesystems(MSS),databasesystems(DBMS), productioncontrol systems,third party
softwareanduserapplications.Below thesystemcomponentlevelarelower levelbuildingblocks
to measure.ThesearethehardwarebuildingblockssuchasCPU,memory,memoryinterconnec-
tion, disk, tape,terminal I/O, recorder/drive,roboticsbox, channel/controller,network interface,
routerandexternalI/O. Thesoftwarebuildingblocksaredependenton theparticularsystemsoft-
warecomponent.For anoperatingsystemthereareprocessmanagement(scheduler/queues,con-
text switches),I/O system(buffers,cache,queues),memorymanagement(allocation,swapping,
queues,paging,caches),file system,protocols,interprocesscommunicationsandotheroperating
systemservices.For a massstoragesystemthereiseachmodulein theMassStorageReference
Model (MSRM). For an applicationthereareuserdefinedmodules,operatingsystemcompo-
nentsand varioushardwarebuilding blocks usedby the application.For a databasethereare
indexes,tables, storedprocedures,logs, locks, transactionsand users.The softwarebuilding
blocksarenotyet completelyidentified.

Figure2 illustratesthis threelevel hierarchyof metrics.The abstractmetrics at the base of the

pyramid are a list of generic metrics that are used at all three levels. The eye represents the need to

have comprehensive and uniform observations at all levels.

Model Level

Fu_. ctions

System Components \

Software

Hardware

\

Building BlocksSoftware

Hardware

Abstract Metrics

Figure 2. Hierarchical Levels

543

In Figure 3, the levels are expanded to show how higher level objects are composed of lower level

objects. Three model functions are connected to system components and some of the system com-

ponents are connected to lists of building blocks. Space does not permit a full expansion of all

functions and components in this figure.

The common metrics for objects at the lowest level are derived from vendor measurements• And

the metrics for higher level objects are derived from combinations of metrics for lower level

objects. Thus we expect that the derivation of the lowest level metrics will be vendor specific but

that higher level metrics will be vendor independent. We have not dealt with the issue of how to
attach derivations to the metrics. We have not evaluated the difficulty for vendors to implement

measurements to support the framework, nor have we tried to gauge the relative importance of the

various metrics.

I. Model Level Functions:

External

Input

Supercomputer
Distribution

Visualization

StorageProcessing

H. System Components: [

/ " Cont__" / , _^ _

ISetwork I \ _InputMachln4l Pr°ducti°nl

IDisk Array] _ "_3rdPartYll

/ \ I S ware I]

[Supercomputer I _]Applic I Storage] / I M_ J[Device I] IDBMS]

INetworkl _-_ IWorkstati°nl
q
t

I

iProtoco_

li4i;iff'ori,'"" r'i'iii,_.......i_Ti_ij,.....i
,: Interface Recorder iMemory :i

iRoute_ Robotics [Disk i,..............-' .Box......i,.............

Figure. 3 Expanded Hierarchy

:MSRM

iModules!
h i

t.

!Indexes

iTables

iLogs
iLocks
iStored
i Frocedure

IlL Building Blocks:

CPU Mgt
Memory
Mgt

il/O Mgt

!_.s.ys.t._.m.,

iCPU
!Memory
SSD
Disk

The use of common metrics is intended to provide vendors and other system developers a frame-

work that can be used to design measurements as an integral part of the system that they deliver.

544

Too often measurements are used only to verify that a system is operating correctly and are insuf-

ficient for understanding the performance of the system especially when it is interconnected as a

component of a larger system.

5.0 Abstract Metrics

The following list of abstract metrics are used to observe any object in the hierarchy by specify-

ing an instance of the metric for the object:

1 Utilization, Capacity, Idle

2 Throughput

3 Response "time 1, Delay, Expansion Factor 2

4 Waiting Time

5 Service Time

a. Bitfile Size, Packet Size, Computation Requirement

b. Speed of Device

6 Queue Length

7 Number of Jobs, Bitfiles, Packets

8 Routing, Branching Probabilities for Jobs Paths, Reuse, Age

9 Hit Ratios, Effectiveness of Strategies

(data migration, locality of reference)

10 Error Rates

All of these metrics are commonly used except for 8 and 9. Branching probabilities are useful for

modeling systems.

At the bottom of the hierarchy the specific metric for each object is given in terms of characteris-

tics of the object, such as mips and mflops for CPlJ throughput metrics. In addition at higher lev-

els, users will want to specify metrics in terms of the workload of the system, e.g. satellite images

processed per second through all model level functions for the NASA EOS.

6.0 Metric Tables

The following pages contain tables of metrics for the objects within the hierarchy. The left hand

column in each table has the list of abstract metrics. "1-- other columns I".... "......... "_"111_ II¢IkVI_ III_I.a,.IIK, K,,_ l..).t I,,ItlK,, _AJI.-

responding metric for the object at the top of the column. The tables are generally sparse since this

1. Response Time - Service Tune + Wait Time + Other Time

2. Expansion Factor:. wall clock time in shared system / wall clock time in dedicated system,
which often can be approximated by wall clock time in shared system / CPU time

545

work is still ongoing and we invite help in completing the tables, adding more objects to the hier-

archy and adding more abstract metrics.

abstract

metric

utilization,

capacity,
idle

throughput

response time,

delay,

expansion factor

waiting time

service time:

job size,

device speed

queue length

number of jobs

routing paths,

reuse, age,

branching

probabilities

Processing

and Storage

Mops per bit
stored

Mops per bitfile
stored

Processing

and Input

Mops per bit

input

Input and

Storage

Input bits per bit
stored

Input, Processing,

Storage

hit ratios, effec-
tiveness of

strategies

error rates

Table 1: Model Level - Across Functions

Bitfiles processed

throughallfunctions

per second

Response timethrough

all funcfion_ compo-
nents

Bitfileroutesthrough

all funcfion_ compo-
nents

Table 1 has metrics for the overall system where the objects being observed are combinations of

model level functions. At this level, the metric instances are suggestions since they will depend on

what the system does and will be defined by the users of the system.

Tables 2, 3 and 4 have the metrics for storage and some of its lower level components and build-

ing blocks. Tables 5 through 9 have the metrics for supercomputer processing and some of its

lower level objects. Table 10 has the metrics for distribution (networks) and some of its lower

level objects

In conclusion, we have presented a strawman proposal for a framework for presenting a common

set of metrics across many systems and we have listed some of the metrics. This work is ongoing

and we invite participation from users, vendors and system developers.
546

abstract metric

utilization,

capacity,
idle

throughput

storage

% space used

B*, # O, # M total by
class b or storage device

{B O M}/sec access c
by class or storage
device

mass storage device

% space used

% fragmentation

bits/see accessed

media/see accessed

mass storage
reference model

bitfiles by class
bitfiles/media

bits/bitfile by class

bitfiles/sec accessed

response time, {B 0 M} response time {B M} response time Bitfile response time

delay, by class or storage by class by class

expansion factor device or overall

waiting time ,d .

service time: * *

job size,

device speed

queue length length at various
model modules

number of jobs

routing paths, reuse,

age, branching prob-
abilities

hit ratios, effectiveness

of strategies

error rates

accesses vs. storage
device

{B O M} vs. age vs.
accesses

BER overall, by device

failure by device

#media vs.#accesses

#media vs. # age

#media vs. age vs.
accesses

BER, failures

bitfile vs. # accesses

bitfile vs. # age

bitfile vs. age vs.
accesses

migration policy met-
ric

hit ratios

T hio .qtarage. System ComponentS

a. B- Bits; O = Bitfiles; M = Media

b. class - {media type, bitfile size, access type, user, user process, user defined)

c. accesses - reads, writes, deletes

d. Asterisk implies that the metric is the obvious one in this context.

I_LUIIIk X.,UIIIIdA.)IITo, IIL_I It_L llllb, lUH_tl_l_t LlJt tdtit&O _*_,Aatat_t_t_t.Lv...

1. workstation or mainframe for controlling mass storage device

2. database for meta-data about the stored bittiles

547

abstract

metric

utilization,

capacity,
idle

throughput

response time a,

delay,

expansion factor

waiting time

service time:

job size,

devicespeed

qucuc length

number ofjobs

routing paths,

reuse, age,

branching
probabilities

hit ratios, effec-
tiveness of

strategies

error rates

tape

% space used/tape

% free tapes

tapesvs.
accessesb

tapesvs.age

tapes vs. age vs.
accesses

BER each tape

BER for all tapes

recorder,

tape drive

% time reading

% time writing

% time scanning
% idle

bits read/see

bits write/sec

mounts/scc

includes (posi-

tioning) start,

stop, scan,
read/write

delays

failures/time int.

disk arm/

platters

% time reading

% time writing

% time seeking

% free space or

fragmented

(int/ext) for

platters

bitsread/scc

bitswritc/scc

seeks/scc

includesread/

write, seek,

rotation delays

arm movement

distance/seek

failures/int.

BER for platters

robot

% time in use

requests/sec

includes start, stop

(positioning)

delays

distance/request

robot failures/inL

"Pable 3: Storage - Building Blocks - Hardware

& responsetime- servicetime+ waitingtime+ otherfactorsassociatedwithusingresource

b.accesses- reads,writes,deletes

548

utilization,

capacity,
idle

physical volume

repository

% time in use

bit file mover storage server bit fileserver

throughput bittiles/sec bitfiles/sec requests/see requests/see
accessed accessed

response time, ,a , , ,

delay,

expansion factor

waiting time * * * *

service time:

job size,

device speed

queue length * * * *

number of jobs * * *

routing paths,

reuse, age,
branching

probabilities

hit ratios, effec-
tiveness of

strategies

(B O} vs. age
vs. size vs.

accesses

migration/cach-

ing policy

Table 4: Storage - Building Blocks - Software

error rates

a. Asterisk implies that the metric is the obvious one in this context.

549

abstract

metric

utilization,

capacity,
idle

throughput

response time,

delay,

expansion factor

Supercomputer

Processing

% to users

% to system
% to idle

Supercomputer

% to users

% to system
% to idle

mops, mips

mflops

Operating

System

% to system

% holding on locks

processes/sec

system calls/see

interrupts/sec

- all by class

response time for

all processes

expansion factor
for all processes

waiting time waiting time for all

processes

service time:

job size,

device speed

queue length

number of jobs

routing paths,

reuse, age,
branching

probabilities

CPU burst time vs.

memory size

process path proba-
bilities for I/0

devices

Application

CPU, mere, IO

% m application

% to system
vectorization

speedup

mflops

particles/sec

response time for

application

CPU time

memory size

logical reads,
writes

hit ratios, effec- page hit ratio

tiveness of swaps

strategies system calls

error rates

Table 5: Supercomputer Processing - System Components

550

abstract

metric

utilization,

capacity,
idle

throughput

response time,

delay, expan-
sion factor

waiting time

service time:

job size,
device speed

queue length

number of jobs

routing paths,

reuse, age,

branching
probabilities

hit ratios, effec-
tiveness of

strategies

error rates

CPU

% time issuing inst

% time holding issue

% time vect or para

% vector (ops,inst}

vector length

ops/inst

mops, mips

mflops

% time waiting on
functional units

hardware specified

instruction mix:

% {ops, inst} by
instr class

instr cache hit ratio

memory cache hit
ratio

Memory

% time issuing
read or write

(% free space or

fragmented)

{Bytes, Words}
read/s, write/s

by type

waiting time/ref
hold issue/ref

eontention/ref

hardware speci-
fied

page hit ratio

SSD a

% time issuing
read or write

(% free space or

fragmented)

reads/sec

writes/sec

hardware speci-
fied

device cache hit

ratio

disk arm/

platters

% time reading
% time writing

% time seeking

% free space or

fragmented (int/

ext) for platters

bits read/see

bits write/sec

seeks/sec

includes read/

write, seek,

rotation delays

arm movement

distance/seek

failures/interval

BER for platters

Table 6: Supercomputer - Building Blocks - Hardware

a. SSD = solid state device

551

abstract metric

utilization,

capacity,
idle

Channel/Controller

% time busy

throughput bits/sec by device a characters/sec

channel ops/sec

response time,

delay,

expansion factor

waiting time

service time:

job size,
device speed

queue length

number of jobs

routing paths, reuse, age, bits vs. device

branching probabilities

hit ratios, effectiveness of

strategies

error rates

Terminal I/O

Table 7: Supercomputer - Building Blocks - Hardware

a. device - {SSD, disk}

552

abstract metric

utilization,

capacity,
idle

throughput

CPU Management

% time to user

% time to idle

% time to system

context switches/see by
class

processes/see

Memory

Managemeat

% space used

% space fragmented

allocations per see

swaps per second by

memory size

pages per sec

I/O System

% buffer space used

logical & physical read/

write per sec by bits,
device

response time,

delay,

expansion factor

waiting time WT WT WT

service time: CPU burst time per pro- memory size by process time for service by logi-

job size, cess memory residency time cal, physical

device speed I/O

queue length QL of CPU queue(s) QL of Memory QL of device queues

queue(s)

number of jobs # jobs in memory

routing paths,

reuse, age,

branching proba-
bilities

hit ratios, effective- I/O buffer hit ratio by

ness of slrategies read, write

error rates

Table 8: Operating System - Building Blocks - Software

553

abstract metric

utilization,

capacity,
idle

throughput

response time,

delay,

expansion factor

waiting time

service time:

job size,

device speed

queue length

number of jobs

routing paths, reuse,

age, branching

probabilities

hit ratios, effective-

ness of strategies

error rates

File System

% used on each I/O device

operations/s by class

Interprocess

Communication

Table 9: Operating System - Building Blocks - Software

Other OS Services

554

abstract

metric

utilizatiou,

capacity,
idle

throughput

response time,

delay,

expansion factor

Distribution

bits/s

bits/s vs. path

objects/s

objects/s vs. path

by class a

by class and object
size

Networks

% time used

bits/packet

bits/s

packets/s

by class

by class and object
size

Operating

System:
Protocols

bits/object

packets/object

bits/s

pkt/s

objects/s

by class

by class and

object size

waiting time by class and object by class and object by class and

size size object size

service time: by class and object by class and object by class and

job size, size size object size

device speed

queue length send/receive send/receive

queues queues

number of jobs

relative use of paths

collisions/packet

retrans/sec

routing paths,

reuse, age,
branching

probabilities

hit ratios, effec-

tiveness of

strategies

e_orrams BER, failures timeouts

failures

Routers/

Network

Interfaces

Table 10: Distribution - System Components

a.class- {protocolused,path,user,process,send/receive}

7.0 References

[1] Leon Traisterand Terry Flynn, "A Measurement Architecturefor Unix-Based Systems",

CMG Transactions,Wintcr, 1991, pp. 69-77.

[2] Peggy Quinn and George Prcoteasa,"Reconciling Object Models for Systems and Network

Management", TechnicalReport, UNIX System Laboratories,Inc.

555

