
N98-8215 0

Producing Approximate Answers to Database Queries *

Susan V. Vrbsky and Jane W. S. Liu

Department of Computer Science

University of Illinois at Urbana-Champaign
Urbana, Illinois 61801

We have designed and implemented a query processor, called APPROXIMATE,

that makes approximate answers available if part of the database is unavailable or

if there is not enough time to produce an exact answer. The accuracy of the

approximate answers produced improves monotonically with the amount of data

retrieved to produce the result. The exact answer is produced if all of the needed

data are available and query processing is allowed to continue until completion.

The monotone query processing algorithm of APPROXIMATE works within the
standard relational algebra framework and can be implemented on a relational

database system with little change to the relational architecture. We describe here

the approximation semantics of APPROXIMATE that selves as the basis for

meaningful approximations of both set-valued and single-valued queries. We

show how APPROXIMATE is implemented to make effective use of semantic

information, provided by an object-oriented view of the database, and describe the

additional overhead required by APPROXIMATE.

1. Introduction

Many factors can make it impossible for a database to produce an exact answer to a query. A network

partition or a host failure can cause some needed data to become inaccessible. There may not be

enough time to acquire all the locks and retrieve all the data needed to answer a query. For many

applications it may be better for a database to produce an approximate answer when it is not possible to

produce an exact answer [1,2]. We have designed and implemented an approximate query processor,

called APPROXIMATE, that can produce approximate answers to database queries for these

applications [3].

The problem of how to define and improve approximate answers has been addressed by many

researchers [4-7]. Buneman, Davidson, and Watters [4] introduced the approximation semantics where

approximations of a set-valued answer are defined in terms of the subsets and supersets of the exact

answer. The approximations are monotonically improving as the subsets and supersets approach the

exact answer, and an approximate answer produced earlier is never contradicted by an approximate

* This work was partially supported by NASA Contract No. NASA NAG 1-613, ONR Contract
No. NVY N00014-92-J-1146, and AFOSR Contract No. 1-5-26932.

answerproduced later. Ozsoyoglu et al. have addressed the problem of producing approximate

answers to queries with time constraints [5]. Monotonically improving approximations of the exact

answer, which are subsets of increasing sizes, are produced. Fragments of the data are processed at a

time m produce these subsets. Motro [6] developed a system, called VAGUE, that provides

approximate answers to vague queries in which the query qualifications are imprecise. The response

closest to the query qualifications according to a distance function is the answer to a vague query. An

intensional answer [7] provides an approximation that is derived without accessing the physical data in
the database. General characteristics about the data objects in the exact answer are provided instead of
the data objects themselves.

APPROXIMATE implements monotone query processing; an initial approximation of the exact answer

is produced when query processing begins based on the information it maintains for this purpose. The

approximate answer produced improves as more data are retrieved to answer the query according to the
partial-order relation defined by the approximate relational model [8]. APPROXIMATE returns the

exact answer if all of the needed data am available and if there is enough time to continue with the
processing. The latest, best available approximate answer is returned if the user demands an answer

before query processing is completed. In contrast, during traditional query processing, if there is not
enough time or not all of the data are available, no answer is provided. APPROXIMATE assumes the

information contained in the database and the query expression are precise. APPROXIMATE can be

one of several query processors available m the system. It is implemented in a relational database

system and requires little or no change to the underlying relational architecture.

This paper describes the semantics of approximation supported by APPROXIMATE. After

approximations of query answers are defined in Sections 2 and 3, Section 4 describes how approximate
answers are produced by APPROXIMATE. Section 5 discusses future directions of this work.

2. Approximate Relational Model

There is a natural way to approximate answers of set-valued queries; an exact answer E to such a query

is a set of data objects. All the data objects in a subset of E certainly belong to E, and a data object in

a superset of E is possibly also in E. Therefore, a meaningful approximation of any exact answer E
can be defined in terms of a subset and a superset of E. Specifically, an approximation A of an exact

answer E is the union of two sets of data objects: a certain set C, where C _ E, and a possible set P,
where (C u P) m E. C is the set of data objects certainly in E; it is produced from the stored data

processed thus far. P is the set of data objects that may be in E. Data objects in P are produced based
on the meta data, information about the stored data, maintained by the query processor. This
approximation is denoted by the 2-tuple A = (C, P).

Any exact answer E has many approximations. Given a set of approximations of E, a partial order

relation > for comparing them can be defined over the set as follows. One approximation Ai - (Ci, Pi)

is better than or equal to another Aj -(Cj,Pj), denoted as Ai _Aj, if Pi _Pj and Ci _ Cj. Tiffs
partially ordered set of all approximations of E is a lattice. In the lattice, A o = (f3, _) is the least

element and the worst possible approximation of E, where u is the cartesian product of all the domains

in the schema of E. _ is the set of all possible data objects which could be in E. It can be generated

without reading any data. The greatest element of the lattice is the best possible approximation and is
E itself, which is represented by (E, O).

In the traditional relational model, an exact answer E is a standard relation. An approximation of a

399

standard relation is called an approximate relation. As an example, we consider an AIRPORTS

database that resides on-board an airplane. AIRPORTS contains the relation RUNWAYS (id, airport,

length, obstructions). A pilot queries the database to locate all the nmways with an easterly direction,

with ids from 5 to 13, at airports O'Hare (ORD) and Midway (MDW) in Chicago. The exact answer to

this query is the relation E shown in Figure l(a). The relation A 1 shown in Figure l(b) contains tuples

on all runways at ORD and MDW. It gives all the tuples that are possibly in E and hence, is an

approximation of E. The approximate relation A 2 shown in Figure l(c) is another approximation orE.

The first three tuples are certainly in E. They form a subset of E. The last three tuples are possibly in

E. A 2 is a superset of E. It is a subset of A 1 and is a better approximation of E than A 1. The

approximate relation A3 in Figure l(d) is another approximation ofE. It is a subset of A1 and is better

than A 1, but is not comparable to A 2.

3. Approximations of Single-Valued Answers

The semantics of approximation defined by the approximate relational model can also serve as a basis

for a meaningful semantics of approximation of single-valued queries. An exact answer to a single-

valued query can be a single object retrieved from the database, the value of an aggregate function

(such as "count"), or a value (such as "yes" or "no").

We consider the query "What is the color of car No. 20?" that exemplifies a special case of set-valued

queries whose exact answer is a set of cardinality 1. The exact answer E is "maroon". Since any

proper subset of E is the null set _, an approximate answer of E is, therefore, simply (_, Pi) where

id

6
7
9

10
13

Airport Length
MDW 7500
MDW 8000

ORD 11000
ORD 8000

ORD 100013

Figure l(a). E: All easterly

runways at ORD and MDW

id

1

6
7

9
10
13

27

Airport Length
MDW 6000

MDW 7500
MDW 8000
ORD 11000

ORD 8000
ORD 10000
ORD 9500

Figure l(b). A 1: All runways
at ORD and MDW

id

6

7
10

9
13

27

Airport Length
MDW 7500
MDW 8000

ORD 8000

ORD 11000

ORD 10000
ORD 9500

Figure l(c). A 2: An approximation
of E

id

10
13

1

6
7

9

Airport Length
ORD 8000

ORD 10000

MDW 6000
MDW 7500

MDW 8000
ORD 11000

Figure l(d). A3" An approximation of E

400

the possible set Pi is a supcrset containing the exact answer. A possible value of Pi is { red, pink,

maroon}, a set of three reddish colors. This answer improves as elements "red" and/or "pink" are
deleted from Pi.

The exact answer to the query "How many cars of make Oldsmobile are available?" is the value of an

aggregate function over the set O of data objects that satisfy the query constraints, such as make =
Oldsmobile. In this case, the aggregate function is "count". Since the domain of the count function is a

set of non-negative numbers in this case, as an approximation to the value of such an aggregate
function, we can provide the values of the aggregate function defined over a certain set C and a

superset C u P of O ; where (C, P) is an approximation of O. The values of the aggregate function
count over the certain set and over the superset give us a superset of values, such as the range "2 to 10",

or {2, 3, • • • 10}. This approximate answer improves as more data objects are processed; the certain

set increases in size and the possible set decreases in size. The counts over a bigger certain set and/or
smaller possible set give us a smaller range, such as {4, 5, • • • 9}.

Some queries require a yes or no answer, such as, "Is the number of runways at O'Hare greater than

10T'. The answer is derived from the value of "count" over the set R of all runways at O'Hare. A

meaningful approximation of the exact answer can be derived from an approximation (C, P) of the set

R. The data objects that satisfy the query constraints, such as airport = O'Hare, are members of C. As

long as the certain set in (C, P) contains 10 elements or less, the derived approximate answer remains

"no". In addition to this value, we can also provide, as part of an approximate answer to such a query,
a percentage value of the amount of data retrieved and processed thus far to produce (C, P), and the

value of count over the current certain set C. An example is "No - 60%, number of nmways _>3". As

more data are retrieved and processed, the percentage of data processed increases monotonically, and
the value of the count function over C becomes closer to the exact value.

We can make the approximation semantics more meaningful by comparing subsets not only on the
basis of their cardinalities, but also on the basis of some metric that measures the distances of their

elements to the exact answer. We use such a measure of accuracy, called a distance function, to
quantify how much better one approximate answer is than another. A distance function induces a

partial-order relation over the set of all approximate answers of an exact answer E. The query
processor uses this measure of accuracy to identify a good initial approximation of the exact answer

when query processing starts. It also uses this measure to choose the next set of data objects to be

retrieved and processed so that a series of approximate answers of improving accuracy are produced.

4. Monotone Query Processing

APPROXIMATE uses a monotone query processing algorithm to produce an approximate answer and

maintains semantic information for an effective implementation of this algorithm. As an alternative to

processing the possible tuples during query processing, APPROXIMATE works on templates of the

possible tuples P in an approximate relation. The approach used in APPROXIMATE to generate

templates of possible tuples is similar to the one used to produce intensional answers [7].

APPROXIMATE maintains an object-oriented view of the database and uses the information provided
by this view to generate the templates. In this view, a base relation, or a segment of the relation, is a

class. Tuples in the relation, or the segment, are instances of the corresponding class. The classes are

organized into a collection of class hierarchies. Each class hierarchy supplies information about a base

relation stored in the database. Examples of the types of information provided by a class hierarchy
include the domains of the attributes of the instances of a class and the retrievable unit of data. This

401

information is accessed along with the base relations during query processing.

The basic monotone query processing algorithm works as follows. It begins by representing a query by

a query tree. Each node in the query tree represents a relation that is the result of a relational operation.

An initial approximation is assigned to every node in the query tree. This initial approximation, and

subsequent improved approximations of the standard relation represented by the node, are stored in an

approximate object, which is created by APPROXIMATE for the node before query processing starts.
The value of this approximate object gives an approximate relation of the standard relation. The object

has three variables: the certain_part, possible_part, and OP.

The value of its certain_part is a certain set C containing all the data objects that are certainly in the

standard relation. Initially, this certain set is empty for every approximate object. The value of its

possible_part is a set P of possible classes. The set of all instances of the classes in P is a possible set

in an approximation (C, P) of the standard relation. Initially, the value of the possible_part in an

approximate object at a leaf node gives a template of all possible tuples that can possibly be in the base

relation represented by the leaf node. Again, this template is obtained from the meta data about the
base relation maintained by the query processor. The initial values of the possible_part in an

approximate object at a non-leaf node can be obtained from the initial values of the leaf nodes in the

the subtree rooted at the node and the relational algebra operations represented by the nodes in the

subtree. The value of the variable OP is set to be the relational algebra operation represented by the

node. The OP of the approximate object at a leaf node is an approximate_read. An approximate_read

returns a segment of the requested base relation at a time. Again, information on which segments can
be returned is given by the view maintained by the query processor.

Figure 2 shows the value A2 of an approximate object corresponding to the relation A 2 in Figure l(c).

The possible tuples in P2 are instances of P2 = {ORD-long-runways}, the possible class of long

runways at ORD airport.

Because standard relational algebra operations cannot operate on approximate objects,

APPROXIMATE uses as query processing primitives a set of approximate relational algebra

operations and the approximate_read. Each operation accepts an approximate object(s) as an operand

and produces an approximate object as its result [3]. As each approximate_read of a leaf node is

carried out, each returned segment causes additional certain tuples to be added to, and possible classes

to be deleted from, the current approximation of the base relation. The value of the leaf node improves

as more segments are retumed. The improvement in the leaf nodes is propagated upward to the root

node by reevaluating the nodes in the query tree. The value of the root node is updated with better

id Airport Length
6 MDW 7500

0 MDW 8000ORD 8000

{ORD-long-runways}

Figure 2. A2: An approximate object

402

values each time the root node is reevaluated.

This monotone query processing algorithm differs from traditional query processing where each node

of the query tree is evaluated only when all of the required data are available. If any required base

relation is not accessible, no answer is ever produced. This all-or-nothing query processing strategy
does not degrade gracefully. In contrast, APPROXIMATE produces a chain of increasingly better

approximate answers at the root node of the query tree, each integrating the effect of additional data
processed. None but the final, exact answer requires all base relation data be available before it can be

produced. If query processing terminates prematurely, some approximate answer in the chain will be

returned and the quality of the retumed answer increases monotonically with time.

Every approximate relational algebra operation involves operations on the possible classes as well as

the certain tuples in its operand(s). The approximate relational algebra operations are implemented

incrementally, so the same number of relational algebra operations is applied to the certain tuples

during approximate query processing as during traditional query processing [9]. To minimize the

overhead required to produce an approximate answer, APPROXIMATE delays the evaluation of the

possible classes and instead maintains a symbolic expression of the possible classes and relational

algebra operations to be applied to them. A possible class is not evaluated until query processing must

terminate and an approximate answer is produced or the user requests the evaluation.

With each update to the value of the root node of the query tree, APPROXIMATE displays the certain

tuples and the possible class names of the approximate answer. Figure 3 illustrates two approximate
answers to the query "Select all the northerly and easterly runways at airports where the temp > 320 C".

As this figure illustrates, an approximate answer allows the user to distinguish the data processed thus
far from the data not yet processed. From the approximate answer in Figure 3(a), the user can see that

the classes {IL-short-N} runways and {IL-short-E} runways have not been processed yet. Upon

examining the approximate answer, a user may determine whether the approximate answer resulting

from processing all of the long runways provides enough information and is a good enough answer.

The user can request the evaluation of the possible classes, and Figure 3(b) illustrates the evaluation of
the possible classes in Figure 3(a). Figure 3(c) illustrates an improved approximate answer.

5. Future Directions

We have described a monotone query processor called APPROXIMATE that produces an approximate

answer if some of the data are not available or if there is not enough time to process a query.

APPROXIMATE processes the data that are available or processes the data that can be processed

within the time constraints. It produces a series of approximate answers that improves according to a
partial-order relation. The same query processing strategy is used for producing approximate answers

to set-valued queries and for single-valued queries, such as binary queries, aggregate queries, and set-

valued queries with cardinality 1. APPROXIMATE uses semantic support, in the form of an object-
oriented view and a predefined set of distance functions, to identify a good initial approximation and a
strategy for improving an approximation.

In the future, we will determine the scalability and efficiency of the proposed scheme. To accomplish

this, we need to interface the query processor to some real-life database systems and make the query

processor as efficient and robust as we can. Some candidate databases are those used to support
navigation, machine vision, and computer aided engineering, as well as databases on students'

403

id Airport Length Temp

I. ORD 1I000 35

2 CMI 10000 38

7 0RD 10500 35

33 MDH II000 50

Possible Classes:

{IL-short-N, IL-short-E}

Figure 3(a). An approximate answer

id: { 32-36, 1-13 i

Airport: { CMI,JOT,MDH,MDW,ORD,SPI }

Length: { 7000-9500 }
Temp: { > 32 }

Figure 3(b). Possible class evaluation

id

1

2
7

33
36

Airport Length
ORD 11000

CMI 100130
ORD 10500
MDH 11000

MDW 8000

Temp
35
38

35
50

35

Possible Classes: {IL-short-E}

Figure 3(c). An approximate answer

academic reports. A natural extension of this research is to consider the case when the database

contains incomplete or partial values. This problem is closely related to the imprecise update problem.

Imprecise updates introduce incomplete information and partial values into the database. We want to

investigate the feasibility of partial updates that require no error recovery action to complete the

update. Such an update may introduce uncertainty or incompleteness in the information contained in
the database, but will not lead the database to an unsafe, and hence, unacceptable state.

References

[1] Lin, K. J., S. Natarajan, J. W. S. Liu, and T. Krauskopf, "Concord: A System of Imprecise Computations,"

Proc. COMPSAC '87, Tokyo, Japan, pp. 75-81, Oct. 1987.

[2] Chtmg, J. Y., J. W. S. Liu, and K. J. Lin, "Scheduling Periodic Jobs that Allow Imprecise Results," IEEE

Transactions on Computers, Vol. 39, No. 9, pp. 1156-1174, Sept. 1990.

[3] Vrbsky, S. V. and J. W. S. Liu, "An Object-Oriented Query Processor That Produces Monotonically

Improving Approximate Answers," 7th International Conference on Data Engineering, Japan, pp. 472-

481, April 1991.

[4] Buneman, P., S. B. Davidson, and A. Wailers, "A Semantics for Complex Objects and Approximate

Queries," Proceedings of the 7th Symposium on the Principles of Database Systems, pp. 305-314, March

1988.

[5] Ozsoyoglu, Bultekin, Z. Meral Ozsoyoglu and Wen-Chi Hou, "Research in Time- and Error-Constrained

Database Query Processing," Workshop on Real-Time Operating Systems and Software, Virginia, May

1990.

404

[6] Morro,Amihai,"VAGUE: A User Interface to Relational Databases that Permits Vague Queries," ACM

Transactions on Office Information Systems, Vol. 6, No. 3, pp. 187-214, July 1988.

[7] Chu, Wesley W., Rei-Chi Lee and Qiming Chen, "Using Type Inference and Induced Rules to Provide

Intensional Answers," 7th International Conference on Data Engineering, Japan, pp. 396-403, April 1991.

[8] Smith, Kenneth P., and J. W. S. Liu, "Monotonically Improving Approximate Answers to Relational

Algebra Queries," Proc. COMPSAC '89, Orlando, Florida, Sept. 1989.

[9] Vrbsky, S. V. and J. W. S. Liu, "APPROXIMATE: A Query Processor That Produces Monotonically

Improving Approximate Answers," submitted to1EEE Trans. on Knowledge and Data Engineering.

405

