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ABSTRACT

PERTS is a prototyping environment for real-time systems. It is being built incrementally and will

contain basic building blocks of operating systems for time-critical applications, tools and performance

models for the analysis, evaluation and measurement of real-time systems, and a simulation/emulation

environment. It is designed to support the use and evaluation of new design approaches,

experimentations with alternative system building blocks, and the analysis and performance profiling of

prototype real-time systems.

I. INTRODUCTION

While existing approaches, techniques and tools for the design, prototyping and development of

software systems are effective for many application domains, they often do not address the difficulties in

building hard real-time computing systems. A hard real-time computing system, hereafter simply called a

real-time system, is one in which most tasks have hard timing constraints. Here, the term task refers to a

basic unit of work. A task may be a granule of computation, a unit of data transmission, a file access, or

an I/O operation, etc. The simplest timing constraint imposed on a task is its deadline, the point in time

by which the task is required to complete. The result produced by a task with a deadline is correct only if

it is available by the deadline, in addition to being functionally correct. A late result is of little or no use.

Applications supported by real-time systems include command and control, guidance and navigation,

flight control, object identification, autonomous vehicle control, and intelligent manufacturing.

The approach that has been taken traditionally to construct real-time systems is to develop the

application software first and then tune the application and the underlying system to make sure that all the

timing constraints are met. This approach tends to produce brittle, difficult-to-modify and hard-to-

maintain systems. Small changes in the application software, or in the underlying hardware and software

support, can produce unpredictable timing effects that can be detected and corrected only through

exhaustive testing and performance tuning. Consequently, it is costly to develop and validate new

systems _ind to enhance, extend or port existing systems.

The lack of effective methods and tools for building robust and provably responsive real-time

systems has motivated the recent research on the theoretical foundations of real-time computing [1,2]. A

goal of this research is to find methods for predicting the timing behavior of the basic building blocks and

the overall real-time systems built from them. Tools that support systematic construction and evaluation

of real-time systems can be built based on these methods. Another goal is to develop integrated

approaches to building real-time systems, as aitematives to the traditional approach. An integrated

approach would begin with models and optimality criteria that explicitly account for the constraints and

possibilities of trading off between various figures of merit, and then design the application and the

underlying system to achieve the desired tradeoffs. Such an approach would lead to more flexible, easy-
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to-schedule programs, and resultant systems would degrade gracefully during overloads and failures.

This paper describes an ongoing project to build a prototyping environment, called PERTS

(Prototyping Environment for Real-Time Systems), that aims at making recent and future theoretical

results in real-time systems readily usable to practitioners. Specifically, PERTS will contain

(1) basic building blocks of the underlying support system for real-time applications m These
reusable building blocks will realize existing and new scheduling algorithms, communication

protocols and resource access control protocols.

(2) building blocks of flexible real-time programs and system software n These system components
are based on the imprecise computation approach [3-5].

(3) tools and performance models for the analysis and evaluation of prototype real-time systems

The PERTS tools will provide worst-case bounds and performance predictions of systems based

on different execution models and scheduling paradigms.

(4) a simulation/emulation environment -- This environment will allow the experimental evaluation

of alternatives in scheduling the target software system.

The rest of the paper is organized as follows. Section II describes the models of real-time systems

on which PERTS components and tools are based. The capabilities of PERTS and its key components

are presented in Section HI. This project is compared with similar projects in Section IV. Section V is
gives the current status of the project.

H. MODELS OF REAL-TIME SYSTEMS

Most of the workload models used to characterize real-time (software) systems are variations or

extensions of the following basic deterministic model. The underlying system contains a number of

identical processors. The software system T, called a task system, contains a number n of tasks. The

maximum amount of processor time required by a task Ti to complete its execution is called its

processing time xi. x_ is assumed to be known. Tasks may have weights which tell us how important the

tasks are relative to each other. Again, a task Ti may have a deadline di; we say that a task has no

deadline if its deadline is infinite. In addition to its deadline, a task T_may also have a release time r_, the

time instant after which the task is available to be scheduled and executed. The interval [r_, d_] between

its release time and deadline is its feasible interval.

A schedule of a task system T is an assignment of the processors to the tasks in T; a task is

scheduled in a time interval on a processor if the processor is assigned to the task in the interval. In any

valid schedule, every task is scheduled after its release time. Moreover, the total amount of processor

time assigned to every task is equal to its processing time. A valid schedule is a feasible schedule if every

task is scheduled in its feasible interval and, hence, completes by its deadline.

The system may also contain a number of distinct resources. Each task may require some of these

resources during its execution. We say that tasks requiring the same resource are in (resource) conflict
with each other. A resource access control protocol governs the accesses of tasks to resources and

resolves the conflicts among them.

Periodic-Task Model

Many real-time applications, such as control-law computations, radar signal processing, and

voice/video transmissions, can be characterized by the classical periodic-task model [6]. In the periodic-

task model, we model such computations and data transmissions as period tasks. The system T contains
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n periodic tasks, each of which is a periodic sequence of requests for the same work. A request is

released at the beginning of every period and its deadline is the end of the period. The processing time x/

of Ti is the maximum amount of processor time required to complete every request in Ti.

In addition to periodic tasks, some tasks may arrive and become ready for execution at random

instants. These tasks are aperiodic. Aperiodic tasks model computations and communications that must

be carried out in response to unexpected events, such as requests for changing the operation mode,

processing sporadic messages, etc. Aperiodic tasks usually do not have deadlines, and their processing

times may be unknown. We want to complete each aperiodic task as soon as possible, while making sure

that all deadlines of periodic tasks are met at all times.

Complex-Task Model

Real-time tasks that are not periodic are often characterized by the classical deterministic model. In

this model, a task system T is a set of n tasks. These tasks may be dependent; data and control

dependencies between tasks impose constraints on the order in which tasks are executed. We use a

precedence relation < over T to specify the constraints on their execution order. T_ is a predecessor of Ti

(and Tj a successor of T_), denoted as Ti < Ti, if Tj cannot begin execution until the execution of Ti

completes. Ti is an immediate predecessor of Tj (and T_ is an immediate successor of Ti) if Ti < Tj and

there is no task Tk such that Ti < Tk < T_. Two tasks T_ and Tg are independent when neither T_ < Tj nor

7"/< Ti. They can be executed in any order. We can use a directed graph G = (T, < ), a task graph, to

represent the task system T and the precedence constraints among tasks. There is a node in G for each

task in T. There is an edge from T_ to Tj when T_ is an immediate predecessor of Ti. Figure 1 shows a

task graph for example. Nodes of all shapes represent tasks. The numbers in the brackets above the tasks

are the feasible intervals of the tasks. For simplicity, their other attributes, such as their processing times

and resource requirements, are not shown.

We note that a periodic task in the periodic-task model can be modeled as an infinite chain of

dependent tasks where the first task is the immediate predecessor of the second task, the second task is the

immediate predecessor of the third task, and so on. Such a chain is shown in Figure 1; it represents a

periodic task whose first request is released at time 2 and whose period is 3.

[2, 5] [5, 8] [8, 12] [12, 15] [15, 18]
G _ =O =O _ • • °

[0, 5] [4, 8] [5, 20] conditional block

Figure 1 An Example of Task Graphs
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Real-time applications sometimes contain redundant modules, carry out heuristic searches, use

multiple versions, execute some tasks conditionally, etc. These applications cannot be conveniently

characterized by the classical model. For this reason, we extended the classical model; the extensions

include OR tasks [7] and conditional blocks [8].

In the classical model, a task with more than one immediate processor must wait until all its

immediate processors have been completed before its execution can begin. We call such tasks AND

tasks. An example is the task labeled T in Figure 1. All three of its immediate predecessors must be

completed before T can begin execution. All other AND tasks are represented by unfilled circles. In

some applications, a task may begin execution after one (or some) of its immediate predecessors is

completed. Such a task is called an OR task. A task system containing AND and OR tasks is said to have

AND/OR precedence constraints. Examples of OR tasks are the two square nodes at the bottom of the

graph in Figure 1. The one labeled 2/3 can begin execution as soon as 2 of its 3 immediate predecessors

complete. In a triple-redundant module, the voter can be modeled as a 2/3 OR task; it and its successors

can proceed as soon as two out of its three replicated immediate predecessors complete. Similarly, we

can model a two-version computation as the two immediate predecessors of a 1/2 OR task; only one of

them needs to be completed before the OR task can begin execution.

In the classical model, all the immediate successors of a task must be executed; an outgoing edge

from every node expresses an AND constraint. This model cannot characterize data-dependent,

conditionally executed tasks. In the complex-task model, some outgoing edges express OR constraints.

Only one of all the immediate successors of a task whose outgoing edges express OR constraints is to be

executed. Such a task is called a branch node. In a meaningful task graph, there is a join node associated

with each branch node. Each subgraph whose source node is an immediate successor of a branch node

and whose sink node is an immediate predecessor of the corresponding join node is called a conditional

branch. Here, by a source (or sink) node of a subgraph, we mean a node that has no predecessor (or

successor) in the subgraph. The subgraph that begins from a branch node and ends at the associated join

node is called a conditional block. Only one conditional branch in each conditional block is to be

executed. An example is shown in Figure 1 where the conditional block has two conditional branches.

Either the upper conditional branch, containing a chains of tasks, or the lower conditional branch,

containing only one task, is to be executed.

Imprecise-Computation Model

For many real-time applications, it is better to have timely, approximate results than late exact

results. A system that supports imprecise computations [3-5] attempts to produce usable approximate

results when an overload or failure prevents an exact result from being produced in time. The system

does so by trading off the quality of the results produced by the tasks for the amounts of processing times

required to produce the results. To make this tradeoff possible, we structure every task in such a way that

it can be logically decomposed into two parts: a mandatory part and an optional part. The mandatory part

is the portion of the task that must be done in order to produce a result of an acceptable quality. This part

must be completed before the deadline of the task. The optional part is the portion of the task that refines

the result. The optional part, or a portion of it, can be left unfinished, if necessary, at the expense of the

quality of the result produced by the task.

The imprecise-computation model captures this task structure. Each task Ti is decomposed into two

tasks: the mandatory task Mi and the optional task 0_. Let m_ and oi be the processing times of Mi and

Oi, respectively, rni + oz = xi. mi is always bounded and known. On the other hand, oi and, hence, xl can

be unknown and unbounded. The release time and deadline of the tasks M_ and O_ are the same as that of
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Ti, and Oi is the immediate successor of M_. We note that the complex-task model is a special case of the

imprecise computation model in which all tasks are entirely mandatory, that is, oi =0 for all tasks.

Intelligent and incremental computations, known as anytime or sufficiently good computations in AI
literature, can be also modeled as tasks that are entirely optional, that is, mi = 0 for all tasks.

In a valid schedule of a system of imprecise tasks, the total amount of processor time assigned to

each task is at least equal to mi and at most equal to xi. A task is said to be completed in the traditional

sense at an Instant t when the total amount of processor time assigned to it becomes equal to its

processing time at t. A mandatory task Mi is said to be completed when it is completed in the traditional

sense. The optional task Oi may be terminated at any time, however, even if it is not completed at the

time; no task is scheduled outside of its feasible interval. A task T_ is said to be completed in a schedule

whenever its mandatory task is completed. When the total amount of processor time _ assigned to Oi in

a schedule is equal to o_, the error ei in the result produced by Ti (or simply the error of T_) is zero.

Otherwise, if a/is less than oi, the error of T i is equal to Ei (_i), the error function of the task Ti . E i(ai) is

typically a monotone non-increasing function of a_. In other words, the longer a task is allow to execute,

the smaller the error in the result it produces.

Reference Model of Real-Time Systems

Figure 2 shows a generic model of real-time systems. The software system is represented by a task

graph. As stated earlier, the task graph gives the processing time and resource requirements of tasks, the

timing constraints of each task, and the dependencies between tasks. Tasks are scheduled and allocated

resources according to a set of scheduling algorithms and resource access control protocols. This set of

algorithms and protocols is an explicit element of the reference model as shown in this figure.

r"

I

I

processors

"" scheduling and
"" "-- resource-access control .-- ""

1

........................................................... ._ _" i_. .............................................................

resources
_ ............................................................. J

Figure 2. A Model of Real-Time Systems
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The underlying hardware and m-time system is modeled as a set of processors and resources.

Processors are entities that are typically modeled as servers in queuing models. Computers, I/O buses,

communication networks and virtual connections arc examples of processors. Resources are entities that

are sometimes modeled as passive resources or passive queues. Memory pages, I/O buffers, semaphores,

and valid message numbers in send and receive windows arc examples of resources. It is not necessary
for us to make a fine distinction between processors and resources. Rather, we characterize each

processor or resource by a set of parameters. Some of these parameters specify the constraints governing

its usage, such as whether it can be shared, whether it is reusable, etc. Other parameters give its timing
properties, such as context switch time, acquisition time, etc.

HI. PERTS COMPONENTS AND CAPABILITIES

Figure 3 shows the key components of PERTS. PERTS can be used to support the design of real-

time systems. The design of a target task system is captured by its abstract description, which is a task

graph. At the abstract level, estimated task parameters and dependencies in the task graph can be derived

from the requirements of the system. During the design phase, the schedulability analysis system will

serve as an interactive tool. This tool can be used for many purposes, including to determine whether

sufficient amounts of all resources are available; to identify potential bottlenecks; to select computational

algorithms from available choices with different levels of result quality versus resource requirements; and

to provide suggestions on the choices of task parameters. The analysis tool and performance predictor

can be used to identify where later changes in soflware or hardware are likely to lead to unpredictable

timing effects. In this way, the schedulabflity analysis system can also help in the design of the test suite

which will be needed later to test the target system.

The schedulability analysis system will support the hierarchical approach to building large and

complex, real-time software on distributed and parallel hardware platforms. Examples of algorithms that

will be implemented for this purpose include algorithms for end-to-end scheduling of distributed tasks

that have overall deadlines; algorithms for scheduling parallclizable tasks with deadlines on massively

parallel systems; partitioning and assignment schemes for statically assigning tasks to processors; load

balancing algorithms for dynamic adjustment of load conditions; and protocols for controlling concurrent

access to resources and data transmissions. For example, the task partitioning and assignment module

can help the designer to find a partition and assignment of the given task system so that the tasks assigned

to each processor can meet their individual deadlines and the overall task system can meet its end-to-end

deadlines. When the given task system does not have such an assignment, the analysis tool in the system

can suggest possible changes to make such an assignment feasible. If a dynamic task assignment

approach is chosen, the performance predicting tool can be used to determine whether the worst-case

performance of the assignment is acceptable.

PERTS will provide similar support in later phases of software prototyping. In earlier development

stages, PERTS can be used to identify and choose a set of operating system policies for task partitioning

and assignment, load balancing, scheduling and resource management. In this case, the concrete

description may simply be a more detailed task graph that gives more accurate information about the

timing and resource usage characteristics of the tasks. PERTS will produce sample task assignments,

schedules, memory layouts, etc. to provide the feedback needed in the iterative software prototyping

process. PERTS will have program execution time analysis and measurement tools. In later stages, when

some source code of the target task system becomes available, these tools can be used to extract task

parameters and graph structures from the code. PERTS also provides a simulation environment for a

thorough evaluation of the target system. The most concrete description is the instrumented object code
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Figure 3. The Prototyping Environment of Real-Time Systems

generated by a cross language compiler. This code can be run, under the scheduling directives produced

by the scheduling analysis system, in a simulated target environment provided by the testbed The

testbed will contain a workload generator capable of generating synthetic or trace-driven workloads to

support the simulation of the embedded environment.

IV. RELATED WORK

PERTS is similar to many other real-time systems design tools in its intended use. These systems

all intend to reduce the complexity in real-time system development. The advanced algorithms and tools

available in PERTS distinguish it from the other systems. For example, Scheduler 1-2-3 [9] primarily

deals with periodic tasks, mixed with randomly arriving aperiodic tasks, and priority-driven scheduling

disciplines. Several systems similar to Scheduler 1-2-3 are also available. They support the design and

construction of domain specific applications. PERTS, on the other hand, provides a much more versatile

and powerful schedulability analysis system. The PERTS testbed can be configured to simulate a number

of operating systems and hardware configurations.

PERTS differs from most existing and experimental real-time system prototyping and development

systems, and complements them, both in their capabilities and intended use. Many such systems provide

an integrated environment with a full range of tools for requirement tracing, program construction,

software reuse, etc. The experimental system CAPS [10] is an example. PERTS is similar to CAPS in

certain ways; for instance, both provide tools for analysis of real-time software. CAPS is a stand-alone

prototyping environment. PERTS is not designed to be a substitute for CAPS or other computer-aided
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softwareprototyping systems. Rather, PERTS will focus on providing powerful design and evaluation

tools that are not available in these systems.

V. CURRENT STATUS

We are implementing the components of PERTS incrementally in C++. Several suites of scheduling

algorithms are in various stages of completion. They are algorithms for scheduling periodic tasks,

imprecise computations, tasks with end-to-end deadlines [11] and tasks with AND/OR precedence

constraints [7], as well as algorithms for assigning tasks to processors. The suite of algorithms for

scheduling periodic tasks is near completion. Components of this suite that have been implemented and

tested include the basic rate-monotone algorithm and the earliest-deadline algorithm; priority-ceiling

protocol and stack-based protocol for resource access control; servers for handling aperiodic requests; and

mode change protocols [1]. A basic schedulability analysis system, containing tools based on the rate-

monotone scheduling theory and worst-case performance analysis, has been designed.

We have designed a simple language for describing task graphs and have implemented a compiler

for this language. A user can describe a task graph in terms of this language, and the compiler will

produce the graph. We also have a preprocessor that automatically extracts task graphs from annotated

C++ programs.
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