
NASA Technical Memorandum 102839

z: •

/,,v-a'_

OY_ ._,,#/,,Jc

Analytical and Experimental
Investigations of the Oblique
Detonation Wave Engine Concept

Gene P. Menees, Henry
and Jean-Luc Cambier

G. Adelman,

February 1991

II

N/k.RA
NationalAeronautics and
Space Administration

(NASA-TN-102839) ANALYTICAL AND
EXPERIMENTAL INVESTIGATIONS OF THE
OBLIQUE DETONATION WAVE ENGINE

CONCEPT (NASA) 18 p

G3/07

N93-32374

Unc I as

0182128





NASA Technical Memorandum 102839

Analytical and Experimental
Investigations of the Oblique
Detonation Wave Engine Concept
Gene P. Menees, Ames Research Center, Moffett Field, California

Henry G. Adelman, Eloret Institute, Palo Alto, California
Jean-Luc Cambier, Eloret Institute, Palo Alto, California

February 1991

National Aeronautics and
Space Administration

Ames Research Center
Moffett Field, California 94035-1000





ANALYTICAL AND EXPERIMENTAL INVESTIGATIONS

OF THE OBLIQUE DETONATION WAVE ENGINE CONCEPT

Gene P. Menees*

NASA-Ames Research Center, Moffett Field, CA

Henry G. Adelman t

Eloret Institute, Palo Alto, CA

Jean-Luc Cambier t

Eloret Institute, Palo Alto, CA

ABSTRACT

Wave Combustors, which include the Oblique Detonation Wave Engine (ODWE), are attractive propulsion concepts for hyper-

sonic flight. These engines utilize oblique shock or detonation waves to rapidly mix, ignite and combust the air-fuel mixture

in thin zones in the combustion chamber. Benefits of these combustion systems include shorter and lighter engines which will

require less cooling and can provide thrust at higher Much numbers than conventional scramjets. The Wave Combustor's ability

to operate at lower combustor inlet pressures may allow the vehicle to operate at lower dynamic pressures which could lessen

the heating loads on the airframe.

The research program at NASA-Ames includes analytical studies of the ODWE combustor using Computional Fluid Dynamics

(CFD) codes which fully couple finite rate chemistry with fluid dynamics. In addition, experimental proof-of-concept studies
are being carried out in an arc heated hypersonic wind tunnel. Several fuel injection designs were studied analytically and

experimentally. In-stream strut fuel injectors were chosen to provide good mixing with minimal stagnation pressure losses.

Measurements of flow field properties behind the oblique wave are compared to analytical predictions.

NOMENCLATURE

Ct = Thrust coefficient

I_p = Specific impulse
M = Much number

ODWE = Oblique Detonation Wave Engine

p = pressure

q = dynamic pressure

R_ = Reynolds Number
T = Temperature

TAV = Trans-atmospheric Vehicle

V = velocity

X = lateral distance from centerline of strut
Y = vertical distance from nozzle floor

Z = axial distance fron trailing edge of strut

_b = equivalence ratio

Subscripts

t = total

oo = free stream value

INTRODUCTION

The use of detonation waves to initiate and enhance combustion has been proposed since the 1940's 1. Some analyses have

been made using both normal and oblique waves 2'3. Normal waves are hard to stabilize and they produce higher stagnation
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pressurelossesthanobliquewaves.However,it is not clear that stabilized oblique detonation waves have been established in

laboratory conditions _'5. While free-running normal detonations have been observed to be elasssicai Chapman-Jouguet waves

with sonic gas velocities behind the wave, stationary oblique waves do not necessarily fulfill this condition. We will define

an oblique detonation as a wave where the pressure field generated by combustion behind the wave influences the wave itself.

This influence is manifested in a rotation of the oblique wave to a more normal orientation. The limiting case is an oblique

Chapman-Jouguet detonation where the normal velocity component behind the wave becomes sonic. Further heat addition will

cause the wave to detach from the anchoring point and rotate to a more normal orientation.

Several studies have been made recently of the application of oblique detonation waves to hypersonic propulsion s'r . These re-

ports have shown that heat addition at an oblique detonation wave can provide combustor performance equal to the conventional

scramjet combustor. While the deliberate creation of shock waves may seem to create additional losses, the detonation wave

can be considered to be the last wave in a multi-shock diffuser. In addition, there is analytical evidence that heat addition with

shocks may not be as inefficient as previously thought s. Furthermore, it is highly unlikely that shock waves can be avoided

in supersonic combustors with fuel injection and boundary layer regions. Indeed, the design of supersonic combustors should

utilize the shock waves to enhance mixing and combustion.

TRANS-ATMOSPHERIC VEHICLE MISSION STUDIES

In order to determine the performance potential of the ODWE, a simulation of a typical single-stage-to-orbit trans-atmospheric

vehicle (TAV) mission was completed. Performance and sizing estimations for the TAV were made using a hypersonic vehicle

synthesis code for trans-atmospheric designs 9. Estimates can be made of aerodynamic characteristics, aero-thermal heating,

propulsion system performance and structural/subsystem weights. An automated vehicle closure algorithm iterates the trajec-

tory analysis to close the design on both vehicle weight and volume.

To size the vehicles, a mission was selected which carried a payload of 15,000 pounds into a Low Earth Orbit (LEO) of 120 nau-

tical miles altitude. A horizontal takeoff in the easterly direction from Kennedy Space Center was assumed, with an on-station

duration of six hours. Two ascent trajectories were studied, with dynamic pressures of 1000 and 2000 pounds per square foot

(psf). The flight path was constrained to give 100 pounds per square inch (psi) duct pressure at lower supersonic Mach numbers
and a maximum mean surface equilibrium radiation temperature of 2000 F (1367 K) for high Mach numbers. The speed at

which the airbreathing engine thrust was augmented by a rocket was optimized to minimize the gross takeoff weight. A descent

trajectory was flown near .peak L/D to maximize the descent cross-range capability. Fuel reserves of 2% of mission fuel were

assumed for the landing maneuver.

General Vehicle Design

The general vehicle configuration, shown in Fig. 1, is a lifting body with aft mounted horizont,d and vertical tails. The total

propulsion system consists of two airbreathing engines, one for Mach numbers below 6, and a scramjet or an ODWE for the

remaining part of the flight. In addition, a rocket engine is used in conjuction with the air-breathing engine for the high altitude,

high Mach number portion of the trajectory. Liquid hydrogen is the fuel for all engines.

One-dimensional Engineering Analysis of ODWE

A one-dimensional engineering code was developed to provide the engine data base for an analysis of Trans-atmospheric Vehicles

powered by either ODWE or scramjet engines. The engine data was then used in another code for mission analysis studies.
The results of these comparisons were presented in Ref.10. The first calculations were made for a scramjet engine. After

succesful tests of the modifications, a second version of the code was developed to model the ODWE. Both simulations were

one dimensional, and involved many simplifying assumptions which are common in this kind of analysis.

A detailed description of this propulsion model was also presented in Ref.10. For the scramjet case, the inlet operates in a

four shock mode which gives good performance over all flight conditions. However, for the ODWE case, the oblique detonation

wave acts as a diffuser, so fewer inlet shocks are needed. In this mode, two inlet shocks are sufficient. The viscous and pressure

drag forces from nose-to- tail on the underbody or engine side of the vehicle are accounted for in the two engine performance

parameters, specific impulse and thrust coefficient. The thrust coefficient is defined as the thrust normalized by the product of

dynamic pressure and capture area. Engine specific impulse is obtained by dividing thrust by the fuel weight flow rate. The

remaining vehicle drag not accounted for in the thrust coefficient, which includes the top, sides, cowl bottom surface and control

surfaces is assigned to the vehicle aerodynamic characteristics. The efficiency of the propulsion system depends on various

factors including the flight Mach number, dynamic pressure, forebody shape, fuel temperature and equivalence ratio.

General Engine Performance

The results of the engine performance calculations show that specific impulse and thrust coefficients depend on dynamic pres-

sure, combustion efficiency, fuel temperature and equivalence ratio. Certain trends can be observed. As shown in Fig. 2, it



is evidentthat higher heat recycling from the engine leads to higher injected fuel temperatures and larger values of specific

impulse and thrust coefficient. We assume that the fuel is injected at a constant Much number of 2.5. As more heat is added to

increase the stagnation temperature, significant momentum can be gained from the fuel injection. However, fuel temperature is

limited by tile amount of heat which can be absorbed from the structure and by the temperature limits of the materials used to
store and transport the fuel. In this study, we will assume that 90% of the heat loads have been absorbed by the fuel. The fuel

is then heated to a limiting temperature of 1100 K (1520 F), which is representative of the current materials available for fuel

storage and transport. If this temperature limit is exceeded, then an amount of fuel in excess of stoichiometric must be used.

The resulting equivalence ratio versus Much number schedule for the scramjet is shown in Fig. 3 for various fuel temperature
limits.

Since the ODWE combustor is shorter, a stoichiometric mixture can be maintained to a Much number of 17.5 compared to 14

for the scramjet, for a fuel temperature of 1100 K. While heat recycle increases engine performance for stoichiometric mixtures,

the effect of using excess fuel to maintain a specified temperature limit may increase the thrust coefficients but will lower the

specific impulses as shown in Fig. 4. It is clear that the cooling requirements seriously affect the performance of the engine at

high Mach numbers.

Scram jet Engine Performance

The calculated performance of the scramjet engine is shown in Fig. 4 as a function of Mach number for a dynamic pressure of

2000 psf and an equivalence ratio schedule which maintains the fuel temperature below 1100 K. It can be seen that the specific

impulse begins to drop at Mach 14 due to the rise in equivalence ratios necessary to maintain the 1100 K fuel temperature limit.

ODWE Performance

The ODWE performance was also calculated for dynamic pressures of 1000 psf and 2000 psf. In Fig. 4 we compare the perfor-

mance of both the scramjet and ODWE for the q=2000 psf case. It appears that the ODWE has better performance than the

scramjet at high Much numbers, but has lower specific impulse below Much 15. The reduced performance at low Much numbers

is due to the steep wave angle of an oblique Chapman-Jouguet (C J) detonation, and therefore to higher shock losses. The wave

angle can be reduced if either the Much number is increased or the Chapman-Jouguet Much number is decreased (i.e. the static

temperature prior to the detonation wave is increased or ¢ is decreased). Therefore, the ODWE favors operation at high Much

numbers.

The ODWE also takes advantage of a shorter combustor which requires less cooling and less excess fuel at higher Much numbers

than the scramjet. It can be seen in Fig. 4 that the knee in the specific impulse curve, which indicates the start of the excess

fueling schedule, begins at a higher Much number for the ODWE than for the scramjet. Since the problems of mixing and

ignition delay impose a long combustor for high Much numbers, it is clear that increasing the combustor length causes the

performance of the scramjet to drop at lower Much numbers, when fuel must be injected in excess of stoichiometric.

For the ODWE, the benefits of a shorter combustion chamber, which results in a shorter, lighter engine will also be evident in

the vehicle size and weight calculations which are discussed later.

Scramjet Vehicle Performance

A scramjet powered vehicle was modeled using the predicted engine performance data for the trajectory of constant dynamic

pressure q=2000 psf. Since the scramjet is very inefficient below Much 6, a hypothetical engine system with an average effective

specific impulse of 1000 seconds was used to propel the vehicle from horizontal takeoff to Much 6. Aerodynamic heating con-

siderations required that the dynamic pressure of the flightpath begins to drop below the specified value of 2000 psf at Much

17 to about 250 psf at Much 22. This low dynamic pressure requirement at high Much numbers necessitates rocket power

augmentation which begins at Much 18. The amount of thrust provided by the rocket is larger than the thrust produced by the

scramjet, and the rocket thrust fraction continues to increase until orbital speeds are reached.

The scramjet powered vehicle which flies a 2000 psf trajectory weighs 460,512 pounds and carries a 15,000 pound payload into

orbit. The scramjet engine, low speed engine and rocket motors comprise 8.6% of the takeoff weight. For comparative purposes,

a vehicle which flies a 1000 psf trajectory was also studied. This TAV is heavier at 623,000 pounds. The main reason for the

increased weight is the lower mass capture per unit area of inlet, which requires a larger, heavier engine and associated structure.

Also, the lower thrust-to-weight ratio results in a longer flight time to orbit which consumes a greater amount of fuel.

ODWE Vehicle Performance

The hypersonic vehicle using the ODWE has somewhat different weight characteristics. Since the ODWE offers superior perfor-
mance above Much 15, the point of rocket turn-on is delayed to Much 19. The ODWE can operate at higher Much numbers than

the scramjet, and continues to provide a higher fraction of airbreathing thrust to orbital speeds. Therefore, less rocket thrust is



needed and a lower mass fraction of liquid oxygen (LOX) is consumed, 12.5% versus 15.9% for the scramjet. This represents a
weight savings of 22,000 pounds compared to the scramjet. In addition, the shorter combustor length provided by the ODWE
allows a shorter, lighter engine which saves about 5,000 pounds. The ODWE represents 3.7% of the gross weight, compared to
4.4% for the baseline scramjet engine. While the fuel weight fraction is higher for the ODWE, the actual fuel weight is 14,000
pounds lower. As a result of all these factors, the ODWE configuration weighs 409,500 pounds, some 51,000 pounds less than
the scramjet vehicle (for q=2000 psf), and carries the same payload of 15,000 pounds to orbit. Note that the payload weight
fraction is increased from 3.3% of the takeoff weight for the scramjet to 3.7% for the ODWE.

Since the scramjet has better performance below Mach 15, and the ODWE above Mach 15, a combination of these two engines
may be ideal. This hybrid engine would use a two-shock diffuser for the whole Mach range. At low Mach numbers, the mixing
length and ignition requirements are less severe, and a relatively short combustor can be used in a scramjet mode. At higher
Mach numbers, the diffusing shocks would move aft into the combustor. The engine would operate in the oblique detonation
mode in the aft section of the combustor. Therefore, cooling is required only for a fraction of the combustor, and the drop in

performance due to cooling requirements would still occur only at very high Maeh numbers. The design of such a hybrid engine
would require more sophisticated, 2-dimensionai analysis. Work in that direction is progressing.

ANALYTICAL STUDIES OF ODWE

The analysis of the ODWE has been made with levels of sophistication ranging from one dimensional, steady, perfect gas flow xx
to unsteady, 2-dimensional, viscous, shock capturing codes with finite rate chemistry 12'a3. These codes are used to simulate
and guide experiments aimed at proving the existance and stability of oblique detonation waves and their use in supersonic
combustors.

Proof-of-concept studies of the ODWE are focused on the establishment of stable oblique detonation waves. A NASA-Ames
arc heated hypersonic wind tunnel facility has been chosen for the experimental program. This facility can simulate combustor
inlet conditions of Mach number and enthalpy. However, it cannot presently reproduce the expected pressures. Therefore it

was necessary to determine if the low pressures would prevent the establishment of a detonation wave. This verification was
carried out in several ways. The simplest method utilized a 1-dimensional, steady flow, finite rate chemistry program _1 which

calculated ignition delays and combustion behavior behind a 30° oblique shock wave. Inputs to this simulation included a
hydrogen-air reaction mechanism taken from the literature 12.

The results of these 1-dimensional calculations demonstrated the strong dependence of ignition delay and combustion rate on

pressure and temperature. As temperature and pressure are increased, combustion occurs closer to the wave. However, this
program did not simulate any coupling between heat release and wave angle so the question remained whether a detonation
had been created. There is very little information in the literature on the spacing between the shock wave and combustion
zone for a detonation, except that they appear to be almost coincidental. However, some estimates of coupling can be made by

generating characteristics in the combustion zone and determining their intersections with the shock. If these characteristics do
not intersect the shock within the bounds of the combustion chamber, then there is not enough coupling to be classified as a

detonation. Instead, there is shock induced combustion.

For the nominal experimental conditions, the air in the wind tunnel exits the nozzle at Mach 4.6 with a pressure of 0.016 arm
and a temperature of 840 K. Combustion behind a 30 ° oblique wave takes about 0.5 milliseconds corresponding to a distance
normal to the shock of approximately 5 centimeters. Raising the pressure by a factor of 5 shortens the distance to about 0.7
centimeters. This coupling should create a detonation. Indeed, more sophisticated analyses employing a 2-dimensional, fully

coupled CFD and finite rate chemistry code have shown the existance of a detonation under these higher pressure conditions 13.

A solution would be to raise the pressure or temperature to guarantee a detonation in the experiment. While the temperature
can easily be increased, this effect could cause the fuel to ignite prematurely. One method of raising the pressure would be to
create a preliminary oblique wave in front of the detonation wave. However, this may not be necessary since the introduction of
hydrogen fuel will also create oblique shocks which can have the same effect. These effects will depend on the size, shape and
number of injectors and their location in the experimental set-up.

It was possible to approximate the static pressure rise due to fuel injection when some simplifying assumptions were made. For
example, if the fuel injection was assumed to occur at constant pressure in an inviseid airstream, then the fluid momentum can
be related to the stagnation pressure losses, While stagnation pressure and Mach number are reduced by injection, the static

pressure and temperature are increased. These increases will be beneficial to the ignition process behind the oblique wave.

If the injection losses are due only to the streamwise component of momentum, then the stagnation pressure losses can be
easily estimated 14. For the case where M = 4.6, a stoichiometric amount of hydrogen injected at room temperature results in
a stagnation pressure loss of 12%. This pressure loss is equivalent to an oblique shock oriented at about 21 ° to the horizontal
which turns the flow at about 9.5 °. The downstream Mach number is then reduced to approximately 3.7 and the static pressure
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and temperatures are raised by factors of 2.4 and 1.3 respectively. These higher pressures and temperatures will shorten the

ignition distance behind the oblique wave. The pressure field due to combustion should influence the oblique shock wave and
create a detonation. In reality, the hydrogen injection will create shock waves which will cause higher stagnation losses than

predicted by this analysis along with higher static pressures and temperatures.

While the increased pressures will shorten ignition delays behind the oblique wave, raising the temperatures may create pre-

ignition problems prior to the wave. One consideration for injector design and location is premature ignition of the fuel. A

study was made of the effects of introducing fuel at various locations inside the wind tunnel nozzle. The results indicated that

fuel must be introduced at a location in the nozzle somewhere downstream of the point where the area ratio is 10. However,

extensive modifications would be required to inject fuel in the existing nozzle. This result led to the study of strut type injectors
which would be located at the exit of the nozzle.

Injection Simulations

In order to verify some of the simplified analyses of fuel injection and combustion behavior, a more sophisticated computer

simulation was employed. This code is described in detM1 elsewhere 13'14. Many different simulations were performed to validate

the fluid dynamic and chemical kinetics portions of this code. Once the code was v_dated, it was used to guide the experimental

program. The first simulation consisted of wall injection through an orifice normal to the air stream. This configuration, which

could model injection from a flat plate resulted in an oblique shock ahead of the injected fuel. Unfortunately, the penetration

of the fuel jet was poor. A similar result has been observed experimentMly, where fuel jet penetrations appeared to peak at a
value of about five times the orifice diameter 15.

In an effort to improve the fuel penetration, a projection or finger was added downstream of the fuel orifice. In this case, fuel

was forced over the projection further into the air stream. However, a normal shock was aJso formed upstream of the injector

which reduced the flow velocities to subsonic values. Since a detonation can only exist in supersonic flows, this geometry would

preclude the establishment of an oblique detonation wave downstream of the injector. A third configuration was examined

where the finger was modified to include a ramp on the upstream side. Fuel penetration remained good and the fuel injection

shock became oblique. Most of the flow remained supersonic except for a small recirculation zone behind the leward side of

the projection. While this configuration appeared to provide improved penetration and supersonic flow downstream of the

injection point, this design would have to be installed on a wall where the high temperatures in the boundary layer region could

prematurely ignite the fuel. In addition, the boundary layer might decrease the fuel penetration. For these reasons, it was

decided to examine strut type fuel injectors located outside the nozzle. Here fuel could be injected by multiple struts into the
core flow region where viscous effects are reduced.

In order provide a better model of the detonation process, a 2-dimensional combustion code was also developed. This code

uses the same Total Variation Diminishing (TVD) algorithm as the injection model to capture strong shocks without smearing

or oscillations. Temperature oscillations could incorrectly predict premature ignition and invalidate the detonation conditions.

Finite rate chemistry is incorporated in order to model the heat release of the detonation process. The chemistry is fully coupled

to the fluid dynamics so that heat release will couple to the shock front and show the correct rotation of the detonation wave.

The fluid dynamics and chemical kinetics parts of this code were verified using many existing data sets and conditions 13.

Simulation of ODWE Experiment

The focus of this work was the simulation of the flow field in the strut region. This was done first with an Euler (inviscid)

computation to obtain the position of the reflected shocks. The computations were done for free stream Mach numbers of 4.5

and 5.4. Two values of the vertical separation between the struts were studied (0.67 inches and 0.75 inches). It was apparent

from the results that multiple shock interactions occured between the struts, as well as shock impingement on the flat surfaces

of the struts. It was clear that in the case of high stagnation enthalpy, extreme care should be taken in avoiding locally high

temperatures. In order to model the strut injection and mixing, a series of computations were made with greater refinements,

which included blunting the leading edge of the struts and providing a high grid density. The full Navier-Stokes equations were

solved for an assumed laminar case. The conditions were Moo = 5.4, Too = 42.2K, poo = 0.0128 atm, Reoo " 2x10 s per inch.
The total length of the strut is approximately 5 inches and transition to turbulence should occur somewhere at the end of the

strut. However, because of the leading edge compressive ramp (7 ° ) and the porous transpiration plate in the first half of the flat

strut section, transition could be expected sooner. There is, however, no definite way to predict the transition with precision

and there were no measurements to determine the properties of the boundary layer on the strut. In addition, when fuel injection

takes place, the flow obviously becomes turbulent and the algebraic (Baldwin-Lomax) model is then unable to model the correct

physics. Ideally a 2-equation model should be used at this point. The development and validation of such a model which uses

the turbulent kinetic energy equation is one of the high priority development areas.

An example of the injection patterns for two struts is shown in Fig. 5. This design indicated hot spots on the center strut which

caused the fuel to ignite immediately after injection. In fact, it was necessary to inject nitrogen at the tip of the strut to cool the

mixture and decrease the oxygen content of the boundary layer 14 . The strut design is discussed in more detail in the next section.



Fig. 5 shows the computed density contours in logarithmic scale for the strut flow field prior to fuel injection. Of special signif-

icance is the boundary layer detachment on the top and bottom surfaces, at the start of the trailing ramp section. In addition,

weak recompression shocks are seen to originate from the trailing edge itself. This can also be observed in the computed density

field, although the pattern is more complex. It appears that weak shocks are thrown off from the pairs of vortices on opposite

sides of the strut. The flow between the struts shows a regular diamond pattern from the multiple shock intersections. There

is also a recirculation region on the flat plate in front of the first shock impingement. Because of the good resolution of both

grid systems and numerical scheme, the pattern of shocks and expansion waves can be observed in detail, especially near the

recirculation region.

The corresponding schlieren record is shown in Fig. 6. In this picture, the flow between the two strut surfaces is.very complex,

and there seems to be larger areas of flow separation and recirculation on the surfaces. It is difficult to obtain clear experi-

mental pictures of the flow. Most of the features of the flow, however, are reproduced by the simulations, especially the strong

bow shocks in front of the injectors and the diamond pattern of shock interactions. The mixing predicted by a 2-dimensional

simulation is very poor and is below the measured values. This can be explained by the importance of three-dimensional effects

with discrete orifice injection, especially longitudinal vortices. In addition, the turbulence levels in the experimental flow are not

well known. A more detailed comparison could be obtained only if 3-dimensional computations are performed. These studies

are planned for the future.

Once the mixing simulations were completed, efforts were focused on the oblique wave which would be created by the wedge test

body. Since the creation of an oblique detonation wave was the goal, the model was extended to include finite rate chemistry

and heat release. This code was also validated using existing experimental data. After this code was verified, several detonation

cases were simulated. First, an oblique detonation was modeled in premixed hydrogen-air for Moo=4.2, poo=0.1 atmospheres

and Too=700 K which are close to proposed test conditions. The results presented in Fig. 7 show the oblique shock wave without

fuel reaction. When reactions are allowed, detonative combustion results and the wave rotates to a more normal position as

shown in Fig. 8.

Since the fuel injection simulations indicated rather poor mixing, a case was studied where a relatively unmixed fuel jet en-

countered the oblique shock. The results given in Fig. 9 show that the oblique wave, which was straight in the premixed case,

has been severely distorted by the fuel jet. The low molecular weight and high speed of sound of the fuel contribute to a lower
Mach number flow in the fuel rich areas which results in a more normal wave front.

EXPERIMENTAL STUDIES OF ODWE

Facilities

The arc-jet facility consists of a 20-MW arc heater supplied continuously with high pressure air. The arc chamber can be

pressurized to 10 atmospheres. Air leaving the arc heater passes through a semi-elliptical nozzle with an exit area ratio of

36. A schematic of the test configuration is shown in Fig. 10. Note the injectors and test body which will be discussed later.

Enthaipies can range from 5 to 35 MJ/kg (2000- 15,000 BTU/Ib,_) and air flow is variable from 0.05 to 0.68 kg/s (0.1-I.5 Ibm/s).

Nominal test conditions for the ODWE experiment correspond to maximum pressure and minimum current. Upgrading of the

facility from 10 atmospheres stagnation pressure to 40 atmospheres is now in progress. This higher pressure will allow a closer

simulation of the conditions expected at the inlet of a supersonic combustor. A five stage steam ejector pump maintains test

cell pressures down to 13 mm Hg.

Injector Design

The fuel injection struts are designed to provide good mixing with minimal losses. Analytical evaluations indicated that hot

spots and recirculation zones would exist on and around the struts 14. These regions would be undesirable since the goal is

to create a weU mixed fuel-air stream which would not ignite before the oblique wave. The simulations indicated that the

transpiration of coo1(300 K) nitrogen would prevent the premature ignition of the hydrogen fuel. The strut design, shown in

Fig.11, has a transpiration area ahead of the hydrogen injection orifices. The porous "felt metal" allows nitrogen to transpire

at a rate of 0.015 kg/s per strut, which represents about 5% of the main mass flow rate.

Hydrogen is injected through seventeen 1.52 mm(0.060 in) diameter orifices spaced 1.27 cm(0.5 in) apart. The orifices are drilled

at an angle of 30 ° to the flow direction. Two or three struts will be utilized depending on the results of further mixing and

combustion studies. The fuel-air ratio can be varied up to two times the stoichiometric value. The fuel rich condition will ensure

that most of the test body will be immersed in a stoichiometric or fuel rich flow. An estimate of the air-fuel mixing was made

using a semi-emperical mixing model ls'17. This model, which is for sonic injection into a two-dimensional duct, accounts for

strut separation and orifice size and spacing. Based on this correlation, the mixing efficiency for 30 ° injection of a stoichiometric

mixture is 70% after a distance of 12 inches.



Test Body

The oblique waves willbe created by a water cooled wedge located approximately one foot downstream of the strutsin the test

section. Optical _ces_ is provided by 12 inch windows on either sideof the testsection and a schlierensystem will provide

photographic records of the wave angle with and without fuel.Pressure and temperature transducers on the wedge willbe used

to assessthe state of combustion behind the oblique wave.

Mixing Studies

A series of mixing studies were carried out in the hypersonic wind tunnel. The first set of tests were made with two injection

struts spaced from 0.5 in to 0.75 inches apart, the extent of fuel mixing was measured by an on-line mass spectrometer. Gas

samples were obtained by a probe which was mounted on a traversing table that allowed motion in all three dimensions. Some

results of the fuel-Mr determinations are shown in Fig. 12 for two locations, 0.5 inches and 12 inches behind the strut trailing

edge. While mixing is poor at 0.5 inches, it is significantly improved at 12 inches. The further location was representative of the

proposed position of the wedge for the detonation tests. Note that the fuel distribution at 0.5 inches resembles the simulated

case of Fig. 5 with relatively unmixed jets. The experiment verified the concerns about thermal failure at the areas of shock

impingement on the struts. Further mixing tests with multiple struts were carried out only with cold flow to avoid overheating

while hot flow tests were run with a single strut.

Oblique Detonation Wave Studies

After the mixing studies were completed, the wedge test body was installed in the wind tunnel. While the original plan was to

locate the wedge 12 inches downstream of the struts, this required the fabrication of new doors for the wind tunnel test section

to place the windows in the proper location for viewing. Unfortunately, there was insufficient time to fabricate these doors, so

the wedge was located in the field of view with the struts. Only 1.0 inches separated the trailing edge of the strut and the front

edge of the strut. While this placed the strut in a relatively unmixed region, it was thought that combustion could occur behind

the oblique bow shock of the wedge.

Tests were run with both helium and hydrogen injection to determine the effects on the wedge shock. The effects of fuel

injection can be seen by comparing Figs. 13 and 14 for the cases of no injection and injection, respectively. It was observed

that the injection of either combustible or inert gases caused a similar displacement of the bow shock. This was due to the low

molecular weights and high speeds of sounds of hydrogen and helium. The effect is to lower the Mach number of the flow and

cause the oblique wave to be more normal. During one test run, an increase in pressure was observed on the wedge with hy-

drogen injection, indicating combustion. However, in the limited time remaining for the tests, this phenomenon was not repeated.

CONCLUDING REMARKS

An experimental and analytical program has been undertaken to study the characteristics of stable oblique detonation waves in

a NASA-Ames arc-jet wind tunnel. The analytical models have been used extensively to aid in the experimental design and to

ensure a successful experiment.

The existance of stable oblique detonation waves has been predicted previously for premixed hydrogen-air in supersonic flows.

However, complete mixing of the fuel and air streams is not possible within reasonable distances in supersonic combustors.

Therefore, it is necessary to introduce the fuel in a manner that provides good mixing in short distances with minimal losses.

Several injector designs were examined analytically and a strut type was chosen for its ability to introduce the fuel in the nozzle

free jet. The mixing characteristics and the effects of incomplete mixing on the detonation wave are still being studied.

The simulation of the strut flow field in the ODWE experiment provided great detail on the shock-shock interactions and

shock-boundary layer interactions. Notably, the flow structure near the injector is particularly detailed (shock, Mach disk). The

results agree reasonably well with the experimental schlieren records.

A mission analysis study compared the performance of vehicles powered by a scramjet or an ODWE. The results showed that

the ODWE had better overall performance than the scramjet. The increasecl performance allowed the ODWE powered vehicle

to weigh less than the scramjet powered vehicle for the same payload weight.
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Fig. 1. Schematic of generic hypersonic

trans-atmospheric vehicle used in mission
analysis study.
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Fig. 2. Specific impulse versus Mach number for

scramjet engine (q=2000 psf, ¢=1). Cases
shown are for 0%, 50% and 100% of the heat
load absorbed into the fuel.
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Fig. 3. Equivalence ratio versus Mach number for

scramjet and ODWE engines at q=2000 psf. ODWE
results are shown for a fuel temperature limit of

1100 K while scramjet results are shown for a range

from 1100 to 2000 K (1520 to 3140 F).

3000.0

2500.0

2000.0

Isp,S

15oo.o

10oo.o

500.0

0.0

",.

.............. ODWE

SCRAM.JET

............... ....

8.0 8.0 10.0 12.0 14,0 16.0 18.0 20.0 22.0

M

Fig. 4. Comparison of scramjet and ODWE performance

characteristics. Shown are I,p and CT profiles
for q=2000 psf, 90% of heat loads carried by fuel

and 1100 K fuel temperature limit.
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Fig. 5 Predicted logarithmic density contours for fuel injection from two struts in Mach 4.5 flow.

Fig. 6. Shadowgraph of two fuel injection struts in Mach 4.5 flow.
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Fig. 7. Math number contours for non-reacting
stoichiometric air-fuel mixture flowing over

a wedge at Mach 4.2.

Fig: 8. Mach number contours for reacting
stoichiometric air-fuel mixture flowing over

wedge at Mach 4.2. The rotation of the wave
with combustion indicates a detonation.
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Fig.10.Schematicoftestset-upin20MW archeated
windtunnel.Thestrut injectorsareshownat theexit
ofthenozzleandthewedgetestbodyisdownstream,

Fig.9. Machnumbercontoursforrelatively
unmixedfueljet flowingoverwedge.
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Fig. 11. Schematic of fuel injector strut for
ODWE tests.
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Fig. 12. Measured fuel concentrations at 0.5

inches and 12 inches behind fuel injection struts.

Fig. 13. Schlieren photograph of a shock wave created

by a wedge in Mach 4.5 flow. A single strut fuel injector

is positioned slightly below the wedge centerline. No fuel
is injected in this case.
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Fig. 14. Schlieren photograph of an oblique wave created

by a wedge in Mach 4.5 flow. Fuel is injected from a

single strut. Note the displacement of the lower portion

of the wave compared to the previous figure.
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