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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS:
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NOTES ON AERODYNAMIC FORCES — I.

Rectlilinear Motionm.

By Max M. Munk.

Summa, v.

The following note contains a number of interesting theoret-
ical relations concerning air forces and a new and easy method

of proving them.

1. Introduction.

The study of the motion of perfect flulds is of paramount
importance for the understanding of the chief phenomena occurring
in the air surrounding aircraft, and for the numerical determina-
tion of their effects. In comnection with the computation of the
alr forces of airship hulls I recently employed succeésfully some
simple methods for the investigation of the flow of a perfect
fluid, new for the greatest part and at least never mentioned in
connection with aerodynamical problems. These methods appeal par-
ticularly to the engineer who is untrained in the performing of
laborious mathematical developments and computations, as they do

away with these and allow one %o obtaln many interesting resulis
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by the mere application of some general and well-known principles

of mechanics.

In this note I apply these methods on problems of rectilin-
ear motions. The fluid is always supposed to be perfect and the
flow irrotational.

It is often mentioned that the forces between a fluid and a
rigid body moving rectilinearly in it are the same whether the
fluid flows around the resting body, or the body moves in the
fluid otherwise at rest. This holds true whether the rectilinear
motion 1s steady or accelerated. In consequence of this, the ki-
netic energy contained in the resting fluid added to the kinstic
energy of the fluid flowing around the body gives the kinetic en-
ergy of the entire fluid moving with constant velocity. The rest-
ing body decreases the velocity of the fluid in front of it and
behind it, thus diminishing the kinetic energy of the fluid by &
certain amount and this negative energy is edual and opposite to
the kinetic energy contained in the gtherwise resting fluid sur-
rounding the moving body. The energy of the moving fluid is fur-
ther decreased for another reason: The fluid contained in the space
occupied by éhe body is removed and hence the kiﬁetic energy of
this fluid moving with the velocity of motion is therefore missing-
Thié:energy however is contained in the system if the body has the
same density as the fluid and if not only the kinetic energy of fhe
fluid alone but also the complete kinetic energy of the system is
considered. The kinetic energy of the fluid alone may be called

additional kinetic energy.
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The forces between the body and the fluid and hence the ki-
netic energy are proportional to the sQuare of the velocity. It
ig for this reason that the effect of the surrounding fluid is
ths same as if an additional inertia has been imparted to the
bpdy. The sum of the additional inertia and the inertia of the
body itself, provided its density be:equal to that of the fluid,
may be called the complete inertia. All methods of the ordinary
mechanics of rigid bodies can be applied to the body with the in-
creased inerﬁia, and in partlcular use can be made of the momen-
tum imparted to the body by the forces acting during the creation
‘of a motion from rest. | ' '

There is however one importanﬁ and interesting difference be-
tween the body immersed in & perfect fluid and an ordinary body.
The latter has the same inertia in all directions. Hence the mo-
mentum has aiways the same direction as the velocity and is pro—
portional to it. On the other hand, the immersed body has differ-
ent inertias in different directions, and the direction of the
momentum and the velocity does not agree in general. For if the
body is unsymmetrical and moves in different directions the flow
around it is Quite different and there is no reason why the addi-
tional inertia or the corresponding momentum should be the saue
in all directions. This gives the explanation for many- hydrody-
namic.phenomena and relations.

1%t can be seen in the textbooks (Lamb, p.159), that there are

glways existing three directions of the body mutually at right
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angies to each other, where the body experiences no moment. The
Girection of the momentum agrees then with the direction of the
motion. It is easy to determine the momentum for any direction
of the velocity. The velocity is to be divided into its three
components in these three main directions, the momentum for each
of them is determined, being proportional to the velocity comﬁo-
nent, and the three momenta thus obtained are the components of
the entire momentum.

Before making use of the momentum and the kinetic energy of
the system, I wish to make some remarks on the determination of
the kinetic energy or the apparent mass in special cases. The
entire kinetic energy is of course the integral over the product
of half the nasses of all the particles of the fluid and the
sQuare of theirci¥esloé¢ity. This space integral can be reduced
first to an integral over the surface of the body by integrating
along each tube bounded by étream lines. The kinetic ehergy ap-
pears then to be the integral over all products of the masses of
fluid passing the surface per unit of time and their velocity po-
tential. This refers to the case of the body moving in.the other-
wise resting fluid, aad the passing fluid is determined by suppos-—
ing the body to rest also but nevertheless the fluid to move as
if the body were moving. This surface integral is sometimes Guite
convenient, if the potential is known. This is the usual method

of computation. If, however, we know the fictitious sources and
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vortices inside the body, which produce the outside flow, the com-
putation can be considerabiy simplified. Inetead of considering
the flow of the moving body and hencs the intsgral over the sur-
fg&e of the body, which is indeed the only one irntersected by all
stream lines, it is then more adviesble to consider the flow of
the moving fluid around the resting body and to consider the inte-
gral over a sphere of infinite'radits, with the body near the cen-
ter. Then only the second harmonic attributes to the integral
and 1t appeara:

The complete mass is the sum of 8ll intensities of the fic-
titious sources each multiplied by the potential of the parallel
flow of motion, and of all closed curves of Ffictitious vorticss
the intensity of each multiplied by the fluid passing any connect-
ing diaphragm per wait of time, in virtue of the paraliel flow.

This theorem can be irpreesed on the mind by means of the
following conceptions. Each sourcs and vortex experiences at
each time a force as described in N.A.C.A, Report No. 114, Part
III. That is, the force on the source is the product of the'pro—
duced mass in unit of time énd the wvelocity of the fluid in. that
point, acting in the direction of the velocity if the source is
negative and in opposite direotion if the source is positive.

The vortioes eyperience forces at right angles to the velocities
in accordance with the theory of 1lift. Now all sources and vor-
tices can be supposed to be first moved together into one point,

" producing no effect at all. Then they gradnually move to their

places, and the work reQuired in order to move them is exactly
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edual to the diminution of the complete kinetic energy.

No use is made of the fact that the original outside flow is
rectilinear. The theorem indeed holds true under much mors gen-
eral condltions, and in particular also for a plurality of bodies.
The theorem gives the complete kinetic energy of the last body
added, considering the flow produced by the other bodies as orig-
inal outside flow. The complete kinetic energy of several of the
bodies is calculated in the same way with respect to the potential
. of the flow of the remaining bodies and the outside flow. With
respect to their mutual increase of the kinetic ensrgy, however,
the factor 4 is to be introduced, as otherwise each of the bod-
ies would have been taken into account twice. This is proven in
-the same ﬁay as before.

The relations are in exact analogy to those in the theory of
gravity, and indeed the forces betwsen the sources are the same
as between attracting masses. For-the actual application, howev—
er, the value of these relations is sometimes - -diminished by thre
- difficulties to find the sources, for instead of these the shape

of the body is usually given.
2. Probleme in Two Dimensions.

For the demonstration of the methods I begin with the most
simple case, that is the straight line surrounded by a two-dimen—
sional flow. If the line is parallel to the motion, the complete

inertia, identical in this case with the additional inexrtia, is

zero, and so is the kinetic energy and the momentum. Moving at
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right angles to 1its direction, the complete mass eQuals that of
the circle over the line, as shown in Lamb's "Hydrodynamics,"
Fourth edition, page 81. For any angle of attack the moment com-

pongnt in the direction of motion is V p | it gin 3¢ and

P
P =2 m . )
V-§ L 7z Sin 8 ¢« at right angles to i%, as results from the con-

sideration that the transverse flow alone has a momentum at right
angleé to the line.
Suppose the line to be resiing and the fluid to be mowvwing.

The position at right angles to the motion is that of smallest en-
ergys hence it is stable, for it camnot be conceived how any other
position can be reachg@ without external supply of energy. This
consideration gives the direction of the moment acting on the line.
Its magnitude can either be obtained by the consideration of the
momentum or of the energy. If the line moves, the momentum

p T

V-g La-z sin 2 @ moves by the distance V per unit of time, hence

requiring the moment V= %La;r_z sin 2a . Or, if the resting line

revolves slowly by'the angle da, the incrsase of the work

o

2 ¥ 2 P .2
VT3

11 3 .
1? Zz 8ln 3a is V 3 L 7z sin 2« do giving the same moment

as before.

I proceed now to two-dimensional sections which are almost
straight lines, I mean symmetrical and thin ones. If they are
first infinitely thin and obtain their shape by gradually growing,
the pressure of the longitudinal flow along the surface is at first

congtart and to be taken as Vz-g according to the preceding for

thé longitudinal flow, as-the velocity is constant and edual to

V along the surface. Hence the work done during the process of
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creating the shape is ednal to the area of the shape multiplisd
by V2 %. That means the complete longitudinal mass is edual to
the product of the area and the density of the fluid, and the ad-
ditional mass is zexo of higher magnitude thawn the a?ea or the
thin section. The pressure of the transverse flow is

Ve-g szffl for tHe length 2 of the linz, reaching from =x = + 1
to x = - 1. The thickness of the thin shape may be £ in each

part. Then the work absorbed during the process of increasing the

thickness is +

1
3 ; 1. x°
and the complete transverse inertis is increased Dy
+1 '
¢ x® ax

e 1 - x2

-2
The moment is proportional to the difference of the two complete

masses, and it follows therefore that it is increased by

+1 .-
v £ sin g0 1 {2+ /‘ ﬁ(ix_ ;21) ax }
¢ 1s the thickness and x +the coordinate in units of half the
length. This shows that the moment is increased if the gshape is
made thicker near the ends but it is decreased if it is made
thicker near the middle. The reason is easily understood.
The straight line may not be made thicker but it may be bent

into the shape given by the coordinates £. At the angle of at-
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tack & and for the length 2 as before, the transverse force is

T
Va'% sin 3a =L 3 . Hence the work done is

For small a and ¢ this increases the moment by the same amount

+1
. dx
as if the angle of attack is increased by da = / £ x

S 1o e
This result was formerly found by me by means of another method

which is given in N, A. ©. A. Report No. 143.

If the line becomes at the same time thicker and curved, the
change of the moment is the sum of the two single changes.

The results are only valid for very thin sections. Conclus-
ions for somewhat thicker sections can be drawn from the flow
around ellipses. From the textbooks it can be seen that the addi-
tional inertias of an ellipse with the axes a and b are respect-
ively a®-p Ii and ¥ o %
the distance of the foci. /a® - b . Hence all confocal ellipses-

so that the difference depends only on

have the same moment, if the angle of. attack is the same, Now for
elongated ellipses the focus is situated halfway between the end
of the great axis and the center of the greatest curvature. It
follows from this that for the calculation of the moment of an .
elongated section the end of the central curve is to choose half
way between the end and the center of curvature of the end, as

mentioned by me in N, A, ¢. A, Report No. 143,
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The constancy of the moment of confocal ellipses reminds us
of the constancy of thelr cpparent additional moments of inertia
when rotéiing in a fluid (Lamb, ¥.85). The kinetic energy of the

external fluid is then given by

BT =5 wRuwp*

(o] |

where w 1is the angular velocity and 2¢ the distance of the foci.

3. Problems in Three Dimensions.

I consider first a plane sheet. The.inersia in all direc—
tions of the plane is zero. It follows therefore that the moment
depends on the angle of attack but not on the angle of yaw.

If the plate has a small thickness, the same reasoning as
before shows that the additiunal inertia is zero im all directions
parallel to its plane. Hence the moment remains independent of
the angle of yaw.

A circular disc has the apparent mass elual to that of the

volume p-% r® where T denotes the radius {Lamb, p.133). That

is only 0.637 of the volume of the sphere with the same radius.
Hence the moment is smaller as if each longitudinal element would
be surrounded by the two-dimensicnal flow. This holds trzue for
more elongated plan views too, but the difference is probakly very
small then.

Of considerable importance are bodies very elongated in one

direction only. The axis may be straight. The same reasoning as

before shows that the additional mass is zero for the longitudinal
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motion. The complete masses in the othei directions can be ob-
tained by_considering the transverse flow as two—dimenéiqnal.

Surfaces of revolution are particularly important. Their
transverse complete mzeses are edual to twice the volume, their
longitudinal masses to the volume only. The moment therefore is
v -29 (Volume) sin 3a.

The .influence of a moderate thickness can be studied by the
comparison with ellipscids of revolubtion. The following table
gives the additional masses k, and k, for different ratios
DB 55 computed by Lemb (RAM #623). The difference (k- k)
indicates fhe'fraction of the moment to that of a very elongated
surface of revolution with the same volume. For the investigation
of moderately elongated surfaces of revolution other than ellip—
soids, the coefficient of the corresponding ellipsoid can be taken.

If the shape of the surface is reasonsble the ratio L/D of the

corresponding ellipsoids is approximately

At last I proceed to the investigation of the distribution of

' the transverse forces of very elongate& surfaces of revolution.
I imagine the axis bent in a point by a small angle d . The
work absorbed in the joint during tke process of bending eduals
the change of the complete kinetic energy. One portion of the
body may be resting, the other one turns around the joint. Ifs

volume may be Vol'. The flow around each section is almost inde-
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nendent of the position of the other sections and hence the change
ie the same as if a surface of revolution of the volume Vol' has
increased its angle of attack by dea. The bending moment in the

joint'appears therefore Vol! Vg-g gin 2 a. From this follows

that the transverse forces are distributed progortional to the

change of section area per unit length of the axis.
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TABLE.

%%gﬁg%;; : , ; k, -k,
1.00 0.5 .5 0
1. 50 : .821 : . 305 : . 316
3.00 : «703 : .309 . 493
3.51 : .763 : .156 : . 607
2.99 : .803 : .122 : .681
3.99 : .860 : . 083 .778
-4. og : . 895 : . 059 : .836
8.01 : . 918 : . 045 : .873
5.7 : .933 : .0%5 . .897
8.01 .945 : <029, : . 916
9.02 : . 954 : . 024 : . 930
9. 67 : .980 : .021 . 939
10.00 1.000 : : 1. 000




