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DIFFERENTIAL EQUATIONS IN AIRPLANE MECHAKIOS.*
By .

M, T, Carleman.

For deternining the motlon of ar aslrplane, we have adoptec
the hypothesis that the reactlions of the alr depend entlirely on
the relative speed of the alrplans. Ever 1if we 9.d9pt tke sin-
plest lams of resiatance, we obtain diffsrentliel =duations whica
we can not Integrate explicitly. If we confine ourselves to the
motion 1n a vertioal plane and, at the same time, -assume a con-
stant angle of attack, we still obtein diffesential squations
whlch oan not be integratad by .elanenta.ry :;ethod.s.

In tte Zollowing paragraphs s Ve wiil Ilret draw sore oon-
clusions of purely tkeoretical interest, from the generel equa~
tions of nmotion. At ths end, we wlll conelder the motion of ean
alzplane, with the sngine dead and withl the assumption that the
angle of attack remalns constant. Thua we arrive at a simple
result, which oczn be reandared practically utilizeble for deter-
mining the trajectory of an airplane descending at a constant
stesring angle. o

- Lat us assume that the airplane moves in its plane of syr—e-
try, consldered vertical. Let x and y represent a s_ystan of
coordinates in thise tlans, thé axis of the x 1lines being hori-
zontal and the axie of the y 1lines being vertical and upward.

Let ve designate by u and v the _p}'oj'eotions of the velooity w
* From "La Teobnigue Aeronautigue,T May, 1931.
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of the osnter of gravity of the airplane or the axes of x and ¥y
and by the angle y the angle of the veloolty with the axis of
the x lines. Let ne designate by 1 +Le amass of the alrplone
end by UI 1ts moment of lnertle witk relstion to ar axis paes-
ing through tae oenter of gravity at right angles to the plane
xy. The foroes scting on the airplane are:

Its weight g directed toward -y:

Propellex thrust T. of which we will designate by MA and
YB +Ls componsmts in the direction of w and at right engles
to 1;

Drag, If & w3, in the direction -w;

Lift, ¥ b w3, at right angles tc w.

Under these ooindltions the thaory of the motion of the oen-

ter of gravity glvew us

W = - Kawlocos v +%Acos ¥ ~Hbw2sin ¥ - ¥ B sin v.

L‘Iﬁ%=~h{aw3 gin vV + M A egin ¥V +Ubw?oos ¥V +¥ Bcos¥-

Br substituting
=4 =X
cos V¥ v gln ¥ =
ve have
(1) -g%é=-w (au+bv) +-‘L1'1'*—;;—BJ-
(3) %%=-w(a.v—bu) +AY—';'|.|;—]-31ll -g

w= /u2 +v=,
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If wa projeot these forcss on the tangent and or the per-

pendioular to the trajectory, we obtain
(3) %%; - aw? - g ein ¥ + A.

4) wi¥ = bw2 - g cos ¥ + B.

at

By lettiagz
a=p sin a L& =Kocos B
b= p oos & B=K 3in B

Ve san, by introGuoing imaginary Quantivies, combine sduations

(1) and (3) in%o a singls equation

() S tiv) iy p ot LK) 4 av) - 1.

4

The noment of the alr resistances about the center of grav-

ity can bs expressed in the fomm

Hwao(g) - udlet¥) g(o).

in which G and H ‘are the psriodic funotions of the angle of at-

-tack ¢, which varies with the steering angle. Te then have,

acoording to the theory of mo%iion about the center of gravity,

(8) If—%ﬁ—i) =w2e{o) -wﬂ%{—t) H(o).

* Let us assume that the influsnce of altitude may be neglect-
ed. By multirlying equation (1) by u and equation (3) by v
and adding ths results, we obtain '
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‘(7) :; -gz—él=-a.w3+Aw-gv.

The quantity a, =necessarily implying & lowsr positive 1limis
a', 1g obtalnsd from equaiioa (7).

(8) + d9m2 . ..w'(a.'wa- (P+g)).

NP represénting the maxirmum propeller thrust, from which we rea-
_son that the speed can not go on increasing indefinitely. To be
nore exact, 1t must remain below
P+ g |
at
in whion a" 1is any quantity emaller than a'.
By means of equation (1) we can easily demonstrate the fol-

lowing theorem, which is praotically self-evident. If the engins

a9 8 2irnlene ove env fixed borizon 1ine

Iy period of tige. Ve find, in.fact, by integrating equation (7)
batween to and +(A and B being zero)

-% (wg? - wo?) = - Jt- aw® dt - g (y4 - 7o)-
to

Taking into account the inequsliiy 'a. > a' > 0, the hyrothLesis
¥y > 0 gives ua

' t
a' 4 w3 dt < %w°3+gyo.
0
It follows thet the integral

S w3 at
%
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1g converzernt., Remarking trat by rsason of equations (7) anmd

(g), %1;-5 is limited, we reason from this that’ w +tends towards

zeTo, vhen % tends toward infinity. Henoe we Lave also
(¢) 1im v = 0, limuw =0
Y= w t= o
Consajuently, there 1e an infinity of values of +. %, t, .- tn

such theat we have

>

(10) 1im dv\ - 14 =0 lim t5 =@
,_=°,(dt>t_1 . r=e clt\t ’
4

Py substizutlng % = %, in the equation

ar - . - -
ot w (av - bu) - g

and by =~2zing n tend toward infinity, we a.lrrive at the absurdi-
ty g = 0. The hypothesis Yy >0 is therefore inadmissible.
Let us mow assume he thrust and angle of attack to remain
constant. On dividing equation (8) by w2, we see that for a
oconstant atearing angle of the szlevator, this hy;'o_thesis con-
cerning the angle of attack 1s judtifled in prorortion as 1I.
end H are smaller and w is larger. From equations ’(1) and
(3) we deduce the differentiel equation

m o—
(12) (u® + %2) (au + ov) - Au + Bv

dv

(u? +v2) (av - Bu) ~Ay ~Bu + g /u® +vs
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in which &, b, A and B ars constants. Oncs thla equation is
integrated, %, x and y erve ottalned by qua.&ra.tures. Fe oan
accordingly confine curasives to the stud.§ of the integral crur;res
‘of aguation (i), %kat 13, to dete-mining the Lodograph of %he
rotion. Ve ocan apply to equation (11) tke mettods given by lr.
Poinosrd in his memoirs: "On ourves defined by a differential
equation” (Journal de Mathematiques pures et applique’ea; les1-~
1888). We see that equstions (1) ard (3) define w amd v for
every value of +t, when-the initial velooity ugvo is glvenm.
On considering u and v as ocartesian coordinates of a point
in the pléme, the point (u,v) desoribes a certain characteris-
tlo curve. “ren % varles from O ‘to infinity. Ve call "ein-
gular. pointa" those vhere the second members of equations (1)
and (3) disapprear at t2e same time or become discontimuous., In
+hs case under considere.tion, there is, eslde from the origin,
only one other singular point cf finits cistance. We have al-
ready seen (inequality 8) tha.'l; the cheracteristios remein at &
finite distance. Under this condition, the theory of Poinocare
ghovs us that a ﬁowledge of the singular points and closed char-
acteristios (iimited ovoles) at a finite dlstance suffices for
finding tre course of the integral cmrveé, vhen t tends toward
infinity.

Instead of going deeply into this study here, we shall taks
up by a simpler method, the case where the propeller thrust is
zezo. Equation (11) is reduced to



du = v

(13) \.w (au + tv) w (av - bu) + g

For & = C,* that is Yo say. a =0, D= p, this equation is
r3adily intsgrated by means of the elementary functions. We have,
in faot,

_du av _mxdw
PVvw - puw + g gv

dence

gin = p w2 4w

pE: —_qu=20 (C = arbitrary oonstant)

By va.ryin_g 0 we obtaln a system 8 of closed, non-intersecting
onrves,. whioch embrace tte whcle plane.

In the case & = 11/3, ocorresponding to the motion of a sphere
i o reesisting medium, equation (13) can be integrated by quadra-
tures, as demonstrated by Liouviile.

Although we do mot know for o s&ny general integral of squa-
tion (13), we oan comstruct its integral ocurves by a simple method.
Ve have, in faot, the folliowing theorem. -The Integral curves of
eguation (13) are the trajeotories of the angle « of tl;e system of

8 ourves.
a/z

p (w2 '*‘3‘79) - gu = conetant

provided we oonsider these trajectories with reference to thae reo-

* In his article "Le vol Aerien" (Aerial Flight), Hr. Lanchester
discuised the fell of an airplane under this hypothesis, whioch re-~
turns to the assumptlon that the alrplane does not lose energy.
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tangular axss which make the angle « (in the positive direction)
with the original trajectories (see figure).
For the demons'bra.‘aicxi, we write the differential equations in

the following condensed form

v (13) Q,_.(JL_:I-__i-Idt ) = iw “pe™® (u +iv) - gl

which is obtained from equation (5) by letting K = 0. By mbking
€ =0 in equation (13) we find, for the 8 system, the differen-

ticl equation

(14) -d-—(na-%'—-u-l=iwp(u+iv)-gi.

Ws obtain tae differential equation of the trajectorles of the an-
gle 0 by mltiplying the second member of eduation (14) by o™,

Henoce

(15) -d—ma:"b'—lz) = iw p el® {u + iv) - giel®

The change of axes indlocated in the above statement is obtalned by
mltiplying u + iv in equation (15) by el®. By aividing the
ratio thus obtained by ei%, we return to equation (13), whioch dem-
onstrates the theorenm.

All the characteristics tend toward the point

u= /£ocos v, v=- /fEgin-a
A e

which corresponds to a reoctilinear and uniform descent.* If the in-

* If an integral curve passes near the point uw=v =0, we can
hardly expect that it will correspond to the real motion of the air-
plane, because the hypothesis that the angle of attack remains con-
atant is not justified for low speeds.
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tegral curve cuts the axis of the negative u's, n times, the air-
plare sxecutes n loops. We come, tkherefore, to the followlng
conoclusion. Vhatever be the initial velocity, the alrplane, 1a.'f1'.s:-
exeouting, if necessary, a finite mumber of loops, acquires a mo-
tion which approaches indefinitely e state of rmecfilinear end uni-

form descent.

Translated by National Advisory Committee for Aeronautiocs.
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