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CEANNEL SECTION AND Z-SECTION

By Eugene E. Lundquilst
SUMMARY

Charts are presented for the coefficients in formulas
for the critical compressive stress at whilch crosswsection-
al distortion begins in a thin-wall member with elther a
channel section or a Z-section with identical flanges.

The energy method of Timoshenko was used in the theoreti-
cal calculations required for the construction of the
charts. The deflection equations were carefully selected
to give good ascuracy.

The calculation of the critical compressive stress at
stresses beyond the elastic range is briefly discussed.
In order to demonstrate the use of the formulas and the
charts in engineering celculations, two illustrative prob-
lems are inecluded.

INTRODUCTION

In the deslgn of compression members for aircraft,
whether they be stiffeners in stressed-skin structures or
struts in trussed structures, the allowable stress for the
member is equal to the lowest strength correspornding to
any of the possible types of fzilure. In references 1 and
2y all types of column failure are clasged under two head-
ings:

(2) Primary, or general, failurs.
(b) Secondary, or local, failure.

Primary, or general, failure of a2 column is defined as any
type of failure in which the cross sections are translated,
rotated, or both translated and rotated but not distorted
in their own planes (fig. 1). Secondary, or loeal, failurse
of a column 1s defined as any type of failure in which the
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cross sections are distorted in thelr own plansg but not
translated or rotated (fig. 2). Consideration is given in
this paper only to local failure,

One of the factors to be considered in a study of lo-
cal failure is the critical compressive streses at which
the cross section begins to-distort, This critical stress
can usually be sgilven in coefficient form. The purpose of
this paper is to present charts that will be useful in g~
tablishing the coefficlent to be used 1n the calculation
of the critical compressive stress at which cross—sectional
digstortiorn begins in a thin-wall channel soction or Z-
gsection with ldentical flanges,

The onoergy method of Timoshenko was used for the calw
culatlons required to ovaluate the coefficlont plottod in
tho charts. (See reference 3.) The calculations, which
are long and were made as a part of a more extended study
of local fallure in thin-metal columns, have been omitted
from this paper.

This paper 1is the second of a series on the general
subject of local failure in thin-metal columns. The first
report of the sories (rofercnce 4) is concerned with local
failure in thin-wall rectangular tubes.

Bernard Rubenstein, formerly of the N.A.C.A. staff,
performod all the mathematical derivations reguired for
the preparation of this paper.

CHARTS

The calculation of the critical compressive stresgs at
which cross-sectional distortion beszins in a channel secw
tion or a Z~section is, in reality, a problem in the bduck-~
ling of thin plates, proper consideration being given to
the interaction between adjacent plates composing the cross
section. TFor the columns of channel section and Z-section
considered in thig paper, the flansges have identical dimenw-
sions. The conditions of symmetry in the croes section re-
quire that, when one flange buckles, the othor flange also
buckles. (See fig. 2,) Thus, the channol soction and the
Z-gection consisgt of two dbasgic plate elements, l.,8., flancge
rlates and a web plats,

Timoshenko has given the critical stress for a rec-

1.
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tangular plate under edge compression in the following
form (reference 5, p. 605):

rnd E t°
12 (1 ~ p2) 13

for =

whore . . e

T  is tengion~compression modulus of elasticity
for the material,

iy Polssgon's ratio for the materisal.
ts thlckness of thg plate,
by width of the plate.

k, a nondimensional ‘coefficient that depends
upon the conditions of edge support and the
‘Gimensions of the plate. '

This equation can be used to calculate the-critical
.compressive stress at which cross—-sectional distortion
begins in channel- and Z-section columns. I+ % and D
are the thicknesg and the width, respectively, of the
flange, then the restraining effect of the web, whether
positive or negative, is included in the coefflclent k.
If %+ and b refer to the thickness and the width, re-
spectively, of the web, then the restrainlng effect of the
flange, whether positive or negative, is also included in
the coefficient Xk Dbut a different set of values for k
s obtained., It is therefore necessary to decide whether
t and b  in the equation for the ecritical stress shall
refer %0 the dimensions of the flange or to the dimensions
of the webs In certain limiting cases, one form of the
equatlion is to be preferred; whoreas, in other limitlng
cases, the other form is preferable. In this report, both
forms of the equation will be given, either of which may
be used to calculate the eritical sitress for channel sec-
tions and Z-sections. For the flange plate,

er 12 (1 - w2) ng (1)

T

For the web plate,

k. M2 B £.,2

£
°F 12 (1 - pu?®) vy
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tp and ty are the thlckness of the flange and
the wed plates, respectively.

by and by, the width of the flange and the webd
plates, respectively.

kp and ky, nondimensional coefficients that de-
pend upon the dimensions of the
channel gsection or the Z-gection.
(See figs. 3 and 4.)

The curves glven in figures 3 and 4 were obtained by
rlotting the calculated wvalues of ke and ky given in
tables I apd II, respectively. These values were computed
by the energy method previously mentioned,

The relation bebtween kp and ky for a given channol
gsectlon or Z-gection i1g sometimes of interest. Thig rela-
tion is obbtained by equating the right sides of equations
(1) and (2). Thus

2 -]
AR R
4 bFa bWB
from which
: 7 2 ty 2
F w b v

LIMITATIONS OF CHARTS

The charts in figures 3 and 4 may be regarded as close
approximgtions, the errors being not more than about 1 por-
cent, The values of kyp and ky given in the charts are

the minimum valuesg possible for a channel- or a Z-gection
column of infinite length. For engineering use, however,
these values will apply to any channel- or Z-gsection col-
umn having a length greater than about twice the width of
the web or the flange, depending on which is the wider.
The length of all members likely to be encountered in air-
craft degign will thus fall within the range to which fig-
ures 3 and 4 apply. It ghounld be mentioned that, for very
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gshort columns of channel section or Z-sectlon where the
length does have an appreciable effect, the values of the
coafficient are conservative. S .

The values of kp and kg glven herein apply to col-

umns with chennel section or Z~sgsection in whichkh the mate-
rial is both slastic and isotropic. Steel, aluminum al-
loys, and other metallic materisls usually satlsfy these
conditions provided that the materlal is not stressed be-
yoad the elastic range, VWhen a maoterial ls stressed be-
yond the proportional 1imit in one direction, it is no
longer elastic and is probably no longer lsotrople. In a
later portion of this paper, the use of equations (1) and
(2) is shown in the calculation of the critical stress when
the columns are loaded beyond the proportional limit.

DEFLECTION EQUATIONS

The deflection equations used in the ensrgy solution
are! For the flanges,

4 3
2f oo G2
{A 3.889 889 [( 4.96 by by
s . . .
- 9,778 Q§E> } gin = (4)
F L '
For the web,
e I (o - ZE) EZE] g
Wy = [40 1 wg/ t D sin oy sin — (5)

whers

wyp and wy eare deflection normal to flange and web,
respectively.

L, length of member.

n, number of half-waves that form in the length L,
The ratio IL/n is therefore the half-wave
length of & wrinkle in the direction of the
length,
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yF and T coordinates meansured from one corner 1ia
the direction of flange and web, re-
spectively.

A, B, 0, and D, arbitrary deflection amplitudos.

The values of A and B for the
flanges are expressed in terme of

C and D for the wed throusgh the

use of the conditiong that the cor-
ner angles are maintained during
buckling and that the bonding moments
at the corner are in squillidbrium,

The values of D/C and L/n are then
elvon values that cause the critical
atross t0o be a mininmum,

The foregoing deflection equations used in the enerzy
solution were carefully selected. Although no direct cal-
culation of the error hae been made, 1%t ig believed that
the values of ky and ky are correct to within a frac-
tion of 1 percent., Thig belief is justified because, in
the limiting cases for which exact solutions are available,
the precision ig within these limits. In addition, other
Problems in which these deflectlor equations have beon used
gave a proclsion better than 1 porcont,

If B=C =0, tho doflection equations (4) agnd (5)
roduce to the same eguations used by Parr and Beakloey (rof=
eronce 6) in theilr study of loeal instability (plato faill-
ure) of channel columns.

DISCUSSION OF CHARTS

Flgure 3 gzlves values of kp plotted agalnst bw/bF
for values of tw/tF = 0,5, 1, and' 2, TWhen the web is very
narrow in comparison with the flanges (bwy/byp small), the
flanges are weaker than the web. A4s by/dy increases, a
point is reached where the web becomes the woakor part of
the cross soction. This point ia clearly discernidle for
ty/tp = 0.5 and 2 in figuro 3 where these curves break

sharply at by/bp = 1.8 and 3.3, respectively,
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Figure 4 gives values of ky plotted against bp/ by
for the same values of ¢ty/tp. When the flanges are very
narrow in comparison with the web (bp/by semall), the

. web -is .wweaker than the flanges. 4&s byp/dy increases, a

point is reached where the flange bescomes the weaker part
of the cross sectlion., This point is clearly discernible
for +ty/ty = 0.6 in figure 4 where this ocurve bresaks

sharply at by/dy = 0.55.

CRITICAL.STRESS FOR LOADING BEYOND THE PROPORTIONAL LIMIT

In the elastic range, the eritical compressive stress
for an ordinary column that fails by bending is given by
the Euler formula., Beyond the proportional limit that
marks the upper end of the elastic range, the reduced slope
of -the streéss-strain curve requires that an effective modu=
lus 2® be substituted for Young'!s modulus E in the Euler
formula., The value of ¥ igs sometimes written as TE,

E = T8 (6)_

The value of the nondimensional coefficient T wvaries
with stress. By the use of the double-modulus theory of
column action, theoretical values of T can be obtained
from the compressive stress—=strain curve .for the material
(reference 5, p. 572, and references 7 and 8). Tests show
that, in practice, theoretical wvalues of T,. derived on
the assumption that no deflection occurs until the coriti-
cal load is reached, are too large. The value of T for
practical use is best obtalned from the accepted column
curve for the material in the manner outlined.in the illuse
trative problem of reference 4. The values of T thus ob-
tained take into acecount the effect of imperfections that
cause deflection from the beginning of loading as well as
other factors that may have a bearing on the strength,.

For cross~sectional distortion of a thin-wall column
of channel section or Z-section, the critical compressive
stress in the elastic range is ziven by either equation
(1) or equation (2). Beyond the proportional limit, the
critical compressive sitress is ziven by these equations
with an effective modulus MNE substituted for Young's mod-
ulus E or3 For the flange plate,

Nkyp w3 B ¢p°
or T 12 (1 = p2)py®

(7)
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For the web plate,

NMkyg w2 B ty? .
£ = 8
er T 12 (1 - p)bye (8)
In the absence of adequate test data, the value of the non-
dimensional coefficient 1T cannot be definitely establlshed.
It ia reasonable to suppose, however, that T and T a&are
related in some way,.

Various equations relating T and T have been sug-
gesteds, The discussion of reference 4 points out that,
when T 18 considered to be a function of T, the eguation
for 17N will depend upon the manner of evaluation of T. If
T 1ig determined from the stress-strain curve on the assump-
tion that no deflection takes place until the eritiecal
stress is reached, the effect of deflections from the be-
ginning of loading must be separately considered. If T
1g determined from the accepted column curve for the mate-
rial in the manner outlined in the illustrative problems
of reference 4, part, if not all, of this effect 1s auto-
matically considered.

A careful study of the theory and of such experimental
date as are avallable indicates that a conservative assump-
tion is _

T+ 3/7
n = ___Z_JLI (9)

provided that T is evaluated by use of the accepted col-
umn curve for the materials Egquation (9) will probably
have to be modified, however, as more test data become
avallable. '

Now T 1s iteelf a function of the critical stress
feope Hence N is a funciion of fope Consequently; equa~
tions (7) and (8) cannot be solved directly for fope If
each equation is divided by T, however, fgor/T 18 given

directly by the zeometrical d&imensions of the cross sectlor
end the charts of figures 3 arnd 4+ —For the flange plate,

2 3
for kp 7% B by

N " 12 (1 = p)bp? (10)
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For the web plate,

4
O

for kg mo E by

- 1
N 12 (L - pe)bye (11)

The relation between f,p and f£,n/N can be deterw

mined from & knowledge of the column curve for the materisl,
as outlined in the illustrative prodlem of referencs 4. In
figure 5, several such curves are given for 248T aluminum
alloy for different assumed relations between T and T.
When the wvalue of fcr/n hag bsen obtained by use of equaw=

tion (10) or equation (11), the value of f,, is read from
the appropriate curve of figure 5.

The ultimate strength of a thin-wall column of channel
section or Z-section will, in zeneral, be higher than the
load at which crosgss—~sectional distortion begins. At stress-~
es approaching the yileld point of the material, the criti-
cal load and the ultimate load approach the same value. No
attempt has been made in this paper to discuss the ulti-
mate strength of a thin-wall column of channel section or
Z-gsection; the solution for the critical load logically
precedes the solution for the ultimaste load.

ILLUSTRATIVE PROBLEM

It is desired to ealculate the critical compressive
stress at which cross—sectional distortion begins in two
channel columns constructed of 24S5T gluminum alloy:

Channel 4 Channel B
bp = 1 in. bp = 1 in,
by = 2 in. by = 2 in.
ty = 0.10 in, tp = 0.20 in,
ty = 0,10 in. ty = 0.10 in,
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Solution for Channel A

w.oz_,

'bF’-l—

EE:QLLQ:]_

ko = 0.730 (road from figz., 3)

E = 10,66 X 10° 1b., per sq. in.

i

18 Cu3

From equation (10)

——— 222

n 12 (1e~0.3°) (1)°

for _ 0.730% m% x 10.66 X 10° x (0,10)% _ wy 330 19. per sq.in.

From the soclld curve of figure 5

fap = 33,700 1b, per sq. in,

Solution for Channel B

b
£ -Lo0.5
'bw 2

ty. 0.10

tg  0.20 0.5

ky = 6.56 (recad from fig, 4)
E = 10.66 x 10° 1b, per sq. in.

0.3

i

i

From equation (11)

f 2 : = 2
or _ 6,56 m” x10.66 %107 x(0.10)% _ 155 000 1b. per sq.in.

n 12 (1= 0,3°) (2)2 _ :

From the solid curve of figure 5
fop = 38,600 1b, per sq. in,
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CONCLUSIONS

[

1, The critical ‘compressive stress at which cross=
sectional distortlion ocecurs in & thin-wall column of channel
section or Z-section is glven by elther of the following

antinddamasn
SGUB.UL0NS e

Nky w8 B $yp° _ Ny n® B 5

= - £
c? 12 (1 ~ ua)bra ter 12 (1 - lJ'a).bwa

where

‘E and WM are Young'!s modulus and Poisson's ratilo
for the materizl, respectively.

o
5

+ha widdh Af &la-
vl W4LAQTvo vad

ty and ty, the thickness of the flange and the web,
' respectively.

kg and K nondimensional coefficients read from fig-
ures 3 and 4, respectlively.

\n, " a factor taken so that ﬂE gives the ef-
fective modulus of the flangs and wed
at stresses beyond the elastic range.’

2, At stresses beyond the elastic range, the wvalus
of the effective modulus TB for local duckling of thin-
wall columng of channel section and Z-section will depend
upon tests. In the absence of such tests, however, 1% is
reasonable to assume that T 1s a function of <4, where
TE is the effective modulus of an ordinary column at
stresses beyond the elastic range. & careful study of the
theory and such experimental data as are available indi-
cates that it is conservative to assume

T certens o et e

provided that <+ 1is evaluated by use of the accepted column
curve for the meterial,

Lengley Memorial Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va., July 11, 1939,
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TABLE I

722

Calculated Minimum Values of kF

by the EBnergy Solution

kg
byl by
by 0.5 1 2
by

0 1.288 1,288 1,288

200 - 1,111 -

.400 .695 - 1.234

QGOO - -962 -
1,000 - . 892 -
1,400 = 8386 -
1,750 «506 - -
1,800 (499 .770 -
1Q825 1493 - -
1,900 455 - -
2,000 w410 L 730 1,187
2,200 338 - -
2,400 «284 .629 1.188
2,800 «208 «521 1,190
3.200 .159 423 1,192
3400 - ~- 1,178
3 600 ,125 345 1,103
%,800 - - 1.021
4,000 « 101 +284& + 940
44400 «083 236 . 799
4,800 - «199 «681
5,200 059 .170 .587
5.600 - « 146 «508
6.,000 « 044 o127 1 444

13



N.A.C.A. Technlcael Note XNo, 722

TABLE II
Calculated Minimum Values of kw

by the Energy Solution

ey
b/ by
by 0.5 1 2
by
o} 4,000 4,000 4,000
«050 5,457 4,258 4,031
.100 6,020 4,452 4,044
«130 6.188 - -
.16%7 6.306 4,585 3.998
L 179 - 4,591 2,983
.192 6,381 4,595 2,968
. .208 = 4,591 3.922
.22% 6,431 4,575 2,865
«250 6,482 4,539 3.762
L2863 - - 3.685
«278 6,493 4,467 3,573
294 - - 32,405
313 6.512 4,333 3,052
357 6.532 4.081 2.332
417 6.539 2,625 1.711
+455 6.552 - -
«500 6,563 2.921 1,187
.5286 6.564 - -
548 6,567 - -
5586 6.467 2,496 -
.571 6.204 - -
.625 5,409 - 761
. 714 - 1.638 -
0833 3.316 baad .4:29
1.000 - .892 -
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(a) Translated

Fig.

(b) Translated and rotated

Figure 1.~ Displacements of the cross section in primary, or

general, failure of a column.
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Half-wave length

(a) Channel section

Helf-wave length

L.
n

(b) 2 - section

Figure 2.- Displacements of the cross section in secondary,
or local, failure of a column,
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