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Summary.

The following note contains a number of interesting theoret-

ical relations concerning air foroes and a new and.easy zethod

Of prOViZlgthem.

1. Introduction.

The study of the motion of perfect fluids is of paramount

importame for the understanding of the chief phenomena occurring

in the air surrounding aircraft, and fcr the numerical determina-

tion of their effects. In connection with the computation of tie

air forces of airship hulls I recently employed successfully some

simple methods for the investigation of the flow of a perfect

fluid, new for the greatest part and at least never mentioned in

connection with aerodynamical problems. These methods appeal par-

ticularly to the engineer who is untrained in the perfohing of- .

laborious mathematical developments and computations, as they do

away with these and allow one to obtain many interesting results
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by the mere application Of some general and well–known principles

of mechanics.
.

In this note I apply these methods on

ear motions. The fluid is always supposed

flow irrotational.

It iS often mentioned that the forces

problems of rectilin-

to be perfect and the

between a fluid anda

rigid body moving rectilinearly in it are the same whether the “

fluid flows around the resting body, or the body moves in the

fluid otherwise at rest. This holds true whether the rectilinear

motion is steady or accelerated. In consequence of this, the ki-

netic energy contained in the resting fluid added to the kinetic

energy of the fluid flowing around the body gives the kinetic en-

ergy of the entire fluid moving with constant velocity. The rest-

ing body decreases the velocity of the fluid in front of it and

behind it, thus diminishing the kinetic energy of the fluid by a

certain amount and this negative energy is equal and opposite to

the kinetic energy contained in.the gtherwise resting fluid sur-

rounding the moving body. The energy of the moving fluid is fur-

ther decreased for another reason: The fluid contained in the space
.

occupied by the body is removed and hence the kinetic energy of

this fluid moving with the velocity of motion is therefore missing.

This ”energyhomever is contained in the system if the body has the

same density as the fluid and if not only the kinetic energy of the

fluid alone but also the complete kinetic energy of the system is

considered. The kinetic energy of the fiuid alone may be cs+led

additional kinetic energy.



The forces between the body and the fluid and hence the ki–

netic energy are proportional to the sLhmre of the velocity. It

is for this reason that the effect of the surrounding fluid is

th.sssme as if an additionfi inertia has been imparted to the

body. The sum of the additiona2 inertia and the inertia of the

body itself, provided its density be;equal to that of the fluid,

may be called the complete inertia. All methods of the ozdinary

mechanics of rigid bodies can be applied to the body with the”in-

creased inertia2 and in particular use can be made of the mome~
.

tum imparted ta the body by the forces acting during the creation

‘of a motion from rest.
. .

There is however one important and interesting difference be-

tween the body immersed in a perfect fluid and an ordinary body.

The latter has the same inertia in all directions. Hence the mo-

mentum has @lways the same dir~ction as the velocity and is pro-

portional to it. On the other hand, the immersed body has differ-

ent inertias in different directions, and the direction of the

momentum snd the velocity does not agree in general. For if the

body is ,unsymmetricaiand moves in different

around it is quite different and there is no

tional inertia or the corresponding momentum

in all directions.

namic phenomena and

It oan be seen

directions the flow

reason why the addi-

should be the same

This gives the explanation for

relations. .

in the textbooks (Lamb, p.159),

many.hydrody-

that there are

always existing three directions of the body mutually at right
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angles to each other, where the body experiences no moment. The

&irection of the momentum agrees then with the direction of the

motion. It is easy to determine the mcuxxrlmmfor any direction

of the velocity. The velocity is to be divided into its three

components in these three main directions> the momentum for each

of them is determined, being proportional to the velocity cotiO-

nent~ and the three momenta thus obtained are the components of

the

the

the

entire momentum.

Before making use of the momentum and the kinetic energy of

system, I wish to make some remarks on the determination of ‘

kinetic energy or the apparent mass in special cases. The

entire kinetic energy is of course the integral over the product

of half the masses’of all the particles of the fluid and the

sWare of thein~ielbdjty. This mace integral can be reduced

first to an integral over the surface of the body by integrati~~

along each tube bounded by stream lines. The kinetic energy ap-

pears then to be the inte~al over all products of the masses of

fluid passing the surface per unit of time and their velocity po-

tential. This refers to the case of the body moving in.the other-

wise resting fluid, asd the passing fluid is determined by suFJpos-

ing the body to rest also but nevertheless the fluid to move as

if the body were moving. This surface integral is sometimes quite

convenient, if the potential is kno~m. This is the usual method

of computation. If, however, we lqow the fictitious sources and
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vortices inside the body, .whic-hproduce the outside flow, the Com-

putation oan be considezahly simpiifi~& 1n8te~ of considering

the”flow of the moving body and henc? the integzal o-~erthe sw-

f~e of the body, which is indeed the only me intersected by all

stream lines, it is then more ~vi~a-~le to consider the flow Of

the moving fluid arorlndthe resting body and to consider the inte-

gral over a sphere of infinite radius, with the body near the ten- :

ter. Then only the second harmonic attributes to the integral

and it appears:

The complete mass is the sum of 821 intensities of the fit- .

titious souroes each multiplied by the potential of the parallel

flow of motion, and of all closed cum-es of fictitious vo;ticss

the intensity of each fil%iplied by the fluid passing any cozcnect-

ing diaphragm per &tit of time, in virtue of the paraliel flow.,

This theorem can be impressed on the mind by means of the

following conceptions. Each souzce and vortex experiences at

eaoh time a fome as described in N.A.G,.4,Report No. 114, Part

III. That is, the force on the som*ce is the product of the pro-

duced mass in unit of time and the velocity of the fluid in.that

point, acting in the direction of the ve~ocity if the source is

nege-tiveand in opposite direotion if the sou~ce is positive.

The”vortioes experience forces at right angles to the velocities

in accordance with the theory of lift. Now all sources and vor-

tices can be supposed to be first moved together into one point,

producing no effect at all. Then they gradl~lly mcve to their

places, and the work required in order to move them is exactly
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eWal to the diminution of the complete kinetio energy.

No use is made of the fact that the original outside flow is

zwt ilinear, The theorem indeed holds true under much more gen-

eral condttions~ and in particular also for a plu.rali$yof bodies.

The theorem gives the complete kinetic energy of the last body -

added, considering the flow produced by the other bodies as orig--

inal”outside flow. The co~lete kinetic energy of several of the

bodies is calculated in the ssme way with respect to the potential

of the flow of the remaining.bodies and the outside flow. With

reZpeCt tO their m’utualincrease C)ftb.ek~p.e’b?L~ energy, howevez,

the factor + is to be introduced, as otherwise each of the bod-

ies would have been taken into account twice. This is proven in

the sme

The

gravity,

way as before.

relations are in exact analogy to those in the theory of

and indeed the forces between the sources are the

as between attracting masses. For tineaotual

er, the value of these relations is sometimes

difficulties to find the sources, for instead

of the body is usually giyen.

For the

simple case,

sional flow.

2. Problens in Two Dimensions.

application,

;diminished

of these the

demonstration of the methods I begin with the

same

howev-

by the

shape

most

that is the straight line surrounded by a two-dimen-

If the line is parallel to the motion, the complete

inertia, identical in this case with the additional inertia, is

zero~ ~d so is the kinetic energy and the momentum. ?Jovi& at
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right angles to its direction, the compSete

the circle over the l~ie, as shown in Lambls

mass @uals that of

‘tHydrodynamics,’~

Fourth edition, page 81. For any angle of attack the moment coKl-
~n

ponent in the direction of motion is V p L ~ sin 2 a and

fL21T
‘2 ~ sin 2 a at right angles to t.t~as resuits from the con-

sideration that the transverse flow alone’has a momentum at light

angles to the line.

Suppose the line to be resting and the fluid to be moving.

The position at right angles to the motion is that of smallest en-

ergy, hence it is stable, for it cannot be conceived how any bther

position can be reached without external supply of energy. This

consideration gives the direction of the moment aoting on the line.

Its magnitude can either be obtained by the consideration of the

momentum or of the energy. If the line moves, the momentum
@L2:

‘2 ~ sin 2 a moves by the distance V per unit of time, hence

requiring the moment V2&L2~ sin2Cf, .
2 4 Or, if the resting line

revolves slowly by’the angle da , the incrsase of the work
2P,* 2P 2 ~

‘sL ~sin2aisV~L~ sin2ada giving the same moment

as before.
.

I proceed now to two-dimensional $ections which are almost

straight lines, I mean symmetrical &d thin ones. If they are

first infinitely thin and obtain their shape by

the pressure of the longitudinal flow along the

qonstaiitand to be taken as ~ ~ according to

gradually growing,

surfaoe is at first

the preceding for

the longitudinal flow, as the velocity is constant and mud to

V along the surface. Hence the work done during the process of



creating the shape is

by V2$ That means
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e~~lalto the

the complete

area of the shape multiplied

lon@tudinal mass is IWual to

the product of the area ad the density of the fluid, and the ad-

ditional mass ia zem of higher majjlitucb thau the azea oi the”

thin section. The pressure of the transverse flow i;

P ; xx+ for tie length 2 of the line, reaching from x = +.1
-.

to x=-l. The thickness of the thin sha~e may be 5 in eajh

part. Then the work ebsorbed dtming the

thickness is
o +3gx2ti

‘2 2 f 3-X2
-1

process of increasing the

and the complete kmnsvezse inertia is increased by

‘=h%.x “
p .f 1-X2

.-L

The moment is proportio~al to the difference of the two complete

massess and it follows therefore that”it is increased by “

‘1 E (2X2 - 1)
P

f 1-X2
-1

+1
@ g

~ sin2a L2 {;+ / ‘ ‘y: ;5’

~ is the thidness and x the co’’jdinatein units

lerigth. This &ows that the noaent is increased if

dx}

of half the

the shape is

made thicker near the ends but it is decreased if it 5s made

thtckoz rear the middle. The reason is easily understood.

The si?aight line may not be made thicker but it may be bent

into the shape given by the coordinates ~. At the angle of at-



-9-

tack a and for the length 2 as before, the transverse force 1s

2P x 2Z.
V ~sin2u iq _~aGL ~ ~ Hence the work done is

J’-x

For small a and ~ this increases the moment by the
+1

as if the angle of attack is increased by da . ip

This result was formerly found by me

which is given in N+ A. c. A. RepOrt

If the line becomes at the same

same amount “

Ijxdx

f==
by means of another method

No. 142. I

time thicker and curved, the “

change of the moment is the sum of the two single changes.

The results are only valid for very thin sections. Conclus-

ions for somewhat thicker sections C- be drawn from the flow

around ellipses. From the textbooks it can be seen that the addi-

tional inertias of an ellipse with the axes a and b are respect-

ively a2”p gqandt?p~ so that the difference depends only on

4J==
the distance of the focz. Hence all confocal ellipses

have the same moment, if the angle of.attack is t-hesame, NOW for

elongated ellipses the focus is situated halfway between the end

of the great axis and the center of the greatest curvature. It

follows from this that for the calculation of the moment of an .

elongated section the end of the central curve is to choose half

way between the end and the center of curvature of the end, as

mentioned by me in N. A* C- A. Report No. 142.



The constancy of the moment-of confocal.ellipses reminas us

of the constancy of their z.,pparent,additionalmoments of inertia
. .

when rotating in a fluid (Lam~, p.85). The kinetic energy of the

external-fluid ie then given by

where w is the angular velocity and 2C the distance of the foci.

3. Problems in

I consider first a plane

Three Dimensions.

sheet. The.inertia in all direc-

tions of the plane is zero. It follows therefore that the moment

depends on the angle of attaok but not on the angle of yaw. -!

If the plate has a small thiclmess,

before shows that the additional inextia

parallel to its plane. Hence the moment

the angle of yaw.

the same reasoning as

is zero in all tiireci~ons

remains independent of

A circulai dis~ has the apparent ~SS awl to that of the

83volume p — r
3

whe~e r denotes the r&Uius (Lamb, p.132). That

is only 0.637 of the volume of the sphere with the same radius.

Hence the moment iS smaller as if each longittiin~ element would.

be surrounded by the two-dim&nsicnal flow. Wis holds true for

more elongated plan views too, but the difference is probably very

small then.

Of consider~le importance are bodies very elongated in one

direction on~y. The axis may be straight. The same reasoning as

before shows that the additional mass is zero for the longit@hal
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motion. The oomplete masses in the other directions can be ob-

tained by oonsicleringthe transverse flow as Wo-dirnensional.

Surfaoes of revolution are particularly important. Their

transverse complete masses are ~ual to twice %he volume, their

longitudinal masses to the volume only. The moment therefore is

‘2 i (Volume) sin 2a .

The.influence of a moderate thickness can be studied by the

comparison with ellipsoifisof revolution. The following table

gives the additional masses h- and q for different ratios
Length
Diameter as computed by Lamb (R&M #623). The difference (kz- ka)

indicates the fraction of the moment to that of a very elongated

surfaoe of revolution with the same volume. For the investigation

of moderately elongated surfaces of revolution other th~ ellip-

soids, the coefficient of the corresponding ellipsoid can be taken.

If the shape of the surface iS reasonable the ratio L/I) of tie

corresponding ellipsoids is approximately

At last I yroceed to the

the transverse fozces of very

L3
G

investigation of the distribution of

elongated surfaces of revolution.

I imagine the axis bent in a point by a small angle da. The

work absorbed in the joint during the process of bending e!iuals

the change of the complete kinetic energy, One portion of the

body may be resting, the other one turns around the joint. Its

volume may be Vol.’. The flOW around each section is almost inde-



gendent of the position of the other sections =d hen~e the change .

is the same as if a surfaoe of revolution of the volume Voll “h~,fi

increased its a@.e of’attack by da. The bending moment in the

joint”appears therefore Vol’ vi; sin 2a. From this follows . -_

that the transverse forces are distributed Fro~ortional to the

change of section area per unit length of the axis.
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