
DESSY:

N93-32146

Making a Real-Time Expert System Robust and Useful

Sherry A. Land*
Jane T. Malln

NASA Johnson Space Center
Intelligent Systems Branch - ER22

Houston, TX 77058
(713) 483-2064

Donald R. Culp
Rockwell International

Remote Manipulator Section - DF44
Houston, TX 77058

(713) 483-0891

ABSTRACT

As the complexity and expected life-span of modern
space systems continue to increase, the need for
real-time data monitoring and failure analysis
becomes more critical to their successful operation.
DESSY, or DEcision Support SYstem, is a joint
effort by the Intelligent Systems Branch/ER2 and
the Remote Manipulator System (RMS)
Section/DF44 to develop an expert system for the
monitoring of the Payload Deployment and Retrieval
System (PDRS). DESSY users, the RMS flight
controllers, are provided with user interface
enhancements and automated monitoring of system
state (physical orientation) and status (operational
health). Currently, a DESSY prototype for the
Manipulator Positioning Mechanism (MPM) and
Manipulator Retention Latches (MRL) of the PDRS
has been developed and successfully demonstrated
during the STS-49 and STS-46 missions.

Expert systems for monitoring real-time operations
must not only accurately represent domain
knowledge, but also address the challenges of using
unfiltered real-time data as input. This paper
describes the methods and design strategies
developed to overcome problems with real-time data
in the NASA Mission Control Center. Types of data
problems addressed are (1) loss of data, (2) erratic
data and (3) data lags and irregularities during state
transition. Methods used to handle data problems
include rule disabling for ignoring data when data
quality is uncertain, context-sensitive bounded
pattern recognition for minimizing incorrect
conclusions based on bad data, and graceful
recovery through system correction when reliable
data returns. This combination of methods with an
object-based modular DESSY design assures a
robust program capable of lengthy periods of
uninterrupted use in operations.

I. INTRODUCTION

As modern space systems become more advanced,
the need for intelligent computer-assisted support

364

during operations continues to grow. The support
required usually begins with real-time data monitoring
and includes failure diagnosis and possibly
recommended actions. As a result intelligent
software must continue to evolve to meet these
demands. In this paper we discuss the development
of the DEcision Support SYstem (DESSY), an
expert system which aids flight controllers by
performing real-time data monitoring and intelligent
evaluations of system hardware through
assessments of telemetry data patterns and
transitions. Although we are documenting many
aspects of the development process, we focus this
discussion on the most challenging issue we faced -
dealing with unreliable real-time telemetry data. We
briefly address other development topics including
knowledge base organization, object and rule
structure and user interface enhancements.

II. THE DESSY EXPERT SYSTEM

Project Background

The DESSY project is a joint effort by the Intelligent
Systems BrancWER2 and the Remote Manipulator
System (RMS) Section/DF44 of Johnson Space
Center to develop an expert system for monitoring
the Payload Deployment and Retrieval System
(PDRS). The PDRS is made up of several
subsystems, each of which will correspond to a
DESSY module. Currently, a DESSY prototype for
the Manipulator Positioning Mechanism (MPM) and
Manipulator Retention Latches (MRL) of the PDRS
has been developed and successfully demonstrated
during the STS-49 and STS-46 missions. MPM's are
pedestals that roll the shuttle arm in and out of the
payload bay. MRL°s are latches which latch the arm
in place when it is not being used. The next
subsystem being undertaken is the Remotely
Operated Electrical Umbilical (ROEU), a system to
provide an electrical interface between the orbiter
and a payload while the payload is in the payload
bay. Other RMS subsystems to be implemented as
DESSY modules include the End Effector, Arm-
Based Electronics, and Displays & Controls Panel.

SoftwareDesign

DESSYis implementedin a commercialreal-time
expert system development environment. Its
object-orienteddata structuresrepresentthe RMS
systemdesign and its rules capture the logic of
system operations and failures. Modularity within
the software separates rules for data monitoring,
state transition detection, failure diagnosis, expert
system control and user interface. This partitioning
of rules allows the enabling or disabling of
appropriate groups of rules when necessary, as in
the case when unreliable telemetry data enters the
system, or for changing system contexts. For
example, as the MPM/MRL system reaches a new
configuration in nominal operations, state transition
rules monitor this change of state and DESSY
changes to a new context. As a result, the
appropriate set of diagnostic rules is enabled for the
duration of this context.

The DESSY software design is further modularized
in that each RMS subsystem will be implemented as a
separate software module, able to act independently
of the others. Each subsystem module will have a
rule set and display developed specifically for that
RMS subsystem. A summary display called the
Integrated Status Display will provide an overview
of all subsystem states and statuses. Figure 1
shows how each of the planned subsystem modules
fits in the overall DESSY design.

_XX)O(

XXXXXXXXXX

Figure 1. The DESSY Design

Careful object and rule design, along with
appropriate modularity, both in subsystem
partitioning and in the separation of rules according
to rule functionality, has played an important role in
the successful development of DESSY. However,

even if the software provides objects and rules that
correctly capture the functionality and logic of the
physical system, failure to address the issues
concerning real-time data as input can lead to
disappointing system behavior. In the remaining
section of this paper we discuss problems observed
and solutions developed for working with real-time
data. It is these methods that have contributed
most to the robustness of DESSY.

III. WORKING WITH REAL-TIME DATA

Although many expert system projects deliver a
knowledge base which accurately represents the
domain of the problem, they generally fail to
successfully address the challenges of using
unfiltered real-time data. We present several types
of problems that occur when using real-time data as
input to a monitoring expert system. Although all
telemetry sensor data sent to DESSY is binary,
these problems could occur with any data format.
The data problems addressed include (1) loss of
data, (2) erratic data and (3) data lags and
irregularities during state transitions. Each of these
problem types, discovered during DESSY
development and testing, is discussed.

Following the ove_iew of data problems, we
examine the solutions developed to account for
these problems. Table I lists each of the data
problems with their applicable solutions. These
methods, in the order of increasing sophistication
and potential benefit to real-time operations, include

to ignore data when data quality is
uncertain, (;ontext-sensitive bounded pattern
r.P,gg.gllJlJ.oJ1for minimizing incorrect conclusions
based on bad data that has entered the system, and
araceful recovery through system correction when
reliable data returns. Each method works
independently to prevent or correct erroneous
expert system conclusions resulting from bad or
missing data. It is their combination, however, that
assures a robust program capable of lengthy pedods
of uninterrupted use in operations.

Data Problem Solution Methods

loss of data rule disabling,
graceful recovery

erratic data pattern recognition,
graceful recovery

data lags and irregularities pattern recognition,
during state transition graceful recovery

Table I. Data Problems and Solutions

365

Typesof DataProblems

Themostcommonandwellunderstooddataproblem
is a lossof data. Datalossusuallytakestheformof
a completelossof signal(LOS)and maybe either
expected, i.e., the shuttle enters the Zone of
Exclusion (ZOE) where there is no telemetry
downlink,or it may be unexpected. Unexpected
data loss may occur as a complete or partial loss of
data, usually due to ground processing or computer
hardware problems.

Although LOS seems like a simple concept to
account for, hardware implementation of telemetry
processors can complicate the situation. Depending
upon how a particular telemetry processor handles
periods of LOS, the monitoring system may receive
an inactive state for all data values, no data values at
all, a static frame of the last data values, or as in the
case of the DESSY data source, the Real Time Data
Systems (RTDS), the last 4-5 seconds of data may
be repeatedly replayed until the signal returns. Yet
another possibility is that nonsense data is received
during pedods of LOS. The first step in dealing with
loss of data due to signal loss is to find out the form
of data that will be received during this time.

Once it is understand what LOS will mean for a
monitoring expert system, it must be determined
how that system is going to detect it. One
possibility is to compare actual data format with
expected format for each data frame received to
determine quality. In the DESSY project we were
fortunate enough to have a data quality
measurement from the telemetry processor. OI-
Quality indicates the telemetry processor's
assessment of data quality for each data frame. It
was discovered, however, that OI-Quality did not
always reliably reflect true data quality. Often there
seemed to be a lag between the data quality drop
and OI-Quality's reflection of this drop. At other
times, even when the lag did not appear, the low
quality indication occurred in the same data frame
that included bad or missing data, making it
impossible to filter the data or to alert the system of
its presence. Inevitably, bad data due to an LOS
situation would periodically enter the system.

Later in the paper we present the methods
developed for dealing with LOS problems, such as
disabling of rules and recovery methods. These
methods apply to both the case when LOS is
detected in time to prevent problems from occurring
and when bad data due to LOS enters the system.

Erratic data is unstable and does not meet expected
behavior for a given operational context. Erratic
data may occur at anytime, but is most likely to be
seen immediately before or after an LOS or at the
time of state transitions. Erratic data is
characterized by frequent flipping of bits (in the
binary case) in a particular data set. Bit flipping
occurs when a data value toggles or flips between
values of 0 and 1. Of course this signature may also
result from intermittent sensor failures, and that
possibility should not be ruled out. For large sets of
data, however, it is much more likely that any bit
flipping is due to bad telemetry data, rather than bad
sensors.

For DESSY, periods surrounding an expected LOS
seem to be a common time for erratic data to
appear. As the shuttle moves in or out of a
satellite's range, the telemetry link has a period of
degradation, during which the OI-Quality has not yet
dropped. The result is often a significant amount of
bad data entering DESSY. Because there has been
no previous low quality indication, DESSY has no
clue that a data frame from this scenario contains
degraded data.

The second situation when erratic data often occurs
is near the beginning and end of a state transition,
when DESSY frequently encounters bit flippings of
data. Although this is an instance of erratic data,
this scenario is discussed in the following
paragraphs concerning data behavior during state
transitions. Later we discuss our use of context-
sensitive bounded pattern recognition and graceful
recovery to deal with both these types of problems.

Data Laas & Irreouladties Dudna Operational Events

The final type of data problem we discuss results
from unexpected data activity when data is expected
to change because of an operational event such as a
state transition or commanding. Data that is
expected to change may "flicker" or "lag" before
reaching a new stable state. Given a set of data
that is expected to change at transition time T,
subsets may flicker or lag, causing the data transition
to occur over some delta time t. Typically delta t is
1-3 seconds. The following transition graph depicts
five examples of data transitions from low to high
values, including a normal data transition and four
anomalous cases. The delta time for this data set is
2 seconds because it is the time it took for every
piece of data in the set to change to its new
expected state.

366

o't- 2 sec
Event Start

nominal
transition

1 sec delay

2 sec delay

1 sec flicker

1 sec flicker
-2 -1 0 1 2 3

ID2

ID3

ID4

D5

4

Figure 2. Examples of Data Lags and Irregularities

impossible. Also as the shuttle enters or leaves the
Zone of Exclusion, data deteriorates, making OI-
Quality itself unreliable at that time. However, even
though erroneous data may have already entered the
system, it is still desirable to disable rules to minimize
the number of faulty conclusions. Event rules such
as command and state transition, and diagnostic
rules should be disabled, but corrective rules should
not be disabled. Corrective rules will be discussed in
the section on graceful recovery.

Disabling rules is the simplest of the techniques we
use in dealing with real-time data problems.
Unfortunately, it effectively eliminates the usefulness
of the expert system during the time the rules are
disabled, retaining only its function as a raw data
monitoring source. For this reason the technique is
only used when absolutely necessary - when# is
certain that quality is low and data is unreliable, such
as in a complete loss of signal.

Data lags and irregularities dudng events and state
transitions may occur because of noise in the
telemetry or may be due to the physical properties of
the hardware being monitored. In either case there
is no smooth transition. Falling to include this
behavior in the system's monitodng rules will often
lead to erroneous conclusions. Examples from early
DESSY work include (1) incorrect sensor failure
conclusions at Event Start T due to data lags - D2
and D3, (2) state value fluctuation from T to T+2
from flickering data - D4, and (3) incorrect
command conclusion at time T due to a temporary
active value in command telemetry - D5. These
problems were corrected using our data handling
techniques.

Methods Used to Handle Data Problems

BU LP. abJi

The most straightforward method of dealing with
data of uncertain quality is to ignore it by not
responding to changes in that data. In any system
there will be times when data quality is so low that
the data should not be used at all. The expert
system should therefore have the capability to
ignore data when it is unreliable by a method such as
disabling of rule sets. This immediately highlights the
need for a manner of determining faulty data, such
as the OI-Quality measure provided to DESSY.

•When the value of OI-Quality is any number other
than 100, certain diagnostic and state transition rule
sets are disabled in DESSY. When quality returns
the rules are again enabled.

Although the above tactic seems simple enough, it
has the problem 'of the quality number and
corresponding data being in the same time frame,
making immediate filtering or rule disabling

To supplement this automatic rule disabling, the
DESSY user may also "turn off" the expert system
portion of DESSY at any time, leaving DESSY to
act as only a data monitor. Actually this turning off
merely grays out the parts of the DESSY display
that present expert system conclusions, allowing
DESSY to continue to work in the background.
Even if DESSY has made incorrect conclusions and
the user has grayed out the expert system part of
the DESSY screen, the built in corrective rules
should eventually lead to a graceful recovery. The
intent is that even if DESSY has been turned off
due to erroneous expert system conclusions, it will
recover by itself and the user will once again be able
to use the expert system part of DESSY.
Nonetheless, this feature gives the user the
opportunity to override the expert system at the
level of the user interface.

Context-Sensitive Bounded Pattern Recoanition

The second technique we have implemented to
assure DESSY's robustness deals with
characteristics of the sets of data that DESSY's
rules use to detect events and identify failures.
Because of problems with data lags and irregularities,
the expert system often has insufficient or even
erroneous evidence from the data set upon which it
can determine the occurrence of an event. Also
because of the nature of space operations, there is
often an insufficient amount of sensor data available,
making event determination even more difficult. For
example, if the event is that of an MPM stow, there
are only two sensors to indicate the stowed state
once the MPM has reached its new stowed position.
This data set is insufficient to determine with
certainty the stowed state because of a requirement
we have that DESSY must continue to monitor
events, given a single data failure in any set of data

367

we consider. If one of these two pieces of data was
active and the other inactive, as is the case of a
single failure of either of these pieces of data, the
state would be inconclusive. The data must
therefore be supplemented with additional
information.

In addition to considering data set size, when
appropriate we include context such as the system
state or the detection of a prior event. When
context is considered, we say that we are using a
context variable (CV) in the rule. Use of CV's
lowers the requirements of the data set the rule must
consider, and some rules use only CV's. Table II
gives an example of a DESSY rule using two pieces
of data and two context variables.

We now discuss the general guidelines developed in
determining necessary data sets and context
variables for DESSY rules. The lower bound or
minimum requirements needed to make reliable
conclusions is addressed first, followed by a brief
discussion on the upper bound or maximum data set
recommended. Establishment of a lower bound is
necessary because enough data must be observed to
correctly monitor an event, given that some
predetermined amount or percentage of the data set
being considered is bad. An upper bound is
established because of the impact the data set size
has on computer hardware performance. An
example from DESSY is provided.

DESSY Rule: state transition* Data/CV
set

if the state of any MPM CV
is stow-in-transit

_and___(thesys!-stow_-__m__!cr_o}s_w__'__C__h_=___!........ data
or the sys2-stow-microswitch =1) data

and the command of MPM-SYSTEM CV
is stow

then conclude that the state of the conclusion
MPM is stowed

Table II. Rule Example with 2 Pieces of Data and 2
Context Variables

Establishing a Lower Bound

Given an operational event there exists a set of data
S that the expert system directly monitors to
determine when the event occurs. In addition, there
exists a second usually larger set S', a superset of S,
that makes up the context in which the event will
occur. The set S' indicates state, status and any
other operational context of the system being

tt

MPM Stowing is the rolling in of the RMS to put it
away. Deploying is rolling out the RMS.

368

monitored and includes both data and context
variables.

The CV°s from S' in the example of Table II are the
current MPM state and the current MPM command.
Thus we have the following sets.

Sstowed =
{sysl-stow-microswitch, sys2-stow-microswitch}

S'stowed =
{sysl-stow-microswitch, sys2-stow-microswitch,

current state, command}

If the set S were the only data we could consider,
we would have to impose the constraint that both
data elements be active to eliminate the ambiguity
and ensure that we were in a stowed state;
however, this does not meet DESSY's requirement
to continue to monitor given a single failure.
Because in the extended set S' context is
considered, we can relax our constraints to require
only one of the two microswitches to be active in
determining the stowed state. We have ISstowedl =
2 and IS'stowedl = 4 where ISI denotes the numbei"
of elements in the set S. Because the set size of 2 is
insufficient for determining the event given our
requirements, the data set S must be expanded to S'
providing a more plausible set.

Even in the case where 3 pieces of telemetry are
available, the data is probably insufficient. Although
in actual operations, a double hardware failure must
occur to lose 2 of the 3 sensors, in a situation where
noisy data is occurring, the possibility that 2 of
these 3 may erroneously become "turned on" is fairly
high. In this situation a larger data set including
context variables is desirable. CV's such as state
and command in the example above, can be used to
obtain the minimum information set by imposing
physical constraints or providing the current system
configuration. CV's limit the scope of a rule which in
turn limits the chance that it will fire incorrectly given
it has received bad data.

Although we use CV's to impose physical constraints
in DESSY, procedural constraints are not used in
DESSY rules, since humans are too likely to break
procedural rules. We learned this while testing an
earlier DESSY version when a flight rule was broken
during a training simulation. The software failed to
monitor the operations due to a procedural
constraint embedded in DESSY°s monitoring rules.
Therefore, as a policy, we implement no procedural
constraints in DESSY.
Establishing an Upper Bound

In real-time operations, every piece of data observed
has an associated cost in CPU time. Thus we wish

to imposelimits on the amountof data DESSYis
allowedto inspectin a givenrule. Thebestway to
implementthis is throughcontextvariableswhich
holdsummariesof datavaluesandareusuallyalready
storedin DESSYfor otherpurposes. Useof CV's
allowsus to consider performance constraints to
limit the size of the data sets we inspect. In some
cases a CV can take the place of all but one piece of
data. In other higher level rule firings, such as for
summary level information, conclusions are made
based only on context variables.

We have established the upper bound of a rule as 4
pieces of telemetry data or 2-3 pieces of data given
a CV. The real-time expert system should usually not
be overloaded with a larger set, although there will
probably be exceptions in safety critical or unreliable
areas. In conclusion, context-sensitive pattern
recognition with appropriate set size, including both
data and context variables, reduces the chances of
incorrect expert system behavior when bad data is
present.

Graceful Recovery Thmuoh System Correction

Although many systems attempt graceful
degradation in the face of trouble, DESSY has
extended this concept to one of graceful recovery.
If the system makes faulty conclusions because of
bad data, a set of corrective rules will "kick in" once
good data returns, and restore the expert system to
the proper configuration. This includes both state
correction and status correction. The system does
not have to be restarted by the user because the
corrections automatically restore offending parts of
the knowledge base.

Corrective rules are similar to other system
monitoring rules, except that they do not allow for
any inconsistencies in the data sets they observe
when making conclusions, i.e., every piece of data in
the set for which the rule applies must be exactly
correct. Additionally, corrective rules are written
only for the cases that it can be determined with
certainty that the system is in a particular
configuration. These rules, therefore, can be
thought of as the axioms of the expert system.
They can be as simple as determining that a single
piece of data is reliable again because it returned to a
legitimate value after it had previously been deemed
as unreliable. A more sophisticated example is the
re-evaluation of system state when all microswitch
data for a new state becomes active.

Examples of corrective rules are provided in Figures
3 and 4. The rule in Figure 3 shows the re-evaluation
of the status of a single microswitch. If the
microswitch status is questionable-on because the
microswitch is inappropriately active, but the
microswitch value returns to inactive (0 or off), the

status is reset to functional. Figure 4 is an example
of the re-evaluation of the state of MPM's. If the
state is not stowed, but both stow microswitch
indicators become active (1 or on), then the MPM
state is reset to stowed.

If the status of sysl-stow-microswitch
is questionable-on

and the sysl-stow-microswitch = 0
then conclude that the status of sysl-stow-
microswitch is functional

Figure 3. Corrective Rule: Microswitch Status

if the state of any MPM is not stowed
and the sysl-stow-microswitch = 1
and the sys2-stow-microswitch = 1
then conclude that the state of the MPM is stowed

Figure 4. Corrective Rule: MPM State

The example of Figure 3 may occur when an MPM
stow microswitch (normally indicative of the stowed
state) becomes active while the MPM is in the
deployed state. This event could be due to a
microswitch failure, but is more likely to be caused by
bad telemetry. When this event occurs, several
conclusions are made. First the microswitch is
determined to be questionable-on. Assigning this
value is a strategy to allow the user to realize
DESSY is at this pOint making only a tentative
conclusion about a failure of this microswitch. If the
microswitch remains active, it will cause a motor to
be inhibited, preventing that motor from driving if a
stow command is given. (However, there are two
redundant motors for stowing, and the other motor
will still operate.) Secondly, because the MPM is
deployed and a stow microswitch is questionable-on,
the status of the MPM will be updated to Expect-
Single-Motor-Stow. If before stow operations
occur, the microswitch returns to its inactive state,
questionable-on is removed by the rule in Figure 3
and the MPM status is restored to operational.

If stowing operations proceed and the motor is
inhibited by the microswitch, procedure monitoring
rules will notice this fact. The MPM status will be
updated to Single-Motor-Stow once the stow is
complete and it has been confirmed that only one
motor was operational. However, if the motor is
not inhibited, but the questionable-on microswitch
was due to bad telemetry, procedural monitoring
rules note that the motor performed nominally and
the MPM status is adjusted to Nominal-Stow. The
microswitch status, however, will remain as
questionable-on until the microswitch value changes
to inactive.

369

A benefit of self correctionis demonstratedin a
scenarioobservedduring STS-49. Becauseof
hardwareproblems,a significantamountof data
frames were being lost, so that DESSYdid not
receivedatafor secondsat a time. Unfortunately,
thosewere crucialsecondsin whichan MRLstate
transitionwastakingplace. DESSYwasunableto
monitorthe transitionprocedurebecauseit never
receivedthe data. Fortunatelywhen DESSYdid
againreceivea dataframe,althoughthe procedure
wasover, it was able to evaluate the current data
and reflect the new MRL state. Another example of
why graceful recovery is crucial for real-time expert
systems occurred during MRL release operations
during STS-46. Seconds after the release began, an
LOS occurred and the telemetry downlink was lost.
This LOS lasted for approximately seven minutes,
and when data returned the release was complete.
At this time DESSY evaluated the new data and
reconfigured itself to reflect the new MRL state. In
both these cases, it was unfortunate that we were
not able to monitor the operations, but the fact that
DESSY was able to keep up once data returned
prevented a situation where the wrong state would
be reflected, certainly causing a loss of user
confidence.

Additional examples of how the corrective rules were
crucial to system success were demonstrated near
other times of LOS. Because poor data quality is
not always detected soon enough, unfiltered
erroneous data enters the system and leads to faulty
conclusions. Even if it were possible to filter out th_
bad data as soon as it was detected, the use of
unfiltered data is desirable because it gives the flight
controller a better understanding of the downlinked
telemetry. The expert system interpreting the data,
however, is unh'kely to be correct and should provide
an assessment that its interpretation is suspect.
Regardless, once quality is nominal again, the expert
system should re-evaluate the scenario and adjust
any faulty conclusions it made. State should be re-
evaluated and any status discrepancies that are no
longer accurate should be removed.

There is a final area in which corrective rules are
utilized. This case takes place when a real failure (or
even a single data or sensor failure) occurs and is
later followed by recovery. The corrective rules are
used to restore the status to nominal in these
situations. In these cases when a failure actually has
occurred, the human would like to know the failure
history even if the failure is corrected. (This is
currently a future DESSY version enhancement.) A
history is kept in the form of a message list at
present.

actually the same rule), initialization rules allow
DESSY to be started with any stable MPMIMRL
configuration and to be initialized to the proper
states and statuses. The rule in Figure 4 would
initialize DESSY's MPM state to stowed if DESSY
were started with the MPM in the stowed position.
If DESSY is started during transition periods, once
the transition is complete and the system is again
static, DESSY will at that point initialize itself. This
has been an important and even necessary feature
of our real-time expert system.

In summary, it is necessary to keep the system from
making lasting erroneous conclusions based on bad
data. When working with real-time data, we must
expect the unexpected in data problems. An
attitude must be maintained that in spite of filtering
and other techniques to keep bad data out of the
system, some will always get through. When it does
the only choice is to design for recovery when
things return to normal.

IV. CONCLUSIONS IN MAKING DESSY
ROBUST & USEFUL

In building real-time expert systems, it is not only
important to have good system design, but also
crucial to create a system that is robust enough to
be useful in situations that are less than ideal. The
techniques developed through the DESSY project
were created out of the necessity of building a
system that could withstand bad data, a common
occurrence in the environment in which DESSY
runs. These methods have been successfully used in
DESSY's operation and have repeatedly
demonstrated DESSY's robustness.

In conclusion, real-time data monitoring systems that
reside in high-risk environments such as NASA's
Mission Control Center must be built to be robust
and useful given bad and missing data. Although the
specifics of these techniques will differ from one
project to another, we believe they are general
enough to be applied to any real-time monitoring
expert system, and that the guidelines presented in
this paper provide a good set of ground rules from
which a robust and useful system can be built.

We have found these correction features not only to
be very useful, but to have good side effects.
Complementing the correction rules (and often

370

BIBLIOGRAPHY

Collins, David, "Payload Deployment and Retrieval
System Overview Workbook," PDRS OV 2102,
Mission Operations Directorate, Johnson Space
Center, Houston, Texas, February, 1988.

Dvorak, Daniel, "Expert Systems for Monitoring and
Control," AI 87-55, The University of Texas at
Austin, Austin, Texas, May, 1987.

Malin, Jane, Schreckenghost, Debra, and
Thronesbery, Carroll, "Design for Interaction
Between Humans and Intelligent Systems During
Real-Time Fault Management," Proceedings of Filth
Annual Space Operations, Applications, and
Research Symposium, NASA Johnson Space
Center, Houston, Texas, July 9-11, 1991.

Malin, Jane, Schreckenghost, Debra, et.al., "Making
Intelligent Systems Team Players: Case Studies and
Design Issues," NASA Technical Memorandum
104738, NASA Johnson Space Center, Houston,
Texas, September 1991, pp. 530 - 538.

Moore, Robert, and Kramer, Mark, "Expert Systems
in On-Line Process Control," Lisp Machines, Inc.,
Los Angeles, California.

371

