
N93-82144

INTELLIGENT ASSISTANCE IN

SCIENTIFIC DATA PREPARATION

Steve Chien, R. Kirk Kandt, Joseph Roden,

Richard J. Doyle, and Scott Burleigh

Jet Propulsion Laboratory

California Institute of Technology

Pasadena, CA 91109-8099

Abstract
Scientific data preparation is the process of
extracting usable scientific data from raw
instrument data. This task involves noise
detection (and subsequent noise classification and
flagging or removal), extracting data from
compressed forms, and construction of derivative
or aggregate data (e.g. spectral densities or
running averages).

A software system called PIPE provides
intelligent assistance to users developing scientific
data preparation plans using a programming
language called Master Plumber. PIPE provides
this assistance capability by using a process
description to create a dependency model of the
scientific data preparation plan. This dependency
model can then be used to verify syntactic and
semantic constraints on processing steps to
perform limited plan validation. PIPE also
provides capabilities for using this model to assist
in debugging faulty data preparation plans. In this
case, the process model is used to focus the
developer's attention upon those processing steps
and data elements that were used in computing the
faulty output values. Finally, the dependency
model of a plan can be used to perform plan
optimization and runtime estimation. These
capabilities allow scientists to spend less time
developing data preparation procedures and more
time on scientific analysis tasks.

Introduction

Scientific data preparation is defined as the application of
multiple transformations to collected data sets in order to
produce data in an easily usable form. The questions a
scientist asks dictate which data ate to be collected as well
as which transformations are to be applied. The need for
simplified scientific data preparation has increased due to
the volume of data now collected and the diverse uses for

Todd King and Steve Joy

Institute of Geophysics and Planetary Physics

University of California at Los Angeles

Los Angeles, CA 90024-1406

any specific type of data. Automated scientific data
processing systems can be used to simplify this process.

While general scientific data processing systems have
existed for some time, the complexity of data types and
transformations required in specific domains renders these
systems of limited utility. As a result, many scientific
teams develop their own software systems to accomplish
the data preparation required in their specific domain.
These systems suffer because they become too specific,
and the effort spent developing such systems are only of
value within the context of a particular domain and task.
Because scientists desire to reuse their work, hybrid
systems are appearing which provide useful analysis tools
and definition of domain-specific data types and
transformations. Plans are developed in these systems
which specify which of the transformations to apply to a
collection of data sets. By the nature of the processing
steps required in many domains, these plans can become
quite complex. We are now at a point where the
complexity of these tools requires significant expert
knowledge to use.

Master Plumber [King & Walker 1991] is a software tool
developed by the UCLA Institute of Geophysics and
Planetary Physics to create programs to prepare scientific
data. While its primary area of application has been time-
series magnetometer data, the tool is applicable to the
general task of scientific data preparation.

Master Plumber is a dataflow system. Thus, in Master
Plumber, data elements are represented by columns, which
are streams of data being processed as they move through
the system. Data processing steps are called fittings, and a
plan to process a particular form of a dataset into another
form is called a blueprint.

Thus, as shown in Figure 1, raw data might be read in
using an intm_flaff'de fitting, a running average computed
using a runstat fitting, and the results written into an output
f'de.

1. intro_flatfile infile=foo
columnsffibx

349



2. runstat length=1287 shift=l
columns=bx

3. write flatfile outfile=bar

columns=bx, rabx overwrite=YES

Figure 1: A Simple Blueprint

A major difficulty in constructing blueprints is tracking the
many fitting and column interactions. While a typical
blueprint might use 25 columns and 20 fittings, the more
complex blueprints use hundreds of columns and 30 or
more fittings. Because of the number of possible
interactions, constructing and debugging scientific data
preparation blueprints is a time-consuming task requiring
expert knowledge.

Because of the complexity of the data preparation task,
users sometimes make errors in blueprint construction.
One type of construction error occurs when a user forgets
to set up the data needed for a particular step.
Unfortunately, this type of error can go unnoticed until far
into the execution of the blueprint, wasting valuable time.

Another common situation is that the exact method of
processing the data is dependent upon the character of the
data. In this case the user will use some default methods

for processing the data, examine the results, and modify the
options. This tuning cycle continues until the data is in a
satisfactory form.

The final aspect of blueprint development which
complicates the development process is that new fittings
are added to a system as new needs and requirements arise.
In addition, new fittings also evolve with new options and
characteristics being added. Any intelligent tool must be
readily changed to remain useful in such a dynamic
environment.

Currently there are approximately 65 fittings which are
part of the standard Master Plumber system. These fittings
perform a variety of transformations on the data flow, such
as: introducing and writing data into several formats;
displaying data on the screen; and actual numerical
transformations. There are support libraries which allow
for fittings to be written in either C or FORTRAN. A
special fitting called PLISP takes programs written in a C-
like language and performs the transformations on the data
flow. This allows for new processing steps to be initially
tested as PLISP programs and later be integrated as full-
fledged fittings into the Master Plumber system.

Some scientists use data preparation systems indirectly
with the help of software support personnel who write and
debug the actual data preparation plans. The goal of PIPE
is to make Master Plumber easy enough to use such that
this type of support is not necessary. The combination of
PIPE and Master Plumber will allow the blueprint
developer to develop blueprints easier and faster, allowing
them to spend more time on data analysis and less time on
data preparation.

Overview

To achieve these goals of assistance in the scientific data
preparation process, PIPE [Chien et al. 1992] provides four
capabilities:

1. constraint checking to detect invalid blueprints
before execution;

2. diagnosis assistance of blueprints through
dependency analysis;

3. optimization of blueprints through dependency
analysis; and

4. runtime estimation, using models of fitting
runtime performance.

The architecture of the PIPE system is shown in Figure 2.
PIPE accepts a blueprint file and a set of descriptors for
datafiles and uses a fittings knowledge base to construct a
dependency graph representing the computations to be
performed by each of the fittings in the blueprint. This
blueprint parsing phase uses knowledge of fittings and their
options to construct a dependency graph, which indicates
for each fitting which columns are accessed and used to
modify existing columns, create new columns, or remove
existing columns. This dependency graph can then be used
by the constraint checking module which determines if any
of the constraints associated with the fittings have been
violated.

In cases where blueprints must be debugged, PIPE can
use the dependency graph to support isolation of the fault
in the blueprint. Because the dependency graph tracks all
of the operations upon the columns, when the user detects
an error in one of the output columns, PIPE can present a
list of fittings which modified the column in question. The
user can then focus his attention upon these fittings, to
determine where the error was introduced into the data,
sometimes by plotting intermediate data. After isolating
the first fitting at which the column is faulty, the user can
query PIPE for information on the fitting to determine
which columns were used to compute the changed column.
This process continues until the fault is isolated to the data,
fitting option settings, or fitting code itself.

PIPE also provides an optimization capability. Because
PIPE constructs a full computation dependency graph,
PIPE can determine the last fitting in which each column of
data is used in the blueprint. Thus unneeded data can be
removed from the dataflow, decreasing the execution time
Because many fittings operate on data by default, PIPE
distinguishes between default processing and explicit
processing. Default computation which does not result in a
program output (e.g. plot, output file) can also be removed.

Finally, PIPE provides a runtime estimation capability.
Using the dependency graph to determine which columns
each fitting processes, and models of runtime for each
fitting type, PIPE can provide an estimate of how long the

350



Optimizer

Input

Blueprint Debugging
Parser Graph Tool

Constraint
Checker

Knowledge

Figure 2: PIPE System Architecture

Runtime
Estimator

blueprint will take to run to completion for the specified
datafiles.

Blueprint Parsing

In order to provide assistance in blueprint development,
PIPE constructs a dependency network reputation of a
blueprint. When a blueprint is read in by PIPE, it is
processed from the first step onward. For each fitting,
PIPE uses:

• methods storedin the fitting knowledge base,

• default values stored in the fittings knowledge
base,

• fitting options,

• a list of existing columns in the flow, and possibly

• an input file

to determine:

• any new columns created by the fitting,

• any existing columns modified by the fitting,

• existing columns deleted by the fittings.

Additionally, for any new or modified columns, PIPE
determines:

• the set of columns accessed in computing the
value for the column.

Because columns may be processed by default or explicitly
selected, the dependency network also makes note of this
distinction. This facet of the processing is important in
order to take appropriate action when optimizing the
blueprint (see below).

Constraint Checking

Constraint checking occurs while the blueprint file is being
parsed (i.e., prior to execution). A description of the
constraint checking algorithm follows.

Durinq Parslnu

for each fitting in the blueprint

for each option specified

check option type constraints

check for required options

for each parsed fitting in blueprint

for each option in fitting

check option value constraints

check inter-option constraints

check dependency constraints

check inter-fitting constraints

Diagnosis Assistance

PIPE also provides a blueprint diagnosis facility. This
capability supports two basic types of queries: column-
centered queries and fitting-centered queries. The column-
centered queries are of the form

351



"What fittings affected <column>

before <fitting>?"

and default to the entire blueprint. This question can be
easily answered using information from the dependency
network. PIPE steps through the fittings in the blueprint
and determines those fittings which create, modify, or
delete <column>. This list of fittings is then displayed to
the uses in graphical form. The fitting centered queries are
of the form

"What columns did <fitting>

affect?", and

"What columns did <fitting> access

in performing its processing to

affect these columns?"

These types of queries can be answered by interpreting the
dependency graph information on the designated fitting.
The first query can be answered by determining the set of
columns created, modified or deleted by the fitting. The
second query can be answered by accessing dependency
network information regarding which columns were
ac_ by the fitting in performing these operations.

Blueprint Optimization

PIPE also provides a limited blueprint optimization
capability. In this capability, PIPE examines the
dependency graph of each column and determines the last
fitting at which each column is accessed explicitly (i.e., not
by default). PIPE then recommends removing this column
immediately after this fitting. If this column is not
processed in the remainder of the blueprint, this removal
does not significantly alter the runtime of the blueprint.
However, many of the fittings process all of the columns in
the flow by default. Thus, when a column that is processed
in the remainder of the blueprint is removed from the data
flow a significant speedup can result. While commonly
used blueprints are likely to have unused columns
optimized by hand, automating this process relieves the
user of the burden of determining the point at which a
column can be removed. Additionally, by allowing PIPE
to automatically determine the correct places to remove
columns, PtPE reduces the chance that a user will
inadvertently prematurely remove a column from the data
flow, which would cause an error.

Runtime Estimation

The final capability that PIPE provides is runtime
estimation. PIPE estimates the runtime of a blueprint for a
specific data set by applying the following algorithm:

for each fitting in the blueprint

identify fitting runtime model

compute runtime given dataset size

add runtime to total runtime

compute new size of dataset

Tracking the size of a dataset in Master Plumber can be a
difficult task. Original data set sizes are determined from
input files. When data of different temporal granularity are
introduced into an existing flow, or when decimation
operations are performed, data set sizes will need to be
recomputed. Sometimes a fitting can affect the size of the
dataset in a manner that depends on the exact data
processed. In these cases, the exact dataset size cannot be
determined, so PIPE estimates the size of the dataset at the
output of the fitting. These estimations are sufficient for
giving the user reasonably accurate runtime estimates.

An Example

We now illustrate each of the capabilities of PIPE using
example blueprints. For an example of constraint
checking, suppose a user has created a blueprint containing
the following statement:

4. bin columns=bx delta=60.0 min max

Because the option min max requires that a value be
specified, PIPE would indicate a constraint error such as:

Fitting 4. bin option min_max

required value not found; string

type required.

As another example of the constraint checking, consider
the following blueprint statement:

7. crossavg except=time avgname=xavg

Assuming the user removed the column named time
earlier in the dataflow, PIPE would issue a constraint error
indicating:

Fitting 7. crossavg option except

undefined column time; a column

with that name was deleted at

fitting 4. drano.

An example of the diagnosis capability supported by PIPE
is illuslrated in the following scenario. Figure 3 shows a
Master Plumber blueprint file. Suppose that the user
examines the output of the blueprint and determines that
column 02 is producing results that are incorrect. The user
tries to determine what may have affected column 02 by
querying PIPE:

Q: Which fittings created or

modified column o2?

352



A: Fitting I0. drano
02.

Fitting 12. plisp

02.

created column

modified column

The user detexmines that the 02 column was still incorrect

before fitting 12. plisp, so the user wants to determine
what columns were accessed by and were used in creating
02.

Q. Which columns were accessed by

fitting 10. drano in order to

create column 02?

A: Column raraby was accessed by

fitting 10. drano in order to

create column 02.

The user then continues backtracking through the blueprint
to isolate the error:.

Q: What fittings before fitting 10.

drano modified column raraby?

A: Fitting 9. runstat created and

modified column raraby.

By using PIPE in this way, the user can focus his attention
directly upon the possibly faulty fittings instead of having
to examine every fitting and column.

PIPE also uses the dependency graph to optimize
blueprints. Because PIPE can determine which fittings
modify which columns in the blueprint, PIPE can
determine the last point at which each column is needed in
the blueprint. In the example blueprint shown in Figure 3,
PIPE makes the following recommendations for removal:

never introduce column rim

remove sens_x, senx_y, sens z and bz

after fitting 4

remove bx, by after fitting 8

remove rabx, raby after fitting 9

remove bxc, byc, bzc, and stime

after fitting 12

PIPE also provides runtime estimation capabilities. For the
optimization example shown above, PIPE estimates that the
non-optimized blueprint will take 11:32 +/- 1:04 to run and
the optimized blueprint will take 9:58 +/- 0:58 to ran.

Discussion

There are a number of interesting directions which remain
open issues. First, PIPE currently assists the user by
allowing the user to track the effects of processing steps. A
more intelligent system would be able to analyze the data

and extract features which would inform the user as to what
processing steps might be useful. For example, a system
could examine the data to determine the length of gaps in
data and use this information to determine whether gaps in
the data need to be filled. A further analysis of the data
(rates of change and Fourier analysis) might indicate what
types of gap filling methods might be effective. This type
of automation requires that the system possess a
significantly deeper understanding of the data being
processed.

Another aspect of the system is modelling the goals of
the processing steps in order to make suggestions about
ordering processing steps. Knowledge of the interactions
between various processing steps, such as decimation of
the data and computation of running averages, could be
used to make suggestions on re-ordering of processing
steps to improve accuracy or effgieney as needs dictate.

Distributed prooessing of the data is also an impotlant
issue. Because the Master Plumber system operates on
data from the Planetary Data System, a distributed
database, when a scientist decides to generate a specific
data form, there are a number of combinations of
processing and data transfer which are possible.
Depending UlXmthe data processing steps desired, it may
be more efficient to process some data being accessed from
a remote site before transfening it to the local site. Factors
such as network transfer rates, available computer
resources at each site, and current user loads at each site all
affect this decision as well as the actual scientific data
processing steps.

The current prototype version of PIPE was completed in
July 1991. It is implemented in CommonLISP and
LISPView and runs on Sun workstations.

The C++ operational version of PIPE was completed in
May of 1992. and is integrated with Master Plumber and
MPTool and is in use by IGPP personnel at UCLA. This
version of PIPE incorporated feedback upon the "look and
feel" of the interface specified by IGPP personnel.

There are numerous related projects in providing
intelligent assistance in scientific computing. The
Kineticisfs workbench project at MIT [Abelson et aL 1989]
targets modelling and analysis of dynamic systems. The
SINAPSE system [Kant et al. 1990] assists in construction
of numerical models for data interpretation but is specific
to seismic models represented as finite difference
equations. The Reason system [Atwood et al. 1990]
supports analysis of high energy physics data (and is a
datafiow system). Finally, the Scientific Modeling
Assistant project [Keller 1991] addresses support to
facilitate development of scientific models.

Summary

This paper has described a system to assist in the
development of scientific data preparation programs and
discussed issues in design for maintainability. This issue of
maintainability was particularly important because the
processing modules (fittings) are constantly evolving due
to changing scientists' needs. In order to maximize

353



maintainabilityof the constraintknowledgebase,
informationfor each fitting is encapsulated in a fitting
knowledge base file and as much as is practical, constraint
information is represented in a general declarative fashion.

Acknowledgements

This work was performed by the Jet Propulsion laboratory,
California Institute of Technology, under a contract with
the National Aeronautics and Space Administration.

References

[Abelson et al. 1989] H. Abelson, M. Eisenberg, M.
Halfant, J. Katzenelson, E. Sacks, G. Sussman, J. Wisdom,
and K. Yip, "Intelligence in Scientific Computing", Comm.
ACM, 32(5):546-562, May 1989.
[Atwood et al. 1990] W. Atwood, R. Blankenbecler, P. F.
Kunz, B. Mours & A. Weir, "The Reason Project",
Stanford Linear Accelerator Technical Report #SLAC-
PUB-5242, April 1990.
[Chien et al. 1992] S. Chien, R. K. Kandt, R. Doyle, J.
Roden, T. King, and S. Joy, "PIPE: An Intelligent
Scientific Data Preparation Assistant", Proceedings of the
International Space Year Conference on Earth and Space
Science Information Systems, Pasadena, CA, February
1992.
[Kant et al. 1990] E. Kant, F. Daube, W. MacGregor, J.
Wald, "Synthesis of Mathematical Modeling Programs",
Schlumbergex Laboratory for Computer Science Technical
Report Number TR-90-6, February 1990.
[Keller 1991] R. Keller, "Building the Scientific Modeling
Assistant: An Interactive Environment for Specialized
Software Design", Technical Report FIA-91-13, NASA
Ames Research Center, Moffett, Field, CA, May 1991.
[King & Walker 1991] T. King and R. Walker, "The
UCLA Data Flow System," Technical Report #3522,
Institute of Geophysics and Planetary Physics, University
of California at Los Angeles, CA 1991.

354


