
N93-32102
AUTOMATED ASSEMBLY OF LARGE SPACE STRUCTURES

USING AN EXPERT SYSTEM EXECLrITVE

Cheryl L. Allen; NASA Langley Research Center; MS 152D; Hampton Va 23665-5225

ABSTRACT

NASA Langley Research Center has developed a unique

testbed for investigating the practical problems associated
with the assembly of large space structures using robotic
manipulators. The testbed is an interdisciplinary effort

which considers the full spectrum of assembly problems
from the design of mechanisms to the development of
software. This paper will describe the automated structures

assembly testbed and its operation, detail the expert system
executive and its development, and discuss the planned
system evolution. Emphasis will be placed on the expert

system development of the program executive.
The executive program must he capable of directing and

reliably performing complex assembly tasks with the
flexibility to recover from realistic system errors. By
employing an expert system, information pertaining to the
operation of the system was encapsulated concisely within _i
knowledge base. This lead to a substantial reduction in
code, Ln.creased flexibility, eased softw, are upgrades, and

realized a savings in software maintenance costs.

INTRODUCTION

Projected crewed missions to the moon and Mars
represent a departure from previous space endeavors in that
the large vehicles involved will have to be assembled and
checked out on orbit. The construction of these vehicles

will require extensive in-space operations calling for
enhanced capabilities in the areas of assembly and servicing.
In order to perform these functions with the limited crew
resources available, a much higher level of automation must

be realized than is currently obtainable. NASA Langley
Research Center has developed a unique test_:l to

investigate the practical problems associated with the
automated assembly of large space structures using robotic
manipulators. The research program is an interdisciplinary
effort which considers the full spectrum of assembly
problems from the design of mechanisms compatible with

automated operations to the definition of software structures
and algorithms required for their support.

The LARC research program adheres to several principles
and ground roles: (1) all system development, testing, and

demonstration is performed using realistic "test hardware,
which is felt to be the only way to identify all the problems
associated with automated assembly; (2) system design and

automation are considered integrated and complimentary
technologies with solutions developed cooperatively; and (3)
the program is targeted towards a fully automated system
that utilizes either an astronaut or earth based operator as a
monitor who is called upon only when the robotic system
encounters a problem requiring intervention or assistance.
The third principle describes a mode of operation known as
supervised autonomy which holds the most promise for the

accomplishment of large construction tasks with the limited
crew resources available on orbit.

The purpose of this paper is to briefly describe the
automated structures assembly testbed and its operation, to

detail the expert system executive and its development, and
to discuss the system expansion currently underway. The

emphasis of the paper is on the expert system

implementation of the program executive, however the
system components are described and a narrative of the
assembly process is given to serve as a basis for the
description of the software and its functions.

FACILITY DESCRIPTION

The Automated Structures Assembly Laboratory (ASAL)
is shown in figure I. Figure la shows a schematic of the

assembly system with the major components labeled, and
figure lb is an actual photo of the facility in operation. The
assembly system consists of a robot arm, a motion base

system, two specialized end effectors, components for a
tress assembly, and storage canisters for those components.
The ASAL utilizes commercially available equipment to
minimize cost and ease modification as research needs
dictate. The hardware system is a ground-based research

tool designed to permit evaluation of assembly techniques,
strut and end effector components, computer software

architecture and algorithms, and operator hated'ace
requirements.

The structure selected for assembly is a planar tetrahedral
truss which supports hexagonal reflector-type panels (see

figure 2). The completed structure consists of 102 two-
meter-long strut members and 12 panels measuring
approximately 2.3 meters across the vertices. The structure
was designed to be a laboratory prototype representative of
the type of structures which support the functional surfaces
of a number of planned or proposed missions, such as
antennas and aerobrakes.

A brief description of the major components will follow;
however, the details of the facili_ hardware, performance

characteristics, and assembly procedures can be found in
references 1-3.

Robot Arm

The robot arm is an electronically driven six-degree-of-
freedom industrial manipulator selected for its reach

envelope, payload capacity, positioning repeatability, and
reliability. The robot arm computer is based on a 68000

microprocessor and all robot motions are programmed in a
modified BASIC programming language. No modifications
have been made to the manipulator other than those available
from the manufacturer.

Motion Base System

The motion base system includes a linear translational x-y
Cartesian carriage and a rotating tumtable. The robot ann is
mounted on the carriage, and the truss is assembled on the

rotating turntable located at one end of the x carriage.
Motion base drive motors on all three axes are commanded

by a 80286 micro-processor based indexer.

End Effectors

The end effectors, as shown in figure 3, are specialized
tools mounted on the robot arm which perform the strut and
panel installation and removal operations. Figure 3a shows
the strut end effector and figure 3b shows the panel end

43

effector. All end effector operations are controlled by an
onboard microprocessor mounted near the robot wrist.
Typical microprocessor operations are detailed in reference
4. All end effector mechanisms are equipped with simple
sensors such as microswitches and linear potentiometers to

monitor operations and notify the operator if a problem
occurs. The processor is programmed in ANSI compatible
C and includes sufficient [/O to monitor the sensors
associated with the end effector mechanism operations.
A commercial force/torque load cell is mounted between the
end effector and the robot arm to provide compliant move

capability during both strut pick-up and installation
operations.

Truss/Panel Elements

The tress joints and nodes designed for this assembly are

shown in figure 4. The joint is composed of two parts, a
connector section which is bonded to the graphite-epoxy

tube to form a strut and the receptacle section which is

mechanically attached to the node. The truss members are
connected by specially designed connector joints located near
the nodes. The strut end effector grasps and holds the joint

receptacle to provide stability during strut installation and
removal (ref. 5). The strut end effector uses pneumatically

actuated receptacle fingers to grasp passive guidance v-
grooves on the node receptacles. After the end effector
inserts the strut into the receptacle, locking nuts are turned
by a small electric gear-head motor, securing the strut into
place. Assembly begins by connecting struts to three nodes
that are premounted on the motion base turntable.

As the truss assembly progresses, the panels are placed on

the nodes at the top of the truss using the panel end effector
(ref. 6). The panel is an aluminium hexagonal frame with a
reflective mylar covering. Once in position the panels am
locked into place using end effector actuator pins.

Storage Canisters

The truss struts axe stored in nine trays which are stacked

in the working canister directly behind the robot arm. Each
tray is fitted with handles which allow the strut end effector
to pick up empty trays from the working canister and
transfer them to the storage canister located to one side of the
robot arm.

The panels are stored vertically in a large canister at one
end of the y carriage. The same pins that are used to attach
the pane.Is to the truss structure are also used to latch the

panels in the canister.

ASSEMBLY PROCEDURE

The assembly process begins when the strut end effector

acquires the first strut from the top tray in the working
canister. Once acquired, the strut is carried above the
working canister and the motion bases are positioned so that

the robot ann can reach the required installation position.
The robot arm then moves through a sequence of
predetermined points, arriving at an approach point located
approximately 12 inches from the intended installation point
in the structure. At the approach point, control is turned

over to a machine vision system.
The machine vision system uses two small video cameras

located on the end effector to view targets made of reflective
material mounted on the node receptacles as shown in figure
5. A special five dot domino pattern is used as the target.
The video image of the target is processed to discriminate the
target from the background and the centroids of the dots are
determined. The position of the centroids are defined with

respect to the camera using a pose estimation routine. The

pose information is used to direct robot arm moves toward
the target location for strut installation. Details of the vision
system can be found in reference 7. Once the arm reaches

the installation point, the vision system relinquishes control
and the end effector grapples the strut receptacles in the
structure, repositions the robot ann to reduce forces and
torques at the end effector that are caused be minor
positioning errors, and inserts and locks the strut joint. The
robot arm then returns to the working canister for another
strut.

Once a specified number of struts have been installed,
panels can be secured to the top of the structure. This
involves stowing the strut end effector by latching it to the
tray in the top of the storage camster and picking up the

panel end effector stored at one end of the panel canister.
This end effector change is accomplished by a commercially
available pneumatic quick-change mechanism. Panels are

retrieved using y-carriage motion base moves, and installed
at predetermined points atop the structure. Machine vision is

not used for the placement of panels in the structure.
Combinations of strut and panel installation sequences are

currently followed until a platform with 102 struts and 12
panels is completed.

SYSTEM CONTROL AND COMMUNICATIONS

The ASAL facility is managed by several digital

computers serially connected through RS232 communication
lines as depicted in figure 6. The system executive and
operator interface functions are performed on a micro-VAX
workstation. The robot motions, carriage movements, and
end effector operations are executed on individual

processors, as are the computations required by the vision
system.

Software Design

The design layout for the assembly system software is
illustrated in figure 7 and detailed in reference 8. The
software is arranged into four hierarchical levels of
commands (Administrative, Assembly, Device and

Component) each of which decompose into a sequence of
commands for the next lower level. The highest or

administrative level performs the preliminary setup of the

system. The operator can examine and modify data and
system options. Command and assembly sequence fdes can
be selected, created and modified. It is this level that is

intended to interface with a goal-directed task sequence

planner. Currently the assembly sequence is manually
detemained and maintained in a f'de. Each entry in the

assembly sequence fde represents an appropriate assembly
level command which specifies the operations to be

performed on a given element (ie. strut or panel). The
standard operating mode is centered at the assembly level
and reflects the automated aspect of the system. At this level

the software manages all the devices, data verification, and
error recovery. The assembly level commands decompose
into a series of commands for each of the three devices; the

motion bases, the robot ann, and the end effector.
Although the assembly software system is intended to

operate in a fully automated mode, it is imperative that the
operator be provided with sufficient internal information and
have command access and authority at all levels to deal

effectively with assembly errors. The operator has complete
control of error recovery and final decision on error
resolution. The operator may decide that an error is not
severe and command the system to proceed anyway. Also,

if none of the recovery options presented axe successful, the

44

operator may instruct the system to abort the failed operation
and automatically roll the assembly process back to a
known, successful condition. During assembly operations,
the operator has the capability to pause the assembly process
at any point and observe some detail using a video display
before either continuing or reversing the sequence. This
intervention capability imposes a significant burden on the
system software.

The system executive directs and monitors assembly

operations across the various processors, and reports current
stares information to the operator. The executive maintains
the conditions and constraints of the assembly operations.
including details of the geometry of both the structure and

the storage canisters. During an assembly, the executive
makes decisions about what end effector to use and the

procedures required for it's use. Finally. the executive keeps
track of possible problems and recovery techniques for all
assembly scenarios. In order to do this effectively, the
executive has fur access to the current status of the assembly

operation and the system hardware including complete,
detailed descriptions of the state of the assembled structure,
the motion base, the robot arm, and the end effector
hardware. This information is continuously updated based
upon verification by sensors.

lrtitially, the assembly executive software was written in
FORTRAN. The procedural language was already familiar
to developers in ASAL and therefore could be used to verify
---_ re,"ine '-'-" system operations in a relatively shoaoulu

period of time. The initial task was to construct a simplified
structure of 102 struts, using a single, premounted end
effector who's functions were commanded via the robot arm

computer. The robot arm moved to predefmed installation
positions without the use of machine vision. As the scope of
the research project grew (with the addition of panels, a

second end effector, and distributed processors) the
complexity of the knowledge to be managed by the assembly
software increased. Because traditional programming
languages proved to be cumbersome in keeping pace with

system upgrades, the decision was made to rewrite portions
of the software using an expert system. The first level of
code targeted for this transition was the decision-intensive
assembly executive. The following sections describe the

application of expert system techniques to the assembly
executive, giving examples of their use.

Expert System Assembly Executive

An expert system is a computer program that uses
knowledge and reasoning techniques to solve problems that
normally require the services ofa hmnan expet't. Like
conventional programs, expert systems us.ually perform well
defined tasks; however, unlike conventional programs,

expert systems also explain their actions, justify their
conclusions, and provide details of the knowledge they

contain. Expert systems are ideal for capturing and utilizing
the "rules of thumb"-type logic that evolves from the
experience gained in ASAL.

The assembly executive is responsible for making
decisions about the actions to take (and the order to take
them) during the construction of a given structure. To make
informed decisions, the executive has to have access to all

current system information, and the knowledge to evaluate

that information in light of the desired task. It is this
decision-making component of the assembly executive that
was best suited to implementation using expert system
techniques.

Methodology

A subset of the general area of expert systems

concentrates on explicitly representing an expert's
knowledge about a class of problems and then providing a
separate reasoning mechanism (called an inference engine)
that operates on this knowledge to produce a solution.
These kinds of systems are known as knowledge-based
expert systems. The knowledge base is a f'tle containing the
facts which make up the human expert's knowledge about a

specific domain. An inference engine is a program that
applies reasoning techniques to the facts, as defined by the
knowledge base, to draw conclusions. Inference engines
vary according to the representation of the knowledge and
the strategy for applying the knowledge.

There are a variety of expert system development tools
available to assist programmers in building powerful
systems capable of solving a wide range of problems. The

commercially available Knowledge Engineering System
(KES (ref. 9 and 10)) was selected for use in ASAU The
KES tool provides the inference engine, knowledge

representation schemes, and facilities for creating an operator
interface. KES provides an embedding technique for
integrating expert systems with existing software by
allowing procedural language code to send, receive, and
modify data from a knowledge base through the use of
special data types and ran-time functions.

The KES im'erence engine uses mies to represent
knowledge. This knowledge representation scheme is
particularly well-suited to applications such as automated

assembly where the facts can be organized in the form of
branching logic or if-then constructs. KES uses deductive
reasoning as the technique for problem solving, where

certain outcomes follow directly from certain inputs.
The pursuit of a solution (or goal) drives the reasoning

methodology used by KES. This goal-driven inferencing
technique is known as backward chaining. Implicit subgoals

are set up to determine values for attributes that appear in the
antecedent of a rule that infers a value for some other

attribute, and so on, until a value for the goal attribute has
been determined. In addition to goal-driven inferencing,
KES also performs event-driven inferencing through the use

of demons. Event-driven (forward chaining) inferencing
takes place when the expert system responds to the
occurrence of an event rather than the pursuit of a goal.

The following section will describe how the fore-
mentioned methodologies have been applied to the automated
assembly system software in ASAL using KES.

Implementation

As mentioned previously, the executive portion of the

assembly system software was the first to be implemented as

a expert system. The executive is responsible for managing
all the devices (the motion bases, the robot ann, the end
effectors, and the vision system), data verification, and error

recovery. Figure 8 illustrates where the knowledge base fits

into the overall software system architecture. By embedding
the knowledge base in the automated assembly system, the

executive has access to expert system methodologies for
decision-making while leaving the already familiar operator
interface and existing database management schemes intact.

The operator gains access to the executive through a
menu-driven interface. By implementing a menu-driven
interface, the operator is only presented with the commands

he needs at any given time. As shown in figure 8, a layer of
procedural code (FORTRAN and C routines) surrounds the
knowledge base and handles the menuing functions and

information exchange between the knowledge base and the

45

hardware.Databaseinformation is also transferred through

this surrounding code. The knowledge base contains the
data constructs (attributes and classes), rules, and demons
necessary to make informed decisions about assembly
actions.

The expert system uses the knowledge base as the primary
source for determining the command sent to a particular

device at any given time. Commands are sent to the
individual processors associated with the specific hardware
device for interpretation and execution. When up-to-date
information about a piece of hardware is needed, sensors are

polled through the device interfaces and the information is

passed back to the knowledge base. After a device-specific
processor has completed processing a command, a return
status is forwarded to the knowledge base so the next action
can be sent. In the case of a successful return, the database

is updated and the next command in the sequence of
assembly actions is determined. In the case of an error,
instructions to return to the last known successful state may
be issued. Information about all system functions is

constantly updated and reported to the operator via status
windows.

The structuring and content of the knowledge base lies at

the heart of the expert system, and therefore warrants further
consideration. The next sections will detail the more

important components of the knowledge base, and present

examples of their application.

Classes-
KES uses a structure called a class to describe a group of

objects having the same set of characteristics. Each object is
referred to as a member of the class, and each characteristic

is maintained in a class construct known as an attribute.
Two classes are defined in the current automated assembly

knowledge base: one for struts and one for panels.

There are 102 unique members in the strut class: one for
each strut in the truss assembly. An example of the attribute
declarations for the strut members is shown in figure 9. The
values associated with these attributes are stored in a

database and are associated with some physical aspect of the
strut and the way it is stored in the canister or installed in the
structure. As indicated in the figure, there are 13 attributes
identified for struts: three associated with naming
conventions (OBSERVER NAME, ALTERNATE NAME,
and ROBOT NAME); two identifying the canister storage

location (TRAY, SLOT); five containing information about
the physical characteristics of the strut (NODE END) and

any special conditions for installation (CAP END, FLIP,
CAN_FLIP, and NODE DIRECT); one to track the current
location of the strut (WHERE); and two that define carriage

positions of the robot during installation (MB_INDEXl and
MB_INDEX2). Additional information regarding these
attributes can be found in reference 8.

A class has also been defined for panels and contains

information pertaining to the installed location for the panel
and the whether or not the panel is installed.

Rules-

Rules are the most powerful knowledge source available

to the inference engine. They represent the expert's
knowledge, and they direct the actions of the expert system
towards a desired goal. The general format of a rule is

if antecedent then consequent endif.

The antecedent is a logical comparison which evaluates to
either true or false. The antecedent must he true for the

consequent to be performed. The consequent consists of
KES commands which contribute, or drive, the system

toward a goal. For the assembly executive, the rules
formulated require an intimate knowledge of the physical

operations, potential system states, and capabilities of the
various hardware. Rules have been defined for capturing
information pertaining to tray transfer operations, and path
segment selection for strut and panel installation/removal
operations.

The path the robot arm travels from a rest position above

the storage canister to the installation point in the structure is
divided into segments or states. Figure 10 presents two rules
that are used to detemune the next segment (next_state) in
the installation path for a strut. For this illustration the robot

arm is poised above the supply canister awaiting direction to
proceed to the grasp point of the canister. The current
location of the robot arm (currentstate) and the direction of
the robot arm's motion (phase) determine the next segment

in the robot's path. The robot's phase (either into or out of
the structure) is determined from the current location of the
robot (current_state), the current location of the strut

(current_strut>where), and the task or goal specified by the
operator (target_state). The current location of the robot is
maintained in a database, and the location of the strut is held

within the class member for that strut. To determine whether

or not the consequence oftbe stare rule is performed, the
phase rule must be evaluated. The execution (called firing)
of a rule often depends upon other rules being satisfied. It is
this backward chaining technique that makes rules so

powerful.
The strut installation path from the pickup point of the

strut at the canister through the installation point at the
structure and return requires 22 rules. These 22 simplified
rules replaced approximately 850 lines of FORTRAN code.
The total knowledge base currently contains 59 rules;
twenty-two rules for determining strut assembly paths as

previously indicated, twenty-two for panel paths, and fifteen
for transferring trays from the supply canister to the storage
canister and vice versa.

_mons-
Demons provide a method for event-driven inferencing

within KES. Where rules actively seek additional

information in an attempt to satisfy a specific goal, demons
remain passive until an event occurs which initiates their
execution. Adding event-driven inferencing (demons) to
backward-chaining inferencing (rules) makes for a more

dynamic expert system by providing a natural way of
expressing some types of knowledge. Demons are useful
for monitoring attributes for new or changed values in an

attempt to modularize the procedural portions of the
knowledge base.

A demon is composed of two parts; a guard and a body.
A guard is similar to the antecedent of a rule, and contains
conditional statements to be evaluated. The body contains a

list of commands that KES executes sequentially. Assigning
a new value to an attribute in the guard constitutes an event,

causing all associated demons (ie. demons with that amibute
in their guard) to be evaluated, ffthe guard evaluates to true,
then KES executes the commands in the body of the demon.

In the assembly executive knowledge base, when a value is
assigned to an attribute in the consequent of certian rules, a

demon is activated, initiating event-driven inferencing.
Suppose the state rule of figure 10 evaluates to true, and

the next segment in the strut installation path is determined to
be the canister grasp point (GP CAN). The demon in figure

11 is used to generate the command strings necessary to
move the robot arm to GP_CAN. Following the example,
first some preliminary flags are set and the end effector
conditions are checked. By assigning a value of true to the
attribute check scar (a), another demon is activated which

48

makes sure the end effector is in the configuration necessary
for making a safe approach to the canister. The value
returned by the end effector is stored in the attribute ee
response, which is examined before continuing (b). An

uncorrectable error during the end effector operation would
cause a roll back of the system to the last successful state (c).

A successful return from the end effector allows the expert
system to send a command to the processor associated with
the robot arm to reset the force/torque sensor (d).
Installation conditions for the current strut are ascertained (e)
before the command to send to the robot is synthesized (f
and g). The slot and tray numbers are appended to the base

command string (h). and the command is sent (i). The
assignment of true to the send merlin attribute constitutes an
event which activates yet another demon. The send merlin

demon sends the command and evaluates the robot response.
If the device operated successfully, the current state is
updated (j). The message command (j) is the means for
sending the new value for the robot state to the database
through the embedded interface. An unsuccessful robot
operation results in a reverse (k and l).

A demon can change the value of the attribute that
triggered its execution resulting in recursive behavior. The
body of a demon can also determine the value of another

attribute which itself may have associated demons. These
demons can be triggered, invoking forward chaining. By.
blendh-igt._Ul forward and backward chaining in a recursive
environment, the assembly executive knowledge base has

evolved into a concise and powerful mechanism for
representing assembly knowledge.

Benefits

The concise representation afforded by the rule-based
system reduced the lines of code significantly over the
procedural (FORTRAN) version. A number of additional
capabilities have been added to the system (panel operations,
end effector changes, and machine vision), and the number

of lines of code is still far below that of the original
FORTRAN version. This reduction has lead to increased

maintainability, and modifications and upgrades have been
performed rapidly. The knowledge base is easier to debug
and modify because the knowledge is separate from the
algorithms and is readily accessible at run time.

This structural assembly project is relatively simple
compared to many of the in-space check-out and servicing
tasks currently being proposed. Export system techniques
have already proven to be mandatory for effective system
management in ASAL. Such knowledge-based

methodologies are a requirement for the timely development
and maintenance of these types of complex systems.

RESEARCH OPPORTUNITIES

The overall goal of the ASAL research is to develop a
complete integrated assembly system which incorporates on-
line, automated planning and scheduling functions. The
expert system executive described in this paper represents a
fast step in an evolution toward such advanced capabilities.

A baseline automated assembly system for space
structures has been successful in assembling and
disassembling a 102-member tetrahedral truss and
demonstrating the utility of a supervised autonomy mode of
operation. Complete assembly of the truss with the 12
attached panels using machine vision and the microprocessor
controlled end effectors, all under the control of the expert
system executive is being initiated. This test will
demonstrate the capabilities of both the hardware and the

software. In addition, performance data will be gathered
which will help direct the evolution of the system. An
attempt will be made to quantify error recovery actions taken

by the operator with the goal of automating many error
recovery procedures.

Currendy when an error occurs, a menu of potential
solutions is presented to the operator. The operator must
then assess the error by visually verifying sensor data and
select one or more options from an error recovery menu. By
recording and studying the operators choices, the state of the
system when the error occurred, the order in which error
recovery actions are attempted, and the successful actions as

wen as failures, it is hoped that many processes can be
automated. The final decision on error resolution will still

rest with the operator, but a number of historically

successful error recovery actions can be attempted before
operator intervention is requested.

The enhancement with the largest software impact within
ASAL will be the change over from the current system
architecture (as seen in figure 6) to the highly distributed
architecture as depicted in figure 12. Under this new

architecture, all the devices will have their own processors,
and will he controlled by an expert system scheduler.

Maintaining separate devices for the individual processors
will allow for concurrency among many assembly
operations.

A number of advanced planners, each with their own
knowledge base, are also included in the design of the new

architecture. Knowledge bases will exist for: (1) a tray
storage planner so that a fixed tray and slot assignment per
strut will no longer be necessary, (2) a task planner for
developing assembly scenarios based upon a definition of
truss geometry and stiffness characteristics, (3) a path
planner for determining a collision free path to the structure
without having to rely on pre-determined approach points,
and (4) a planner for combining necessary operations as a
logical sequence and determining what actions can take place
concurrently.

To manage the increased number of knowledge bases and

individual processors, the KES software has been upgraded
to an applications development tool known as the Strategic
Networked Applications Platform (SNAP). SNAP supports

the development of applications that operate in a distributed
hardware environment. SNAP is made up of five
components of pre-built software, the most important of

which is the object model, containing the information driving
the application. SNAP supports an object-oriented model of

application data providing a direct mapping of the real world
objects associated with the application to objects in the object

model. Objects (classes) def'med in the object model can be
processed using either a rule-based knowledge source
(backward chained rules), event-driven procedures

(demons), or functions. Other components for building
end-user interfaces using windows, mapping to permanent
storage such as databases or files, integrating new or
existing code. and communicating with other devices

combine with the object model to make a complete
application. Existing KES applications can be directly
converted into SNAP compatible applications.

CONCLUDING REMARKS

The research conducted in ASAL has successfully
demonstrated the viability of using robotic manipulators to

automatically assemble and disassemble large truss
structures. During the construction of a given structure, the
system software assembly executive is responsible for
making decisions about the actions to take, and the order in
which to take them. To make informed decisions the

47

executive has to have access to all current system
information, and the knowledge to evaluate that information
in the light of the desired task. Due to the complexity of the
software, continued implementation in traditional
programming languages (ie. FORTRAN) became
prohibitive. Traditional programkg languages are not well
suited for encapsulating the knowledge required for intricate
assembly sequences. Preliminary investigations into the
application of expert system technologies to perform the
decision-making portions of the assembly software have
been very encouraging.

Planned enhancements include implementation of a
distributed architecture and several advanced planners.
Multiple devices, each with their own processors, will be
controlled by an expert system scheduler. The addition of a
number of advanced planners, each with their own
knowledge base, will make for a robust and reliable
assembly system.

RJTERENCES

I . Rhodes, Marvin D.; Will, Ralph W.; and Wise, Marion
A.: A Telerobotic System for Automated Assembly of Large
Space Structures, NASA TM-101581, March 1989.

2. Rhodes, Marvin D.; and Will. Ralph W.: Automared
Assembly of Large Space Structures, 4 1st. International
Astronautical Congress, Dresden, GDR, October 6-13,
1990.

3. Will, Ralph W.; Rhodes, Marvin D.; Doggett, William
R.; Herstrom, Catherine L.; Grantham, Carolyn; Allen,
Cheryl L.; Sydow, P. Daniel; Cooper, Eric G.; Quach,
Cuong C.; and Wise, Marion A.: An Automated Assembly
System for Large Space Structures. Intellizent Robotic
Systems for Space ExpIoration. edited by Alan Desrochers,
Academic Publishers, 1992.

4. Doggett, William R.; Rhodes, Marvin d.; Wise. Marion
A.: and Armistead, Maurice F.: A Smart End-Effector for
Assembly of Space Truss Structures, Fifth Annual Space
Operations, Applications, and Research Symposium,
Houston, TX, July 9-1 1, 1991.

5 . Wu, K. Chauncey; Adams, Richard R.; and Rhodes,
Mwin D.: Analytical and Photogrammenic Characterization
of a Planar Tetrahedral Truss., NASA TM423 1, 1990.

6. Kenner, Scott W.; Rhodes, Marvin D.; and Fichter,
W.B.: Component Count and Preliminary Assembly
Considerations for Large Space Structures, NASA TM-
102604. Feburaq 1990.

7. Sydow, P. Daniel ; and Cooper, Eric G.: Development of
a Machine Vision System for Automated Structural
Assembly, NASA TM-4366, May 1992.

8. Herstrom, Catherine L.; Grantham, Carolyn; Allen.
Cheryl L.; Doggett, William R.; and Will, Ralph W
Software Design for Automated Assembly of Trws
Structures. NASA TP-3198, June 1992.

9. Knowledge Base Author's Manual - KES PS. Software
Architecture & Engineering, Inc., c.1990.

10. Knowledge Base Author's Reference Manual - KES
PS. Software Architecture & Engineering, hc., c.1990.

T End effector
Robotarm -

Storage canister - _-
Working canister

- Y-motion base

- Xmotion base

Rotating-motion base

(a) Schematic

(b) Photograph

Figure 1. Automated S t rucms Assembly Laboratory

48

Figure 2. Tetrahedral Truss with IIexagonxl Panels

(a) Srmt End Effector (b) Panel End Effector

Figure 3. ASAL End Effectors

49

Figure 4. Serut/Ncde Joint Connector Hardware

OPERATOR w

Figure 5 . Truss Node with Joint Recepmcle Targets

"U
INTERFACE

Figure 6. AS& Computer Control System

50

ADMINISTRATIVE

System _arlmeter
_octftcatl¢nS and

:D(ion sefect_oPs

A_t_Dul_ Sciences

:lie _amagement ano

_elec_ton

A$SEM_L f

Connec_
_emov

_Store

COt"IPONENT

OEV_C[i

N/_[FUNCT ION J

{-,,-
F uler-selected Io¢lt!on - I1 Le

| ! r-AoDroa¢l_ Dr', _oln*, "--1

t'-:nir_qe ena effe(:t_r "_ I

.._ot ton oase AQgf_icn-goInt :angrier
°°°'" I" IF'.oo.o..-oo',"_:_"_' -I I {--_o,I

" l I iE.... " , L-J
I I _" s_or:qe

Coe_ receptacle ringer

[| J I _-£xleno Dlatform

u ¢,l L ut_l It, C_ ,_'t,r_t

Figure 7. SoftwareDcsign Layout

Figure 8. ASAL Software Aschitectur_

51

Classes:

STRUTS:
attributes:

OBSERVER NAME: str.
ALTERNATE NAME: sir.
ROBOT NAME: s_.
TRAY: int.
SLOT: int.

NODE END: sir.
CAP END: s_.

WHERE: sgl (CANISTER. INSTALLED, ARM).
FLIP: str.

CAN_FLIP: truth.
NODE DIRECT: str.

MB_INDEX 1: rot.
MB_INDEX2: int.

%

endclass.

Figure 9. Class Defmation for Struts

State:
if

currentstate= AP CAN* and

ph&sc _-out
then

next_stare = GP_CAN**
endif.

Phase:
if

current_state = AP_CAN and
target_state = GP_CAN and
currentstrut>where = CANISTER IARM

then

phase = out
endif.

AP_CAN : Canister approach point

GP_CAN: Canister grasp point

Figure 10. Example Rules for Strut Path Determination

State GP_CAN:
when

next_stare = GP_CAN
then

reassert rule_flag = false.
erase stat_s mode.

(a) reassert check_scar = true.

(b) if ee response = reversed then
(c) reassert remm= true.

else \ ee response = worked
if ((ink = false and restart = false) or ovemde) and
status_mode = false then

(d) message "COMMAND$reset fts".
endif.

(e) ff current strut>CAN_FLIP then

(f) reassert tomerl = "GOTO GP_FLIP_CAN*"
else

(g) reassert tomerl = "GOTO GP_CAN*"
endif.

if determined (current strut) then
(h) reassert ton'ted = combine(tomefl,eurrent strut>SLOT,"*",

current strut>TRAY).
endif.

(i) reassert send merlin = true.

ff halt__op = false then
if robot success then

(j) message "UPDATE$charstate,GP_CAN".
reassert current_state = GP_CAN.

else \mnmato calling state
ff current strut>CANFLIP then

(k) reasserttorrid = combine(
"GOTO REV_GP_FL[P",
current strut>SLOT,"*",
current su'ut>TRAY).

reassert send merlin = true.
endif.

(I) reassert relama = true.
endif.

endif.
endwhen.

endif.

Figure I I. Demon forMoving Robot to Canister Grasp Point

52

AUTOMATED ASSEHBLY _I_TRIBUTED ARCHITECTURE

,p,.I]I h,n
Planner(FES)

OPERAFOR I/0

TASK

DEFIFIITION

TASK

PL AHf'II t,I6

SEOItEtlCE

PL At ll',ll f'16

COOF_DItlAT ION

EVENTS

- signal changes

In system

status

DEVICE CONTROL

slmulat Ion assembly soltwlrl

I

l

I

l

l

l

I

I

h_dw_l

DEVICES

know IIdOI b|tl

Fibre 12.ASAL DistributedAmhitectume

53

c'_'_
o_oO_

