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1 Introduction

A major concern of researchers who seek to improve human-computer communication involves

how to move beyond literal interpretations of queries to a level of responsiveness that takes the

user's misconceptions, expectations, desires, and interests into consideration. At Maryland, we are

investigating how to better meet a user's needs within the framework of the cooperative answering

system of Gal and Minker [25]. We have been exploring how to use semantic information about

the database to formulate coherent and informative answers. The work has two main thrusts: 1)

the construction of a logic formula which embodies the content of a cooperative answer; and 2)

the presentation of the logic formula to the user in a natural language form. The information

that is available in a deductive database system for building cooperative answers includes integrity

constraints, user constraints, the search tree for answers to the query, and false presuppositions

that are present in the query. The basic cooperative answering theory of Gai and Minker [15, 25]
forms the foundation of a cooperative answering system that integrates the new construction and

presentation methods.

This paper provides an overview of the cooperative answering strategies used in the CAttMIN

cooperative answering system, an ongoing research effort at Maryland. Section 2 gives some useful

background definitions. Section 3 describes techniques for collecting cooperative logical formulae.

Section 4 discusses which natural language generation techniques are useful for presenting the logic

formula in natural language text. Section 5 presents a diagram of the system.

2 Some Definitions

Deductive databases are comprised of syntactic information and semantic information. The syn-

tactic information consists of the intensional database (IDB) which is the set of clauses of the form

A *-- B1,...,Bn, n > 0, where A and each Bi is an atom, and the extensional database (EDB)
which is the set of clauses (_f the form A _. IDB clauses are also called rules. EDB clauses are also
called facts.

*This paper describes research done at the Computer Science Department at the University of Maryland under

Air Force Office of Scientific Research grant AFOSR-91-0350 and NSF grant IRI-89-16059.
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Direct answers to database queries, which are clauses of the form _ B1,..., Bn are found by

using SLD-resolution on the query, IDB, and EDB clause to produce a search tree. The root node

of the search tree is the query clause; each node in the tree is produced by applying an IDB rule

to the node above. A successful leaf node is one which matches with EDB facts; a failed leaf node

is one which has no match in the EDB [16, 20].

The semantic information about the database consists of a set of integrity constraints (IC).

Semantic information about users of the database consists of a set of user constraints (UC). The

constraints considered in this paper have the form _ C1,..., C,_, El,..., Era, where each Ci is an

atom whose predicate appears in an EDB fact or the head of an IDB rule and each Ei is an evaluable

expression.

An integrity constraint restricts the states that a database can take. For example, the integrity

constraint, "No person can be both male and female," _ person(X),male(X),female(X), restricts

people in a database from having both properties. Because the constraints on a database do not

enable the deduction of new answers but rather give information about existing knowledge and

answers, they are considered semantic information rather than syntactic information.

A user constraint reflects restrictions that the user places on the database. For example, a user

who detests Kennedy airport may impose a restriction on a database about traveling that he does

not want to travel into JFK at any point in a trip: .-- travel(X, JFK). In practice, user constraints

are labeled as applicable to some particular user.

3 Constructing the Logic Formula

The cooperative answering system of Gal and Minker [25], the precursor to the CARMIN system,

uses two basic strategies to identify extra information which can be included in an answer: 1) it

checks whether a query is restricted by or violates any of the database's integrity constraints; and,

2) for failed queries, it searches for any false presuppositions in the query. Integrity constraints

can help identify a user's misconceptions about the database that are made evident by the user's

query. When an integrity constraint interacts with a query and shows that part of its search space

must fail, the interaction indicates that the user does not know about some of the information

embodied in the constraint. A description of the constraint to the user can be used to correct such

misconceptions.

Some queries can have successful answers only if the database is in a state which conflicts with

some integrity constraint. Since the database will never take such a state, the query will never

succeed. The failure of such a query can be explained through an integrity constraint with which it

conflicts. Such a constraint represents a misconception that the user had about the database. For

example, if a query asks for someone who is both a mother and a father, that is, "who is a parent

and female and a parent and male ?", it conflicts with the constraint that no one can be both male

and female. Integrity constraints are also useful for identifying queries that contain redundancies,

like "who are all the males who are not female?". A response which includes paraphrases of the

involved constraints can help correct a user's misconceptions about the database.

The presuppositions in a query are statements that must be true for either the query or its

negation to be true [19]. For example, "list the mothers in the database." presupposes that mothers

exist in the database. A query with a false presupposition has no answer, positive or negative, and

a cooperative response would identify the false presupposition to the user.
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3.1 Using User Constraints

In anextensionto thecooperativeansweringsystem,user constraints are used to take into account

a user's restrictions on the world when answering questions. A user's intentions and needs can
be modeled as a set of constraints. User constraints reflect the semantics that a particular user

imposes on the database. They are provided by individual users and need not be consistent with

the database. When answering queries posed by a user, they are used to modify a user's query so

that the search space of the original query is limited to find only answers that are amenable to the

user's needs. The semantic compilation method of Chakravarthy et al. [3] which Gal and linker

use to incorporate integrity constraints into a query can also be applied to user constraints.

Consider a query to a database "Which airline can I use to travel from Washington DC to

Paris' Charles de Gaulle airport?":

Q: .- travel(Airline, A irport, C DG , Time)^ near(Airport, Washington).

and a user constraint "I refuse to travel through JFK":

U: Loc1¢ JFK _ flight(Airline, Number, Locl,Loc2, Time).

With database information that includes facts about flights from Washington National to JFK,

JFK to CDG, and Washington Dulles to CDG, the query can be answer with "Take PanAm to

JFK and then to CDG." However, such an answer is useless to the user - it violates the user con-

straint. An answer which satisfies the user's constraint provides the alternative which does not go

through JFK, "Take AirFrance from Dulles to CDG."

When a set of answers has been restricted by a user constraint, it would be judicious to assume

that the user knows about the user constraint - after all, the user supplied it. So, whereas selected

integrity constraints are presented to the user whenever they apply to the query, user constraints

are presented more sparingly.

3.2 The Search Tree

The search tree for the set of direct answers to a query contains abundant information both about

the answers that are derived for the query and also about the failure paths. Each branch of the

tree ends either in failure or success. Some of the failure branches may be labeled by integrity

constraints; some may be labelled by user constraints; and some, by both. Some branches may be

labelled by false presuppositions.

The cooperative answering system collects the intensional portion of the proof tree for a query

as the IDB rules are applied to the query. This intensional proof tree, which we call the IDB-

tree, includes all information necessary to connect the original query with any EDB level query

literals which conflict with a constraint. It also includes extra information. We have developed an

algorithm for gleaning from the IDB-tree the minimal information for making the connection. We

then add the IDB-tree information to the cooperative response.

To illustrate the need for search tree information, consider an example about flights that serve

meals. The following IDB rule defines the relation meal_fight for breakfast:

I: meal_flight( A,N,break fast )
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flight_times(A,N,T1,T2),

T1 <09:00, T2>10:00,

-1 service_type( A,N ,express ).

The rule says that a flight serves breakfast if the departure time is before 9:00a.m and the ar-

rival time is after 10:00am and if the flight is not an express flight. Suppose the user poses a

constraint that s/he does not want to take flights longer than one hour on United:

U: *-- flight_times(A,N,T1,T2),A=united, Diffis T1 - T2, Diff > 01:00.

Suppose the user then asks a query about which flights serve breakfast between DC National

and Chicago O'Hare:

Q: .-- meal_flight(A,N,breakfast),flight_airports(A,N,dcu,ohare).

The original user constraint and the query have no common predicates, thus, the constraint

does not affect the query directly. However, when the IDB rule is applied to derive the following

subquery Qi, the constraint U partially subsumes Q_:

Q_: _ flight_times(A,N,T1,T2), T1 <09:00, T2>10:00,

flight_airports( A ,N ,dcu, ohare ) .

The residue, { _ A=united }, restricts the query variable A from taking the value united. Thus,

all answers to the user will leave out flights on United Airlines.

Since the interaction between the constraint and the query occurred within the search tree,

the user may not be aware of the interaction, and the user constraint should be included in the

answer to the query. However, an answer that consists'only of answer substitutions for the original

query and the user constraint may be confusing to the user. The user must infer the connection

between the constraint and the original query. For example, consider the following logic response, in

which the components are labelled A for answer substitution and U for user constraint information:

A( meaLftight( american,l Ol,break fast ) ^ flight_airports( ameriean,l Ol,dcu, ohare) ) ^

U(*-- flight_times( A,N ,T1,T2 ),

Diff is T1 - T2, Diff > 01:00,

A=united).

The response can be paraphrased as: "American Airlines flight 101 flies from DC National to

Chicago O'Hare and serves breakfast. You do not want to know about United flights that are longer

than an hour." The user must infer that a breakfast flight is longer than an hour. For a user who

is not aware of this information, a better answer would include the following elaboration:

mcaLflight( A,N,break fast) _ flight_times( A,N,T1,T2), T1 <09:00, T2>10:00.

This may be paraphrased as "a flight serves breakfast only if the flight starts before 9:00am and

ends after lO:OOam." Notice that the elaboration does not contain the literal in the rule I about set-
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vice_type. The algorithm for selecting search tree information described in [10] adds the elaboration

to the logical response.

3.3 Relaxation

As noted by many researchers, including [1, 4, 6, 18, 21, 27, 28, 30], an alternative form of cooper-

ative behavior involves providing associated information which is relevant to a query. Generalizing

a query in order to capture neighboring information is one means to obtain possibly relevant infor-

mation.

Gaasterland, Godfrey and Minker have defined a method to relax a query in order to find neigh-

boring information [12]. A query can be relaxed in at least three ways: 1) rewriting a predicate with

a more general predicate; 2) rewriting a constant (term) with a more general constant (term); and

3) breaking a join dependency across literals in the query. The first two relaxations are achieved

in a general manner using taxonomy clauses which define hierarchical type relationships between

predicates and constants in the database language. For example, the following clauses define rela-

tionships between the predicates communicate, call, mail, and say:

TI: communicate(P1, P2, Msg) *-- say(P1, 1)2, Msg).

T2: communicate(P1, P2, Msg) *-- lives_at(Addr, P2), mail(p1, Add,', Msg).

A query containing a request to mail an invitation to the address "34 Cherry Lane," upon failing,

can be relaxed to produce alternative queries:

Q: _ mail(Terry, "34 Cherry Lane", invitation).

Relaxed Q: _- communicate(Terry, P, invitation), lives_at("34 Cherry Lane", P).

After the relaxation step, SLD resolution can be used to find related answers. [12] discusses

search strategies for relaxation. The method has been incorporated into the cooperative answering

system.

4 On Presenting the Cooperative Response in Natural Language

The cooperative answering strategies discussed in the previous section produce potentially large

and complex logic formulae which are composed of logical expressions with a variety of origins,

as seen in the breakfast flight example of Section 3.2. Even if the formula is presented in small

portions, it still may be difficult for the user to read and understand the logic. The generation of

natural language is a promising alternative method of presentation [2, 14].

Mapping each individual atom in a logical formula into an expression that emulates natural

language is a straightforward process with the use of templates for each predicate. Unfortunately,

the coherence and organization of the resulting text is limited to the organization that is acciden-

tally present in the ordering of rules in the database and in the ordering of literals within the rules.

In the direction of connecting individual pieces of text into a coherent whole, we have developed

a series of linguistically motivated logic transformations that identify potential sites of coordina-

tion, subordination, and anaphora in the target text. We also have a method to select temporal
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Figure I: CooperativeAnswering System At Maryland

connecting words, tense, and aspect [8]. To reduce redundancy across sentences, an additional

transformation incorporates synonymous and generalizing substitutions into the target text.

The transformations take advantage of dependencies across literals, type information, and his-

torical knowledge about how the formula was gathered. The coordination transformation uses a

compact representation technique called _r-notation [23] to help organize clauses. The computa-

tional theory of coordination used in the transformation builds on the work of [7, 9]. The selection

of tense and aspect depends on temporal information available in the temporal database model

of [31] and on temporal interval relationships [1]. This information enables the selection of allow-

able tenses using Hornstein's theory of tense [17], selection of aspectual feature values [5, 26] and

selection of temporal connecting words such as %efore," "while," "when," and "after." The incor-

poration of synonyms into the target text uses the taxonomy clauses and the relaxation method

mentioned in the previous section to identify more concise representations of concepts in the logic
formula.

Each transformation on the logic formula adds cohesion to or removes redundancy from the

natural language text that is generated to 'describe the formula. The transformed logic formula

is used as input to a natural language phrase generator to produce output text. The language

generation work draws from and builds on work that has been done in the area of generating

language from database information (e.g. [22]) and in the area of generating language from logic-

based knowledge representations (e.g. [24, 32]). The language generation techniques used for

cooperative answering with CARMIN are described in detail in [10].

5 Summary

The techniques discussed in thispaper extend the cooperative answering system of Gal and Minker

[25]. The user constraint, relaxation and search tree selection techniques complement the explana-

tory information provided by integrity constraints. They give information about how a user might

construct new queries that will better serve the user's needs. CARMIN incorporates each of these

techniques into a uniform user interface written in Prolog for relational and deductive databases.

CARMIN provides a testbed for studying these and future cooperative techniques.

Figure 1 describes the structure of the cooperative answering system described here. Semantic

query optimization techniques are used by a semantic compiler to integrate ICs and UCs with

the database schema. For limited input language, a natural language analyzer borrowed from [29]

parses natural language queries into queries in the language of the database -- logic queries. The

response generator processes a logic query with both the semantically compiled database schema
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and the database itself to perform deduction, detection of IC and UC violations, restriction of the

query with ICs and UCs, relaxation, and selection of information from the query's search tree.

The response generator produces a cooperative response in the language of the database. The

synthesizer then produces a natural language description of the logic response.
Semantic information in a deductive database is a relatively untapped source of information

that can be used in responses to users' queries. Cooperative answers that use semantic information

such as integrity constraints and user constraints can provide the user with information about

the database's organization and the world modeled by the database. When queries fail or when a

user wants additional answers, semantic information that describes taxonomy relationships between

database predicates and constants can be used to find new queries that return answers related to the

original query. For a background survey and comparison of approaches to cooperative answering,

the reader is referred to [11].
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