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ABSTRACT

The JPL Supervisory Telerobotics Laboratory (STELER) has developed a unique
local-remote robot control architecture which enables management of intermittent
bus latencies and communication delays such as those expected for ground-
remote operation of Space Station robotic systems via the TDRSS communication
platform. At the local site, the operator updates the worksite world model using
stereo video feedback and a model overlay/fitting algorithm which outputs the
location and orientation of the object in free space. That information is relayed to
the robot User Macro Interface (UMI) to enable programming of the robot control
macros. The operator can then employ either manual teleoperation, shared
control, or supervised autonomous control to manipulate the object under any
degree of time-delay. The remote site performs the closed loop force/torque
control, task monitoring, and reflex action. This paper describes the STELER local-
remote robot control system, and further describes the near-term planned Space
Station applications, along with potential far-term applications such as telescience,
autonomous docking, and Lunar/Mars rovers.

INTRODUCTION

The original intent behind the design of the STELER local-remote robot control
architecture was fourfold: 1) be responsive to recom- mendations coming out of
NASA Space Station Extravehicular Activity (EVA) workload studies which strongly
suggested ground-remote operations as a means of reducing .EVA time and
enhancing station utilization during the planned multi-year mantended phase
(Refs 1, 2, and 3), 2) provide a modular design which would be more flight like (i.e.,
accommodate severe computational resource constraints at the remote robot site,
manage either periodic remote site bus latencies (on the order of less than 1 sec)
or manage major communication delays (greater than several seconds) between
the ground and the remote site), 3) provide an easier means of transferring the
technology to the flight centers, and 4) allow rapid tailoring or expansion of the
system to other control applications. The current STELER local-remote design has
evolved over a period of four (4) years.

Although the immediate application is Space Station telerobotics, the potential far-
term applications include robot control/telescience between Earth and the Shuttle,
Earth and the Space Station, and Earth and a rover on the Lunar or Mars surface.
Other applications include autonomous docking, and terrestrial uses such as
hazardous material handling, autonomous excavation, or undersea operations.
Only the current planned work for space based applications will be discussed in
this paper.
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The Space Station robot control environment provides a good example of the
intended application environment as a means of setting the stage for discussion of
the local-remote control system design. In order to perform ground-remote
operations the control system will have to manage communication delays on the
order of 8 to 9 seconds (Ref 4). The majority of this delay is in the
processing/packaging and relaying of the data from the ground, through TDRSS,
then to the Space Station communication subsystem/operator workstation, and
finally to the robot controller. To manage this time delay and provide robust control
with limited on-orbit computational resources, the JPL STELER local-remote
control architecture off-loads most of the high level work envelope, task
assessment and planning functions to the local site. The local site uses low
bandwidth stereo video images captured at the remote site from the robot/workcell
cameras as the initial means of determining the actual position of objects in the
environment (i.e., are objects where they are supposed to be, what is the viewing
angle/ lighting environment like). The stereo video is displayed on a Silicon
Graphics Inc. (SGI) workstation which also allows wire-frame, or solid, graphic
models of objects in the workcell to be overlayed onto the video to verify the
geometric model on the scene. The local site operator matches the graphic overlay
with the video to determine the object's location/orientation and the world- model is
updated. This information is provided to the User Macro Interface (UMI) residing in
the SGI where it is now used to parameterize the robot contrg! macros to
manipulate the object. The operator assembles the desired task control macros
into a sequence and then sends them to the remote site Modular Telerobot Task
Execution System (MOTES) where the commands are then executed and
monitored at the robot site. MOTES is functionally equivalent to a spacecraft
control system (e.g., Galileo). A command interpreter and dispatcher respectively
manage incoming/ outgoing data. Sensor and Monitor modules process robot
sensor data and check sensor thresholds/fault conditions. The Control module
contains the trajectory generator and position based impedance control functions
and generates the task space robot motion. A Fusion module merges motion
commands from the various command sources (e.g., trajectory generator, hand
controller commands, force sensor). A Device Driver module provides the low level
communication to the physical components such as the robot arm and gripper. The
next section provides a detailed discussion of the above system design elements
and also describes the current/future laboratory hardware implementation.

LOCAL-REMOTE SYSTEM DESIGN

The above introduction briefly described the functions of the primary components in
the local-remote robot control architecture. To lay the foundation for understanding
planned applications, a more detailed system description is needed. This design
description is provided in the following paragraphs.

A. Local Site System Design
The local site subsystem design has several components (Refs 5, 6) Figure (1)

provides a schematic of the software modules which reside in the local site.
Figure (2) shows the current laboratory operator workstation. Starting with the
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Figure (1) Local-Site Design

Figure (2) Current Laboratory Operator Workstation
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operator interface, the operator accesses the various high level control menus
and database through the keyboard, mouse, and spaceball input devices. The
robot hand controller is the input device for controlling the manipulator(s) with tele-
operation, and currently has a separate communication link to the MOTES
subsystem at the remote site.

Moving to the next level, a network comm module with time delay buffer serves
as the gateway for outgoing/incoming data between the local and remote sites, and
for imposing variable time delay on return traffic. The hub of the local site revolves
around the user macro interface (UMI) (manipulation) and operator
coached machine vision (OCMV) (perception) modules, which reside within a
high level graphical user interface (GUI) structure, and the master know-
ledge base (MKB). The local site presents to the operator a window-based GUI
for commanding and sequence editing; and, a video/graphic interface that allows
the operator to effectively perceive the task environment and to interactively modify
the MKB. The GUI has four standard manipulation windows which are always
visible-sequence, command, status/environment, and perception. The sequence
window displays previously built sequences which are available. The command
window displays the commands in the current sequence, and allows the operator
to edit and create commands. Within the command window, a macro window
displays the currently active control command/macro. The status/environment
window displays the current system state information (e.g., which arm is active, is
the system in "simulate” or "real” mode). The perception window provides the
operator with options for updating video, graphics overlay, and changing the eye
point of view. The GUI keeps track of, and displays, the current operation being
performed and the most recent values of environment variables. Figure (3)
shows a typical GUI display.

The UMI module is used to design, build, execute, store, and replay manipulation
commands to be sent to the remote site for execution. The operator can
interactively build/simulate complete task sequences using the menu interface
provided by UMI. UMI provides parameter input checking, menus of robot control
macros, sequence building, sequence simulation/execution, and status display.

OCMV contains both graphics and video elements. Using a menu interface, the
operator can command video capture, thus allowing update of the local site video
image of the workcell at the remote site. Once an updated set of images is returned
and displayed, the operator can selectively relocate objects in the workcell using
the graphic overlay capability. This is done by using either stored object models of
known objects (called in from the knowledge base by clicking on the desired object
in the video display with a cursor), or by performing an object build/edit on-line.
The operator overlays and matches the object model with the video image using
the spaceball. Once the overlay is properly mapped onto the video image, the
machine vision object localization module determines the object's position/orient-
ation using the internal camera models (e.g., viewing angle, focal point(s)) and
position of the cameras relative to the workspace/object. The OCMV software also
maintains known camera arm positions to allow different views of the workcell/
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Figure (3) Typical GUI Display

object. Figures (4) and (5) display the graphics and video overlay capabilities
respectively.

The last major component, the MKB module, is made up of nodes and links. Nodes
represent real or fictitious objects; and, links represent relationships between the
objects. A node contains object properties(e.g., polyhedral description, name,
mass) and a link contains data about a relationship (e.g., object connectivity,
coordinate transformations). The relationships between objects, either rigid or
movable/breakable, are organized into parent-child links. The MKB also containsa
master kinematic database, control/ dynamic parameters, simulator database (with
collision prediction data), video database, and graphics database. The MKB also
manages data storage/retrieval. The operator has the responsibility to maintain
consistency within the MKB. This means that the MKB does not have an internal
expert or rule based system which automatically checks and maintains
consistency.

Figure (1) shows one more major component, the remote site simulator and
collision predictor (RSSCP). In the near term, the remote site simulator
located in MOTES will be called from the local site to test a task sequence before
actual execution. The status will be returned to the local site and viewed with the
graphics simulation. Eventually, a copy of the remote site simulator will reside at
the local site and will simulate not only the system state transitions,“but also the
kinematics and simple force contact models (e.g., magnitude but not vectors). The
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collision predictor takes trajectory generator via points, arm kinematics, and global
geometry and checks for collisions with objects in proximity to the joints as the
trajectory is executed in the simulator. Collisions are highlighted and an- eventual
safe trajectory is iteratively generated.

B. Remote Site Modular Telerobot Task Execution System (MOTES) Design

The MOTES robot control design has been discussed in detail in other literature
(Ref 7), and will therefore, only be summarized here. As stated above in the
Introduction, MOTES has several modules. Each module interfaces to the rest of
the system through shared memory with specified input and output
parameters/functionality. Figure (6) provides a functional diagram of MOTES.
The various modules operate asynchronously with the executive module
handling communication with the local site, placing new commands into the task/
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Figure (6) MOTES Remote Site Functional Diagram
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reflex command queues, and returning status data to the local site. The
dispatcher module checks/controls the transition between execution states by
monitoring the status of the various modules and specifying the appropriate
commands/parameters to the various modules via shared memory. The dispatcher
controls the transition between commands by changing the active command block
parameters as specified by a monitor event (e.g., completion of a command
sequence, setting of an error flag causing a halt in command execution). If an
event terminates under an acceptable condition (e.g., trajectory successfully
executed), then the next command in the queue is issued. If an unacceptable
termination condition results, then the dispatcher finds which reflex command
queue to use based on the matching flag set in the reflex table associated with that
event. The dispatcher executes the set of reflex commands, clears the task
command queue, and sends a report back to the exec stating which reflex action
was initiated. The monitor module(s) check the behavior of the system and set the
appropriate success/error flags when a monitor event has occurred. Examples of
monitor events were provided in the preceding paragraph. Monitoring occurs at
two different levels: 1) the system level (e.g., multi-sensor based monitoring,
command completion), and 2) the sensor/reflex level (e.g., force threshold
exceeded). In designing the system, previous experience dictated that it is
important to monitor and control low level events where the information is
generated and the context is known. This design alsc improves response time for
critical events.

The sensor module(s) generates either real (e.g., force/torque sensors, encoders,
proximity sensors), or virtual (e.g., bounds on distances to joint limits, repelling
forces when within a given distance from collision points), sensor data which is
placed in shared memory for use by the other MOTES modules.

The control module(s) generates manipulator setpoints, and performs control
based on both the local site generated command sequence and sensor data. Each
control module has a uniquely specified Cartesian control frame for control of the
manipulator. The complete motion command specified by each command module
is transformed to a common task space (consisting of the common Cartesian frame
and arm angle) before being placed in shared memory. The position trajectory
generator is the control module which computes the desired task space path
including Cartesian frame and arm angle.

The fusion module combines the commands from the various control modules as
specified in the task parameters sent by UMI. For sensor based control, the
trajectory generator employs a position based impedance model in each degree of
freedom of the task space. The fusion module also allows position based inputs
from the teleoperator to be fused with autonomous sensor based control inputs
(provided by the monitor/control modules). The subsequent task-to-joint map
module maps the task space command of the fusion module to the actuator space
of the physical device being controlled.

Last, the device driver module is responsible for communicating commands, and
status, with the actual system hardware as well as performing hardware specific
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computations. The primary device drivers are for the manipulator (Robotics
Research Arm), force/ torque sensor (Lord), and servoed gripper (Telerobotics
Research Inc. (TRI)).

C. rren r m Implementation

To set the final stage for discussing applications, it is important to understand the
current hardware/software implementation envir-onments. The local site system
currently runs predominantly on an SGI 310/VGX workstation, using the IRIX 4.0.4
operating system. The SGI workstation was selected because the target Space
Station Mission Operations Planning environment at Johnson Space Center (JSC)
for telerobotics is the SGI. A Sun 4/260 workstation at the local site is used as to
develop and test the remote site MOTES real-time Ada code. As stated earlier, in
the near term the remote site simulator running in MOTES will be used to simulate
task sequences. However, it is planned to eventually test MOTES and simulate
task sequences using a carefully descoped version of MOTES running on the Sun
4 (i.e., the sequence error checking, trajectory generator, and position
success/error flags are the only predominant features needed for local site
simulation). In the future, it is desirable to port all local site software to the SGI. To
round out the local site hardware, a 6DOF JPL/Salisbury Model C hand-controller
and motor controller and associated VME chassis allow teleoperation of the 7DOF
arm. An indexing trigger on the hand controller provides the additional means for
controlling the redundancy, or seventh degree of freedom. MOTES is written in
Ada and runs in a VME environment on Heurikon 68020 processors. A Verdix/
VADSworks Ada cross compiler is used to produce the target code. The target
code runs on top of the VADS-works operating system in the 68020 environment.
The Verdix/VADSworks Ada compiler and 68020 environments were selected
primarily because they provided the desired performance for the least investment.
Additionally, since the Space Station software environment will be Ada, it was
decided that by moving to real-time Ada the system would be more in synch with
the planned flight software for the station remote manipulator and the Canadian
Special Purpose Dexterous Manipulator (SPDM). Communication between the
7DOF Robotics Research arm (model K1207) controller and the MOTES VME
chassis is through a pair of Bit-3 memory interface cards. The direct servo control
of the arm joints is done through the factory supplied controller.

Since the 68020 CPU's used in this initial version of MOTES are relatively slow
(the 68020 V2FA runs at approximately 1.7 MIPS), a multiple CPU environment
was required. This decision to go to a multi-processor environment was also
considered viable because the SPDM design is currently a multi-processor
configuration. Therefore, it was considered useful to explore and resolve potential
scheduling/timing problems associated with real-time control in a multi-processor
asynchronous environment. Figure (7) displays the current VME multi-processor
environment running in the lab. Although the system is operational, based on
current test results, it appears that it is desirable to reduce the number of multi-
process-or boards from the present five to one, or two. To achieve this, the new
MOTES design in considering an 80386 configuration, running the commercially
available Lynx operating system. This configuration will condense MOTES,
increase performance, and also provide a compact flight qualifiable controller for
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Figure (7) STELER MOTES Remote Site Controller Hardware

systems. As will be seen in the following discussion, the planned evolutions of
both the local site (full SGI implementation) and remote site (80386 flight
qualifiable configuration) will be important to achieving the planned applications.

PLANNED APPLICATIONS
A. Near Term

The current JPL STELER local-remote control system has several immediate
applications relative to the Space Station flight program. First, before the station is
ever launched it is important to start the process of assembling and testing robot
control sequences for station/payload servicing now. These sequences must be
tested on the ground under high fidelity task simulation conditions in a laboratory
(e.g., lighting/lighting angle, object/shadow occlusions). Further, to the degree
possible, similar robotic devices (SSRMS/SPDM) and control environments should
be used to duplicate operator/system control response. Although the degree to
which the U.S. NASA community is planning to perform task verification is still
uncertain (i.e., partial verification using graphics simulation vs. full task verification
in a laboratory with real robotic/task hardware), it is still important to have the
technology ready soon to enable start of task sequence assembly/testing. The JPL
system is currently on schedule for delivery into the JSC Space Station ground
test/evaluation laboratory by the end of FY93. As a spin-off from the above ground
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application, the system (which allows either full manual teleoperation of the
robot(s), shared control, or supervised autonomy) also provides an essential
training medium for astronauts from the standpoint of both hands-on control, and
assessing human-machine tradeoffs in the performance of various tasks under
varying environmental conditions. For example, the astronaut operators may
determine that for some manipulation tasks in complex/occluded environments, it is
more efficient/safer to have the operator perform the gross motion control while
allowing the autonomous system to set the arm pose and perform the proximity/fine
alignment control.

The most powerful application of the STELER local-remote robot control system is
for ground control of on-orbit station robots. The recent mid-year review of the JPL
project status, by NASA headquarters, revealed that the downscoping of the station
(and subsequent reduction in astronaut crew) has still not resolved the substantial
projected on-orbit servicing/payload workload (Ref 8). As a result, the most logical
way to reduce on-orbit workload and increase station utilization (i.e., in the early
man-tended phase of operation, the Space Station will not be permanently
manned and will therefore see an estimated utilization on the order of 13%) is to
perform simple setup and inspection tasks from the ground. To this end, the local-
remote control system has been tested in actual hardware/software segregation
scenarios such as 1) the control of an industrial robot inspecting a Shuttle payload
rocket booster at Kennedy Space Center, from JPL's STELER lab located 3000
miles away using an early local-remote architecture functionally equivalent to the
current design (time delay of 2-3 seconds) (Ref 9), 2) control of the JPL STELER
robots from a temporary workstation located in a trailor approximately 100 yards
away (imposed time delay ranging from 0-9 seconds) (Ref 10), and 3) control of a
PUMA robot simulation located at Texas A&M University, from JPL, via the
Internet/TelRIP communication network (time delay of roughly 1-3 seconds) (Ref
11). It is also planned to control the JSC Robotics Research arm from JPL as well,
and use the Internet/TelRIP interface to both send and debug software used in the
JSC telerobot test/integration laboratory. Again, by streamlining the hardware/
software architecture, the transfer of this technology will be greatly simplified.

The last major near-term application of the JPL local-remote architecture is
somewhat related to the earlier ground-based system testing/training, but applies
to on-orbit robot operations. Currently, it is planned to control the station robotic
systems primarily in teleoperation mode. However, due to limited camera views,
potential lighting/occlusion problems, and, most importantly, limited on-board
computational resources, teleoperators will need to depend greatly on ground task
simulation/verification before proceeding. The STELER local site on the ground
will provide a means for accurately updating the ground workcell model even in the
presence of limited viewing/occlusions. The local-remote site combined will
provide a high-fidelity simulation of the task, and assembly of the ultimate control
macros which get telemetered up to the station teleoperator workstation for the
astronaut to use during task execution as a control template.
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B. EarTerm

As stated in the "implementation” subsection, it is planned to move to more "flight
like" versions of the local-remote site systems by implementing the local site
completely on a SGI workstation, and the remote site on an 80386 computational
environment. Work just being initiated for FY93 in STELER calls for an expansion
into the new area of telescience. New work will start on the design and
construction of a "mini-device" (called the Lab Tending Telerobot (LATT)) which
can be placed as a module on the front of a science rack, or inside, and which can
be programmed/controlled from the ground by the principal investigator (Pl). The
device will allow the Pl to physically interact with the science experiment(s) on-
board the Shuttle (intermediate term target), and eventually the Space Station or
free flying platforms (far term target). The more compact hardware/software
implementation will allow LATT ground and on-orbit elements to be respectively, 1)
easily ported to the PI's base facility, and 2) more easily space qualified since the
80386 Intel processor has already been space qualified.

Another more intermediate-to-far term application is for autonomous docking. As a
test of the STELER control system robustness, an autonomous docking task has
been structured. The female fixture is mounted on a full scale satellite mockup
which hangs freely from a cable and has five degrees of freedom. The male fixture
is mountable on the 7DOF arm, or on a jig fixture. The control scenario calls for the
local site to update the position of the fixture on the satellite, followed by either the
manipulator acting as the chase vehicle and autonomously docking with the
satellite; or, the arm grasping a grapple fixture attached to the satellite and moving
the satellite to dock with the jigged male half. Work planned for FY93 calls for the
STELER team to begin building the appropriate graphics, simulation, and control
macros for an autonomous docking workstation running on the SGI, with eventual
transfer to the Marshall Space Flight Center (MSFC) docking simulation facility.

The last long term application of the local-remote control system is for Lunar/Mars
vehicles. For potential early precursor missions, either autonomous mini or micro-
rovers may be used to map potential landing sites ‘and perform science
experiments (e.g., soil sampling, coring, experiment module placement). With time
delays on the order of many seconds (Lunar) to many minutes (Mars) it is
imperative that a local-remote control architecture like STELER's be used to insure
robust/safe control of the robotic vehicles and manipulation functions. The current
move towards a more efficient, compact remote site controller design is the next
step towards learning how to provide robust remote site control/intelligence within
tightly constrained volume/mass requirements.

CONCLUSIONS
A description of the current JPL STELER local-remote telerobot control system was
provided along with present and future hardware/software architecture implemen-

tations. Additionally, a discussion of both near and far term applications was
provided and mapped onto the planned hardware/software evolutions. Most
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importantly, this paper provided a roadmap and structure on how the STELER team
plans to carefully evolve, test, and implement the local-remote control capability
towards an expanding application domain.
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