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IIETAL-TRUSS WING SpA.RS*

BT Andrew E. .Swickard

INTRODUCTION

metal-truss wing spars are comifig into general
aizplane industry, it is necessary that ration-
for their design be developed.

The purpose of the “stud~,,recorded ”in this thesis was
to develop improvements in the current methods for the
calculation of the loads in the members of metal-truss
wing spars which are subjected to combined bending and
compression.

b
If there were no axial load in the metal-truss spar,

its design would be very simple, because ordinary truss
analysis methods could be used to determine the loads in,
its menbers. How8ver, when axial compression is acting
together with a side’ load, the loads in the aenbers of the
truss spar are functions of the deflections of the spar,
since the con’bination of these deflections with axial load
produces additional bending noments and shears. These. ad-
ditional bending moments and shears nay be ref,erred to as
the secondary bending monents and secondary shears. It is
necessary, then, to calculate the effect of the deflections
of the pan’el p’oints of a tru-ss spar to determine the true
loa”ds”in its monbers.’, : ,-

The present design rule of the Department of Commerce
specifies that equations** for the calculating of bending
moments and shears on uniform beams subjected to combined
bending and compression shall be used for calculating the
bending moments” arid shears on,metal-truss wing spars. In
order to use these equations, which will ba referred to

——..-—- ——.-
‘~hesis submitted fn partial i%l~~lment of %herequire-
m“ents for the degree of Engineer in Mechanical Engineer-
ing Aeronautics, Stanford University, 1930.

●.*

**Aeronautics Bulletia No; ‘7-A,”~e-c* 70 (~) ‘“~4).
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. .
below as the Precise Formulas’, * &’”value of effective mo-
ment of inertia is needed.

Once these befi~ifig”moments and shears have been de-
termined, the loaas in the various truss members can Ye
calculated by the use of ordinary truss analysis methods.

The effective moment of inertia of a metal-truss wing
spar is something which is not as easily determined as the
moment of inertia of an ordinary wooden spar. A.t first,
one might erroneously believe that the moment of inertia
at any section of-a truss spar is ‘th8 moment of inertia of
the areas of the two chord members about the centroid of
these areas. In the following discussion, this moment of
inertia will be called the ‘lchord moment of inertia.’! The
chard m~rnent of inertia at any section would be the true
moment of inertia if the web members were of infinite area
and did not deform under load. The fundamental beam equa-

tion, M
d2

= EI -# upon which all beam equations are

based, was derived under the assumption that the shear de-
formation was so small that it oould he neglected. This
assumption of negligible deformation, resulting from shear,
does not really fit even the case of ordinary wooden beams;
consequently the value of 11EII is arbitrarily reduced a
certain small percentage when the beam equations are being
used for that material. With metal trusses, the shear is
carried by the web members instead of by a continuous web;
consequently the web deformation is so great that the de-
flection resulting from this deformation cannot be neglect-
ed. This deflection will he referred to below as the l~web
deflection, ‘1 As a result, the value of a chord moment of
inertia must be decreased to allow for the decreased stiff-
ness which is caused by the deformation of the web members.
The portion of the truss spar deflection which results
from the deformation of the chord members will be referred
to as the ‘Ichord deflection.11

The Department of Commerce rule specifies that the
monent of inertia to be used in the Precise Formulas shall
be determined by backfiguring from deflections which re-
sult when the truss spar is subjected to side load. The
truss spar deflections may be calculated by any convenient

.,).”

—..---—-.—-—- -. ———---—— ------
‘i’by Niles and Newell.‘Fee Chapter,XI .“Airplane Structures ,
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deflection nethod,* or nay be experimentally

3

determined
from full-scale tests. AssWing-the truss spar to be an
ordinary lean, a value of effective moment of inertia is
backfigured fron the appropriate bean deflection equation
by a substitution of the previously determined’deflection
values’.

One can readily see that this backfigured effective
nonent of inertia cannot be greatly in error. However,
thti entire backfiguring process is so nochanical that the
designer does not see the theoretical considerations which
ara automatically included in that process. In this the- “
sis, a direct method of calculating the effective moment
of inertia of a “netal-truss wing spar” is developed.. IThis
“direct nethod is built up from consideration of the acti,ons
of the individual truss aenbers; consequently the designer
acquires a nuch better understanding of the quantities
which affect the effective noment of inertia than he would
by using the backfiguring method.

It was originally thought that the effective nonent
of inertia of a uetal-truss wing spar might be determined
directly fron the geo~etrical properties of the chord and
web nenbers. l?urther study, however, proved that the ra-
tios of the strains of the web nbnbers to the strains of
the chord nenbers nust be known in addition to the geo-
metrical properties of the truss spai to deternine the
correct value for’the effective .nonent of tnertia. Since
these ratios are fupctions of the ezternal loading, it is
necessary to know the type of load to which the truss spar .
is to be subjected, before the effective monent of inertia
can be calculated.

The naterial of this thesis is divided into three
parts: The derivations of the theoretical concepts are
given first. Th,e practical applications of the theory
follow. Finally, in the form of an appendix, the effective
nonent of ~gertia of an actual netal-truss wing spar is
calculated. This wing spar was built and tested-for de-
flection under conbined bending and conpressi.on by the
Booing Airplane Conpany. The calculated value of the ef-
fective noment of inertia is checked against the test data,
and conclusions are drawn regarding the accuracy of the
calculated value of effective monent of inertia.

—— ——— —_____ -—-- — .—
*See page 311 llAirplane Structures 11%y Niles and Newell.
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@ORETICAL Dl!RIVATIONS

The purposo of the following der~vations is the ra-
t“ional determinati~n of ‘chk’sffectivo moment of inertia
of a zcetal-truss wing spar.

?

Tf there is no shear deformation, the beam equation

M= XI !=, or ,1 = -d.—
dx 2

is accurate. With metal-truss
~ gi

. _.

,.
~x2 ,

wing spars, the shear” deflection resulting from the strain
of the web members is so, large that the o“rdinary bea”m equa-
tion does not hold. l?ha beam equation may be made to apply
if the value of 1, the chord moment of inertia, is prop-
erly reduced to allow for shear deformation. In other .
wor~s , the deflection of the spar produced by web mornber

deformation increases &, and consequently reduces the
ax2

effcctivo value of ‘I. Consequently, thQ first step in the
.

solution of the problem is to derive an equation which gives
tne increi~ents of web deflection between adjacent panel
points .of the truss spar in terms of the deforr.~at%on of the

.

me-o nenhers. Next, the relation between the web doflecti6n
increnent’s betmeen’panel points and the resulting chango

in ~ must Ye doternined. Then an accurate nethod of
dx2

calculating the decrease of’ effective ~ommt cf inertia

&% nust be developed.due to the changes i-n Since the
ax 2

mol~ent of inertia of an ordinary truss spar varies fron
oae panel to the next, it is necessary to work out a neans
of weighting the effect of the moments of inertia in the
Various panels upon the stiffne,es o“f the spar as a whole.

—. —

Finally a method of computing the affective moment of in-
ertia of the entire truss spar must be developed from the
reduction of chord moment of inertia in each panel, and
from the relative importance of th.c moments of inartia in
tho various panels.

The theoretical derivations %elow include three sec-
tions which have only an indirect bea?ing on the main de-
velopments of the thesis. The first of these sections
covers tho derivation of an equation for tl~e increment of

2

deflcctiGn between adjacent panel points produced hy the
—
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deformation, or strain, of. th{.‘chord members. The second
is the derivation of rules. f~r calculating the total de-
flections of the panel poi~ts of a truss directly from the
web and chord increments of deflection between panel points.
This method of calculating deflections is very simple and
direct, consequently it can often be used instead of the
standard deflection methods. Its main value, however, is
that it is developed fr,on simple geometrical relations in
the truss and thus gives one a very concrete concept of
the action which takes place when a truss deflects under
load. The third of the three, sections is one which gives
an exact method of calculating the total bending moments
and shears to which a metal truss wing spar is subjected
when acted upon by axial and side loads. It is an ex-.
trenely lengthy method, and is only of value in checking
the approximate method of calculating the effective moment
of inertia. This exact method is pot a development of the
thesis; it has been known to structural engineers for some
time.

(I) INCREMENT OF TRUSS DEFLECTION

“BETWEEN ADJACENT PANEL POINTS

PRODUCED BY THE STRAIN OF THE WEB MEMB3RS OF THE PANXL

Parallel chord trusses.- Refer to Figure 1 of the——
diagr-~heets.. A3CD ~~esents the center lines of the
members of one panel of a truss. When the truss is sub-
jected to load, web member BD is strained; consequently
panel point D deflects an amount D_D! above panel
point A. The object of the following derivation is to
deternine the relation %etween the deflection D-D! , and
the strain in we% menber BD.

.. .

There aro three assumptions on which the following
derivation is based:

1) The deflections of the panel points of the truss
are so small that the arc traced by one end of a truss
mer~ber when the member is considered to rotate &bout the
pin -at its other end appr~xina,tes a straight line. . .:,

.-
2) The nerlbers of the truss are assumed to b’e con- :

netted by ~ins.
,.
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3) Si:ce the principloof superposition is implied
,when’ one speaksof the total deflections as being the sum

---

of “chord; deflections and web deflections, it is logical .
—.

to calculate the deflections produced by the strain of the
web nembers using the assufiption that the chord nembers
are unstrained.

Web nenber BD is strained an anount represented. by —-.,
eD1. This strain allows member AD to rotate about A,
and take up a new position A~l,

ZDeDt, Z.eDB, and LDD~A can be considered to be —
right angles, since the radius of an arc is perpendicular
to the tangent at the point of intersection of the radius

—
=,

and the arc.

A oDD I = L_(90°-q), since the sides of the angles aro—
mutually perpendicular.

sin (.LeDD!) = +.

Substituting the value of ZeDDl:

sin (900-~) = SD+; or eD 1
Cos ~ = —DD I

e~ 1DD1 =
Cos ~“

Since eDl = the strain of the web
the’i,ncrernent of web deflection,

deflection increment =

member, and DD I

,

. .

is

(1)
Cos q

NonParallel chord trusses.-..—.——-—---— Refer to Figure. 2 of the
diagram sheet. ‘AISCD rem~esents the members of tine”panel—
of a nonparallel chord truss. The line CDV repres&ts

.-

the direction in which the deflection of the panel point
D is to be calculated.

.—

When the diagonal web member BD is strained, chord
member AD is allowed. to rotate about A, and takes up . .

the position AD1. The point D traces the arc DD I

when AD rotates about A. Member BD rotates about B
s~.

and occupies the position BDI, De is an arc drawn with —

&
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a radius 3D about B as a center; consequently ~~ 1
represents the amount BD was strained. The same as-
sumptions underlying” the parallel chord analysis apply :
to the following derivation; consequentl~

ZeDDl =Za, ~~lD~ =~ry, and

angle. Therefore
...

. .
DDI = _ eD !

sin LeD~*

D~V is drawn from Dt perpendicular

cos LViID~ = ~.DtD

Thus ,
VD = !?.OsY X eD~m

sin a

LDeD! ‘is a right

to VD.

But VD is the deflection increnent, and ED! is the
strain of the diagonal web menber. Therefore

(21

In the foregoing discussion the web menber considered
was dtagonal, 3’Gr a vertical web menber, equation (2)” ap-
plies if the angles y and a are taken properly. a is
the angle between the vertical web member and a chord nen-
ber at the intersection of,the vertical nember with a chord
member, which intersection is separated from the left sup-
port by the greater number of primary web members. y is
the angle between this same chord member and the perpen-
dicular to the direction of deflection. Thus for member
CD in Figure 2; a is angle BCD and y is OO.

In the case of truss which has no vertical web mem-
bers, equation (2) applies directly since no vertical web
member was considered in its derivation.

Where the vertt.cal web member is secondary, its de-
formation affects only the deflection of the panel point
where the member is attached. It should he noted that the
type of vertical web member shown in Figures 1 and 2 in-
creases the deflection increment of only ono of the two
intersections of the web member vith the chord members.
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Thus in Figure 2, it can be roedily seen that the strain
of member ‘DC increases th~ deflection incrment botwoon
panel points B an~.. C, but does not affect the deflec-
tion increment between panel points A and D.

(II ) CORRECTION OF CHORD MOMENT 03’ INERTIA

FOR WEB DEFLECTION

If the web members of a truss spar were not strained,
the truss spar could be consldored to he an ordinary bean
which had values of moments of inertia equal to tho corre-
sponding values of chord monents of i:lertia.*

The equatioi~ which is the basis of boa~.1theory is

M= EI ~,

(3)

By exatiirling equation (“3), it is apparent that any

modification of ~ represents a ‘change of monent of i.~-~x2

ertla. At a?ly section of tho truss spar, tho strain’ of

the web members changes & and consequently, the ef-
dx2

fective moment’ of icertia.. The following derivatio:l is a

calculation of the increnent of ~fi produced by the
dxe

Strain of th~ web nombors. The chaago of moaont of inertia.

roprosentod by this increuent of <~ is then calculated
dx z

fromequation (3).

Thoro are sovoral conceptfi~,npo: wl+ich tho followinc
derivation is based, al~d they will bc stated beforo tho
do~:.ivatlGn is given.

—

—

—

-3

—

.—

,.,—--- .--------------- .--—. -—-—..——-—---.---.—--—.---—.----—-.—
*Seo page 311 llA~rplS,i10Structurosl’ by Nilos “and Uowoll.
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The first concept is a demonstration of the effect
of web deflection upon.,the slope of the elastic curve of
a truss. In I?igur.e3 of the diagram.qheet, AC is the
line joining the two supports of the.truss. ~!1

sents tho position of panel point 3 when bo~h c~%~eand
web member deflections are considered.

Now tan j = ‘~ and tan k = ~.

The change of slope produced by the deflection of the
web menbers is

Therefore, the change of slope produced by $he web
members is the web deflection increment divided ‘py the
proper panel length.

The average rate of change of slope from one panel
to the next is then the difference in web defl.ecti.on slopes
of the two panels divided by the. distance between the
points where the slopes are taken.

By similar reasoning, tho average rate of change of
slope produced by chord deflection is the difference be-
tvoen the chord deflection slopes in adjacent panels di-
vided by the distance betwean the points where the slopes
aro taken.

The total avorago rate of change of slopo betwcca two
adjaceat panels is the sum of tho average wcb anti chord
rates of chango of slope.

The second concept is concernod with tho relation bo-
tmaon the slopos of the chord mei~bcrs of a truss spar and
the slopes of the elastic curve of the spar. If straight
lines are drawn so that they connect the deflected panel
points of the upper or lower chords of a truss, a polygon
will result. For most truss spars, the deflections of the
panel points of the two chord members are slightly differ-
ent; consequently, if the “polygon representing the deflect-
ed neutral axis of the truss spar is to be constructed, it
should ‘Do the ‘taverago!l of t’he polygons for tb.e two chord
panel point deflections. However, the difference between
the deflections of the two chord nembor panel points is so
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small that the neutral axis polygon can be coi~6id0r~d to
be the same as the polygon of either chord. If a smooth
curve is Cirann through the” p~ints of either one of these
dofloctic)n POlyg911S, a dc+flection curve tiill result. ‘-
Since the slopes of the chords of tho polygons aro very
Small , this smooth curve may be considered the elastic
curvo of tho truss spar.

In Figure 4 AD represents the unreflected position
of the lower chord members of a truss. ABCD represents
the deflected position of these nemhers of the tz’uss. The
smooth curve ABCD is the elastic curve of the truss, and
is a flat ‘!parabolali for all ordinary deflections. i{at-
urally, the slope of the elastic curve varies at different
points alonq the span. For flat parabolas the slope of
the chord is approximately the slope of the tangent to the
curve at the mid-point of the arc subtended by the chord,
!l!hereforo, the slope of a chord member can be con~idorod
to bo t~le slope of tho elastic curvo at the middlo of ‘tho
panel whore the chord member occurs.

The web rate of change of slope will now be deter-
mined from the web de’flect5.on increments of adjacent panels
of a truss. Refer to Figure 5 of the diagram sheet. A.BC
represeilts the unreflected position of the ripper or lower
chord nenters of a trus’s.‘ Abc represents the posi%inn o~
the chord mombor~ vrhen only the strain of tize web members
has produced deflection. B’b is the-”deflection increment
produced by the strain of the web members iilpanel AB.
Clc ~-s the deflection increment produced by the strain “of
the we% ne!:lbers in panel BC. As was previously demon-
strated, the slope of the chGrd member of a panel approxi-
mates the slope fif the elastic curve at the mici-point of
tke paael. Therefore, the slope of Ab (referred to ABC)
is tic slope of the elastic curve at the nid-point of panel
A13, Sinilarly, the S1OD6 of chord. nenler bc is the slome
of the elasti~”curve at-the mid-point of panel BC.

*.

BbThe slope of uem’ber Ab = ~ .

The slope of meaber bc =,%$-.

The d’iff’ereuce between the slope at tho nid-poiat.of
paae~” ‘ BC , and the ‘s16Fe at the nid-poin! of panel A~ i.~
t:lcreforc3 ,.

.-——

.-

.-

*

—.

—
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Then the average rate of change of slope between the
nid-poiats of the two panels is

~cl Bb
E--XS= (4)fi (average).

*TA3 + ac) ax 2

Assuning that the adjacent panels are of equal length,

11X,11 equation (4) becones ccl - Z3b

X2 “

Siilce the deflection curve is a flat parabola, this
average rate of change of slope is the llexactl’rate of
change Gf slope at a point half way letween the mid-points
of the two panels. Thus , since the panels are of equal

ccl - Bl)lcnlgth ——— is the exact rate of change of slope at
X2

tho panel point B. Th.ereforo, the rate of change of slo~o
at a panel point is approximately the difference between
the deflection increments of the two adjacent panels di-
vided by the sqv.are of the panel length.

62- 61
Let —— “De the rate of change of slope at any

x 2

panel point, where 62 - 81 is the difference between the

wet doflecti~n incre~oats of the two adjacent panels.
Equation (3) is

. . .

(web) ●

- ,, “i:= (choid)’ E ~B 1
(web)

~
E ~ (web)

+ x— = ————. —-—
1 M

=
M 1

+
chord —-T–-— “

.
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(3.X2 x-

1 E(fia - 61)~ + ._-—.—. .-=
I Ic

(5)
Mx 2

I!quatiori (5) ‘applies to ‘a section of a truss spar oc-
curring at a panel point; so M is the moment to which
the spar is subjected at the panel point, and Ic is the
chord moment of inertia at the panel point.

The sign of the deflection increments must be taken
correctly, or the quantity 62 - 81 will be in error.

Movin& along the truss from one support to tho othor, if
the strain of the web memhor tends to increase the d.ofloc-
tion of tho truss, its sign is positive; if tho strain

—-

tends to decrease the deflection of the truss, its oi.gn is
negative. Thus refer to Figure 6.

—
,

Considering support A as a datum, the tension in
r.errlhers AH and B(I prod.u.ces strains which tend to allow
the truss to deflect upward (with reference to support .3);
the strains in members (3D and l?E tend to docrea3e this —
upward deflection when one passes from
port E,

Consider equation (5) which is

L = _-.--_-_A_1.+E(&2-8)
I Ic Mx 2

suyport A to sup- .-—

. —
.—

82 is tile W03 deflection increment of the panel tho

farther from the ‘Idatumllsupport, and 61 is tl.e weh de-

flection increment of the panel the nearer to the IIdatum’1
support , —

— —

For parallel..ohords, 8, :1S the Hllm of PL—---, ----—--—— —-—-- -All COS ~
values for all the we% ?nem.herswithin th~ panel.

For ncnparallol chords, 6 is the sum of the
PL CON” va’lu~s of all of the wcb members within the panel.

a-- ----
AI? sin a

...,,.
t.
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The web deflection increment produced by a vertical
web member should be divided equally between the two ad-
jacent panels. However, it is more conservative to place
the deflection increment entirely in the panelwhich iS
the nearer to the datum support. “

‘III. THE EFFECT OF THE MOMENT OF.INERTIA

OF A PANEL OF A TRUSS SPAR UPON THE DEFLECTION”

03’ ANY PANEL POINT ,OF THE TRUSS

It is oftea desirable to know the effect of the mo-
mentrqf iner~”ia of any one panel of a tr’uss spar upon the
deflections of all” of the Fanel l?oints. In the following
derivation”, t“he truss spar will be treated as “a beam with
varying moment of inertia; consequently the ordinary beam
theory methods of calculating deflections can be employed.

For simplicity, it will’ be assuq~.d,’that
&
31 is zero for

&all panels except the one which contains t.h~ ~x for
. ..,....

which the deflection offcct ig being calculated.

In Figure 7 of the diagram sheet, the deflection of
the mcint b will be calculated by the method of elastic
weights for beams.*

The elastic reaction at f is Qa ~“

The elastic beading moment at b which is numerical-
ly equal to the actual deflection, is

Q&CD = .&!&CD=
L 331 L

deflection increment. (6)

Since panel ps is any pa]l~l of the truss spar, and
b 3s any panel Foiut of tha truss, equation (6) gives the
effect of the monent of inertia Gf any panel of a truss
spar upon the.deflection of any panel point.

,.
... ,.. ,,.

.’
-—. —-—.— , ———.-

%age”303 ‘llAirplaQe” st&uctUre’S ‘ll;b~~fi;~-and Newell.
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.Xxamine equation (6)s For any truss spar, E and L
are constants. If the deflection of any particular panel
point is %eing investigated, D is a constant, As a re-
sult , the effect of the moment of inertia, I, of a panel
upon the deflection of tho panel point in question 1s d.e-
ternined by:

1) the “length of panel, U, where I occurs;

2) the ‘magnitude of the bending momont, M, at the
middle of the panel where I occurs; and

3) the relative location, C, of the panel contain-
ing the moment of inertia.

—

,. -.-

In equation (6): D is always the distance from b
to s, support such that Qa is not included in the dis-
tance. C is tho distanco from Qa to a support such that
b is not included in the distance.

IV, METHOD 03’ CALCULATING THE EFYECTIVE MOMENT

OF INERTIA OF A METAL-TRUSS WING SPAR

The following method of calculating the effective mo-
ment of inertia of a truss spar is based upon direct ana-
lytical considerations of the loads In, and the sizes of
the members of the truss spar. This direct analytical
method has the advantage over any backfigur’ing method in
that it gives one a very much clearer idea of the various
factors which enter into the’ effective moment of inertia
determination.

The following derivation is concerned with doter-
miming the proper Ilaverageli of the corrGcted moments of
inertia of the various panels of a truss spar,

Since there is a different value of moment of iner-
tia in each panel of a truss spar, it is obviously not
po~sible to determine a single value of moment of”inertia
which; when substituted in t’he propor deflection formula,
will result ia absolutely co~rect deflections for all
panel points. Hgwover, it is possible to determine a val-
ue of moment of inertia which will give a correct valuo of
dofloction for any ono pano.1 poi:~t. Tho question then

.

-.--

m
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ari Bes as to which panel point should. have its deflection
correct.

Since all deflection curves are more or loss flat and
parabolic in shape, the maximun ordiaate and the two zero
ordinates of the curve are, the mcst inportant in locatiag
the curv.o. Iil othO~ ~ords, if the naxinum ordinate and
tho zero ordinates at the supports are located, a smooth
curve can be passed through the three ordinates, w“nich
curve will result in fairly accurate deflection values for
all’panel points. Practically all truss spars over two
Slxpports have tti.eirFeint of maximum deflection fairly
close to their midspan points. Consequently, the midspan
poiat will be chosen as the point which is to have the
correct deflection.

Consider equation (6):

fleflection incremOnt = K !Zl@#.1 for one panel.
EI

Equatioa (6) gives the deflection at any Fanel point,
when all of the panels except one are considered to have

zero & values. Now, if all the panels of a truss spar
EI

are considered to have finite values of M the deflec-
E’

tion at any panel is the sum of th~ values obtained from
equation (6) for all of the panels. Thus equation (6)
becmos:

total deflection = xi = ~(L LW.&Q.l)i
at any point i =lE1 L

(7)

whore TI is the number of panels.

Since tho xnidspan point has been selected as the
point which is to have the correct deflection, the deflec-
tion given by equation (7) will be made that of the midspan
point.

The:l D of equation (7) = 1/2 span = 1/2 L. (See
fig. 7 of diagram sheet.) Equation (7’) becomes:

.i= ‘1[IQ (c) K]i*total deflec~”ion = Z
i=lI (s)
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Where K = -—Q——&[2L=l .
L X I! ‘“L X g Z5

Now the I in equation (8) varies fa”om panel to pa:~-
el , and it is desired to determine a constant value which
will give the same deflection ak. the midspan point as do
the various dii’feront values. Let Ik he this constant

value . Theri, considering equation (8):

In equation (9), C is the distance. fro,m a support
to the panel containing the moment of ii~ertia, such that
the midpoint of the span is not included in the distanc~,
M is the’ average bendiag moment in the ~anel, and a is
the pafiel.length.

Divide the numerator and the denominator of eq-~ation
(S) by Mm X ~ X L/2, where l% is the naximum average

b~ndiag ~loment in any panel., ~ is the greetest panel

len~:tk, and L/2 is one half of the span.

The lteffmctivell moment of inertia given by equation
(9) is not changed by this division, because the Idm,

~rfi* and L/2 terns fact-or out of both the numerator and

denominator, and then cancel ~nch other.

Consequently

(lo)

?

—
—

—

—

.-

.

.-
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V.” Il@MENT OF DEFLECTION BETWEEN ADJACXI?T’:PANEL POINTS

PRODUCED 3Y THE STRAIN 03’ CHORD MEMBERS

Since. the d’eflectiqn pr.oduce,d by the.strain of the
chord members is the only deflection to le,.considered, the
weh members will be assumed to be without strain in the
following derivation. .In this discussion, the same funda-
mental assumptions wil”l be made about the truss deflections
and construction as were made i-n the derivations of the
formulas for increments of web deflection.,.

In Figure 8, A3CD is a panel of an unreflected
truss . When the’ truss deflects, the strain of the lower
chord members between D and the support causes D to
move to D!. The strain of the upper chord members between
B and the support causes A to move to A! and B to
move to g. Consider the pin to have %een removed from the
joint at B; theu member AB will have to rotate about At,
and member DB will have to rotate about D! until their
free ends meet at B! before the pin can again be in-
serted. The problem, of calculating the increment of de-
flection between panel point .A and panel point B iS
then to calculate the length of gB1.

Accoqding to th”e previous assumptions, the deflections
arq so small that:

a) Blg and fB 1 can be considered to be straight
lines which are perpendicular to AB and DB respectively.

b) The angle included between DB and DIB1 is so
small when compared to B that DIB1 can %e considered to
coincide with DB as far as the trues as a whole is con-
cerned.

Now, LfBlg = Le, because the sides of the angles
are mutually perpendicular.

tan ~e= tan ZfBIg = ~ = —~~ (11)gB 1 deflection inc.

. fg = fB + 3g. (ha)
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Also; fB = DDI since the chords are parallel, and web
member DB is unstrained. Bg is the sum of the values
of P&

.

AE
of upper chord menb~rs ‘between B and the support,

and DID PJ
‘S ‘he ‘Um ‘f AE

of lower chord members be-

tween panel point D and the supp~rt. Therefore, substi-
tuting in equation (ha):

—

fg =
pL upper) + @ (;::;’).

‘A% ‘chord
(12)

Substituting from equation (12) in equation (11): -.

PL lower
X ~ ‘~h~~~) + X Am ‘chord)deflection inc. = ——--—-——--——..—— *

tan (1

.

VI. DERIVATION OF CHORD AND TKE3 DEFLECTION RULZ!S .

In two of the foregoing sections, formulas for cal-
culating the increments of web and choid, .d6flect”ion be- .
tween adjacent panel points were d.erived.~ Prom acknow-
ledge of these deflection increments, it is possible to ‘

determine the shape of the resulting deflection curve, and
then by locating this deflection curve so that the deflec-
tion of the sup”ports are zero, the actual deflection of the
various panel points can be determined..

--

—

Th-&S, consider Tigure 9 of the diagram sheet. a, b,
C, d, etc., are p’anel points of a truss. The increment
of deflection between panel points a and b is x, be-
tween panel points b and c is y, and so on. Since,
in the general case, the true slope- at a is not known,
any slope can be assumed with the result t.%it the deflec-
tion of the panel point g at the other support will not
%6 zero. Now, if the entire truss is considered to be
rotated a%out a until g falls on tine support B, t~~e
true position of the various panel points w~ll be located,

.,

—

z, the angle through which the truss is rotated, ts
very small; consequently, ag is very nearly the same
length as @p , and lines corresponding to “de are tho
same length practically as lines corresponding to dh.

%

h
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.

Therefore, considering panel point d, the correction to
he applied to the deflection is ef. Now., ef = m tan Z.
Consequently, the correction to the deflection of any pan-
el point is the product of tan Z and the distance from
the panel point to the support a.

There are several spec%l cases of deflection calcu-
lation which do not require the use of the a%ove correc-
tion procedure. a) In calculating the chord or, web de-
flections of cantilever trusses no correction is required,
because the slope of the center line of the truss is known
to be zero at the support. Also, in calculating the web
deflections for a truss which is symmetrical about its
midspan point, no deflection correction is necessary, be-
cause the deflection o.f the right hand support will be
zero without any rotation of the truss. The fact that the
web deflection of the right hand support is zero can read-
ily be seen by considering such- a symmetrical truss. Refer

to Figure 6. Starting from support A, the strain of web
members AH, BH, and BG produce upward we?) deflection
of the panel points. Members GD, DF, and FE produce
corresponding downward deflections; consequently, the &e-
flection of the support at E is calculated to be zero
directly from tine deflection increments, and no correction
is required.

VII. EXACT METHOD OF CALCULATING T&II TOTAL BENDING MOMENTS

1
JXD S3EARS TO WHICH A METAL-TRUSS WING SPAR IS SUBJECTED

This exact method, as applied to a beam, is given in
books on airplane stress analysis*, and only a condensed
treatment of its application to a truss mill be given here.

If the total deflectioris of all of the’panel points
of a metal-truss wing spar which is subjected to combined
bending and compression were known, the total bending mo-
ments aad shears could be easily calculated. The total
bending moment at any section would be the primary bending
moment plus the product of the deflection at the section
and the axial compressive load. The total shear at a sec-
tion would be the primary shear plus the product of the

————.— ——__ _
*Page 67,

—.—
llStructural Analysis and Design of Airplanes~l’

by 3. C. 3oulton.

,-
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slope of the elastic curve at the section aad the axial
compressive load.

The total deflections can be obtained by a repeated
deflection calculation process. The deflections produced
by the side load can be calculated by any standard deflec-
tion method. The first secondary bending moments can be
o%tained by rmltiplying the primary deflections by the
axial load. The secondary shears can’ be obtained by mul-
tiplyin~ the slopes of the elastic curve of the primary
deflections by the axial load. The increase in the loads
of the various members of the truss spar produced by the
secondary bending moments and shears can be calculated by
any standard truss analysis method. Then, a new set of
panel point deflections can be calculated from the new
loads by ordinary deflection nethods. This process can he
continued until the increase of deflection becomes negli-
gible; consequently, the total deflections of the truss
spar can be deterni.ned.

This exact method offers a neans of checking the value
of effective moment of inertia calculated by the methods
developed in the previous parts of this thesis. In general
the approximate method will give results which are 3-5$
more conservative than will the exact method. Consequently
the approximate method is entirely satisfactory for prac-
tical design work, and should be used instead of the exact
uethod because it is so much shorter.

PE4CTICAL RESULTS

The theory which has been developed shove has two im-
porta~t practical applications. One is the calculation of
the effectiwe moment of inertia of a truss spar from the
~eometry of the spar and the l’oads to which the spar is to
be, subjected. The second is the determination of the most
economical location qf metal for stiffening a truss spar
which has too much deflection.

Ca].culation of effective monent of inertia.- The of-—— ——————..—- —
fecti~~-~~~~~t—of inertia is calculated fi~~-~~uation (10)
of the theoretical derivations.

—
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Equation (10) is: .., ,.,,

where Ik is the effective moment of inertia of the. metal

truss spar.

&

%
is the bendinq ~oment wei~ht of a panel, and is

determined by dividing the average bending moment in a
panel by the maximum of the average bonding moments in the
panels of the truss.

& is the panel len~h weight of a panel and is de-
%

—— --

ternined by dividing the length of a panel by the maximum
panel len~th. .

+-zis the distance from support weight of a panel,——- ——--

and is determined by dividing the distance from the middle
of a panel to the nearest support by one half the length
of th-e span of the truss spar.

m is the number of panels.
.

T is the corrected chord moment of inertia of a pan-
el, ~his corrected chord noment of inertia is. calculated
from equation (5) of the derivations. Equation (5) is:

1 ~ (62 - 81)—=
r

+
c MX2 “

dzAuAL
Ic is the chord moment of inertia and equals —

(approximately) , where

~+ AL

d is the distance between chord
center lines, Au is the cross-sectional area of the up-
per chord, and Az is ,the cross-sectional area of the

lower chord.

-,

●

62 - 61 is the difference in the web deflection in-
crements of adjacent panels. For parallel chord trusses,

..

.
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/3 is the sum of the -_-$&—
AE CO,S ~

values of all of the web

members within the panel.” {s,s&’eq,, (~). ) For nonparallel

~ is the sim Qi”t~&””’p& f& values fOrchord trusses,

all web members within the panel. (S~b eq. (2). ) Angles

-or v> and a are illustrated in Figures 1 and 2 and are
explaiiled in Section I,of the th?,or.y.

. . .-

M is the bending moment at the panel point in ques-
tion.

,,

X is the ~anel length.

The value of I oltained from equation (5) is the
corrected moment of inertia at a panel point. Since a
corrected moment of i~ertia for a panel is required, the
values of I at the two panel points of a panel must be
averaged.

The following procedure will be found expedient in
calculating the effective moment of inertia:

1) Calculate the loads in all of the members of the
truss spar when only the side load is acting.

2) Obtain the corrected values of moments of inertia
for all of the paaels.

3) Calculate the bending moment weight, the panel
length weight, and the distance from the support weight
for each panel.

4) Obtain the produc,t of the three types of weights
for each pa~el.

5) ldultiply tile inverse of the corrected moment of
inertia in each panel by the products of the weights of
the panel.

6) Divide the sum of the products obtained in 5) for
all panelsi by the sum for all panels of, the products ob-
tained ia 4). The reciprocal of this quotient is the ef-
fective moment of inertia of the metal truss spar.

Some of the terms of equation (10) depend upon the
loads in the iflenbers of the truss spar, If a metal truss

-.,.

—.
—

.-

.

—.

—

.

.

.

,
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spar is subjected to combined bending and compression, the
loads in the various members cannot be calculated. until
the effective moment of inertia is known. Consequently,
the primary loads ti~st be used in solving equation (10)
for the effective moment of iaertia. This approximation
is good because the ratio of the chord member load to web
member load in a panel does not differ greatly between the
condition where sid’e load. is acting alone and the condition
w’he~e side load is acting with axial load.

However, if greater accuracy is desired, equation
(lo) can first be solved assuming that only side loads are
acting. The calculated value of effective moment of iner-
tia Cail then be substituted in the Precise l?ormulas and the
total bending moments a“nd shears determined. From these
values of moments and shears, the loads in the various mem-
bers can be calculated. Equation (10) can be solved again
with these new loads, and a more accurate value of effect-
ive moment of inertia is obtained. This process can be
repeated until the effective mome-nt of inertia is as ac-
curate as the designer desires.

Economical location of metal for stiffening.- If a.—.-— — ——-—- -——
metal-truss spar 3.s found to have too much deflection, it
is desirable to know th6 panel in which a given increase
in the size of chord members will produce the greatest
stiffening effect.

Equation (10) of the theoretical derivations gives
the designer the necessary information for economical lo-
cation of metal for stiffening.

It is apparent from that equation that the quantities
which are important in selecting the panel for economical
location of metal for stiffening are the bending moment

weight , M
g’

and the distance “from support weight, -C
LF”

Since an addition of metal to the chord members of a panel
increases 1, this increase in metal is going to have the
greatest effect in the panel where an increase of I will
have the greatest effect. It is obvious that I will have
the greatest effect upon Ik, the effeCtiVe moment of in-

ertia, ia the panel where X.x c is a maximum. Thus ,
Mm L~

the panel in which the chord members are to be increased.
in size should be the one which has the largest product of
bending moment weight and distance from the support weight.

..

-- .-
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“APPENDIX

In the body of this thesis, several purely theoret-
ical concepts have ‘Deen developed. In this appendix, the
numerical application of these concepts to a practical
metal.-tr-os’swin: spar will “he made. This practical trus~
has previously been subjected to lateral and axial load,
and the deflection of its panel points measured. By using
the theoretical concepts, the deflections of the panel
points under the ’sar.leloading are calculated. This re-
sulting set of measured a~d calculated deflection values
will ena-~le one to check the accuracy of the theory used
in determining” t-ne calculated values. ~ne metal-trusS

spar used in the following calculations was titiiltand
tested by the.Boeing Airplane Company.* . ,

Figure 1 of the apyendix is a line diagram of the
test truss spar aad shows the type atid i.~tensity of the
load to which “the ‘spar was subjected. End moment was “
placed upon the truss spar at the left support by neans .

of a 2000.lb. weight on the end of the steel plate, AB,
The truss spar was l~aded at its ;mnel points by moans of
metal straps }7hich carried ~eight~ at their lower ends. .

T%..eccmnection”of strut B(2 to the spar at B is ac- “
complished by a pin, and the okher end of BC is con-
nected to a foundation which is s~tfficiently distant from
B to allow the axis of member EC to r,eprescnt the di-
rection of the load carried by BC. The spar is supported
at D by another pin connection.

The angularity of member BC places axial compres-
sion io the truss spar, which compression ig a function of
this angularity, and of” ths spar reaction at 3.

The deflections at several panel points of the spar
were measured Then the spar was deflected under the loading
~%~wn in ~ig~re 1.

The abject of the following set of comptttations is tO
celculate thL? deflections of the truss spar Q% thO panel
points where the deflections ~ere actually measured in the
test, and under the saae loa~ing as that used in the test.

. ....——.—-—---—---.——..——-——.-—.—-—————
*see Test No. 1~~~~, 3ocing Airplane Conpa.ny, Seattle,
Washington,
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Outline of calculati~~.-———-—-.—

1) The chor”d moments of inertia of the various
panels are corrected for web deflection.

2) The effective moment of inertia of the truss
spar is calculated from the corrected moment of inertia
values .

3) This effective value of moment of inertia is
substituted in the proper Precise Formula for deflection;
consequently, the deflections of the spar under the loading
s~.own in Figure 1 are determined. Since the deflections
have been measured under the same loading, a comparison
between the measured deflection values and the calculated
deflection values is had.

Explanations and Assumptions.- Panels (1-2) and (13-.——
14) are not considered separately because it is impossible
to determine the cross-sectional areas of the mem%ers of
these panels. These areas are indeterminate because gus-
set plates are included between the chord and web members,

Since the cross-sectional areas are indeterminate,
some sort of approximation is necessary if the web deflec-
tion effect upon chord moment of inertia is to be calcu-
lated. It seems reasonable to assume that tho effect of
web deflection in panels (l-2) and (13-14) is the same as
that of the corresponding adjacent panels (2-3) and (12-
13). It would probably be more accurate to assume the web
deflection effect of panels (1-2) and (13-14) to be zero,
since the area of the gusset plates is quite large. How-
ever, it is more conservative to assume the deflection ef-
fect to be greater than zero, so the first mentioned de-
flection assurrption is used in the calculations.

●

✎☛
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TABLE I

WEEIDEE!LVCTIOMIWEIMIWCS

(A) (B) (c) (D) (E) (r) (G)
Web member Loed ~ Web member Loed

~ % n (vertical)
PL

(aiegollal) (lb.) A (lb.) A COB q

2-23 -1-2y35. 277,000
2
W,O(KJ

i-t
-2 -1122 61,300

-24
L

2002. 232,km g4,0co 2 1,400
1620. u% 000 399,~ 5-25 % z1,600

Z
-2 12y3. 143,700 305,m 5-26 g2

10
31,s00 ‘

-27 9 ,200
t;;: z

7-27 2 21*950
?-28 5 ,s00 ::::;: &2g 222 12,130
&2g gg.~ 10,370 22,000 _
29-10

2;2:;
34,050 10-30 m

lE :3& ;
17,y30

30-11 78,500 11-31.
31-12 1060. 123,100

27,200
263,m 12-32 6$ 37,050

32-13 1443. 167,700 350,~ . —

Eq@nation
L =17.00 in.

Fig. ~
A = ;1464 sq.in. co= 11‘:

3i.g.IA Fig. IL cOB~ = 1*00
A = 0.1464 Sq.in.

. . ,.

c1

!2
o-

0“
.
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(A)

Panel

* 1-

L
t
‘5
5-6
6-7
7-8

w
9-10
10-11
11-12

**12-14

EK@mation

(B)
Tot&l

deflection
ticranent

+645, 00
-1-
@

h
-1- :600
+j36,800

+232,450
+12g,630
+ 22,000
- 6g,660
-1* ,000
-29g,a50
-356,000

01.(D)+ (G)
f Table I

(c)
A

kcrement

10 ,900
?10 ,WO

103,gal
104,350
103,Wil
106,630
111,680”
104,320
104,g50
57,150

)ifference
.Dvalues
IiCol. (B’

(D) (E)
M ,& a

(F)
A
7%x

-13,400
+ 71A
+12,200
+.20,!330
+26,950
+30,300
+30,p
+ 2&Wcl
i-24,020
+16,5Ea I

3,0~3,m
167,000

2,743,003

6:%$
6,F20,w
6,930,000
6,480,000
5,41O,OW
3i730,m

.0345

.626

.0378

.0222

::$1
.01611
.0161
S01935
.01532

iEisi+2%F’P
T
.0345 .153
.3302 .153

.3299 .1 3

.03cil 2.17

.0196 .1414

.0163 .1414

.01586 .1414

.01610 .1414

.01772 .1414

.01733 .1414

.01733 .1414i

.T

A..erage Soo *
)fVelllos
m Col. (F)

4

.-
.4CM2

**
Ic .64 x o.2&1 X 0.2400

0.2400+ 0.2041
=7.075 in.d,

.4441

(I)
1
g

lW
4@
4$33
177
1610
1577
1573
1575
1591
1587
15s7

.+E

.

i-.
.
c1

El
m

.+’

N
-a



Panel

1-

2
L
52
6-7
;-;

9:10
10-11
11-32
12-14

(A)
AT.
M

-26,7m
-6, 2g

$+ 6, 70
+16$550
+23 ,925
+2&625
-t’30,60a
+29,g50
+ 26,410
+ 20,3W
+ g,2$Kl

.verageof
),Table II

(B)
lloment
weight

.8725

.2066

.2112

.541

:;$
1.000
.976
.g635
.663
.271

%iii530:

(c)
Panel
lengfi

22.5
35.0
15.0
15.0
15.0
15.0
15.0
15.0
15.0
15.0
22.5

rig.IA

(D)
Panel
weight

1.000
.667
.667
.667
,667
.667
.667
.667
.667
.667

1.000

~
.

(E)
Oist. frorl

support

11.25

i5-
0.00

60:%
g.g

pCJ

45:00
30.00
11.25

lug. IA

(1.?)
lMElt.

weight

.125

●333
.500
.667
.&g

1.00

::2;
.500

.333

.125

(G)
Total
wei~t

.1091

.045g

.0705

.2410

.43
E.62

● 55
z

● 35
.2W
.1&72
.0339

:Bxm)

2.9/345

L=yjgy
q .

It = 5.76 in.4

(H)
~
It

.lgg

-w
.%
.177
.1610
.1577
.1573
.1575
.1591
.15s7
.15g7

!o1.(I)
!ableII

(I)
Roall.cts

.0205

.Om

P
●o

&g
:0700
.og@l
.og73
.06g5
.Okja
.0234
.00536

:G)X (H)

.51m3

N
m
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‘~~ –o+ 40.000 .+222; w .-1,2 ~~./i,B.;WL = -12 x lgO = -~60: ~ ‘M= = -40,000 in.lb.;y -
Mo

-10s0:

j =F+= Q@Q&&+@ = g7.9g; Ja = 9600; L/j = m‘ l*g3g; ‘in LIJ =+0096450
97.9g

Cos L/j = -.26403;DI = ~-wJ2 = 443,000-(-12~~’7&k = +75,2CM3;D,= M~wj 2 = o + 12 x 9600 =+115, .ZOO

;*?M (-.26403)= +,~ ,@D2-D1 cos L/j =+1~5,~~(+
Wja = -12 X 9600 = -115,200;

sti L/~
#

-1-.96450

‘T! IV

Panel ~
1 (H) Ddl.ec-

Xz dii (c) (b) (4 sin X/j Cos X/j (e) (f) z tires (in.)
poht

3 22.5 506.2 .229s-t-2400 + 5000 -040 + .227g +.9737 -31900 -~ -364o
2 2 b

-.606

5 52.5 2756.
d
.560 + 5650 +11670 -1520 -t.510 -1-.qi97-71600 -

i
-9200 -1.534

7 g2.~ 6s06. . q + 13gloo+lgyo -40@m + .746 +. fw -l@goo -5~ -13030 -p.~70
9 112.5 12650. 1.149 +121600-1-%jOm -75900 -I-.9124 + .4094 -128030 -30s00 -12900 -2.150
11 142.5 20300. 1.455 +154000 +33.650-Wlwo + .9933 +.1155 -139m - ~w -g~ -1=473

Fig.
u

Seeabove ecpationstitita - ---------------- ----

*Page 202 - mMr-plmo structures,n by Nile~ d Newell.
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CALCULATEI) AND MEASURED DEFLECTIONS

-——— —-—

Panel point

--—— —.—.

3

5

‘7

9

11

-—————

Calculated
deflection

–.=liT–-

-, 606

-1.534

-2.170

-2.150

-1.473

H
Table IV

--—

Measured.
deflection

-—EG:T–-”

.55

-1.51

-2.10

-2.10

-1.43

Page 4
Test No.
10096,

Boeing Air-
plane Co.

—----
Error

-l’-Iim-

+.056

-i-.O24

+.070

+.050

+.043

30

.-—
$ Error

—-

+10.18

+ 1.59

+ 3.33

+ 2.38

+ 3.00

.-———

.

.
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conclusionr3.- An exa~~inatioa of Table V shows that
there is good agreement between the measured and calcu-
lated tleflection values. Yhus, although the method used
in calculating the effective moment af inertia contains
several approximations, tho Good agreement between the
two sots of deflections shows that the effective moment
of inertia has been calcuI.ated fairly accurately.

The greatest percentage of error occurs at a point
which is very close to the support whqre ead moment is
applied. Since the method used in calcuiatiag the ef-
fective noment of inertia was based upon having the max-
imum ordinate accurate and the other ordinc.tos only ap-
proxinatol~” 50, the greatest porcentago of error would
naturally he expected to bo at points near the supports.
The error in inches does not vary as much from one end
of the span to the other as does the perce~tage error,
because at the points of small deflection, any error at
all produces a large percentage of error. Also, small
errors in the measurement of deflections produce large
percentage errors in the deflection values if these val-
ues are very snail. Consequently, a sizable portion of
the percentage ‘terrori[at points of small deflection can
be attributed to measurement errors in the deflection
test.

Since the calculated deflection values are greater
at all panel points than the measured deflections, the
effective mome~t of inertia must have been calculated in
too conservative a manner. There were two assumptions
made in the calculation of the effectivo nonent of in-
ertia which wero obviously conservative. One was the as-
sumption that the panels containing the gusset plates had
as nuch shear deformation as the adjacent panels which
did not contain gusset plates. The second assumption was
that the elastic curve was represented by the deflected
position of the panel points of the lower chord nenber,
which paael points were deflected more under load than
the panel poiats of the upper chord. A nore accurate
procedure would have bees to consider the elastic curve
of the truss spar to bo an average ‘of tho upper and lower
chord defloctior. polygons.



li.A.C.A.Technical l?oteNo.sgJ

A

I

Diagram

,

.

B

Fig.1

c

//

/
/

/
/

v

D

/

c

Fig.2 .

A

~ N

●

.



i
I

I

1

A
C*
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\ Em = =*

Fig. IA Calculationof primary load
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