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Introduction

Since many of the participants at this conference have the
task of evaluating and comparing different speech recognition systems
that have been tested under various conditions, the author has collected
in Part I some useful statistical rules of thumb which can be employed
to normalize disparate experimental test results. Several types of
elementary statistical analysis are illustrated; the reader is encouraged
to continue in this spirit to analyze other cases. The rules are not
widely known, but seem to have good predictive power. All of the ones
presented here are accompanied by supporting empirical evidence.

Part II, the advertising part, describes some of the accomplish-
ments and planned development activity of Dialog Systems, Inc. in accor-
dance with the Workshop specification. Dialog's sole business is speech
recognition. The company has successful operational field experience
with its first major product, a multi-channel talker-independent system
for verbal inquiries via ordinary switched network telephone input.
Dialog presently has 45 employees, including a competent support and
field service staff.

I. Methods for Normalization of Performance Test Results

Contrary to some beliefs, speech recognition systems obey the
laws of nature. The small number of known quantitative rules are sta-
tistical in character, and they relate such variables as average recog-
nition accuracy, vocabulary size, reject rate, false alarm rate, and
the sizes of experimental training and test sets. The relations to be
presented here seem to have good predictive power, and the author uses
the illustrated analyses on a day-to-day basis to evaluate and compare
different experimental results. It is very obvious that some such proba-
bilistic rules must apply, though there are questions of detail and
refinement of the statistical models to be resolved. It will be possible
in the future to tie together many other experimental variables, but to
do this it will be necessary for investigators to include more detailed
experimental data in their reports and to test much larger populations
than they have been accustomed to using, on the average.

*Mr. Moshier's paper was presented by Mr. Robert Osborn.
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The ultimate capability of practical speech recognition systems
has not been determined. The speaker verification system developed by
Doddington's group, for example, probably does better than a human could
do; the computer does not get tired, and can be programmed to notice
identifying characteristics that people pay no attention to. In the
various kinds of speech recognition, performance is limited by such
things as insufficient data bases, mistakes in computer programs, and
adherence to wrong theories; we are certainly quite far from any limits
set by thermodynamics or information theory.

When various published data are normalized by means of the sta-
tistical rules to be described, it emerges that there has been essentially
no fundamental progress in isolated word speech recognition since the
first good techniques appeared in 1969-1972. On the other hand, there
has been a great deal of progress in making the fundamental principles
work in field applications, as well as in other areas.

Vocabulary Size

Most reports on speech recognition give a figure for recogni-
tion rate and vocabulary size. The law of nature is that recognition
rate decreases with increasing vocabulary size. It is quantified by a
statistical rule of thumb as follows:

Given that the input speech is word (or phoneme, or sentence)
X^ , suppose that the machine is characterized by the probability that
it will correctly reject the possible wrong choices x - , jV-c :

J

Pr { correctly reject x-lx.- \ = r - - . (1)< j' x. ) jx.

In the interest of deriving a simple formula, make the following assump-
tions: a) r/£ is about the same for all pairs of vocabulary words, so
that it can be replaced by a constant value r. (In practice this is
usually true except for a small number of troublesome words having high
confusion probability; but if the relative proportion of troublesome
words is constant the formula remains true for an appropriate choice of
r. Thus a less stringent assumption is sufficient, namely that the dis-
tribution of values r/£ is dependent of vocabulary size.) b) The various
correct rejection probabilities (1) are all statistically independent.
This assumption permits getting the probability of joint events by multi-
plying. As in assumption a), it can be replaced by less strict condi-
tions, but then the development becomes more obscure. It is not true
for some types of joint events encountered in continuous speech recogni-
tion (see below). Let there be n words in the vocabulary; under condi-
tions a) and b) the probability of correctly rejecting all of the wrong
choices x-, jVx. is

J

Pr \ correctly reject x - and x . and .. .x - j x . } = 1 f~ r • • = r . (2)
Jl J2 -/„_! x-1 ;j.'; ̂ J
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This is the correct recognition rate of the system. Curves for talker-
dependent and talker- independent isolated word recognition are given in
Figure 1. These curves were drawn in mid-1974; there does not seem to
have been much change since then except that they are perhaps a little
truer now than they were before. ^

False Alarms

A related statistical rule has to do with false alarm events in
word spotting. In this task, the event of interest is the joint detec-
tion of several acoustic segments in the right sequence. The uncondi-
tional probability of a false alarm for any one of the segments is assumed
to be small in a small time window and independent of time. The distri-
bution of false alarms is therefore Poisson with some rate function X.
Given the acoustic event x^ certain following events are more likely to
occur than others, on the average. Thus it is not possible to get the
probability of a joint event by multiplying the individual event proba-
bilities. A joint false alarm can be modeled quite closely, however, as
a sort of Markov chain. It is assumed that if the first target segment
Xĵ  is detected, the unconditional Poisson rate function for subsequent
detection of the second event must be multiplied by some value a.

The Poisson law implies that the unconditional probability of
not detecting the x.th event is e"̂ -. If the conditional detection prob-
ability depends on the immediately/ preceding event but no earlier ones,
the probability of the first two events jointly is

PrjXl and x2 j = Pr |x2 [x^Pr X]̂  = (l-e-aX2) (l-e~xi).

The joint detection probability for n events is then

Pr x and x and...xn =(l-e~Xl) (l-e~aX2) (l-e"aX3) . . . (l-e"aXn) . (3)

Some experimental data are compared with this model in Figure 2. J.L.
Baker, of IBM, has built a Markov model for correct detection events
directly into a continuous speech recognition algorithm.

In addition to their ability to normalize the results of differ
ent experiments, these models to some extent permit one to separate and
compare the statistics of language and the statistics of the recognition
algorithm. The same models apply to isolated word and continuous speech
recognition, except that an extra error contribution from the isolated
word boundary detector is needed. There is no apparent reason why
continuous speech recognition systems with performance as good or better
than isolated word systems in comparable tasks should not be possible.
Developmental results approaching the best isolated word techniques have
already been reported.
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Bottom curve: system tuned to individual talker.

Top curve; talker-independent performance for telephone
speech.

Figure 1. Current State-of-the-Art Performance in
Isolated Word Recognition
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ROC Curves

Normalization of different test results frequently requires an
estimate of the relation between reject (no decision) rate and correct
recognition rate. Relatively few reports give this function, so there is
little published information to use as a check on the model. Hence, the
following model is not known to apply to anything but the Dialog system.
The algorithm produces a goodness of fit score for each decision of inter-
est. Over many trials the fit to a particular reference template has a
distribution which is not Gaussian; but the difference between the scores
for the closest fitting template and the correct choice template does
seem to be approximately Gaussian. A reject criterian based on this func-
tion is illustrated in Figure 3. The model yields a family of parallel
lines on a probability scale graph; thus only one measurement is required
to determine which line corresponds to the system under test. A similar
model can be derived for the more commonly used reject criterion in which
the input is rejected if no template matches it sufficiently well.

Probable Error of Measurements

The vast majority of published reports in the field do not con-
tain enough information to establish error estimates for the claimed numer-
ical test results. From this symptom and many others which vary from paper
to paper, one may justifiably conclude that the average experimental
quality of current speech R&D investigations is absolutely terrible.

To obtain statistical confidence intervals for a parameter,
it is necessary to known something about its probability distribution.
Most reports contain no helpful information whatever, so one can only
guess. For small sized test samples a non-parametric approach can be
taken: the experiment is modeled as a series of Bernoulli trials with a
binomial distribution of test scores. This method produces seemingly
pessimistic estimates of the probable range of random sample test results;
but caution and pessimism are the correct attitudes to adopt when inter-
preting small-sample statistics. Tables of confidence intervals for the
binomial distribution are available in an RADC report.

For medium sample sizes (more than 30 trials per talker and
more than 30 talkers) a better procedure is to assume that the total
number of errors has a Poisson distribution. There is some evidence
that the Poisson law is actually a good model for pattern recognition
methods which show a low error rate; but the main advantage is that the
Poisson distribution has only one parameter, so the answer can be looked
up immediately in Figure 4. To use the table, count up the total number
n of errors observed in the experiment and find the upper and lower bounds
of the desired confidence interval from the appropriate columns. The
total number of trials in the experiment is immaterial; the tabulated
figures represent total numbers of errors, and must be divided by the
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Figure 3. ROC curves for a quasi forced-choice decision
rule. Experimental data are plotted for a selected
8-word vocabulary (+), the 10 digits (0), and a
34-word vocabulary (X) in a discrete word recognition
task with telephone speech and many talkers.
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n

0
1
2
3
4
5
6
7
3
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

c = .01

0.010
0.149
0.436
0.823
1.279
1.785
2.330
2.906
3.508
4.130
4.771
5.423
6.099
6.732
7.477
8.181
8.895
9.616
10.346
11.082
11.825
12.574
13.329
14.089
14.853
15.623
16.397
17.175
17.957
18.742
19.532
20.324
21.120
21.919
22.721
23.526
24.333
25.143
25.955
26.770
27.587
28.407
29.228
30.052
30.877
31.704
32.534
33.365
34.198
35.032
35.869

.05

0.051
0.355
0.818
1.366
1.970
2.613
3.285
3.981
4.695
5.425
6.169
6.924
7.689
8.464
9.246
10.036
10.832
11.634
12.442
13.255
14.072
14.894
15.719
16.549
17.332
18.219
19.058
19.900
20.746
21.594
22.444
23.297
24.153
25.010
25.870
26.731
27.595
28.460
29.327
30.196
31.066
31.938
32.812
33.687
34.563
35.441
36.320
37.200
38.082
38.965
39.849

.10

0.105
0.532
1.102
1.745
2.432
3.152
3.895
4.656
5.432
6.221
7.021
7.829
3.646
9.470
10.300
11.136
11.976
12.822
13.672
14.525
15.383
16.243
17.108
17.974
18.845
19.717
20.592
21.469
22.348
23.229
24.113
24.998
25.885
26.774
27.664
28.556
29.450
30.345
31.241
32.139
33.038
33.938
34.840
35.742
36.646
37.550
38.456
39.363
40.270
41.179
42.089

.90

2.303
3.890
5.322
6.681
7.994
9.274
10.532
11.771
12.995
14.206
15.407
16.598
17.782
13.958
20.128
21.293
22.452
23.606
24.756
25.902
27.045
28.184
29.320
30.453
31.584
32.711
33.836
3.4.959
36.080
37.198
38.315
39.430
40.543
41.654
42.764
43.872
44.978
46.033
47.187
48.289
49.390
50.490
51.588
52.686
53.783
54.873
55.972
57.065
53.158
59.249
60.339

.95

2.996
4.744
6.296
7.754
9.154
10.513
11.343
13.148
14.435
15.705
16.962
13.207
19.443
20.669
21.886
23.097
24.301
25.499
26.692
27.879
29.062
30.241
31.415
32.585
33.752
34.916
36.076
37.234
38.389
39.541
40.691
41.838
42.983
44.125
45.265
46.404
47.541
48.676
49.808
50.940
52.070
53.198
54.324
55.449
56.573
57.695
58.816
59.935
61.054
62-171
63.287

.99

4.605
6.638
8.406
10.045
11.6.05
13.108
14.571
16.000
17.403
18.783
20.145
21.490
22.321
24.139
25.446
26.743
28.030
29.310
30.581
31.845
33.103
34.355
35.601
36.841
38.077
39.308
40.534
41.757
42.975
44.189
45.401
46.608
47.813
49.014
50.212
51.408
52.601
53.791
54.979
56.165
57.348
58.528
59.707
60.883
62.058
63.231
64.401
65.571
66.738
67.903
59.067

Figure 4. Confidence limits on the mean of a Poisson
distribution, given a single sample value, n,
of the random variable.
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number of trials to get the results as percentages. For example, sup-
pose an experiment with good statistical representation results in 100%
accuracy. From the table at 0 errors, the average number of errors per
experiment over many repetitions of the experiment should be somewhere
between 0.010 and 4.605, with 98% confidence.

Training Sets and Test Sets

A well established empirical fact is that if a pattern recog-
nition machine is tested on the same data base used in training the
machine, the results are always better than if an unknown population is
employed for the test. The contributions to this bias can be rather
subtle, so the safe test procedure involves procurement of a completely
new test data base from talkers not previously used in any part of the
engineering development project. (On the other hand, development work
directed toward a specific application is best done from recordings of
real or simulated operational conditions in order to minimize a differ-
ent kind of bias.)

Surprisingly, there is very little information on this subject
in the mathematics literature. Dialog has, therefore, established a
modest analytical project to derive expressions for the statistical
bias in cases of interest for pattern recognition. One interesting
result for maximum likelihood recognition of Gaussian patterns is that
the expected test score for an unknown population is pessimistically low
when the training set is of finite size. Figures 5 and 6 show the rela-
tion between expected training set and test set scores for one dimensional
Gaussian patterns. This particular function is of little or no practical
value, since all cases of interest are multi-dimensional. The diagrams
illustrate, however, that even in this simple case the bias is a compli-
cated function of the population size and the true error rate.

By the law of large numbers, the bias decreases inversely
with sample size for a properly designed method. The system behavior as
a function of sample size can, therefore, be estimated roughly by taking
measurements at two sizes. At every stage of development and field
testing, however, the inescapable conclusion is that small scale pattern
recognition tests yield very unreliable estimates of large scale per-
formance .

II. Accomplishments and Planned Development at Dialog

Our company, Dialog Systems, Inc., was formed in 1971 for the
purpose of developing and commercializing speech recognition equipment.
The concept derived from earlier work engaged in at Listening, Incor-
porated on marine bioacoustics, acoustic signal processing, and psycho-
acoustics. The original idea passed through well-known stages of theory,
experiment, development, lack of financing, financing, sales and is now
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" "true" error, £

Figure 5. Empirical values for the bias of unknown
test set error rates, derived by a computer
experiment on pseudo random numbers, compared
with a theoretical approximation. The empirical
data are relatively accurate (dotted lines) near
e =0.5, and the divergence of the Taylor series
approximation is evident here. Elsewhere agreement
seems rough, but is within experimental error.
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Figure 6. Empirical curves for the relation between average
training set and test set error rates for various
values, n, of the size of the training set. The
functions terminate as indicated, near e = 0.5.

The subscript "t" indicates the training set and
"u" the unknown test set. The value, e, is the
observed error rate for one experiment of sample
size, n.
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at the highly advanced state "production engineering headaches". Dialog
employs 45, of whom 14 are degreed technical people. The company
recently moved from Cambridge to a 20,000 square foot two-building campus
complex in Belmont, Massachusetts.

The major product is an eight-channel isolated word system
intended for talker-independent switched telephone speech input. With
trivial software modification, the same equipment adapts to and tracks
each talker's voice characteristics, thus becoming a partially or fully
trained machine which is unusually forgiving with respect to changes in
the talker's manner of speaking. Operation in the talker-dependent mode
requires only one training sample of each vocabulary word. This is made
possible by virtue of the precomputed statistical reference patterns con-
tained in the machine.

A complete system (Figure 7) comprises:

1. An analog section consisting of a telephone
line switch matrix concentrator, analog-to-
digital domain conversion unit and a voice
response unit.

2. A disk storage unit for logging and program
loading.

3. An interface control computer.

4. A fast signal processing computer of Dialog
design and interface to controlled equipment.

5. Power supplies.

The most complex of the units sold to date were priced at about $75,000
for eight simultaneous channels. Installed systems are being supported
very heavily by us to ensure that we hear about and correct any troubles
encountered. Fhone calls from end users are tape recorded and the
unintelligible ones analyzed to develop improvements in the recognition
algorithm or in the human factors. We have found this operational not-
test-but-real-life condition to be different from any simulation, and
in the case of new applications to require a substantial refinement
effort after delivery and installation. In our experience, problems
have arisen that could not be solved by either recognition software or
control software changes alone. In general, therefore, the manufacturer
must plan for this extra effort, or else the customer must have a speech
recognition expert on hand to make his system work. The author has never
heard of a speech system working well in an application for which it was
not designed, and believes that this situation will continue to be true for
some years to come, until a really broad range of application problems has
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Figure 7. Complete Speech Recognition System
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been solved. The problems are being solved, and no one need hesitate to
take the next step; but the step is there, cannot be skipped, and it costs
money and manpower to take it.

In addition to its heavy investment in product commercializa-
tion, Dialog has the resources to maintain a strong research effort; and
the company is actively searching for talended people who will follow
their own interests in'the general area of continuous speech recognition.
About 80% of the company's R&D effort is in-house funded, and research
personnel (except for the author) are relatively well sheltered from the
vagaries of business problems. The main distinguishing feature of the
development work at Dialog is that we are making a serious attempt to
find improved statistical models of speech data. This includes taking
into account the measured variances and cross-correlations of various
parameters over large populations of talkers. Thus, we speak of our
pattern matching functions as "conditional probability densities" and
not "distances". There is, in fact, a fundamental mathematical differ-
ence, because a distance is a symmetric relation. Probability measures
do not have this property, and do not want it.

Aside from its intrinsically more precise description, an
advantage of this approach is that a small number of reference templates
suffice for a talker-independent representation. This greatly reduces
the workload on higher-level calculations, particularly in talker-
independent continuous speech recognition. Our current talker-independent
telephone speech product incorporates just two reference patterns per
vocabulary word, derived from the speech of hundreds of talkers. The
task of gathering, labeling, and proofreading the raw speech data
bases for this work has turned into a major project in itself.

While Dialog's engineering activity has so far been devoted
to development of system hardware and isolated word recognition, our
research effort since 1974 has concentrated on continuous speech recog-
nition. Under contracts with RADC, we have worked on the keyword spot-
ting problem and have produced an algorithm with good talker-independent
performance (Figure 8). Word spotting tests under simulated operational
conditions are scheduled for 1978. The keyword task is quite difficult,
because the brief target sound must be detected independent of context,
and all other sounds of an open, plain language input stream must be
rejected. The problem is made interesting, however, by the fact that
the total number of variables is manageable, so that it is possible to
develop theoretical hypotheses and test them by experiment.

The task of limited vocabulary continuous speech has fewer
uncontrolled variables than the keyword task, and is therefore easier.
Dialog demonstrated such a system in 1975; this system is now in the
product development phase and will be released for operational use in
1978.
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Figure 8. Receiver operating characteristics derived from
English language tests of the key word recognition
system. Top curve recalls data from the 1976 test,
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Organizations which now have operational speech recognition
equipment for sale tend to be strong on acoustical pattern analysis and
weak on higher level linguistic analysis. There has probably been a
general feeling among these people that linguistic processing will not
cure the acoustic-level problems on which they feel they are making pro-
gress anyway. However, at least two groups, the ones at Dialog and Texas
Instruments, have made use of check digits to do error correction on
digit string inputs. A series of digits with a check sum is a language;
the rule for checking the check digit is a linguistic rule for deciding
if a sentence belongs to the language. Thus we already have in practical
equipment a rudimentary sort of linguistic processing - and it is not to
be scoffed at, because it does reduce the error rate (see Figure 9).

Syntax branching rules have, of course been in use for a long
time; but there is still a gap between the well-understood techniques in
acoustic analysis and statistical pattern recognition and the realm of
linguistic analysis. This gap is being filled in by relatively slow,
careful experimental work. It may be expected that practical commercial
continuous speech systems with vocabularies of several hundred words
will appear in the early 1980's, but probably not within the next two
years.

BIOGRAPHICAL SKETCH

Stephen L. Moshier

Stephen L. Moshier is President of Dialog Systems, Incorporated,
Belmont, Massachusetts, and is specifically responsible for the direction
of its research effort in addition to his general administrative duties.

Mr. Moshier has been with Dialog Systems since 1971 and has
made major contributions to that company's practical implementation of
computerized speech recognition.

From 1965 to 1971, he served variously as Engineering Vice
President, Technical Director and President of Listening, Incorporated,
Arlington, Massachusetts, where he worked on the development of special
purpose transducers and instruments for speech analysis, animal training,
underwater acoustics and spectrum analysis.

Mr. Moshier attended Harvard College (Physics), received a
Bachelor of Science Degree (Methematics), Summa Cum Laude, from Boston
University in 1971 and did graduate work in communications biophysics at
M.I.T. in 1971-1973. He has published many papers and patents in the
field of speech recognition.

Mr. Moshier is married, has one child and resides in Cambridge,
Massachusetts.
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Figure 9. Observed average recognition error rates for random
series of isolated spoken digits having check digit(s)
appended. For each input series the computer chose the
series possessing the best cumulative likelihood score
and also having legal check digits. The curves show
speaker-independent performance for 25 male voices
recorded over standard switched public telephone
connections. Error rates below 1% were statistically
unreliable in this experiment. No errors were observed
for series of length 1.

Upper curve: one check digit adjoined to the indicated
number of random digits. The check digit is the 9's
complement of the modulus 10 sum of the random digits.

Lower curve: two check digits adjoined. The first check
digit is the same as above. The second check digit is the
9's complement of the modulus 10 sum of the squares of the
random digits.
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DISCUSSION

MR. Robert Osborn

Q: Arnold Popky, Threshold Technology: You talked about voice recognition
over the phone lines. I was wondering if you felt any of the constra-
ints of the bandwidth of the phone lines and the microphones supplied
by the telephone company on your recognition accuracy.

A: That is an area that we have good confidence in at this point. Our
algorithm is made purposely transparent to that a limited bandwidth
which was never a problem, we never did rely on wide bandwidth, high
fidelity speech. And the dynamics of the microphone are adequately
taken care of by the statistical approach used. The actual data
base is collected. It's a tremendous job to collect adequate data
base. We have a data base department that does nothing but record
voices, label them, and digitize them. It consists of five full time
people. They just collect voices. And it's not easy to collect voices
over the random telephone lines. It takes a good deal of effort.
We now have data bases consisting of many hundreds of people —
individuals speaking over random telephone lines. It took quite a
while to get that. The base recognition accuracy that you saw on the
slide for the dialogue speaker independent system, was telephone
speech. It was over telephone lines.

Q: Michael Nye.: You explained two applications, one was a" radio paging
application, and the other application for telephone switching. I
have two questions. One is, it wasn't clear to me, the benefit that
speech offered in that application. And I was wondering if you
could just comment for 15 seconds about what that is, why is speech
used in that application. And secondly, you outlined a standard
system configuration and showed a picture of a device. What would
an 8 terminal system like that typically cost, if you can quote
a number like that.

A: The answer to the second question is somewhere in the range of $80K.
The first question, well, what other types of solutions are there?
Yes , you can have a bank of operators listening to people, you can have
people touchtone things, or you can have N telephone numbers for N
number of people with pocket pagers. Each of those has several
economic or operational problems. In the case of touchtones, they
don't exist extensively. Installed touchtone base in New York is may-
be 15 or 20 percent for instance. In some places they don't have
touchtone at all, effectively, Touchtone pads don't seem to work
adequately, and they're an additional capital expenditure, much more
so than the system that we've presented. Operators are very expensive,
especially in places where labor costs go out of sight. Our commercial
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is in Canada and they're locked-in because they can't get telephone
numbers from the telephone company, and if they could, the telephone
company would charge them $30 a month for them. And that five or ten
thousand subscribers adds up. This is a true economic application
area; somebody wrote down on the balance sheet what the results
would be, and they came out with voice, I think that's the way we
have to approach a lot of these application areas, we've just got to
solve the problem.

Q: George Doddington, TI: First, the simple question, what were the key
words that were used in that plot of key word performance?

A: That's available in the Rome report. There were a number of key words
tried, not only in English.

Q: George Doddington, TI^ Second is a comment, that is that, you mentioned
a little formula of xn for performance as a function of vocabulary,
and I don't really disagree with that. But I think I would like to
make the comment that the performance depends more on the vocabulary
than it does on the vocabulary size, and as an example, I would say
that we at TI have done some work on nested vocabularies, say, from
100 to 800 words, and we've found, for example, that the performance
on the 100 word vocabulary, which are most commonly used words, is
poorer than the performance on the 800 word vocabulary, which includes
the 100 word vocabulary.

A. We saw that with the AMES group, too. Also another fact that seems
to be rediscovered constantly is that the errors are very heavily
concentrated on some speakers, they are not uniformly distributed
over all speakers, I don't think there is an adequate explanation of
why tha's true. We're certainly investigating it. It's an observa-
tion I believe other people have made at times, too. It's not related
to stress, necessarily.

Q: Ed Huff, NASA Ames; How do you account for the fact,I guess, that
your 800 words is dealt with more competently that the 100 word subset.

A: George Doddington, TI: The 800 words are dealt with in exactly the same
way as the 100 words, it's just that the extra 700 words that you
throw in are more easily recognized. There's this shorthand principle
I guess, in speech, that the more often you use a word the shorter
it tends to get over eons of time of language evolution, so that the
most commonly used words in English are one syllable words like
"the," "of," "and," so for example, take the first 100 words. It
may be an average of one and a half syllables per word. But after you
get beyond the first several hundred words the average number of
syllables per word is up around two, and, as everyone knows, two,
three and four syllable words are very easy to recognize; the problem
is with one syllable words.
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Q: Ed Hu-ff: So in other words, you're . taking advantage of apertures in
order.to obtain that result..

A: George Doddinqton, TI; Oh, yes. We count on the fact that in the
exercise of the 800 word vocabulary the first 100 words account for
only one-eighth of the exercise. Even if you weight the first 100
words according to frequency of usage, given that they're used more,
the results are still the same.

Q: Rex Dixon, IBM; I think one of the things that's happening here is
really unfortunate, and that is that we're tending to go to generaliza-
tions . For example, the generalization of difficulty of recognition
as vocabulary gets larger, with no conditionals, which, of course, as
you've pointed out, George, this is a misleading statement at best.
I think also your statement about as words get longer they get easier
to recognize, is also a generalization. I think any of us, who have
been in the speech area, can come up with a vocabulary of long words
that will be extremely difficult to recognize, that is to get accuracy
within that list, and at the same time come up with a set of very
short words that are very easy to recognize. So I think the thing we
need to do here is to stop this perpetration, or perpetuation of over
generalizations which keep the field in trouble all the time. People
go around saying, "Well, as the vocabulary gets bigger, it gets harder
to recognize"; "longer words are easier to recognize than short words,"
etc, etc. And it just simply isn't true. I mean, these things are
all conditioned by a lot of other variables. Now the thing we should
be about, relative to vocabulary and difficulty of recognition, is
saying things like, "here is a method by which you can calculate, using
what we know about difficulty, having to do with phonetic similarity,
with vocabulary size, here is a way of predicting the difficulty of a
particular vocabulary, using all these factors." This is the basic
research I hope you were referring to. If we had these things, I
think the task for application selection would made easier.

A: I think that's correct.

Q: jared Wolf, BBN: Just to go along with Rex's statement, I'd just like
to point out for some people that may not be familiar with it, that
there was a thesis in Carnegie Mellon by Gary Goodman last year which
by no means is the whole attempt, but it's a very good first start in
just the direction that Rex just mentioned. People should be well
aware that we're looking for applications. I don't think it takes
care of everything, but it's a lot better than nothing.

284




