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TH® LATBERAL INSTABILITY OF DEEP RECTANGULAR BEAMS

By S C. Dument-andsHL SN SHETE
SUMMARY

Sxperimental and analytical studies were made of
solid and hollow deep rectangular beams to study their
lateral instability under various conditions of loading
and restraint. The tests were made on bars and tubes
of 17ST aluminum alloy. Failure by lateral buckling oc-
curred only in tests on the solid beams. It was found
that, within the elastic range, the test results were in
agreement with the classical theory for the lateral
| buckling of deep beams as given by Prandtl, Michell, and
‘ Timoshenko. The tests were extended to the inelastic
| o~ range where it was found that the substitution for

Young's modulus of an average modulus of elasticity de-
rived from the stress-strain curve made it possible to
. predict instability at anigh stresses.

INTRODUCTION

Rectaneular bars are occasionally used in the form
of beams with the long dimension of the rectangle in the
plane of the loads. Then the depth of such a beam is
great compared with the width, the beam may become un-
stable in a lateral Airection with a consecuent sidewise
buckline, perhaps at a stress below the yield strength
of the material. This action is similar to the bdbuckling
of a column under an axial load. In the lateral buck-

f ling of beams, however, the stabdility depenis on the tor-
sional as well as the flexural stiffness. A considera-
tion of stability is frequently of greater importance in
| Aesigning with aluminum alloys than it is with other
structural materials having hizher moduli of elasticity.
It seems desirable to include in the Handbook, "Struc-
tural Aluminum," a section on lateral stability of beams,
In order to arrive at a suitable formula for allowable
working stresses, it is necessary to have an understand-
‘ ing of the factors contributing to the lateral stadbility
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of such a beam, and the effect of different conditions of
loading and restraint.

The problem of the lateral instability of deep rec-
tangular beams appears to have been treated first by
Prandtl (reference 1) in 1899, 1In the same year the prob-
lem was discussed by A. G. M. Michell (reference 2). Both
investigators arrived at substantially the same solution.
The subject was further discussed by S. Timoshenko (refer-
ence 3), who treatei various conditions of loading and
lateral restraint. More recently, treatments of the prob-
lem have appeareil in wvarious textbooks. (See reference 4,
p. 609; refercnce 5, p. 499; reference 6, p. 239.)

That the resulting expression for allowable working
stresses may be applied generally with safety, but with-
out being unnecessarily conservative, it is necessary to
study the stabdbility of Adeep rectangular beams under dif-
ferent types of loading and with various coniitions of re-
sttraint’s The solution of the stability problem for cer-
tain cases is available from the literature on the sub-
ject. TFor other conditions of loading and support con-
sidereil, it has been necessary to determine analytically
the expressions for the critical loads.

The available literature on the lateral stability of
deep rectangular beams deals exclusively with the theoret-
ical aspects of the subject. No report of an experimental
investigation was found. Despite the rigor of the theo-
retical solution, an experimental investigation showing
azreement between the theory and test results would in-
crease confidence in the correctness of the theory, even
if the experimental verification was for but one condition
of loading ani restraint. There are other reasons for an
experimental study of the subject. While the average of
the results of a number of tests to determine the critical
stress might aegree well with the theoretically determined
value, the difference in individual results are also o
importance as indicating the variations that may be en-
countered., The problem of determining the critical load
for a deep rectangular beam does not readily yield to a
theoretical solution when buckling occurs at stresses be-
yond the elastic range of the material. Determination of
critical loads in this plastic range of stresses, from
test results, would permit an empiriecal extension of the
results of theoretical analysis for elastic dbuckling that
would be of value in derivinz an expression for allowable
working stresses in such beams. Such test results might
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also suegcest a theory for the buckling of deep beams in
the plastic rance.

Deep rectangunlar beams may be either of solid sec-
tion or hollow. A brief study of the stability of hollow
rectaneular beams was included in this investigation, with
a few tests made to corroborate the theory.

The object of this investigation was to study the
lateral instability of Adeep rectangular beams under vari-
ous conditions of loading and restraint, with the view to
determining an expression for allowable design stresses
for such beaums. The investigation included both analyti-
cal and experimental studies and dAealt with solid and hol-

low rectancgular beams.

ANALYTICAL CONSIDERATION

Solid Section

The theory of the elastic instability of deep rec-
tangular beams is very well and completely presented by

Timoshenko (reference 6, pp. 239-256) and by Prescott
(reference 5, pp. 499-529). Both arrive at substantially
the same expression for the critical bending moment at

which the beam becomes unstable. This expression may be
written
K V2I,GJ
M = 2 (1)
cir 1,

where M,,. 1s maximum bending moment in the beam, in.-1b.

B, modulus of elagticity®, dlbs per sq. in.

I,, moment of inertia of the section about the

greater axis, in.%

* Timoshenko uses the value for Young's modulus of elasti-
city, while Prescott uses the "plate" modulus E' =

E
2 — , where | 1is Poisson's ratio. This difference
- s
will be discussed later in connection with the test re-
sults.
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&, pmod alnEioii yriiad distiy e Bib sspien isq,. it
d; gection factor fTor torsiomal rigidity, in.4
L, spaniiliongth ,miing

and K, constant depending on the conditions of load-

ing and lateral support.
For the solid rectanzular section, the section fac-
tor for torsion may be expressed

J = fb d {2)

where b is width of rectangle, in.

di, depth of rectangle, in.
and B, constant Aepeniing on the ratio i/v.
Some values for B, as ziven by Timoshenko (refer-
ence 7), for ratios of d4/b representing "deep" rec-

tangles are given in the following table:

6 8 10 oo

Qi 299 0 .80 0.313 0.333

Perhaps a fair average value for B 1in the study of deep
rectangular beams would be 0.31.

Then
I = 0Pk d (2a)
Further,
S
i d
I, = 3
5 12 (3)

and, since W = 1/3 (for aluminum alloys)
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Now,

5 = =2 (2)

Where B8  1s stress at ounter fiber, 1b.: per e#g. 1n.
M, bending moment, in.-1b.

c, distance from neutral axis to outer fiber,
2O R 4

and I, mouwent of inertia of section about the short
axis
3
b
IN=" —aes
e (5)

The expression for the critical stress in a Aeep rec-
tangular beam may then be written

< o b2
Sep = K'g i'r’i (6)
where Scr is maximum tension or compression in the beam
and K', a constant depending on the conditions of
loading and laterall support; K'!' = 0.591 K

This expression is, of course, valid only when dbuck-
ling occurs at stresses within the elastic rance of the
material.

Values for the constants K and K'!' are listed in
table I for various conditions of loading and lateral sup-
port, for deep rectanzular bveams of one span. Some of
these coefficients were obtained from sources previously
mentioned, while others, which could not be found in the
literature, were determined by the authors. A brief dis-
cussion of the methods employed and the calculations for
one case may be found in the appendix,

The constants in table I apply when the load is con-
sidered as applied at the neutral axis of the beam. If,
instead of being applied at the neutral axis, the load
acts at the top of the beam, the critical stress is some-
what lower. For the case of a concentratedl load applied
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to the top of a Aeep rectangular beam at the center of
the span, Timoshenko (reference 6, p. 255) gives the fol-
lowineg approximate expression for the value of the criti-
cal load!

15.93 ,/BI,JG (1 . 1748 JEI;
4 1P \ L Je /

in which the terms are as previously defined. The first
term of this expression is for the critical load when ap-
pliedl at the nentral axis of the beam. The secondi term
in the parenthesis represents the reduction in the eriti-
cal load when applied at the top of the beam. For wvery
deep rectansular beams this term may be simplified by

/f
substitution ( setting J = il to read
\

(7a)

Therefore, when the concentrated load is applied at the
top of the beam, the constants given in tadle I for case
Iaedhonilld ible imullstiipliiteds biys thel feoief ficilent

(1= 1.2 2) (7b)
\ L/

A similar expression for the uniformly Aistributed load
(case 7) applied to the top of the beam can also be ob-
tained from Timoshenko's work. (See reference 3.) For
this case the coefficient is

77 e
(1 = 1.26 =) 8
| s (8)

X

=

AN

Hollow Section Rectangular Tube

The problem of the lateral stability of a hollow
rectangular beam has not been trecated in any of the
available literature on the subject of lateral instabili-
ty of beams probably because lateral buckling is uncommon
in such beams. Fundamentally, the problem is the same as
for a solid rectangular section, stability being provided
by a combination of the torsional and lateral flexural
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stiffness of the beam. Expressions for the moments of

inertia and the section factor for torsion are, of course,

different in the case of the hollow rectangle. Also, in
addition to the torsional stiffness of the beam (GJ), any
tendency to twist is opposed by the bendine resistance of
the side walls of the tube in their own planes. For or-
dinary long beams, however, this latter consideration can
safely be neclected, The expression for the section fac-
tor for torsion for a hollow rectangle may be written
(reference 5, p. 168):

b0, dv=gr (8837

J =2 2 3 (9)
bt + dty - t - t,

where t is thickness of side walls, in.
ty, thickness of top and bottom walls, in.
and b and t are as previously defined

This expression may be simplified, if the tubing is
of uniform wall thickness, to read

t(b-t)2 (A-t)2
b + 4 -~ 2%

(9a)

Cy
|

andh 15"t Is*negtizibily ‘smell compared with"™ .b" “apd™ &,
may be further simplified to

B2 .08
2b dgt
il v (9%)

The moment of inertia about the long axis will be

3 - 3
_ ow g (begt ™ (d-2E) (10)
z 12 12

and the moment of inertia about the short axis

3 R By 3
g b4®  (p-2t) (d-2%) (11)

e T 12
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Again, if t 1is negligibly 'small compared with b and

4, 'these expressions may be written

7 bnt (d b

T cm——— 4+ -

z el 2/ (10a)

and
4%t 4
1, = — (b4 =) (11a)
7 ) 4 3/

For a hollow rectangular beam in which the wall
thickness is neelicibly small compared with the width
and depth of the section, an expression for the critical
stress can be written similar to equation (6) for the
solid section. This expression is

2 s
b 3 21+
Sep = K'E —— ( / \ (12)
L \3b+d & 3(b+d)/

K" = K /3/8 = 0.613K

A comparison between the stress at which lateral in-
stability would occur in a solid and a hollow deep rec-
tangular beam of the same outside dimensions may be ob-
tained by considering first a beam with a ratio of width
to depth of 1/6. Then the P 1in eguation (2) will be
0.299 and the K' value in equation (6) will become

K =r0.580" K

and for the solid section
2

b
8= 05680 KR
Ld

For the hollow section

5 3 34+
Sep = 0.618 K8 — ( )
L "\3b+d ¥ 3(b+d)

The ratio of the critical stresses will then be
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o5 580
d
% / 34+b
0.1 (oo /20
\3b+d 3(b+4d) /
Thehe Hhiaabe =8 ldeanids G8l==6 . theweriticall sStrssisRtor, Hhe

hoglgwasechbidons will bel 2601 times the eriticaliéstressufor
thew solids siectionypriovi ded, of course, that beth beams
buckle within the elastic range.

For a very deep beam (b very small compared with d)
the B value will approach 1/3 and KXK' will be the same
as Kt, If b 1in the foregoing exvression is neeglected,
the, ratio of the critical stress in the‘hollow and the
solid beams will be about 3 to 1.

Then making these comparisons between the stability
of beams of hollow ani solid rectangular sections of the
same outside dimensions, it must be remembered that the
comparisons are on the basis of critical stress and not
critical bending moment. If the beams are compared on
the basis of critical bending moment (section modulus X
critical stress), the solid beam, of course, will always
carry the greater moment.

MATERIAL AND DESCRIPTION OF TESTS

The material for this investigation consisted of 17ST
aluminum alloy rolled rectangular bar with square corners
and 17ST square-corner rectangular tubing. The nominal
dimensions anl the average tensile properties and compres-
sive yield strengths of the bars and tubing are shown in
tabliewl Is

The tensile proverties of the material were deter-
mined from standard A.S.T.M. sheet specimens or round
threaded-end test specimens depending on the thickness of
the material. Both the tensile and compressive yield
strenegth correspond to the stress that produced a perma-
nent set of 0.2 percent. The tensile yield strengths were
determined from load-strain curves Arawn by an automatic
autographic extensometer; the compressive yield strengths,
from ordinary stress-strain curves. :
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The rectaneular bars were tested in pairs as beams
on edge as shown in figure 1. TWach pair of bars was se-
curely bolted to channel spreaders of approximately the
same Aepth as the bars. These spreaders held the ends
of the bars vertically and also preventedl the bars from
deflectineg laterally. Figure 2 shows the arrangement of
the ends of the specimens and the method of applyineg the
loads. The span length for the - by 2-inch bar and the
3- by 2-inch bar variel from 36 to 96 inches .and for the
other bars, from 48 to 120 inches. In every case the un-
supported length of the bars (length of bar subjected to
uniform bending moment) was 24 inches less than the span
length. In each of the tests the vertical deflection of
both the bars was measured at the center of the span by
means of a mirroredl scale and taut wires. Lateral deflse-
tions of the bars were measured from a reference mark on
the top edge of each bar at midspan to fixed points in
the testing machine with a scale graduated to 0.01 inch,
¥hile this method of measuring lateral deflection was sat-
isfactory for these tests, it obviously made no distinc-
tion between lateral movement and rotation of the bars.
Both the vertical and lateral deflections of the bars were
measured for various increments of load until failure oc-
curred by lateral buckling or until the extreme fiber
stress, as computel by the flexure formula, was apprecia-
bly greater than the yield strength of the material. 1In
the case of the %— by 6-inch bars over a span length of
48 inches, the capacity of the machine was reached before
lateral buckling occurred although the data indicated
that such failure was impending,

Huszzenberser extensometers were usedl to measure the
maximam fiber stresses at the lower loads, These instru-
ments were attachel to the top ani bottom edges of both
bars about 5 inches from the middile of the span. No at-
tempt was made to measure stresses up to failure because
of the possibility of damage to the instruments in case
of sudden failure.

DISEUSSTION
Test Resmlts
The results of the beam tests are summarized in table

III. This table shows the computed stress at failure and
the type of failure for each test. Failure occurred i1n
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three distinct ways: vertical yielding, vertical yisld-
ing accoxapanied by lateral buckling, and lateral bdbuckling
alone., Typical load-deflection curves for these three
tyovestof failures are shown 1n Higures d,. 4, and 5. Wigd
ure 3 shows tne vertical and lateral deflection data for
a é— by 2-inch beam stressed beyond the yield strength of
the material. The departure of the vertical deflection
curve from a straight line was considerable, whereas the
lateral deflection was zero throusghout the test. Nhile
bars in this class have been described as failing by ver-
tical yieldin=, it should be pointed out that, had load-
ing been continued, ultimate failure would probably have
occurred by lateral buckling in many cases. The test was
stopped when the stress in the outer fiber had apprecia-
bly exceeded the yield strength of the material. The na-
ture of the failure when the apparent outer fiber stress

in the beam <S== EE-\ has exceeded 45,000 pounds is not
T
of extreme importance since for such beams the nominal
iesiegn stress of 15,000 pounds per square inch (17ST) rep-
resents a factor of safety of at least 3. Figure 4 shows
the deflection data for a 3/3- by 4-inch beam. In this
case the besam was yielding in the vertical direction as
cvidenced by the departure of the load-deflection curve
from a straieht line, and failure occurred by lateral
buckling. That lateral buckling occurs at a very defi-
nite stress is evident from the sharp break in the later-
al deflection curves. Figure 5 shows representative de-
flection curves for the specimens that failed by lateral
buckling without yieldiug in the vertical plane.

The critical stress at which the rectangular bars
failed by lateral buckling, both in the elastic range
and beyond, have been plotted in figure 6 in comparison
with the curve representing the calculated values for
ceritical stress.

It is not surprising that the rectangular tube showed
no indication of lateral buckling. Based on the analysis
of a preceding section and employing equations (9a), (10),
and (11), the calculated value for critical stress, assum-
ing elastic action, is about 185,000 pounds per sguare
inch. The critical stress for a solid bar of the same
outside dimensions and loaded in the same manner would be
124,000 pounds per sgnare incii. Neither of these values
is significant as indicating the strength of the beams
since failure would occur by yieldineg instead of by lateral
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buckling. A comparison of these critical stress walies,
however, indicates that, for beams of these proportions
(ratio of b/4 of 1/4), the critical stress for the hol-
low tube is about 50 percent greater than for the solid
bar, provided they buckle elastically. For elastic
buckling to occur in a rectangular beam of such propor-
tions, the beam would have to be extremely long, and
considerable deflections in the plane of the loads would
be produced befionen lateral ybuekiiine eeecurreds s If thils
deflection is considered, the coefficient K is found to
be not a constant but dependent on the ratio of b/d, be-

ing larger for the wider beams. (See reference 6, p. 248.)

Then testel over a span length of 120 inches, the
rectangular tubes yielded in the vertical plane with no
indicationofuwlateral  buckiineg ais issshown in ficurew7s:
Loading of the tubes was discontinued when the vertical
deflection at the middle of the span was 3-1/4 inches.

Failure by Elastic Buckling

The lower straight-line portion of the curve in fig-
ure 6 represents the equation

ba
8 o e o X < D083 K i X o (13)

which is equation (6) with the XK' value for case 2 (ta-
blesl)s, The counditions of this case -were falthfully pe=
produced in the tests. The agreement between this curve
and the points representing failure by elastic buckling
is guite satisfactory, particularly when it is remembered
that the tests were made on beams of Aifferent sizes.

Also in figure 5 is shown the straight line repre-
senting the eguation

b2 6
S s= 0BTl R ORI e—— e 10 (14)
A4

In the derivation of this equation, the value ® in
equation (1) was replaced by the plate modulus T®!',

E
(E‘ = -—75‘\ , while the value for G remained unchanged.
X 4 b

{See reference 5, pp. 499-529.) The difference in slope
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of these two lines is only about 3 percent. The points
representine experimentally determined values of critical
stress fall below the upper line, indicating that perhaps
the plate modulus value is not apvlicable to beams of the
proportions of those tested. It is probable that for
beams of extremely deep and narrow section the critical
stress would be slichtly greater than the calculated val-
ue based on a modulus value of 10,300,000 pounds per
sguare inch.

A stuly of the values of the constant X! given in
table I for various conditions of loading and restraint
indicates the importance of considering the type of load-
ing as well as the nature of the restraint in calculating
the critical stress for a deep rectangular beam. TFor in-
stance, a comparison of the value o8f KXK' for cases 1, 5,
and 8, shows that for a simple span with the ends of the
beam held vertical the critical stress for a uniformly
distributed load is 12 percent greater and for a concen-
trated load at the center of the span is 35 percent great-
er than when the beam is subjected to pure bending., If,
however, the ends of the beam are clamped in the horizon-
tal plane (cases 2, 6, and 9), there is very «1 1t tiled it
ference in the critical stress under the different load-
ing conditions, being lowest for the distributed load.
But, if the lateral restraint consists of holding the beam
vertical at the ends and at the middle of the span (cases
3, 7, and 10), the critical stress for the distributed
load is 31 percent greater and for the concentrated load,

77 percent greater than for pure bending. Another in-
stance of the importance of considering the nature of the
load is afforded in a comparison of the K' 'values for

casies 14 and 16 or casss 13 and 15. Such a comparison
reveals that the critical stresgs for a deep rectangular
beam loaded as a cantilever with a uniformly dAistridbuted
load acting along its neutral axis is about 60 percent
greater than for a similar beam loaded with a concentrated
load at the free end, provided, of course, that buckling
occurs within the elastic range.

An interesting point is brousght out by a comparison
of the K' wvalues for cases 9 and 13, which indicates
that a deep rectangular beam dbuilt in at the ends and sub-
jJected to a concentrated load at the middle of the span
Wil lofail by slateral .buckling at a stress llower :than: the
critical stress for a similar beam, loaded in the same
manner, simply supported in a vertical plane but restrained
at the ends against lateral deflection. The critical load
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for the built-in beam will be greater than for the simply
supported beam (case 8), but will be less than twice as
great.

The effect of the position of the applied load, rel-
ative to the neutral axis on the lateral stability of a
deep rectangular beam, has been discussed. It is evident
from equations (7) and (8) that this consideration becomes
of great importance for short spans.

Stress Distribution and Buckling Beyond the Elastic Range

"hen the stress in the outer fiber of the beam exceeds
the proportional limit of the material, the expression

S %F no longer represents the true condition of stress.
For a beam of rectangular cross section, however, it is
not difficuls to derive an expression for the stress at
the outer fiber if it is assumed that (1) the material of
the beam is homogeneous and has the same stress-strain re-
1at1onsh1p in tension and compression, (2) that plane sec-
tions remain plane (i.e., the strain is proportional to
the distance from the the neurtral axis), ani (3) all lon-
gitudinal flbers of the beam are in simple tension or com-
pression.

The stress-strain curve shown in figure 8 may also be
considered as a curve of the stress distribution on the
upper or lower half of the cross section of a rectangular
beam if the axis representing stress is taken as the neu-
tral axis of the beam and the strain axis as the vertical
center line of the cdross section. The depth of the beam
is arbitrary, and half of the depth may be represented by
any distance on the strain axis dependiﬁg on the stress
conditions for the particular case. If half the depth of
the beam is considered to be represented by a certain dis-
tance from the neutral axis, as indicated in figure 8, and
it is assumed that a beam of unit width is being dealt with,
the moment about the neutral axis of the area bounded by
the stress-strain curve and the line representing the outer
T 1borion tnp beam, when properly corrected for thestress
and depth scales, represents one-half the resisting moment
offered by a beam of rectangular cross section of unit
width and of twice unit depth for that particular value of
stress at the outer fiber. This resisting moment, which
shall be called R, has been determined from the curve in
figure 8 for Aifferent values of -stress § at the outer
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fiber. These results have been listed in table IV and
pYetted dm figure 9. In figure 9.4t 4l evident that the
relation between S and ‘R may be very closely repre-
sented by two straight lines as shown. The lower portion
represents the relationship '

S = 3R (15)

and applies for values of S 1less than 26,000 pounds pef
square inch. TFor stresses greater than 26,000 pounds per
square inch the relationship is expressed by the equation

St = 25001 & A B6R (16)

Since R represents one-half the resisting moment
of a beam of rectangular section of unit width and twice
unit depth, the total resisting moment of a rectangular
section of width b and depth d can be -shown by scalar
expansion to be

oM
AW LA e (17)
2 bi®

Then the maximum fiber stress within the elastic range
will be

g - MBIt (18)
bd®

which coincides with the expression given by the equation
§ = — (19)

When stresses greater than 256,000 pounis per square
inch are involved, the actual value for the maximum fiber
stress may be obtained from the expression

3.12 M
$ = 12,500 + ————

bd®
If the value of the stress as determined by the flex-

7 :C L\
ure formula (S = E‘)

: is called the "apparent stress" and
W
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represented by SA' then for values greater than 26,000
pounds per square inch, actual stress may be expressed in
terms of the apparent stress as follows:

§ = 12,500 + 0.52 8, (20)

or
S = 12600
Sy = SeSem=Z2o0 (20a)
Qo2

A consideration of the stress distribution across
the section affords a logical means for determining the
critical 1load on a deep rectangular beam when stressed
beyond the elastic range. If it is assumed that the ra-
tio between the modulus of elasticity E and the modulus
of rigidity G remains unchangedi, the apparent critical
stress S, may be obtained from eguation (8) provided
the proper value for the effective modulus ® is used,
The value for the effective modulus used in determining
the portion of the curve in figure 6, representing lat-
eral bucklineg beyond the elastic range, was obtained as
the average moAulus for all the elements of a cross sec-
tion corresponiing to a particular value of stress on the
outer fiber. For the case of pure bendiing, the stress
Aistribution on all cross sections of the beam are the
same. By definition, the modulus of elasticity is the ra-
tio of change in stress to change in strain. Consequently,
the modulus at any given stress is the slope of the stress-
strain curve at that stress. This modulus value, aptly
called the "tangent" modulus, has been plotted in figure
10 for the stress-strain curve shown in figure 8. The
average modulus for the beam for a particular value of
stress at the outer fiber would then be the average ordi-
nate of the portion of the tangent-modulus curve below
that stress. This average modulus curve has also been
plotted in figure 10. Since it is convenient to deal in
terms of apparent rather than actual stress at the outer
fiber, the averace modulus curve has also been plotted
against apparent stress in figure 10. Values from thisg
curve have been used in determining the critical stress
curve of figure 6. The relation between apparent outer
fiber stress and average modulus can be represented by a
straight line. The equation for this straight line is

E, = 12,550,000 - 102 S, (21)

and from eguation (8), the critical apparent stress may
be expressed
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12550000 (k' BZ
\ 1.4
Sy = e (22)
1 tol0 <K' Ee
14

This equation is applicable for stresses greater
than 22,000 pounds per square inch and permits a direct
determination of the critical apparent stress.

It is recoenized that this value for the effective
modulus cannot be rigidly justified by theoretical con-
siderations. It can be shown, however, that the criti-
cal stress calculated on the basis of a more rigid the-
oretical consideration of the lateral flexural andi tor-
sional riegidity of the beam, which wouldl include an in-
volved expression for the effective modulus, will be
slightly agreater than the value obtained using this sim-
plified effective modulus value. It is significant to
note the agre=sment between the calculated critical stress
curve thus obtained and the experimental results (figure

6).

It miecht be pointed out that this value for effec-
tive modulus applies only in the case of pure bending.
For other typess of loadineg, such as concentrated or dis-
tributed loads, where the distribution of stress on a
cross section varies throughout the length of the beam,
it would be necessary to consider the variation in aver-
age modulus for different sections. In such cases, the
effective moinlus corresponding to a particular value of
apparent stress (beyond the elastic range) would be
greater than for pure bending.

As may be seen in figure 6, the curve representing
the critical apparent stress beyond the elastic range
may be closely approximated by a straight line, The
critical stress for the case of a deep rectangular beam
of 17ST aluminum alloy subjected to pure bending with the
ends fixed against lateral deflection may be determined
from the equations for the two straight lines. For

b2 -6
i3 X 10°°values from O to 680,

8 =58 .92 % 10° X == (23)
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-2 -
For values of %E X" 1@ & ranging from 680 to 1,500

8 = 10,000 (23 g% 10° il ) (24)
I A i e 7.4

where  SA is the apparent stress on the outer fiber
= Mg >
8. = =
o5 5
CONCLUSIONS

Trom this study of the lateral stability of deep
rectangular beams, the following conclusions may be
drawn:

1. The stress at which a deep rectangular beam be-
comes unstable within the elastic range of the material
may be determined from the cquation

2

b
R !

2. In the determination of the critical stress for
a deep rectaneunlar bean, jt is important to consider the
nature of the load as well as the manner in which the
beam is supported.

3, For a long deep rectangular tube in which the wall
thickness is uniform and is small compared with the width
and depth, the critical stress within the elastic range
may be expressed

2 3i+b
= Kt p—— / i /’ \
a0 ) (12)

4. Depending on the ratio of b/d, the c¢critical stress
for a thin-walled deep rectangular tube may be as much as
three times as great as the critical s tress flor a 'seilld
rectangular beam of the same dimensions, loaded and sup-
ported in the same manner. For a ratio of b/d of 1/4‘
the critical stress for the tube would be about 50 percent
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i ereater than for a solid bar of the same size provided
. buckling occurred elastically.

5. The critical stress, as determined experimentally
for solid deep rectangular beams subjectel to pure bend-
ing with their ends restrained against lateral deflec-
tion,; agreed very well with the values determined analyt-

ically.

6. For deep rectangular beams of solid section sub-
jected to pure bending beyond the elastic range of the
smaterial, the critical apparent stress may be calculated

fimen! S = K'R %;, using as the value of ® the average

tangent modulus for all the elements of the cross section.
For a rectanzular bar of 17ST, this average modulus value

may be expressed by

T, = 12550000 - 102 S, (21)

- where

. Mc
Sy = E_ > 22,000

and the critical appareant stress may be exXpressed by

b
12550000 (K"—“
& L4
y 2 (22)

SA =
1 + 102 /K' -
N

7. The critical apparent stress for values between
the 1imit of the elastic range and a value of 45,000
pounds per square inch, as determined by tests on deep
rectangular bars subjected to pure bending with their
ends restrained against lateral deflection, was in agree-
| ment with valunes calculated by eguations (6) and (22).
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APPENDIX

Since lateral buckling of a deep rectangular bean
consists of a combined lateral deflection and twisting
of the beam, both the flexural ani torsional stiffness
of the-beam must be considered in determining its 1limit
of stability. If axes are taken as shown in figure 11
and the angle of rotation is expressed as 0, the 4if-
ferential equations of equilibrium for the lateral bend-
ing and the twisting of the beam may be written

2

(5 15/ e
Bl St = 8 (25)
? ax? @ '
dag. .
GJ = = lig (26)
where EI, 1is lateral flexural rigidity

GJ, torsional rigidity

My, lateral bendiinz moment that can be expressed .
in terms of the external load ani the an-
gle 6

Mp, twisting moment that can be expressed in
terms of the external load and some func-
tion of the lateral deflection ¥y

These eguations may be reduced to a differential equa-
tion of the second order, first degree in 6. Then this
Aifferential equation has constant coefficients, as is
the case when the beam is subjected to pure bending, it
yields readily to an exact solution. If the equation
has variable coefficients, a solution may be effected by
the method of infinite series. This method of solution
is frequently very laborious and, in many cases, where
the curve € = f(x) 1is of simple form, the equation may
be more easily solved approximately by the method of fi-
nite differences. This method divides the length of the
beam into equal intervals and assumes that three succes-
sive points are connected by a curve of parabolic form.
The accuracy of this method is improved by increasing
the number of intervals, but in many cases a solution of
sufficient accuracy can be obtained with surprisingly
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it btle worlk, « Obwviously, 'suchia method will ‘not igive very
accurate results through a point of contraflexure. It

has been found that values for critical stress determined
by this methol are somewhat lower than values given by the
exact solution of the differential equation.

Another method that may be freguently used to advan-
tagce in the determination of the limit of lateral stabil-
ity of a beam is the energy method used extensively by
Timoshenko. In this method, the strain energy of lateral
bending plus the strain energy of twist are equated to the
work produced by the lowering of the external load caused
by the lateral buckling. The expressions for the external
work and the strain energy will involve functions of both
& and y. From the equilibrium equations (25) and (26),
hewever, one or the other of these variables can be elim-
inated. Solution of the equation.is then accomplished by
assuming a function of the variable that satisfies the
boundary conditions and effecting the integrations in-
volved. If the function of the variable assumed is the
correct one, the critical load thus determined will agree
exactly with the value determined from an exact solution
of the differential equation. For any other function,
however, the critical load determined by the energy meth-
od will invariably be higher than the exact solution.

The strain-energy method was found to be particularly use-
ful in cases involving distributed load and when the beam
was restrained azainst lateral deflections. An analysis
of the effect on the stability of the beam of a displace-
ment of the load above or below the neutral axis can also
be readily made using this method.

As an example of the use of the strain-eneregy method,
calculations will be given for the critical value of a
uniformly Aistributed load applied at the neutral axis of

a simply supported deep rectansgular beam, the ends of which

are held vertical and restrained against lateral Adeflec-
tion. Consider the beam shown in figure 12, loaded with

a uniformly Aistributed load of w (1b. per ag. in.) act-
ing at the neutral axis with the coordinate axes disvosed
as indicated. The lateral end restrainineg moment N 1is
such that the slope of the lateral deflection curve at the
ends 1is meroly ‘i ie. .,

Whlomie | X = 20
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The expression for the strain energy of bendineg can
be written (reference 7, pPp. 303-303)

_ L r42y)\2
Vg = BI, fO Z{;éﬂ) dx (27)

"and the strain energy in torsion can be expressed

) £
Vy = @I f \ix) dx (28)

The work done by the external load corresponding to the
strain energy of bending and twisting can be expressed
(reference 3)

; L PR 2 2
W=w ﬁ) 6 \dxg) (0% s ) 10 (29)

Then the equation representing the balance between exter-
nal and internal energy becomes

f 6( \(L i ) ix = L (i > dx + EI, f < ) dx (20)

For fhése conditions of loading and restraint equa-
tion (25) becomes

~

o e "2_’ B = ) 5N (31)

At this point the a ssumed expression from the func-
tion of '8 1is introduced. An equation of the form

X
@ = A(1 + cos e (32)

/

satisfies the boundary conditions, which are

; e

x = L 0 e B
dx

x = 0 6‘—"-0 g‘.ﬁ:o

dx
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Then eguation (31) becomes

iy w ( ﬂx:> a 2
Bl vsstos=i= A{letocogs— WlL" 1= x - N 33
CdET 2, N L ol

Sinee ‘dy/fdx ='0vat.xs= 0 l@nd x= I,

AL dfy

= 4x = O (34)
o, txs

J

qe

4
ftfor ;—% its value from equation (33) be substi-
X<
tuted, the restraining moment N <can be evaluated. It
is found that

N = 0.4347 wAL® : (35)

o D 2
The terms iii and (EZZ\ in equation (30) can now
ix? \dx27
be replacei by expressions involving 6 as the only vari-
able. Terms involvineg any function of 6 can in turn be
replaced by their eguivaleunt from equation (32) . Rguation
(30) is thus reducedl to the form

nJ 2 L
s sin°(0E &= (36)

Performing the indicated integrations and simplifying,

—

e = & 11V/EIZGJ
w CR— o. Le

Aluminum Company of America,
Aluminum Research Laboratories,
New Kensington, Fenna., Nov. 11, 1936.
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TABLE 1|
CONSTANTS FOR DETERMINING THE LATERAL STABILITY OF SOLID DEEP RECTANGULAR BEAMS
CASE SIDE VIEW TOP VIEW I
i
1 (L JD @z 34 | 186
Y L \

2 @—-—-——--#}) e DO R
, =
e = - 6.28 | 3.7

% N
4 <t j) é%%g 922 | 545
354 | 209
610 | 36l
824 | 487
42350 250
647 | 382
2 | 657
31 | 774
529 | 313
% N\ v/
13 - o spp ] e
o s 2
4 — 0| 2
Y 7
5 4;2—:} Z BRSO AR
16 ,gﬂﬂm N- 643 | 380
Z
% %
17 T ZN 643 | 380

25
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TABLE II
Nominal Dimensions and Mechanical Properties of Rolled

Rectangular Bar and Rectangular Tubing

17ST Aluminum Alloy

Section| Width|Depth Yield strength Tensile Blongation
fin.){(1n.) (1b./sq.1in.) strength in 2 8.
(1b./sg.in.)| (percent)
Tension |Compression
Bar 1/8 2 40, 400 33,800 55.530 24,3
Bar 3/4 2 40,900 33,000 55,400 25.1
Bar 1/4 4 40,160 35,000 56,520 24.2
Bar i/a 4 37,800 34,000 56,400 24,2
Bar 3/8 4 37,550 33,900 54,340 25.5
: Bar 1/2 B 36,500 33,700 55,930 26.6
Tubing*|1-1/4| 5 |38,600 ! 59,450 21.4
|

*Qutside dimensions; wall thickness = 0.095 in.




TABLE ITI

SUMMARY OF TEST RESULTS

Actual size (in.)| Section| Span |Unsupported tress/1000 1lb. load | Haximum |Maximum fiber stress
Test| (d) (v) modulus |Lengti| leangth (L) 02 (1v./2q.1in.) applied (1b./sq.in.) Nature of failure
Depth width | (in.3) | (in.) (in.) Ld Measured | Computed (f’r?mffg y| Apparent| Actual

1 2.007 0.750 1.018 96 72 3,893 x 10 5 (59 6 d) 5,895 18,000 35, 360 31,200 Yielding

2 2.012 .750 1.011 72 48 5,834 6,170 5,935 21,000 41,540 34,200 "

3 2.012 .748 1.009 48 24 11,586 6,160 5,945 24,000 47,570 37,300 i

4 2.002 .748 .999 36 12 23,2389 (St 6,005 24,000 48,050 37,300 "

5 1.994 . 4396 .657 96 72 s |7 B 9,525 9,130 10,800 32,880 29, 300 8

6 1.994 .496 .658 72 48 2,370 9,250 9,120 13,500 41,030 22,300 "

% 1.994 .497 .659 48 24 5,061 9, 300 9,105 13, 500 40,970 32,800 .

8 1.998 .498 .662 36 12 10, 344 8,850 2,085 18,000 54, 380 40, 300 i

) 3.993 D01 2.662 120 96 855 2,350 2,355 33,000 24,780 24,780 Lateral buckling
10 4,000 8023 2.675 96 72 875 2,350 2,240 41,700 31,180 28,700 " "

11 4.014 502 2.693 72 48 1,308 2,270 2,330 58,050 43,110 35,000 Lateral buckling and
12 4.012 +501 2.688 48 24 2,606 2,260 2,230 60,000 44,640 35,800 Y1e%gt?§ing

13 6.023 .500 6.053 120 96 432 1,020 990 51,600 17,060 17,050 Lateral buckling
14 6.010 .500 6.025 96 72 578 1,040 995 67,050 22,260 22,620 ) "

15 6.008 .500 6.009 72 48 867 1,010 1,000 ¢, 000 29,960 28,100 " "

16 6.0086 .499 6.001 48 24 1,787 1,018 1,000 120,000 39,990 33,200 Lateral buckling and
17 3.997 . 376 2.003 120 96 369 3,090 2,995 13,200 13,170 13,170 Litziiin%uckling
18 4.002 - 3 2.012 96 72 490 3,135 2,980 19,230 19,120 12,120 N t

19 3.995 .376 2.003 72 48 737 2,055 2,995 26,€50 26,810 26,300 & )

20 3.999 . 375 1.999 48 24 1,465 3,055 3,000 44,400 44,4320 35, 500 Lateral buckling and
21 3.986 .253 1.343 120 96 167 4,660 4,470 4,425 6, 580 6,580 Liiglginguckling
22 4.016 254 1.362 96 72 223 4,562 4,405 5,580 8,120 8,190 " L

23 4.000 .254 1.358 72 48 326 4,525 4,430 8,935 1&,170 13,170 » "

24 3.994 254 1.350 48 24 873 4,825 1, 248 17, 4C0 25, 780 25,780 " "

25 4.991 1.250 2.2546 120 g6 -—— 2,330 2y OD5 55, 500 43, 700 ——— Yielding

26 4.992 1.251 32.545 96 72 -— 2,395 2,355 54,000 42, 430 —— i

‘ON ®30N TBOTUUOSL "V 'O'V'N
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TABLE IV

Values of Resisting Moment R
for Various Values of Stress at the Outer Fiber
poif “a. Baw of 17ST Aluminum Alloy

Stress Resisting Moment
(1b./sq.in.) (i =20, )

10,500 3,600
20,900 6,920
28,300 10,140
31,500 12,240
33,700 48,720

- 35,300 14,670
36,800 15,600

: 38,000 16,280

S

28




Figure 1.—8et-up for

lateral instability test of

deep rectangular bars.
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