
N93-32130

Scheduling with Partial Orders and a Causal Model

Mark Boddy Jim Carciofmi George D. Hadden

{boddy Jc_rciofiJhadden}Osrc.honeywell.com

Honeywell Systems _ Research Center,MN65-2100

3660 Technology Drive

Minneapolis,MN 55418

Abstract

In an ongoing project at Honeywell SRC, we are constructing a proto.
type acheduling system for a NASA domain using the "Time Map Manqer"
(TMM). TMM representations are flexlble enough to permit the representation
of precedence constraints, metric constraintS between activities, and constraints
relative to a variety of references (e.g., Mimion Elaimed Time vs. Mhmion

Day). The TMM also supports a simple form of eausal reasoning (projection),
dynamic database updates, and monitoring specified database properties u
changes occur over time.

The greatest apparent advantage to using the TMM is the flexibility added
to the scheduling process: schedules are constructed by a process of "iterative

refinement, I in which scheduling decisions correspond to constraining an ac-
tivity either with respect to another activity or with respect to some timeline.
The schedule becomes more detailed u activities and constraints are added.

Undoing a scheduling decision means removing a constraint, not removing an
activity from a specified place on the timeline. For example, we can move an

activity around on the time]ine by deleting constraints and adding new ones,
and other activities constrained with respect to the one we move will move as
well.

1 Introduction

We are interested in the solution of large, complex scheduling problems. Examples

of the kinds of domains we are interested in include several NASA scheduling prob-

lems (e.g. Spacelab, Space Station operations, Shuttle ground processing), and the

Transportation Planning problem being addressed by the joint DARPA/Air Force
Planning Initiative.

A "solution" as we use the term is not simply an implementation of an algorithm

for solving a particular constraint satisfaction or constrained optimization problem.

For many domains, constructing schedules is an extended, iterated process that may

involve negotiation among competing agents or organizations, scheduling choices

251

made for reasons not easily implementable in an automatic scheduler, and last-

minute changes when events do not go as expected. In such an enviroment, the

process by which a schedule is constructed must be considered in any attempt to

provide a useful scheduler for a given domain.

Even the more limited problem of generating a single schedule is becoming in-

creasingly complex. Simple models solvable by straightforward application of stan-

dard operations research techniques such as linear programming are less and less

relevant to current scheduling problems. For example, many NASA scheduling

domains involve large problem instances (hundreds to thousands of activities and

constraints), context-dependent activity effects (including context-dependent tran-

sitions or setup times as a special case), complex resource structures (e.g., a power

bus that is divided into sub-busses), and user preferences on where activities appear

in the final schedule (e.g., "as late as possible=). To provide an effective solution, a

scheduling system must be expressive enough to represent or reflect these domain

complexities as well as supporting the process by which a schedule is constructed.

In an ongoing project at Honeywell SI_C, we are implementing a prototype

scheduling system for a NASA domain using the "Time Map Manager _ (TMM).

TMM representations permit the expression of precedence constraints, metric con-

straints between activities, and constraints relative to a variety of references (e.g.

Mission Elapsed Time vs. Mission Day). The TMM also supports causal reasoning

(projection and persistence), dynamic database updates, and monitoring certain

database properties as changes occur over time.

The greatest apparent advantage to using the TMM is the flexibility added to the

scheduling process: schedules are constructed by a process of "iterative refinement,"

in which scheduling decisions correspond to constraining an activity either with

respect to another activity or with respect to some timeline. The schedule becomes

more detailed as activities and constraints are added. Undoing a scheduling decision

means removing a constraint, not removing an activity from a specified place on the

timeline. For example, we can move an activity around on the timeline by deleting

constraints and adding new ones, and other activities constrained with respect to

the one we move will move as well.

In the rest of this paper, we provide a brief introduction to the TMM, describe

the application of the TMM to scheduling, and describe some related work.

2 TMM Overview

As part of the DAI_PA/I_ Planning Initiative, Honeywell has developed a new

implementation of Dean's Time Map Manager (TMM) [5], involving improvements

in robustness, user interface, and documentation, in addition to a number of ex-

tensions in functionality. The TMM provides users and application programs (e.g.,

planners and schedulers) with the following functionality:

• Metric and ordering constraints between any two points.

• Causal reasoning.

252

===1

P I I..............-->
P I
o I [

Figure 1: A simple temporal database

• Database monitors for temporal conditions and protections.

• OptimJzations for large temporal databases.

The structure and capabilities of the TMM are described in more deta£1 below.

2.1 Temporal Relations

The TMM lets users assert constraints between pairs of time points, resulting in a

partial ordering among the points. TMM supports queries regarding necessary and

possible temporal relations among the time points. The truth of facts over intervals

of time is represented by tokens, which may include properties of pers/stence be-

yond their observed endpoints. In the current implementation, tokens may persist

both forward and backward in time. The truth of a proposition over an interval is

determined based on the ordering of token endpoints and the token's persistence

properties: For example, Figure 1 is a simple temporal database, involving three

tokens of three different types. In this example, P is true over the interval bounded

by the vertical lines, mad persists into the future. (not P) becomes true at a later

time, and clips the forward persistence of P. The statement up mad Q" is true for

an interval defined by the overlap of the tokens labelled P and Q.1

2.2 Causal Reasoning

The TMM supports reasoning about the changing state of the world as activities

occur using three forms of inference:

• The persistence assumption. As described above, users of the TMM specify

that certain facts are believed to be true over specific intervals of time. In

addition, they can specify that those facts can be assumed to remain true

until something occurs to make them false.

• Projection. This is inference of the form: given an event E and a set of precon-

ditions Px, P2,... Ph, and a result R, whenever the preconditions are believed

to be true for the entire event E, R is believed to become true immediately

following E.

IWe are in the process of developing • formal semantics for the TMM. A drdt version is available
by request.

253

• Overlap chaining. Given a set of preconditions Pl, P2,... P_, and a result R,

R is believed to be true for any interval for which all of the preconditions are

true.

All of these forms of inference are handled completely automatically: the user spec-

ifies which f_cts are persistent and asserts a set of projection and overlap rules, and

the requisite inference is performed by the system.

2.3 Nonmonotonic Reasoning and Database Monitors

TMM supports two basic kinds of nonmonotonic reasoning:

• Possibly true temporal relations between time points (which may be invali-

dated by additional constraints), and

• Assumed truth of a temporal proposition over an interval based on a time to-

ken's persistence (which may be invalidated by the addition of a contradictory

token, which clips the proposition during that interval).

In addition, the database itself is "nonmonotonic', in the sense that information

can be deleted, and the inference performed by the system thus far will be checked

to ensure that it continues to be supported by the current state of the database. 2

The existence of specified database properties as changes are made over time

can be tracked through the use of monitors. The existing types of TMM database

monitors are temporal conditions and protections. Temporal conditions monitor

whether specified relations among points can be derived from the current state of

the database, maintaining this information as the database changes. Protections

do the same thing for the truth of some fa_t over an interval. Between them, these

two mechanisms provide support for monitoring the continued validity of previ-

ous inference, or triggering demons based on complex properties of the temporal
database

2.4 Efficiency

Current and planned TMM optimizations for handling large databases include the

use of & global reference point where appropriate (rather than forcing its use as

some systems do), limiting search to that necessary to prove or disprove a query,

ca_hing search results for later use, graph decomposition, temporal indexing, lazy

monitor evaluation, and algorithms that are designed to search only those parts of

the database that may result in useful answers.

3 Scheduling Using the TMM

The assumptions underlying our scheduling work are as follows:

2Tkia capability (temporal reason maintenance) is described in detail elsewhere [5].

254

SV1

SV2
, ,"

I I I I [

Figure 2: Time-line scheduling

sv11 I I

SV21 I
I I

Figure 3: Constraint-posting scheduling and the resulting partial order

I. Explicitly mode]ling the constraints resulting from specific scheduling deci-

sions makes the schedule easier to construct and modify.

2. P_epresenting only those relationships required by the current set of constraints

(the decisions made so far) provides a more useful picture of the current state

of the scheduling effort.

The main consequence of this approach is that the scheduler does not manipulate

totally-ordered timelines of activities and resource utilization. Instead, the evolving

schedule consists of a partially ordered set of activities, becoming increasing ordered

as additkmai constraints are added (or less so, as those decisions are rescinded).

Timeline schedules can be represented using linear sequences of tokens, one

sequence for each resource. Figure 2 depicts a simple timeline schedule Arrows be-

tween the sequences represent constraints on parts of the two sequences that must

obey the indicated ordering relationship. In contrast, schedules constructed by ac-

cumulating constraints have a structure like that in Figure 3. Here, the current

set of constraints is insufficient to force a totally-ordered sequence of activities. KI-

though providing increased flexibility (through delaying commitment), the explicit

representation of partiaUy-ordered activities in the time map makes reuoning about

resource usage and other state changes more complicated. It is no longer possible to

construct a single thne-line representing (e.g.) changing resource availability over

time. Instead, the system computes bounds on the system's behavior.

255

P7

P_PS _PIO

PS P7

I I I I ; __ - _t._lpPl P2 PS P4 PS 10

P7

Figure 4: Gradual hardening of a partial order

Causal reasoning and resource profiles both depend on precise orderings of facts

and activities in time, that is, on what propositions are true and what activities

occur when. For a partial order, we can determine what facts might possibly or

neceasar//y hold at a point, in some or all of the total orders consistent with the given

partial order. With even a very simple causal model, this is an NP-complete problem

[4]. The solution we have implemented (first presented in [3]) is to approximate the

necessary quantification, implementing strong and weak reasoning as approximations

for what is possibly or necessarily true, given the current partial order, s

Figure 4 depicts the process by which a partially ordered schedule is gradually

refined into an executable, totally ordered schedule. In our approach to constructing

the final schedule, this is one of the ways in which a partial or incomplete schedule

is modified, the other being the addition of new activities.

The TMM's strong and weak reasoning provides a partial solution to the problem

of reasoning about what will happen. For certain classes of inference, in particular

problems involving resource capacity or the aggregate duration of mutually exclu-

sive activities, strong and weak (even exact "necessary" and "possible") reasoning

occasionally provides insuliicient information. For these cases, there are two pos-

sible approaches: simulation (sampling) of totally-ordered sequences, or some kind

of static graph analysis to determine better bounds on the system's behavior. The

end result in either case is a measure of how likely it is that further constraints on

the partial order will cause problems, requiring the scheduler to backtrack to earlier
choices.

Despite the approximate nature of this reasoning, we are still ahead of the

game: where the least-commitment approach to scheduling can at least provide

8See [5], or [13] for details.

256

approximate answers in support of scheduling decisions (e.g. what order activities

should occur in), timeline schedulers make the same decisions arbitrarily--putting

an activity on the timeline is a stronger commitment than constraining it to occur

(say) between two other activities, or within a given time window.

4 Related Work

The idea that schedules should be constructed Ufrom the side," looking at part or all

of the schedule history rather that just sweeping forward or backward in time, has

been implemented in several scheduling systems, e.g. [7, 18, I, 14]. Typically, these

systems also support an iterative process of schedule refinement or repair. Recent

work on COMPASS provides a protocol for allowing different agents to modify the

same schedule, wherein commitments made by one agent cannot be affected by

the actions of any other. Research in constraint-based scheduling [8, 15, 12] has

demonstrated the advantages of considering the structure of problem constraints

over time and using this structure to dynamically focus decision-making on the

most critical decisions. However, these systems have historically had a weak model

of the interaction of activities and the evolving state of the domain.

Research in generative planning has focused on the construction of activity net-

works that bring about desired goal states, given basic representations of the e.qects

of actions in the world. Classical domain modeling assumptions [6] [17] make it

difficult to reason about the duration of activities, continuously varying quantities,

and resource consumption. The consequence of these limitations is that automatic

planners have not had any great success in applications to significant planning and

scheduling problems [2, 16].

In addition to the TMM, several other temporal database systems have been

implemented with an ability to reason about time _from the side" [Ii, 9, i0]. To

date, the TMM's combination of expressive flexibility, precise semantics, support for

database operations, and extensive optimization set it apart from other temporal

reasoning systems.

5 Summary

Effective support for current scheduling domains requires a focus on the scheduling

process as well as the scheduling problem. Using the TMM, we are in the process of

constructing a novel form of scheduler that constructs schedules through the accu-

mulation of constraints on the relations between activities, and between activities

and various reference points (e.g. calendar time, mission elapsed time, etc.).

The TMM's support for flexible temporal relations, dynamic updates in large

databases, and causal reasoning provide an effective base for building schedulers for

complex problems. The TMM is freely available and written in Common Lisp. To

obtain a copy of the software or a more detailed description of the system's design

and capabilities, contact the authors at the address given on the first page.

257

References

[1] Biefeld,E. and Cooper, L.,Scheduling with Chronology-DiRcted Search,Proe. AIAA

Comp=tere in Aerosp=ce VII, Monterey, CoJi/or_ia_ 1989, 1078-1087.

[2] Dean, T., Firby, R.J., and Miller, D., Hierarchical Planning Involving Deadlines, Travel

Time, and Resources, Computational Intelligence, 4 (1988) 381-398.

[3] Dean, Thomas and Boddy, Mark, Incremental Causal Reasoning, Proceeding# AAAI-#7

Si=tA N6Lio_l Con�create o_ Aeti_ci61 l_telligence, 1987, 196-201.

[4] Dean, Thomas and Boddy, Mark, Reasoning about Partially Ordered Events, ArtificioJ

InLellige_ce, 36(3) (1988) 375-399.

[5] Dean, Thomas and McDermott, Drew V., Temporal Data Base Management, Artifici,,l

Intelligence, 32 (1987) 1-55.

[6] Fikm, R.E., Hart, P.E., and Nihmon, N.3., Learning and Executing Generali,ed Robot

Plato, Artificial Intelligence, 3 (1972) 251-288.

[7] Fox, B. R., Non-Chronological Scheduling, Proc. AI, $imulaLion, a_d Planning in High

Auto,ore31 S¥sLerl_, Uni_ermfl¥ of Arizona_ IEEE Computer Society Press, 1990.

[8] Fox, M.S. and Smith, S.F., ISIS: A Knowledge-Based System for Factory Scheduling,

Efp,, 1(1) (1984)25-49.

[9] Ghallab, M. and Alsoui, A.M., Managing Efficiently Temporal Relationl through In-

dexed Spanning Trees, Proceedings IJCAI I1, Detroit, Michigan_ IJCAI, 1989, 1297-
1303.

[1O] Koomen, J.A.G.M., Tke Timelogic Temporal Reo.soning Sllstem, Technical Report 231

(revised), University of Rochester Computer Science Department, October 1988.

[11] Materne, S. and Hert=berg, J., MTMM: Correcting and E=te_ding Time Map Manage-

ment, Technical Report 511, GMD, February 1991.

[12] Sadeh, N. and Fox, M.S., Variable and Value Ordering Heuristics for Activity-based
Job-shop Scheduling, Proceedings o/ the Fourth lnte_ationoJ Conference on E=pevt

Syaten_ is Production and Operat/on_ Management, Hilton Head Island, g.C, 1990.

[13] Schrag, Robert, Boddy, Mark, and Carciofini, 3im, Handling Disjunction in Practical

Temporal Reasoning, KR-9£, 1992.

[14] Smith, S.F., Ow, P.S., LcPape, C., McLaren, B. S., and Muacettols, N., Integrating

Multiple Scheduling Perspectives to Generate Detailed Production Plans, Proceedings

of t_e SME Conference on AI in Manufacturing, Long Beach, CA, 1986.

[15] Smith, S.F., Ow, P.S., Potvin, J.Y., Muscettola, N.,, and Matthys, D., An Integrated

Framework for Generating and Revising Factory Schedules, 3ourna_ o/the Ope_LionoJ

Re,es, l,Society,41(6) (1990) 839-552.

[16] Vere, S., Planning in Time: Windows and Durations for Activities and Goal_, IEEE

T_n_actio_ on Patter_ Ana_ysi_ and Machine Intelligence, PAMI-5 (1983).

[17] Wilkins, D.E., Peactical Plan_ing, volume 4, (Morgan Kaufmann, 1988).

[18] Zweben, M., Deale, M., and Gargan, R., Anytime Rescheduling, Proceeding# o/the

DARPA Workshop o_t l_o_aLi_e Approaches Lo Pla_i_g, Sched_di_g, and Control,

San Diego, DARPA, 1990.

258

