## SIRUCIUHES HEStAKCH ت

NATIONA工 ADVISORY COMMITTHT FOR AERONAUTIOS

No． 722

## POR FLyzidCE


IOCAI INSTABIIITY OF GENTRAE工Y LOADED COLUMMS OF
CHANNH工 SHOMION AND Z－SHOTION
By Eugene E．Iundquist
Langley Memorial deronautical Laboratory


1！2 O TBET
LANGLEY RESEHTNH CENTER LIBRAFY，NASA
HAMHTTON，VIKEIRIA


Vashington
August 1939

# NATIONAL ADYISORY COMMITTEE FOR ATRONAUTICS 

TECHNICAL NOTE NO. T22

# LOGAI INSTABIIITY OF OENTRAIIY IOADED COLUMNS OF <br> GEANNEI SHCTION AND Z-STCTION <br> By Eugene $\mathbb{E}$. Lundquist 

## SUMMARY

Charts are presented for the coerficients in formulas for the critical compressive stress at which cross-sectional distortion begins in a thin-wall member with either a channel section or a Z-section with identical ilanges. The energy method of Timoshenko was used in the theoretical calculations required for the construction of the charts. The deflection equations mere carefully selected to give good accuracy.

The calculation of the critical compressive stress at stresses beyond the elastic range is briefly discussed. In order to demonstrate the use of the formulas and the charts in engineering calculations, two illustrative problems are included.

## INTRODUCTION

In the design of compression members for aircraft, whether they be stiffeners in stressedeskin structures or struts in trussed structures, the allowable stress for the member is equal to the lowest strength corresponding to any of the possible types of failure. In references 1 and 2; all types of column failure are classed under tro headings:
(a) Primary, or general, failure.
(b) Socondary, or local, failure.

Primary, or general, failure of a column is defined as any type of fallure in which the oross sections are translated, rotated, or both translated and rotated but not distorted in their own planes (fig. I). Secondary, or local, failure of a column is defined as any type of failure in which the
cross sections are distorted in their own planes but not translatad or rotated (fig. 2). Consideration is given in this paper only to local failure.

One of the factors to be considered in a study of $10-$ cal failure is the critical compressive stress at which the cross section begins to distort. This critical stress can usually be given in coefficient form. The purpose of this paper is to present charts that will be useful in establishing the coefficient to be used in the calculation of the critical compresgive stress at which crossusectional distortion begins in a thin-wail channel soction or $2-$ section with identical flanges.

The onergy method of Timoshonko was used for the calculations required to evaluate the coofficiont plottod in tho charts. (See reference 3.) The calculations, which are long and were made as a part of a moro extended atudy of local failure in thin-metal columns, have been omitted from this paper.

This paper is the second of a series on the general suibject of local failuro in thin-metal columns. The first report of the sories (reference 4) is concerned with local failure in thin-wall rectangular tubes.

Bernard Rubenstoin, formerly of the N.A.C.A. staff, performod all the mathomatical dorivations required for the proparation of this paper.

GEARTS

The calculation of the critical compressive stress at which crossmsectional distortion begins in a channel secm tion or a $Z$-section is, in reality, a problem in the bucklinf of thin plates, proper consideration boing given to the interaction betweon adjacent plates composins the crose section. For the columns of channel section and z-bection considered in this paper, the flanges have identical dimensions. The conditions of symmetry in the crose section require that, whon one flange buckfea, the othor flange al so buckles. (Soe fifg. 2.) Thus, the channol soction and the Z-section consist of two basic plate elements, i.e., flance plates and a Feb plate.

Timoshenko has given the critical stress for a rec-
tangular plato under odge compression in the following form (referonce 5, p. 605):

$$
f_{c r}=\frac{k \pi^{a} E t^{3}}{12\left(1-\mu^{3}\right) b^{3}}
$$

Thoro
E is tension-compression modulus of elasticity
for the material.
H, Poisson's ratio for the material.
$t$, thickness of the plate.
$b$, Width of the plate.
$k$, a nondinensional coefficient that depends
upon the conditions of edge support and the
dimensions of the plate.

This equation can be used to calculate the critical compressive stress at which cross-sectional distortion begins in channel- and Z-section columns. If $t$ and $b$ are the thickness and the width, respectively, of the flange, then the restraining effect of the web, whether positive or negative, is included in the coefficient $k$. If $t$ and $b$ refer to the thickness and the width, respectively, of the reb, then the restraining effect of the flange, whether positive or negative, is also included in the coefficient $k$ but a different set of values for $k$ is obtained. It is therefore necessary to decide whether $t$ and $b$. in the equation for the critical stress shall refer to the dimensions of the flange or to the dimensions of the web. In certain limiting cases, one form of the equation is to be preferred; whoreas, in other limiting cases, the other form is preforable. In this report, both forms of the equation will bo given, either of which may bo usod to celculate the critioal stress for channel sections and . Z-sections. For the flange plate,

$$
\begin{equation*}
f_{c r}=\frac{k_{F} \pi^{2} I t_{F}^{2}}{12\left(1-\mu^{2}\right) b_{H}^{2}} \tag{1}
\end{equation*}
$$

For the web plate,

$$
\begin{equation*}
f_{c r}=\frac{k_{\pi} \pi^{2} T t_{W}^{2}}{12\left(1-\mu^{2}\right) b_{\pi}^{2}} \tag{2}
\end{equation*}
$$

Where
$t_{F}$ and $t_{n}$ are the thlckness of the flange and the web plates, respectively.
$b_{F}$ and $b_{F}$, the width of the flange and the web plates, respectively.
$k_{F}$ and $k_{T}$, nondimensional coefficients that depend upon the dimensions of tho channel section or the Zasection. (See figs. 3 and 4.)

The curves given in figures 3 and 4 were obtained by plotting the calculated values of $k_{F}$ and $k_{F}$ given in tebles I and II, respectively. These values were computed by the energy method previously mentioned.

The relation between $k_{F}$ and $k_{T}$ for a given channol section or Z-section is sometimes of interest. This relaw tion is obtained by equating the right sides of equations (I) and (2). Thus
from which

$$
\begin{equation*}
k_{F}=\left(\frac{b_{F}}{b_{W}}\right)^{2}\left(\frac{t_{T}}{t_{F}}\right)^{2} k_{T} \tag{3}
\end{equation*}
$$

IIMITATIONS OF ORARTS

The charts in figures 3 and 4 may be regarded as cloge approximations, the errors being not more than about 1 percent. The values of $k_{F}$ and $k_{T}$ given in the charts are the minimum valuos possibie for a channel- or a Z-section column of infinite length. For enginooring use, however, these values will apply to any channel- or Z-section column having a length greater than about twice the width of the meb or the flange, depending on which is the wider. The length of all members likely to be encountered in aircraft design will thus fall within the range to mhich figm uros 3 and 4 apply. It should be mentionod that, for very
short column of channel gection or Z-section where the length does havo an appreciable effect, tho values of the coefficient are conservative.

The values of $k_{F}$ and $k_{\mathbb{W}}$ given herein apply to oolumns with channel section or $Z-s e c t i o n ~ i n ~ w h i c h ~ t h e ~ m a t e-~$ rial is both elastic and isotropic. Steel, aluminum alloys, and other metallic materials usually satisiy these conditions provided that the material is not stressed beyoud the elastic range. When a material is stressed beyond the proportional limit in one direction, it is no longer elastic and is probably no longer isotropic. In a later portion of this paper, the use of equations (I) and (2) is shown in the calculation of the critical stress then the columns are loaded beyond the proportional limit.

## DERLECTION EQUATIONS

The deflection equations used in the energy solution are: For the flanges,

$$
\begin{gather*}
W_{F}=\left\{A \frac{Y_{F}}{b_{F}}-\frac{B}{3.889}\left[\left(\frac{Y_{F}}{b_{F}}\right)^{5}-4.963\left(\frac{Y_{F}}{b_{H}}\right)^{4}+9.852\left(\frac{Y_{F}}{b_{F}}\right)^{3}\right.\right. \\
\left.\left.-9.778\left(\frac{Y_{F}}{W_{F}}\right)^{2}\right]\right\} \sin \frac{n \pi x}{I} \tag{4}
\end{gather*}
$$

For the web,

$$
\begin{equation*}
\pi W=\left[40 \frac{y \pi}{b \pi}\left(1-\frac{Y \pi}{b \pi}\right)+D \sin \frac{\pi V}{b \pi}\right] \sin \frac{n \pi x}{I} \tag{5}
\end{equation*}
$$

where
$W$ and $W$ are deflection normal to flange and $\pi e b$, respeotively.

I, length of member.
$n$, number of half-waves that form in the length $I$. The ratio $I / n$ is therefore the halfowave length of a wrinkle in the direction of the length.
$b_{F}$ and $b y$, widh of flange and web, respectively.
$x$, coordinate measured from ond of member.
$y_{F}$ and $y_{T}$, coordinates measured from one corner in the direction of flange and web, respectively.

A, $B, C$, and $D$, erbitrary deflection amplitudos. The values of $A$ and $B$ for the flanges are expressod in torms of $C$ and $D$ for the reb through tho use of tho conditions that the corner angles are maintained during bucking and that tho bending momonts at the corner are in equilibrium. The values of $D / C$ and $I / n$ aro thon givon values that cause tho critical stross to be a minimum.

The foregoing deflection equations used in the energy solution were carefully selected. Although no direct calculation of the error has beon made, it ig believed that the values of $k_{B}$ and $k_{T}$ are correct to within a fraction of l percent. This belief is justified because, in the limiting cases for which exact solutions are available, the precision is within these limits. In addition, other problems in which these deflectior equations have boen ured gave a precision bettor than 1 porcont.

If $B=C=0$, tho doflection equations (4) and (5) roduce to the same equations used by Parr and Boakloy (rof oronce 6) in their study of $10 c a l$ instailifity (plato failure) of channel columns.

## DISCUSSION OF CEARTS

Figure 3 gives values of $k_{F}$ plotted against $b_{W} / b_{F}$ for values of $t_{T} / t_{F}=0.5,1$, and 2 . Then the $\nabla \theta b$ is very narrow in comparison with the fianges (bW/b $b_{F}$ gall), the flanges are weaker than the web. As $b_{W} / b_{F}$ increases, a point is reached where the web becomes tho voakor part of the cross section. This point is clearly discernible for $t_{W} / t_{F}=0.5$ and 2 in figuro 3 where these curvos break sharply at $b_{W} / b_{F}=1.8$ and 3.3 , respectively.

Figure 4 gives values of kT plotted against $b_{F} / b_{T}$ for the same values of $t_{W} / t_{F}$. When the flanges are very narrom in comparison with the web ( $b_{F} / b_{T}$ small), the web is weaker than the flanges. $A_{s} b_{F} /$ biw $_{W}$ increases, $a$ point is reached where the flange becomes the weaker part of the cross section. This point is clearly discernible for $t_{\pi} / t_{F}=0.5$ in figure 4 where this curve breaks sharply at $b_{F} / b_{H}=0.55$.

## GRITICAI.STRESS FOR LOADING BEYOND THE PROPORTIONAI IIMIT

In the elastic range, the critical compressive stress for an ordinary oolumn that fails by bending is fiven by the Fuler formula. Beyond the proportional Iimit that marks the upper end of the elastic range, the reducedi slope of the stressustrain curve requires that an effective modulus $\vec{F}$ be substituted for Young's modulus $\mathbb{F}$ in the Euler formula. The value of $\mathbb{F}$ is sometimes written as TF,

$$
\begin{equation*}
\bar{s}=\mp \mathbb{E} \tag{6}
\end{equation*}
$$

The value of the nondimensional coofficient $T$ varieg with stress. By the use of the double-modulus theory of column action, theoretical values of $T$ can be obtained from the compressive stress-strain curve for the material (reference 5, p. 572, and references 7 and 8). Tests show that, in practice, theoretical values of $T$, derived on the assumption that no deffection occurs until the oritical load is reached, are too large. The value of $t$ for practical use is best obtained. from the accopted column curve for the material in the manner outlined. in the illus. trative problem of reference 4. The values of $T$ thus obtained take into account the effect of imperfections that cause deflection from the beginning of loading as well as other factors that may have a bearing on the strongth.

For crossasectional distortion of a thin-wall column of channel section or Z-section, the critical compressive stress in the elastic range is given by either equation (1) or equation (2). Beyond the proportional limit, the critical compressive stress is given by these equations With an effective modulus $\eta$ th substituted for Young's modulus $B$ or: For the flenge plate,

$$
\begin{equation*}
f_{c r}=\frac{\eta k_{F} \pi^{2} \# t_{F^{2}}}{12\left(1-\mu^{3}\right) b_{F}^{2}} \tag{7}
\end{equation*}
$$

For tho web plate,

$$
\begin{equation*}
f_{c r}=\frac{\eta k_{W} \pi^{2} T t_{H^{2}}^{2}}{12\left(1-\mu^{2}\right) b_{W}^{2}} \tag{8}
\end{equation*}
$$

In the absence of adequate test data, the value of the nondimensional coefficient $\eta$ cannot be definitely established. It is reasonable to suppose, however, that $\eta$ and $T$ are related in some way.

Various equations relating $\Pi$ and $T$ have been auggested. The discussion of reference 4 points out that, when $\eta$ is considered to be a function of $T$, the equation for $\eta$ will depend upon the manner of evaluation of $T$. If $T$ in determined from the stressmstrain curve on the assumption that no deflection takes place until the critical stress is reached, the effect of deflections from the beginning of loading must be separately considered. If $T$ is determined from the accepted column curve for the material in the manner outlined in the illustrative problema of reference 4, part, if not all, of this effect is autom matically considered.

A careful study of the theory and of such experimental data as are available indicates that a conservative assumption is

$$
\begin{equation*}
\eta=\frac{T+3 \sqrt{T}}{4} \tag{9}
\end{equation*}
$$

provided that $T$ is evaluated by use of the accepted column curve for the material. Equation (9) Will probably have to be modified, homever, as more test data become available.

Now $T$ is itself a function of the critical stress $f_{c r}$. Hence $\eta$ is a function of $f_{c r}$. Consequently; equations (7) and (8) cannot be solved directly for fir. If each equation is divided by $\eta$, however, $f_{c r} / \eta$ is given directly by the geometrical dimensions of the cross sectior and the charts of figures 3 and 4.-For the flange plate,

$$
\begin{equation*}
\frac{\sum_{c x}}{\eta}=\frac{k_{F} \pi^{2} E t_{F}{ }^{3}}{12\left(1-\mu^{2}\right) b_{F}{ }^{2}} \tag{10}
\end{equation*}
$$

For the reb plate,

$$
\begin{equation*}
\frac{f_{\mathrm{GI}}}{\eta}=\frac{k_{H} \pi^{2} E t_{W}^{2}}{12\left(1-\mu^{2}\right) b_{K}^{2}} \tag{1I}
\end{equation*}
$$

The relation between $f_{c r}$ and $f_{c r} / \eta$ can be deterw mined from a knowledge of the column curve for the material, as outlined in the illustrative problem of reference 4. In figure 5 , several such curves are given for 24 ST aluminum alloy for different assumed relations between $\eta$ and $T$. When the value of $f_{c r} / \eta$ has been obtained by use of equam tion (10) or equation (11), the value of fir is read from the appropriate curve of figure 5.

The ultimate strength of a thin-wall colum of channel section or Z-section will, in general, be higher than the load at which cross-sectional distortion begins. At stresses approaching the yield point of the material, the critical load and the ultimate load appraach the same value. No attempt has been made in this paper to discuss the ultimate strength of a thin Z-section; the solution for the critical load logically precedes the solution for the ultimate load.

## ILIUSTRATIVE PROBLEM

It is desired to calculate the critical compressite stress at which crossmectional distortion begins in two channel columns constructed of 24ST aluminum ailoy:

Cha르nnㅡㄹ A

$$
\begin{aligned}
& \mathrm{b}_{\mathrm{F}}=1 \text { in. } \quad \mathrm{b}_{\mathrm{F}}=1 \text { in. } \\
& b_{W}=2 i n . \\
& t_{\#}=0.10 \mathrm{in} . \\
& { }^{t_{y}}=0.10 \mathrm{in} . \\
& b_{G}=1 \text { in. } \\
& \mathrm{b}_{\mathrm{H}}=2 \mathrm{in} . \\
& t_{H}=0.20 \mathrm{in} . \\
& t_{\pi}=0.10 \mathrm{in} .
\end{aligned}
$$

## Solution for Channel A

$$
\begin{aligned}
\frac{b_{W}}{b_{F}} & =\frac{2}{1}=2 \\
\frac{t_{W}}{t_{W}} & =\frac{0.10}{0.10}=1 \\
k_{F} & =0.730 \quad \text { (road from fin. } 3 \text { ) } \\
\mathbb{E} & =10.66 \times 10^{6} \mathrm{Ib} . \text { per sq. in. } \\
\mu & =0.3
\end{aligned}
$$

From equation (10)
$\frac{f_{c r}}{\eta}=\frac{0.730 \times \pi^{3} \times 10.66 \times 10^{6} \times(0.10)^{2}}{12\left(1-0.3^{2}\right)(1)^{2}}=70.330 \mathrm{Ib}$. per sq. in.
From the solid curve of figure 5

$$
\mathbf{f}_{\mathrm{cr}}=33,700 \mathrm{Ib} \text {. per sq. in. }
$$

Solution for Channel B

$$
\begin{aligned}
\frac{b_{T}}{b_{W}} & =\frac{I}{2}=0.5 \\
\frac{t_{W}}{t_{T}} & =\frac{0.10}{0.20}=0.5 \\
k_{T} & =6.56 \quad \text { (road from fig. 4) } \\
\mathbb{F} & =10.66 \times 10^{6} \text { Ib. per sq. in. } \\
\mu & =0.3
\end{aligned}
$$

From equation (II)
$\frac{\Phi_{C r}}{\eta}=\frac{6.56 \times \pi^{2} \times 10.66 \times 10^{8} \times(0.10)^{2}}{12\left(1-0.3^{3}\right)(2)^{2}}=158,0001 \mathrm{~b}$. per sq. in.
From the solid curve of figure 5
$f_{c r}=38,600 \mathrm{lb}$. per sq. in.

CONCLUSIONS

1. The critical compressive stress at rhich crosssectional distortion occurs in a thin-wall column of channel section or Zasection is given by either of the following equations:-

$$
f_{c r}=\frac{\eta k_{H} \pi^{2} \mathbb{H}_{F}^{2} t_{F}^{2}}{12\left(1-\mu^{2}\right) b_{F}^{2}} \quad f_{c r}=\frac{\eta k_{W} \pi^{2} E t_{H}^{a}}{12\left(1-\mu^{2}\right) b_{W}^{2}}
$$

Hhere
E and $\mu$ are Young's modulus and Poisson's ratio for the material; respectively.
${ }^{\prime} b_{F}$ and $b_{W}$; the width of the flange and the web, respectively.
$t_{F}$ and $t_{i}$, the thickness of the flange and the wob, respectively.
$k_{F}$ and $k_{T,}$ nondimensional coefficienta read from figures 3 and 4, respectively.
$\Pi$, a factor taken so that $\eta$ g gives the efr fective modulus of the flange and web at stresses beyond the elastic range.
2. At stresses beyond the elastic range, the value of the effective modulus $\eta$ for local bucking of thinwall columns of channel section and Z-section will depend upon tests. In the absence of such tests, however, it is reasonable to assume that $\eta$ is a function of $T$, where TE is the effective modulus of an ordinary column at stresses beyond the elastic range. A careful study of the theory and such experimental data as are available indicates that it is conservative to assume

$$
\eta=\frac{T+3 \sqrt{T}}{4}
$$

provided that $T$ is ovaluated by use of the accepted column curve for the material.

Iengley Memorial Aeronautical Iaboratory,
National Advisory Committee for Aeronautics, Lanfley Field, Va., July 11, 1939.

## RAFERBNCES

1. Iundquist, \#ugene ㅍ., and Fligg, Olaude M, A Theory for Primary Failure of Straight Centrally Loaded Columns. T.R. No. 582, N.A.C.A., 1937.
2. Lundquist, Pugene $\mathbb{F} .:$ On the Strength of Columns That Fail by Twisting. Jour. Aero. Sci., vol. 4, no. 6, April 1937, pp. 249-253.
3. Timoshenko, S.: Theory of Elastic Stability. McGrawEill Book Co., Inc., 1936, p. 324, art. 62.
4. Iundquist, IHzene F.: Local Instability of Symmetrical Rectangular Tubes under Axial Compression. T.N. No. 686, N.A.C.A., 1939.
5. Timoshenko, S.: Strongth of Materials. Part II. D. Van Nostrand Co., Inc., 1930.
6. Parr, Marren S., and Beakloy, Mallaco M.: An Investigation of Duraluminum Channol Soction Struts under Compression. Jour. Aero. Sci., vol. 3, no. 1 , Sept. 1935, pp. 21-25.
7. Osgood, William R.: Column Curves and Stress-Strain Diagrams. Res. Paper No. 492, Bur. Standards Jour. Res., vol. 9, no. 4, Oct. 1932, pp. 571-582.
8. Osgood, William R.: The Double-Modulus Theory of Column Action. Civil Eng., vol. 5, no. 3, March 1935, pp. 173-175.

TABL $I$
Calculated Minimum Values of $\mathrm{E}_{\mathrm{F}}$
by the Bnergy Solution

| $\mathrm{k}_{\text {F }}$ |  |  |  |
| :---: | :---: | :---: | :---: |
| $\frac{b_{W}}{t_{F}} / t_{F}$ | 0.5 | 1 | 2 |
| 0 | 1.288 | 1.288 | 1.288 |
| .200 |  | 1.111 | - |
| . 400 | . 695 | - | 1.234 |
| . 600 | - | . 962 | - |
| . 800 | .621 | - | 1.204 |
| 1,000 | - | . 892 | - |
| I. 200 | . 576 | - | 1.193 |
| 1.400 | - | . 836 | - |
| 1.600 | .528 | $\cdots$ | 1.188 |
| 1.750 | . 506 | $\square$ | - |
| 1.800 | . 499 | .770 | - |
| 1.825 | . 493 | - | $\pm$ |
| 1.900 | -455 | - | $\cdots$ |
| 2.000 | . 410 | . 730 | 1.187 |
| 2,200 | . 338 | - | - |
| 2.400 | . 284 | .629 | 1.188 |
| 2.800 | . 208 | . 521 | 1.190 |
| 3.200 | . 159 | . 423 | 1.192 |
| 3.400 | - | - | 1.178 |
| 3.600 | . 125 | . 345 | 1.103 |
| 3.800 | - | - | 1.021 |
| 4.000 | . 101 | . 284 | . 940 |
| 4.400 | . 083 | . 236 | . 799 |
| 4.800 | - | . 199 | . 681 |
| 5.200 | .059 | . 170 | . 587 |
| 5.600 | - | . 146 | . 508 |
| 6.000 | . 044 | . 127 | . 444 |

TABLE II
Calculated Minimum Values of $k^{\pi}$

|  | $\mathrm{k}_{\mathrm{W}}$ |  |  |
| :---: | :---: | :---: | :---: |
| $t_{\frac{b_{F}}{}}^{b_{W}}$ | 0.5 | 1 | 2 |
| 0 | 4.000 | 4.000 | 4.000 |
| . 050 | 5.457 | 4.258 | 4.031 |
| . 100 | 6.020 | 4.452 | 4.044 |
| .130 | 6.188 | $\rightarrow$ | - |
| . 167 | 6.306 | 4.585 | 3.998 |
| . 179 |  | 4.591 | 3.983 |
| . 192 | 6.381 | 4.595 | 3.968 |
| . 208 | - | 4.591 | 3.922 |
| . 227 | 6.431 | 4.575 | 3.865 |
| . 250 | 6.462 | 4.539 | 3.762 |
| . 263 | - | $\cdots$ | 3.685 |
| . 278 | 6.493 | 4.467 | 3.573 |
| . 294 | - | - | 3.405 |
| . 313 | 6.512 | 4.333 | 3,052 |
| . 357 | 6.532 | 4.081 | 2.332 |
| . 417 | 6.539 | 3,625 | 1.711 |
| . 455 | 6.552 | - | - |
| . 500 | 6.563 | 2.921 | 1.187 |
| . 526 | 6.564 | - | - |
| . 548 | 6.567 | $\cdots$ | $\cdots$ |
| . 556 | 6.467 | 2.496 | - |
| . 571 | 6.204 | - | - |
| . 625 | 5,409 | 1.638 | . 761 |
| . 7144 | 3.316 | 1.638 | . 429 |
| 1.000 | $\bigcirc$ | . 892 | - |


(a) Translated

(b) Translated and rotated

Figure 1.- Displacements of the cross section in primary, or general, failure of a column.

(a) Channel aection

(b) 2 - section

Figure 2.- Displacements of the crose section in secondary, or local, failure of a column.

[^0]

Figure 4.- Minimum values of $\frac{b_{F} / b_{F}}{k_{H}}$ for centrally loaded columns of cinennel section and ${ }^{\prime \prime} 2$ - section ( $\mu=0,3$ ).


Tigure 5.- Variation of $f_{c r}$ with $f_{c r} / \eta$ for $24 S T$ aluninum alloy.


[^0]:    Figure 3.- Minimum values of kF fot centrally loaded columna of channel section and $2-$ section ( $\mu=0.3$ ).

