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SUMMARY

A solution for the equation of torsional vibration of
tavered beams has Dbeen found in terms of Bessel functions
for beams satisfying the following conditions: (a) The
cross sections along the span are similar in shape; and
(b) the torsional stiffness of a section can be expressed
as a power of a linear function of distance along the span.
The method of applying the analysis to actual cases has
been described. Charts are given from which numerical
values can be immediately obtained for most cases of prac-
tical importance. The theoretical values of the frequency
ratio have been experimentally checked on five beams hav-
ing different amounts of taper.

INTRODUCTION

The frequency of torsional vibration of a uniform
beam can be calculated for a number of shapes of cross
section. (See references 1 and 2.) The corresponding
cases of tapered beams either have not been solved or are
not readily available. A special case of longitudinal
vibration of tapered beams treated by Nabl (reference 3)
is applicable also to torsion for a special case (n = 2).
In the present paper, the analysis has been extended to
the case of tapered beams subject to rather dbroad condi-
tiong, and a closed solution of the differential equation
of motion has been obtained in terms of Bessel functions.
The result is expressed in such a form that the effect of
taper is given independently of the effect of cross sec-
tion. Hence, except for certain limitations imposed on
the solution of the differential equation, the frequency
of a tapered beam can be calculated if the solution for
the corresponding uniform beam is known.
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SYMBOLS

angular displacement from equilidbrium.
rectangular coordinates in beam.

polar moment of inertia of section.
torsion modulus of section.

shear modulus of material.

length of beam.

time.

density of material.

angular frequency (w = 2nf, where f is
in cycles per second).

angular frequency of a uniform beam,

)
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Glorston! funetion .
eonstants.

exponent in expression for variation of
torsion modulus along span (n = 2\ + 1).

(n - 1)/2.
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roots of equation (7).
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m, number of mode.

IN(L),Tn(f), Bessel functions of first and second kind,
respectively.

Subscripts:
on atl rooit.

B ety (bR

ANALYSIS

The differential equation for the motion of a section
of a beam in torsional vibration (reference ) e

a°8 2 [ aeJ
Iy =% oo hedte)— (1)
i 3 oz a2z
where GJ is the torsional rigidity of the section. For

harmonic vibrations it is known that

) S = w! gy B
ot
Then
é% [GJ(z) E%J +puw? I8 =0
or
2 =, . I,wa,e e . ‘
dg+;_g_q_@+ pP ; = 0 (2)
dz Jd dz dz JG

The functions Ip and J (reference 4) for a prismatic

beam may be expressed in the form
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iy = /h/n (x® + y®) dax ay
o U
o o
J = <x8 + v + x = = — ) dx d
U fe Vs aBlfers’ 387
where ¢, the torsion function, depends upon the cross
section. This function is known for a number of shapves
of cross section. A few examples from references 5 and 6

are given:

(a) Circle of radius r:

(b) Ellipse with semiaxes a and Db:

8 _ a@ 12 2
CP R ag b Xy, T a b
a2 + be

= (mad)
a + be

(c) Rectangle with sides 2a and 2b:

(2n+1) mx

3 (=)® sinh .
N\ r
Qp= =Xy + 418 <§ % A sin ié&i%l—ﬂl
T n= i +1)3 Y (2n+1) Ta b
n colh —amrma
2b
i = ;-3—6‘ k a bs

where k has the values given by the following table.

a/b}{1.00 |1.50 |1.75 |2.00 |2.50 |3.00 |4 6 8 10 o

k .424| .589| .642| .688| .748] .790| .844| .896| .9=22 .940 il

Thie torsion modulus, J, of a section of a tapered
beam is very nearly the same as that of a prismatic Dbean
having the same section. A comparison of the angular de-

flections produced by a static torgque in a conical shaft
as calculated by the exact theory (reference 7) and by in-
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tegrating the torsion modulus for a cylindrical shaft
shows a discrepancy of the order of 1/6 tan® @, where a
is the half angle of the cone. For a cone with tan a =
0.10, the discrepancy is only 0.17 percent. In the fol-
lowing analysis, this distinction in the torsion modulus
has been ignored.

The boundary conditions to be applied to the solution
of equation (2) will depend upon the method of support of
the beanmn. For the case of most interest in this paper, a
beam built in at =z = 0 and free at =z = 1, the boundary
conditions are:

abe 7 =0, BR=
atiini= g—2=o

A solution of equation (2) hag been found for the
case of tapered beams satisfying the following conditions:

(2) All cross sections along the span are similar in
shave.

(p) The torsion modulus J can be expressed as a
power of a linear function of position along the span.
Then, from condition (a), the ratio IP/J is a constant

along the span and is equal to its value at the root sec—
tdon, 1, /[J,. From conditien (1),
=10

n n
J = J,(1 = Bz)" = J 7

The torsion modulus is proportional to the fourth power of
the linear dimensions. Hence, in terms of the semichord,

d 4
P g ()
Io Co
4/n
c
= ==
Co
AL the tip,
o
P
n, = (3) (3)
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It may be noted that

Figure 1 shows a number of typical plan forms corre-
sponding to different wvalues of n. The upper half of
this figure can also be considered as a plot of semichord
giecaiinisib PN T ol id i fementl el ues of nl Tne thills icaisier [0
increagses from right to left. The following properties of
these curves are noted:

n
i s, e 2
d ¢
at" 1l = 0, __EA"Q =0 when n > 4
a n
= o when n < 4
In terms of ¢ and B, equation (2) can be written
a9 . 1 aJ as 2 o3 12
= + = —— == + w® B* 1° 6 =0
at® = 7 dE at
FPor the case of a uniform beam (dJ/d¢ = 0), equa-—

tion (2) has the well=known solution
@ = C; sin Bw 1 € + C3 cos Bw 1 ¢
The freguency equation for a cantilever beam is

cosr B Wk U = 0

Bwl = (2n - 1) 3
2
whemetum® (il 2 . B g
The lowest frequency is
T
: 281
Equation (2) can then be written
& 2
é_g + 1 69 38 <$_;&\ g = 0 (4)
at J d¢ d¢ ;4
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‘ £ Now
=21 - B ¢
|
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1o = L
ol 1
1 -1
i = i-:**z

After equation (4) has been expressed in terms of - SR 7

becomes
\ ' .

* (r-m) HE+G-m) Ra-

\ g Put

n w“:g—-l
‘ 1 = Mg wy 2 !
L Then

e
\ 9:_._654.29.‘_9.4.6:0

¢ i

SOLUTION OF DIFFERENTIAL
‘ A solution of equation (5) has
Besgel functions. Puk

| 6 251" Iy ()

\ Then equation (5) becomes

(5)

EQUATION

been found in terms of

\ G Ji D) n - 2) dJ(C) 3
3 [ it 3 G

I8 0 = (HS="1)]2,

|
N
\ tion:
|
|

b 2§A+l)> J(g)] e

this equation reduces to Bessel's equa-
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afeed 1 apt) %3 B
rid i +<1~E§>J(§)-o

Therefore %\(Q) is a Bessel function of order A.

The complete solution containing two arbitrary con-
stants to be determined by the boundary conditions is

B = E& [AJA(Q) + BJ—A(Q)J; A, nonintegral
(6)

B = E%I:Aﬁ\(g) + BY) () ]; A, integral

The function Yx(é) is a Bessel function of the second kind.

The boundary conditions in terms of { are:

atl g =10, I (o0 €& =0

d
at Z=7’v nznt’ C nt Coya =0

[T lan)

After these conditions have been applied, the resulting
equations can be simplified by means of the relations for
Bessel functions:

- l
éi[xﬁn Jn(x)J e e i Jn+1<x>
P [xn Jn(x)J =28 g - (%)

The condition that the two equations for A4 and B have
sglucionsilothen! than A =10, B = 0, iIs that the determi-
nant of the coefficients of A and B vanish:

Tl ) il 4 h
AD 5o -A* >0 = 0; A, nonintegral
J7\+1 (nt go) “J—}\—‘l(nt t’o)
- (7)

Iy (&) WA

=0 A, integral
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This condition determines an admissible set of wvalues of

0 the roots of equation (7). These roots will be called

o

After the value or values of QO that satisfy the

determinantal equation have been found, the shapes of the
deflection curves for the various modes can be directly
obtained from equation (6). At the root section, { =

§o=§r, S =

0 = AR (8,) + BJ~A(§r); A, nonintegral
0 = Ab\(gr) + BYX(@r); A, JAntegral
Hence
A Iy (L&)
0 = = [J (¢) - A=< 0 (g)} ; A, nonintegral
(X | A J—A(gr) A i
9 i A & ( J}\ (QI‘) % _
= ZX % C) - -_E;\——(g—;-)— Y>\ (g) S 4 1ntegral

where ¢ determines position along the span.

Egquation (7) is a transcendental equation of which
the roots, Qr, determine the frequencies of the various
modes. The equation cannot be solved explicitly bdbut may
be solved indirectly. The roots may be obtained to any
desired accuracy by use of tables or by the graphical pro-
cedure of plotting the value of the detorminant against
ﬁo. For each root there is a corresponding natural fre-

quency of vibration given by
2
= 1S >-—-UJ
w §r< n"b - 8 B

For the case of a pointed beam, equations (?) can be

expressed in a simpler form. From the series expansion
for Bessel functions,
2UANT1
1 (Mg &) (Hg Lap e -

lim lim SN+

nt_;o J_}\_l(ﬂtﬁo) d ﬂt—eo 2 P@a2)

Hence, for pointed beams (7N = 0), the first of equations




10 Nodie Cotl. ‘Techniical Note Now. 697

(7) pecomesg
J)\+l (ntgo)
J_‘}\__l (ntzo)

J?\(éo) = J..}\(CO)'—"-O
When A is an integer, the same result is obtained:
AR T = S il P e Rl B

(nt CO ))\+1 ﬂ(nt CO )}\+l
A+1 2}\+1

e

75, (L)

lim

Ty ~==0o o (A+1)! A

= 0
APPLICATION OF ANALYSIS

The preceding analysis can be immediately applied to
beams the forms of which are mathematically specified by
values of n 'and Niy. Most beams, however, will not ex-
actly. correspond to one of these cases; a method must
therefore be found for determining the best values of n
and Ny for the actual beam. An approximate method will
be 1llustrated for a wing the shape of which is given by a
drawing. Other methods, such as the method of least
squares, are also available for determining these parame-
ters. The thickness will be assumed to vary in the same
way as the plan form.

A sketeh of a typical winz, together with a table of
dimensions, is given in figure 2. It is required to rep-
resent this shape bdy an equation of the form

nn/4

The parameter T varies linearly along the span from a
value of Ty at the tip to 1 at the root. The procedure

is to assume arbitrarily a value of ﬂt, " then to make a

logarithmic plot of chord or semichord against 7. This
brocess is repeated for different values of ﬂt until the
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value of ﬂt giving the best straight line is determined.

The slope of this line is the value of n/4. The third and
fourth columns of the table in figure 2 give values of n
for the assumed values for My of O and O.l. Figure 3

is a legarithmic plot of chord against TN. The points for
My = 0 fall nearly on a straight line. The slope of this
1dne is 0437, which gives n = 4 % 0.37 = 1.,48. The values
of ¢ recalculated from the equation

SR TR T

are given in the last column of the table in fisure 2.

The frequency ratio, w/wl, determined from the roots
of equation (7), is a function of only two variables, n
and MN,. Figure 4 shows this ratio as a function of Ty
for several values of n. The actual frequency is given Dby
ol (i&) o /e
\(.Ul 20 J.pp
The frequency ratio for pointed beams (Nt = 0) 1is ziven

in fiszure 5 for several values of n and for several modes.
For the wing previously described (fig. 2), the frequency
ratio is 1.7?7. The shape of the deflection curve is shown
in figure 6 for several typical values of n and M.

EXPERIMENTAL RESULTS

Five duralumin beams (fig. 7) were constructed and
their frequencies were measured to check the theoretical
values of the frequency ratio. The central cross section
of each beam was a rectangle 6 inches wide and 1/4 inch
thick. The beams were geometrically similar in cross sec-
tion along the span and had straight taper, the correspond-
ing values of TNy Dbeing 1.00, 0.75, 0.50, 0.25, 0.00. It
is apparent from the boundary conditions that a freely sus-
pended symmetrical beam vibrating in torsien with a node
at the center will have the same frequencies as one built
in at the center. The preceding analysis may therefore be
applied to these beams.

The experimental valuecs of the frequency ratio are
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Plotted together with the theoretical curve for n = 4 in
figure 8. The greatest discrepancy between experiment and
theory 1is 2 .percent, which is considered to be within the
limit of accuracy determined by the machining of the beams
and the measurements of the frequency.

CONCLUSIONS

The results of the tests of five beams showed that
the assumptions underlying the equation of torsional vi-
bration of a tapered beam

2
Fo 2 36
Ployg%f <. 32 [GJ(Z) az}

are justifiable for all practical purposes. The frequency
ratio for even the most tapered case agreed with the theory
to within the experimental error.

Langley Memorial Aeronautical Laboratory,
Netional Advisory Committee for Aeronautics,
Langley Field, Va., January 23, 1939.
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