NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE

No. 1018

METHODS FOR DETERMINATION AND COMPUTATION OF FLOW PATTERNS
OF A COMPRESSIBLE FLUID
By Stefan Bergman Brown University

Langley Memorial Aeronautical Laboratory Langley Field, Virginia

Washington
September 1946

31176014338819

NATIONAL ADVISORT COMMITTET FOR ABRONAUTICS

THOENIGAL NOTE NO. 1018

METHODS FOR DETERMINATION AND COMPUTATION OR FLOW PATTERNS

OF A COMPRESSIBLE FLUID

By Stefan Bergman

SUMMARY

A well-known method of generating gtream functions of an incompressible filuid flow is that of taking the imaginary part of an analytic function of a complex variable. In previous publications of the author this method was generalized to the case of subsonic flows of a compressible fluid. Flow patterns, which until the present, have proved impossible to obtain by existing methods, were, however, obtained by this procedure; for example, flows around an obstacle the boundary of which is a closed curve, as well as around nonsymmetric profiles. The procedure can be extended to the case of par:tially supersonic flows. As this method for obtaining flow. patterns of compressible fluid from analytic functions of a, compressible fluid requires rather lengthy computations, the present paper is devoted to a deteiled discussion of performing these computations. The operations are dividedinto two groups: namely, those which need only be carried out oncee and for all and then can be tabulated. (or put on master cards) and those which have to be repeated in every individual case. A detailed description is given concerning the performance of necessary computations on punch card machines. This description is illustrated by an example.

In the appendixes some theoretical questions, which to a certain extent complete the results of NACA Technical Note No. 972, are considered. For ingtance, in appendix II, some questions which arise in connection with the determination of flow patterns around a nonsymmetric profile and the use of linear integral equations for congtructing flow patterns are discussed.

[^0]In appendix III those alterations are indicated which are neceseary in order that the operator which has been introduced for subsonic flowe may be transformed into an operator which Generates stream functions of supersonic flows from two functions oif one real variable.

INTRODUCTION

The mathematical theory of steady two-dimensional flows of an incompressible fluid is based essentially on the fact that a stream function of a flow of this kind can be obtained by taking the imaginary part of a convenientiy choson function of one complex variable $\quad=\theta+1$ log v, where v is the speed (at the point) and θ the angle which tho velocity vector (et the point) forms with a fixed direction. ${ }^{2}$

The success of this method in dealing with problems of the theory of an incompressible fluid, seems to suggest the possibillty of generalizing this approach to the case of a compressible fluid. An attempt, in this direction, hao been made by the author in previous publications. To this end, instead of log v, there is introduced $\lambda(M)$, a function of the local. Mach number M. Further, ingtead of taking the imaginary part of an arbitrary analytic function (i.e., applying the operator $\operatorname{Im}(\equiv I m a g i n a r y$ part of) as in the case of an incompressible fluid, it is necessary to apply a generalization of this procedure to obtain from $f(\theta+i \lambda(M))$ the desired otream function.

[^1]In the author's previous report a new approach in the twodimensional theory of a compressiblefluid was developed.

[^2]This method of attack is a generalization of a procedure ordinarily employedin the theory of an incompressible flufd: namely; the generating of gtream functions of flows from aralytic functions of a complex variable. ${ }^{2}$

Fir the convenience of the reader the general idea of this method will be desoribed in the following. The stream function ψ of an iticompressible fluid flow is a harmonic function - that is, it satisfies Laplace's quation

$$
\begin{equation*}
\frac{\partial^{a} \psi}{\partial x^{2}}+\frac{\partial^{a} \psi}{\partial y^{a}}=0 \tag{1}
\end{equation*}
$$

x, y belng Cartesian coordinateg in the plane of the flow. Conversely, every function which eatisfies equation (1) may be interpreted as a stream function of a suitable flow. Thus, if the tmaginary part of an analytic function $f(x)$ of the comolex variable $z=x+i y$ is taken, a stream function of a possible flow of an incompressible fluid is obtained. As notel before, the method of generating etream functions in trise finple form cannot be extenced to the case of a comprossm ilis fluid, since in the latter case the partial differential ecuation which $\psi(x, y)$ satisfies is a very complicated nonlinatar one. This situation makes it necessary to use an alternate method, the so-called "hodograph method," - that is. to consider the stream function ψ not as a funotion of s, but as a function of the velocity vector.

If V_{1}, V_{a}, and (v, θ) denote the Cartesian and polar coordinates, respectively, of the veiocity vector \vec{v} that is, if $\vec{v}=v_{1}+i v_{z}=v e^{i \theta}$ and if the stream function ψ is considered as a function of $\left(v_{1}, v_{a}\right)$ or of ($\log v, \theta$), then ψ is in each case a harmonic function of the given variables. That is, if $\psi(x, y)$ is transformed by means of the substitur tion

$$
\begin{align*}
& x=x\left(v_{1}, v_{2}\right), \tag{2a}\\
& y=y\left(v_{1}, v_{2}\right), \quad \frac{\partial(x, y)}{\partial\left(v_{1}, v_{3}\right)} \neq 0
\end{align*}
$$

[^3]or
\[

$$
\begin{array}{ll}
x=x(\log \nabla, \theta), & \frac{\partial(x, y)}{\partial((\log \nabla), \theta)} \neq 0 \tag{2b}
\end{array}
$$
\]

then the functions ψ obtained by the trangformation (2a). (2b) satisfy the equation

$$
\begin{equation*}
\frac{\partial^{2} \psi}{\partial v_{1}^{2}}+\frac{\partial^{2} \psi}{\partial v_{2}^{2}}=0 \tag{3a}
\end{equation*}
$$

in the first case and

$$
\begin{equation*}
\frac{\partial^{2} \psi}{\partial(\log v)^{3}}+\frac{\partial^{2} \psi}{\partial \theta^{2}}=0 \tag{3b}
\end{equation*}
$$

in the second case. (Note that these $\psi^{\prime} s$ are different functions of their respectire arguments, although the notation does not indicate this.)

By writing

$$
\begin{equation*}
\psi=I m\left[g\left(\nabla_{I}-1 \nabla_{a}\right)\right] \tag{4a}
\end{equation*}
$$

or

$$
\begin{equation*}
\psi=\operatorname{Im}[h(\log \nabla-1 \theta)] \tag{4b}
\end{equation*}
$$

if g and h are arbitrary functions of the complex variable $\nabla_{I}-i \nabla_{3}$, and log \quad-i日, respectively, then tho stream functions of possible flows of an incompressible fluid are obtained.

Since the flow pattern in the physical plane is of primary interest, it is necessary in this case, to carry out the transition to the physical plane; that is, to determine ψ as a function of x, y.

It is this second method which, though more complicated than the first, has the adrantage of being capable of generalization to the case of a compreasible fluid flow for which the equation of state, $p=A+\sigma p^{k}, ~ h o l d s$ (A, σ, k are constants, p the pressure, and p the density). In the
equation of state far an adiabatic process $A=0$, however, this additional constant does not entail any theoretical difficulties.

Ag has been indicated previously, the stream function of a compressible fluid flow, considered as a function of (x, y) - that is, in the physical plane - satisfies a nonlinear partial differential equation. If, however, ψ is considered in the hodograph or in the logarithmic plane (io., as a function of (v_{1}, ∇_{a}) and of (log v, θ), respectively), then ψ satisfies, in each of these panes, a linear partial differential equation.

In order to simplify this equation it is expedient to introduce, instead of log v, a new variable λ,

$$
\begin{equation*}
\lambda=\frac{1}{2} \log \left[\frac{1-\left(1-M^{2}\right)^{2 / 2}}{1+\left(1-M^{2}\right)^{2 / 3}}\left(\frac{1+h\left(1-M^{3}\right)^{1 / 2}}{1-h\left(1-M^{3}\right)^{1 / 2}}\right)^{1 / h}\right] \tag{5}
\end{equation*}
$$

where

$$
M=\frac{\frac{V}{a_{0}}}{\left[1-\frac{1}{2}(k-1) \frac{v^{2}}{a_{0}^{2}}\right]^{1 / 2}}
$$

and

$$
h=\left[\frac{k-1}{k+1}\right]^{2 / 2}, \quad k>1 ;
$$

here k is the ratio of specific heats of the gag ($k=1.4$ for air), and ac the velocity of sound at a stagnation point. The equation which ψ satisfies then assumes a particularly simple form: namely,

$$
\begin{align*}
I_{0}(\psi) & \equiv \frac{1}{4}\left(\frac{\partial^{3} \psi}{\partial \lambda^{3}}+\frac{\partial^{2} \psi}{\partial \theta^{3}}\right)+\mathbb{M} \frac{\partial \psi}{\partial \lambda} \\
& \equiv\left(\frac{\partial^{\epsilon} \psi}{\partial z \partial \bar{z}}\right)+\mathbb{H}\left(\frac{\partial \psi}{\partial z}+\frac{\partial \psi}{\partial \bar{z}}\right)=0 \tag{6}
\end{align*}
$$

[^4]where
\[

$$
\begin{equation*}
N=-\frac{(k+1) M^{4}}{8\left(1-M^{3}\right)^{3 / a}} \tag{7}
\end{equation*}
$$

\]

In order to obtain a generalization of the representation (4b), the author in the previous report derived the following result:

From the function N (bee (7)), certain other functions $H(2 \lambda), \quad Q_{n}(m)(2 \lambda), \quad n=1,2, \ldots, \ldots m=1,2, \ldots$ were determined, and it is proved that the expression
$\psi(\lambda, \theta)=\operatorname{Im}\{H(2 \lambda)[g(z)$
$\left.\left.+\lim _{m \rightarrow \infty} \sum_{n=1}^{\infty} \frac{(2 n)!}{2^{2 n} n!} Q_{m}(n)(2 \lambda-2 \alpha) \int_{0}^{2} \cdot \cdot \int_{0}^{\xi_{n-2}} g\left(\xi_{n}\right) d \xi_{n} \cdot \cdot . d \xi_{1}\right]\right\}(8)^{A}$
(where $g(z)$ is an arbitrary analytic function a, an arbitraiy non-negative constant) is a golution of (6). Thus, from an arbitrary analytic function it is possible to derive a function $\psi[\lambda(\nabla), \theta]$, which represents the stream function of a possible (subsonic) flow of a compreseible fluid.a formula (8) can also be written in another form which is suitable for certain purposea: namely.
${ }^{2}$ It has beon provgd, subsequently, that it is posiible
to interchange the summation and the pasaage to the limit in
equation (8) to obtain
$\psi(\lambda, \theta)=\operatorname{Im}\left\{H(2 \lambda)\left[g(Z)+\sum_{n=2}^{\infty} \frac{(2 n)!}{2 n} Q^{(n)}(2 \lambda) \int_{0}^{Z} \cdot \int_{0}^{\varepsilon_{n}-1} g\left(\xi_{n}\right) d \xi_{n} \cdot \cdot \cdot d \xi_{2}\right]\right\}(\Sigma a)$

However, as it is desired to make no reference to unpublished results, all the computations in this report are presentedin such fashion that the use of (8) ingtead of (8a) entails no additional computation; equation (8) is almost always employed throughout the following.

2Formula (8) can be considered as a diract generalization of (4b), eince by choosing $H=1, \quad Q_{m}(n)=0$, for all n and m, and $Z=10 g v-i \theta$, (Z) becomes (4b).

$$
\begin{align*}
\Psi(\lambda, \theta)= & \text { Im }\left\{H (2 \lambda) \left[\int_{-1}^{+1} f\left(\frac{2\left(1-t^{2}\right)}{2}\right) \frac{d t}{\sqrt{1-t^{2}}}\right.\right. \\
& \left.\left.+11 m \int_{m \rightarrow \infty}^{+1} \mathbb{E}_{m=-1}(\lambda, t) \pm\left(\frac{2\left(1-t^{2}\right)}{2}\right) \frac{d t}{\sqrt{1-t^{3}}}\right]\right\} \tag{9}\\
& \therefore \mathbb{S}_{m}(\lambda, t)=
\end{align*}
$$

where $f(z)$ is again an arbitrary analytic function of $z .^{1}$ It should be emphasized that the functions $H(2 \lambda)$,
$Q_{m}^{(n)}(2 \lambda)$ are independent of the function g, and hence once computed (for a given value of k) may be employed in all other stream computations without change.

Once $\psi(\lambda, \theta)$ (corresponding to a given function g) has been computed, the transition to the physical plane - that is, the determination of the corresponding fiow pattern in the physical plane - does not finvolve any theoretical difficulty.

Two probieme immediately arise in connection with this method of attack.
I. How to determine function. g, in (8), so as to obtain, in the physical.: plane, a flow around a given obstacle or in a channel whose boundary curvesarempren.

$$
f(z)=\frac{2}{\pi} \int_{0}^{\pi / a} z \sin v \frac{d g(2 z \sin v)}{d\left(z \sin ^{2} v\right)} d v+\frac{g(0)}{\pi}
$$

II. Assume that $g(z)$ is known, ${ }^{2}$ to develop a procedure which would permit the determination of the corresponding flow pattern in the physical plane with the minimum of computation. Naturally, the flow patterns in which the aerodynamicist is primarily interested are partially supersonio ones. Since the subsonic case serves as a basis for further developments, as outined in reference 3 , ${ }^{2}$ the author will limit himself in the present report primarily to this case. ${ }^{3}$

Although problem II does not entail any theoretical difficulty, it does involve a very considerable amount of numerical conputations for applications, as can be seen from the example described in reference 4 , section 3 , a fact which represents a serious obstacle for the application of the method.

Since the determination of various flow patterne is one of the purposes of the theory, the above-described situation suggests two possible modificetions of the procedure for generating flow patterns.

1. The modification of the method so that a substantial part of the computation is independent of the particular choice of g; thus these computations can be carried out and tabulated once and for all. ${ }^{4}$

[^5]2. The rearrangement of the remaining computations (which must be repeated in every particular case) in such a form that they can be carifed out with a minimum amount of labor using a punch card machine, ${ }^{2}$

The main purpose of the present report is the development of a method of determining the flow patterns according to requirements 2 and 2.

In four additional notes certain problems considered in reference 3 are developed further; these are of a more thooretical nature.

In appendix II, the author shows that by employing results obtained from a consideration of the singularities of the solutions of (8) and applying the theory of ilnear integral equations, it is possible to determine a flow for a given hodograph. In certain cases, solutiong of this kind can be considered as a first approximation to the solution of boundary value problems.

In appendix III methods are given for the construction of purely supersonic flows, which methode employ various integral operator representations.

The derivation of the complex potential for a Joukowski profile is given in appendix IV.. while appendix if if devoted to the question of determining the $Q_{\text {m }}(n)$ and. In (n).

NOTATION

The following list of notation 1 s to serve the double purpose of being both an index of symbols used in the present report and a collection of some of the formulas, used in previous reporta, to which reference is made in the text; however, no claim to completeness is made in this respect.

[^6]$u_{z}=\frac{\partial u}{\partial z}=\frac{1}{2}\left(\frac{\partial u}{\partial x}-1 \frac{\partial u}{\partial y}\right) ; \quad u-\frac{\partial}{z}=\frac{\partial u}{\partial \dot{z}}=\frac{1}{2}\left(\frac{\partial u}{\partial z}+1 \frac{\partial u}{\partial y}\right)$
$\frac{\partial^{2} u}{\partial z \partial \bar{z}}=\frac{1}{4}\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right)=\frac{I}{4} \Delta u ; \quad z=x+1 y, \quad \bar{z}=x-1 y$

as speed of sound at a stagnation point

b_{n} coefficients in the series expansion of T^{-1} in powers of x (formula (46))

- base of Naperian logarithms
$\theta \operatorname{xp}(x)=e^{x}$
f_{1}, f_{a} arbitrary twice continuously differentiable functions of their arguments
$g(z)$ an analytic function of the complex variable z
$g^{(-1)}(z)=\frac{d g(z)}{d z}=\frac{d g^{(0)}(z)}{d Z}$
$g^{(0)}(z)=g(z)$
$g(n)(2)$ nth iterated integral of $g(z)$ (formula (10))
$h=\left(\frac{k-1}{k+1}\right)^{1 / a}$, for $k>1$
k constant in the equation of state $p=A+\sigma p^{k}$: The ratio of specific heats at constant pressure to con(2tant
(22))
$f(H)=\left(\frac{\rho_{0}}{\rho(H)}\right)^{2}\left(1-M^{2}(H)\right)=\left(\frac{\partial \Lambda}{\partial H}\right)^{2} \quad($ reference 3 , formula (45))
p pressure

Po pressure at a stagnation point
schlicit \equiv univalent
T mesinitude of the velocity vector v; occasionally the reduced speed ∇ / a_{0}
\rightarrow velocity vector; that $18, \quad \overrightarrow{\boldsymbol{v}}=v \boldsymbol{v}^{i \theta}$
∇_{1}, v_{3} Cartesian components of $\vec{\nabla} ;$ that is, $\vec{\nabla}=v_{2}+1 \nabla_{a}$
$(x, y) \quad$ Cartesian coordinates in the physical plane
$x=e^{2 \lambda}$ note that in reference $3, x=e^{2 \lambda}$
$x_{1}=\left(\frac{1-h}{1+h}\right)^{1 / h} x$
 ence 3, formula (22))
$A=\frac{1}{8}(k+1) M^{4}\left(M^{2}-1\right)^{-3 / 2} \quad(f o r \operatorname{man}(67))$
A_{n} coefficients in the seriesexpaneion of T in powers of $x_{2} \quad(f o r m u \mathcal{a}(45))$

$A_{n, m}^{+}=\max \left(A_{n}, m, 0\right), \quad A_{n, m}^{-}=\max \left(-A_{n}, m, 0\right)$
 of x_{1} (formula (46))

$0_{n, m}^{+}=\max \left(0_{n, m}, 0\right) ; \quad 0_{n, m}^{\infty}=\max \left(-0_{n}, m, 0\right)$
 theorem (53).) Note that in reference 3

$$
\mathbb{T}^{*}=\exp \left(\int_{-\infty}^{\xi+\xi} N d(\xi+\xi)\right) \mathbb{H} \text {, differing from }
$$

the usage here.

$$
\begin{gathered}
\Omega=-\left(\frac{1}{2} N y+N^{2}\right)=\frac{(k+1) M^{4}}{64\left(I-M^{2}\right)^{3}}\left[-(3 k-1) M^{4}-4(3-2 k) M^{2}+16\right] ; \\
(f \text { formula }(42)) ;(\text { reference } 3, \text { formula }(7 I))
\end{gathered}
$$

$F_{\text {皿 }}(2 \lambda)$ polynomial approximation of moth degree in x_{1} to F
G operation a computation which, since it is independent of the flow, can be computed and tabulated once and for all

$$
H=\exp \left(-\int_{-\infty}^{\bar{\xi}+\xi} N a(\xi+\xi)=\frac{1}{\left(1-M^{2}\right)^{1 / 4}}\left[\frac{1}{1+\frac{1}{2}(k-1) M^{2}}\right]^{1 / 2(k-1)}\right.
$$

for the subsonic case (reference 3, formula (111)); and
in this sense H is used only in the series expansion of ψ, as formula (8)

$$
H=\int_{0}^{\nabla} \frac{\rho}{V} d V \begin{gathered}
\text { formula (52)); (reference } 3, ~ f o r m u l a(42)) ; ~ i n ~ \\
\text { this sense } \\
\text { able. }
\end{gathered}
$$

In imaginary part of

$$
\begin{aligned}
& I_{0}(\psi) \equiv \frac{I}{4}\left(\frac{\partial^{2} \psi}{\partial \lambda^{3}}+\frac{\partial^{2} \psi}{\partial \theta^{2}}\right)+N \frac{\partial \psi}{\partial \lambda} \quad\binom{\text { formula }(6)) ;}{\text { formula }(46))} \\
& \left.I^{(n)}(2 \lambda)=\frac{(2 n)!}{2^{n} n!} H(2 \lambda) Q(n)(2 \lambda) \quad \text { (formula }(22)\right)
\end{aligned}
$$

$L_{m}^{(n)}=\frac{(2 n)!}{2^{n} n!} H(2 \lambda) Q_{\text {II }}^{(n)}(2 \lambda)$
M local Mach number; $M=\nabla / a=\frac{\nabla}{\left[a_{0}^{2}-\frac{1}{2}(k-2) r^{2}\right]^{1 / 2}}$ (formula (Б)); (reference b, formula (31))
$N=-\frac{(h+1)}{8} \frac{M^{4}}{\left(1-M^{2}\right)^{3 / 2}}$ (formula (7)); (reference 3, formula (47))

$Q^{(n)}$ functions, independent of the flow, which occur in the series expansion of ψ (see formulas (49) and (8); reference 3, formula (84).)
$Q_{m}^{(n)} Q^{(n)}$ computed employing F_{m} instead of F (See $Q^{(1)}$, etc.)
$R^{(0)}=H \frac{d \lambda}{\partial \nabla}$ (formula (23)); (reference 3, formula (114), ff)
 $\mathbb{R}_{\mathrm{m}}^{(\mathrm{n})} \mathrm{R}^{(\mathrm{n})}$ computed employing F_{m} instead of F

Re real part of
S operation a computation which must be repeated for each individual flow pattern to be computed
$S=1-T$ (formula (44)); note in reference 3 , formula (161), s is used for 1 -T.
$S^{(n)}$ real part of $g^{(n)}$, that is, $g^{(n)}=S^{(n)}+i T^{(n)}$
$\mathrm{g}(\mathrm{n}) \quad 1$ magi nary part of $\mathrm{g}^{(\mathrm{n})}$
$T=\sqrt{1-M^{2}}$
Tm polynomial approximation of the moth degree in x_{1} to T
$W *(\lambda, \theta ; \lambda(0), \theta(0)$; a fundamental solution of formula (6), possessing logarithmic singularity, at $\xi^{(0)}=\lambda^{(0)}+1 \theta(0)$. (See also reference 3 , section 13.)
$X_{m}^{(p)}(\nabla, \theta)($ See formula (35).)
$X_{\text {m }}^{(p)}(v, \theta)($ See formula (35).)
$\alpha_{\text {pp +1 }}, \alpha_{a p}$ real and imaginary parts, respectively, of the coefficients of $Z(p)$ in the power series expansion of $g(z)$; that is, $g(z)=\sum^{\infty}\left(\alpha_{a_{p+1}}\right.$ $\left.+i \alpha_{2 p}\right) z^{(p)}$ (See formula (36).)
$\alpha_{n}^{+}=\max \left(\alpha_{n}, 0\right), \quad \alpha_{n}^{-}=\max \left(-\alpha_{n}, 0\right)$
$\beta(M)=-\left[\tan ^{-1} \sqrt{M^{2}-1}-\frac{I}{h} \tan ^{-1}\left(h \sqrt{M^{2}-1}\right)\right]($ formula (65) $)$
$\xi=Z+\log 2$ (formula (16)). In the appendixes $\zeta=\lambda-1 \theta$.
$\eta=-\theta+\beta(M) \quad(f o r m u l a$ (64$)$)
θ angle which $\vec{\nabla}$ makes with the real axis
$\theta^{(0)}, \theta^{(1)}$, . . Values of σ at mesh points for a "lattice" computation (See sec. 2.)

$\lambda_{0} \quad \lambda$ corresponding to the maximum Mach number of a flow in D_{a}

$\xi=\theta+\beta(M) \quad($ formula $(64))$

ρ modulus of $\xi ;$ that $1 s, \quad \zeta=p e^{i \varphi}$ (formula (19) ff)
Po density at a stagnation point
$\sigma \quad$ constant in the equation of state: $\quad \mathrm{p}=\mathrm{A}+\mathrm{op}^{\mathrm{k}}$ (referonce 3, formula (22))
φ potential function
φ argument of ξ; that $1 B, \quad \xi=\rho e^{1 \varphi}(f o r m u l a(19) f f)$
ψ stream function
$\psi^{*}=\exp \left(\int_{-\infty}^{\bar{\xi}+\xi} N a(\bar{\xi}+\xi)\right) \psi, \quad$ for the subsonicecase (formula $\begin{gathered}(41)):(r e f e r e n c e ~ \\ (69)) \text { formula and }\end{gathered}$
$\psi^{*}=\exp \left(\int^{-\infty+\eta} A(s) d s\right) \psi$ for $\left.(68)\right)$ supersonic case (formula
$\Delta \quad$ Laplace operator $\quad \Delta \psi(x, y)=\frac{\partial^{3} \psi}{\partial x^{2}}+\frac{\partial^{a} \psi}{\partial y^{2}}=4\left(\frac{\dot{\sigma}^{2} \psi}{\partial \dot{\partial} \bar{z}}\right)$
$z=\lambda-1 \theta$
$\bar{Z}=\lambda+1 \theta$
$\Lambda=\int^{H} \sqrt{h(H)} d H \quad$ that $1 \mathrm{~s}, \frac{d \Lambda}{d H}=\sqrt{l(H)} \quad(r e f e r e n c e ~ 3, ~ f o r m u l a, ~(45)) ;($ see sec. 5.$)$
$\Lambda_{H}=\frac{\partial \Lambda}{\partial H}$
$X^{(n)}$ (Seq formula (33) ff.)
Ψ (Seq sec. 5 of appendix III.)

Remark: Observe that quite, frequently functions will be considered in different planes although the notation may not, in general, indicate this. Thus, given $f(x, y)$, let

$$
\begin{aligned}
& x=x\left(x^{1}, x^{2}\right), \\
& y=y\left(x^{2}, x^{2}\right), \\
& \frac{\partial\left(x^{2}, x^{a}\right)}{\partial(x, y)} \neq 0
\end{aligned}
$$

and obtain $f\left(x\left(x^{2}, x^{3}\right)\right.$. $\left.y\left(x^{1}, x^{2}\right)\right)=f^{1}\left(x^{2}, x^{2}\right)$. The superscript will be omitted and only $f\left(x^{1}, x^{2}\right)$. written, since the meaning will be clear from the context.

ANALYSIS

1. An Outline of the Method to be Developed in:
the Present Report

A method of determining the stream function (in the... physical plane) corresponding to a given function E; the basis of which method is equation (8), was given in section 3 of reference 4, together with a numericgl example. An outIne of this method has been given.in the introduction.

However, a good deal of numerical work is entailed by this approach, and the amount of labor involved increases considerably for a flow the maximum velocity of which is close. to the velocity of sound. For this reason, a modification of the method which would cut down the allount of computation is desirable. A description of the proposed modification follows:

The domain, D (in the ($\lambda, 6$)-plane), in which the function $g(Z)$ is to be considered, can be ditided into two distinct parts D_{1} and D_{a}, defined as the subdomains in which $\lambda_{0}<\lambda<0$ and $\lambda<\lambda_{0}$, respectively. (see fig. 1.) The number λ_{0} is a preassigned number which can be altered to suit the case although, in generai, it will lie somewhere
${ }^{1}$ The choice of λ_{0} will depend upon the conditions in each case; for the most part, λ_{0} must be larger than the maximal λ coordinate of the reguler points of $g(Z)$ in D.
betweer $\lambda=-0.4$ and $\lambda=-0.1$. corresponding to lacal Mach numbers $M=0.65$ and $M=0.85$, respectively (M as defined in equation (5)).

In. D_{1} the argument λ varies over values which are near zero, and, as a consequence the series (8) will converge Very slowly, necessitating taking into account a great nump ber of terme in order to obtain a reasonable degree of accuracy. On the other liand, g of equation (8) and therefore f is regular in D_{1} and can be represented there by a series development. ${ }^{2}$

In the domain D_{a} the values of λ are much smaller and therefore only a smaller number of terms of equation (8) need be taken into account. On the other hand, in D_{3} the behavior of g may be considerably more complex; for exampla, g may have singularities and be many-valued. Therefore, it will be agoured that. g is given by its numerical values on a sufficiently fine lattice, or by a number of series, each of which converges in some subdomain of D_{a}.

In D_{1} the function goan be represented by a power series development, and since the operator (8) is linear it is hence possible to prepare tables once and for all, which will facilitate, to a very large extent, the determination of the flow pattern (in the physical plane). This will be oxplained in detail in gection 4.

In order to determine the flow in the domain corresponding to D_{z}, the procedure of section 3 of reference 4 may be applied. Since the computations are rather extensive, it is expedient to employ mechanical devices. This requires a certain molifilcation of the above procedure, which modification will be described in section 2. Thus, two methodefor determining the flow corresponding to a given g(z) will be described in sections'2 and 3. Both methods ernploy punch card machines; in addition, the second method presupposes that the computon has certain tables available which are independent of the particular flow and hence can be computed once and for all.

Remark: The division of D_{-}into two subdomains D_{2} and D_{-a} is not mecessarily to take place along the inine $\lambda=\lambda_{0}$. It will often be more convenient to gubdivide D as

[^7]indicated in figure 2 , so that the tables which have been prepared may be used for the largest feasible part of the domain D.

Remark: In order to emphasize the character of a computation which is being performed \quad that is, whother it is one of that large class which need be computed and tabulated only once since they are independent of the particular flow, or whether the computation involved holds good only for an individual flow - to every description of a computation will be added the characterization (G operation)" or t(s operation)" according to ite membership in the former or latter class of operatione.
2. Description of the First Method for the Construction of
the Stream Function of a Compressible Fluid Flow by

Use of Punch Oard Machines

In this section the computation of a subsonic compressible flow by means of punch card machines will be described. This procedure is a modification of the method of section 3 of reference 4.1

As indicated in that report, the procedure was divided into three separate stages.

> I. Computation of the integrals

$$
\begin{equation*}
g^{(n)}(z)=\int_{0}^{z} \cdot \cdot \int_{0}^{z_{n-1}} g\left(z_{n}\right) d z_{n} d z_{n-1} \cdot \cdot \cdot d z_{I} \tag{10}
\end{equation*}
$$

$$
\text { and the derivative } \frac{d g(0)}{d Z}
$$

where

$$
g(0)(z) \equiv g(z), \quad z=\lambda-1 \theta, 1 \sin \text { analytic }
$$

II. Construction of the flow in the (λ, θ)-plane-that is, evaluation of expression (8)

[^8]III. Trangition from the logarithmic plane to the physfeal plano

Step I.- Three different methods of evaluation of $g(n)(Z), n=0,1,2$, . . . and of (dg(o)(z)/az) will be given in the following; two of these methods employ punch card machines; the thira ue日s graphical means.

The first methodis to be applied if the real and imaginary parts of $g(Z)$ are given numericaliy on a sufficientiy dense sat of points $\left(\lambda_{k}, \theta_{k}\right)$ of the lattice.

This second method can be ured when the function $g^{(0)}(Z)$ is fivell analytically and can be represented in the whole region concermed by several series developments around conveniently chosen points.

The third method is much less exact; it can be used in order to check the results obtained by one of the abovedescribed methods.

$$
\begin{equation*}
g^{(n+1)}(Z)=\int_{0}^{z} g^{(n)}\left(Z_{1}\right) d z_{1} \tag{11}
\end{equation*}
$$

may be written in the form

$$
\begin{align*}
g^{(n+1)}(z)= & \int_{0}^{(\lambda, \theta)}\left(S_{0}^{(n)} d \lambda+T^{(n, \theta)} d \theta\right) \tag{12}\\
& \left.+i \int_{0}^{(n(n)} d \lambda-S^{(n)} d \theta\right)
\end{align*}
$$

where

$$
g^{(n)}=s^{(n)}+1 T^{(n)^{3}}
$$

(See eaurtion (20) of reference 4.) The right-hand side of equation (22) may then be replaced by the approximating gum (13).
${ }^{1}$ Ths series since g can have singularitiesin $D_{z,}$ i.e., branch points, poles, etc.

2observe that $\varphi^{(n)}, \psi^{(n)}$ of sec. 3 of reference 4 are replaced by $S(n), T(n)$, respectively.

$$
\begin{aligned}
g^{(n+1)}(z)= & \sum_{k=1}^{s} s^{(n)}\left[\lambda_{0}+(k-1) \Delta \lambda, \theta_{0}\right] \Delta \lambda+1 \sum_{k=1}^{s} T(n)\left[\lambda_{0}\right. \\
+ & \left.(k-1) \Delta \lambda, \theta_{0}\right] \Delta \lambda+\sum_{k=1}^{s} T(n)\left[\lambda_{0}, \theta_{0}+(k-1) \Delta \theta\right] \Delta \theta \\
& -1 \sum_{k=1}^{s} s^{(n)}\left[\lambda_{0}, \theta_{0}+(k-1) \Delta \theta\right] \Delta \theta
\end{aligned}
$$

(See (2l) of reference 4.) The terms $\Delta \lambda, \Delta \theta$ denote the directed distances betweon the meshes of the lattice (see fig 3); that is, ther are positive if the integration proceeds in a positive direction, otherwiee negetive.

As indicated above, the (approximate) integration $\int(0,0)$ is to be carried at first from $(0,0)$ to ($\lambda, 0$) along $\theta=0$ (or if more convenient from $(0, \theta)$ to (λ, θ) along $\epsilon=\epsilon_{0}$), and then from $(\lambda, 0)$ to (λ, θ) along $\lambda=$ constant.
A. (All computations of A are (S operations).) The $\operatorname{sums} \sum_{k=1}^{s} s^{(0)}\left[\lambda_{0}+(k-1) \Delta \lambda, \theta_{0}\right] \Delta \lambda_{,} s=1,2,3, \cdots$ can be computed on punch card machines by the foilowing procedure. Trery number ${ }^{2}\left|S^{(0)}\left[\lambda_{0}+(k-1) \lambda, \theta_{0}\right]\right|, k=1,2, . . ., n$, is to be punched, say in columne to G, into a single card of a set \mathbb{N}_{1}. With every entry on this card an extra column c_{2} (say, col. 7) is employed in which a number, say 1, is punched if $g(0)\left[\lambda_{0}+(k-1) \Delta \lambda, \theta_{0}\right]$ is negative, and nothing is punched if the above number is positive. Then the cards are set for progressive totaling; $\left|s^{(0)}\left[\lambda_{0}+(k-1) \Delta \lambda, \theta_{0}\right]\right|$ will be added if nothing is punched in the column c_{1} and subtracted if 1 is punched in this column. The machine stops after each addition (or subtraction) purches the absolute value of the pro-

[^9]columns 1 to 6 , and in an extra column ca, punches if the totel is negative and nothing if it is positive.

Now the absolute value of $\Delta \lambda$ is punched in an extra card M and, as before, 1 is enteredinanextra column. c_{3} if $\Delta \lambda$ is negative, and nothing ifitis positive. Now, in a multiplying machine every number on the card ik is multiplied with the number of X. In order to obtain the right sign, an extra column, c_{4}, ia provided in the new. card. If the columne c_{a} and c_{3}, are both empty or both havo 1 punched, then the machine will punch nothing into the colump c_{4}. If, however, in one of the columns c_{2} (or c_{3}) the number 1 is punched and the other column, c_{3} (or c_{3}). is ompty, the machine will punch. I in column c_{4}.

The obtained resulta then have to be printed. In analogous maner the remaining sums are to be evaluatod.

The obtained cards can then bo used for ovaluation of $s(2)$ and $T(2)$, and so forth.

Remarks: Cleariv, the approximate summation can replace the integration, only if the integrand is uniformly continuous. Since, in general, the integrand has singularities, it is necessary to replace the approximate summation in the neighborhood af these points by the oxact formula. This cen be done, for instance, using series developments around the considered aingularity, (for details, see method B) or by other methode.

The derivatives of first order, $d g(0) / d z=d g(0) / d \lambda$, may be obtained by replacing differentials by finite differences. (See method O.)
B. A method, employing the example

$$
\begin{equation*}
g(z)=\frac{1}{2}\left[\left(1-2 e^{z}\right)^{1 / 2}+\left(1-2 e^{z}\right)^{-1 / 2}\right] \tag{14}
\end{equation*}
$$

considered in reference 4, which may be successfully applied when $g(z)$ is given by series developments, will now be desoribed.

then it is always possible to represent it by finitely many series devalopments.

In the case of the function given by the right-hand side of equation (14), the series given in reference 4, equation (25) may be used in order to represent g. in the domain $\mathrm{D}_{\mathrm{a}}, \lambda<-0.691$.

Another series development of equation (14) which is more suitable for the present purposes can be obtained in the following manner.

The above function $g(Z)$ possesses singularities (branch points of the second order) at the points

$$
\begin{equation*}
z=-\log 2+i k \pi, \quad \kappa=0, \pm 1, \pm 2 ; . . \tag{15}
\end{equation*}
$$

only. By classical results of the theory of functions $g(z)$ can be expanded in serios in powers of $\xi^{2 / 7}$

$$
\begin{equation*}
\xi=z+\log 2 \tag{16}
\end{equation*}
$$

which series will converge for $|\xi|<2 \pi$ and therefore will represent g in a large part of the domain, $D_{1} \mp D_{2}$, which. is of interest. ${ }^{2}$ A formal computation yielas

$$
\left.\begin{array}{rl}
g \equiv g^{(0)}= & \frac{I}{2}\left[\left(1-e^{\xi}\right)^{1 / z}+\left(1-\theta^{\xi}\right)^{-1 / z}\right]=i \sum_{n=0}^{\infty} A_{0, m} \xi^{m-1 / z} \\
g^{(-1)} \equiv & \frac{d g}{d Z}(0) \\
& =\frac{d g}{d \xi}=1 \sum_{m=0}^{\infty} A^{(n)}=i\left[\sum_{n-1, m}^{\infty} \xi^{m-3 / z} A_{n}, m \xi^{n+m-1 / a}\right]+i \sum_{m=0}^{n-1} C_{n, m} \xi^{m}
\end{array}\right\}(17)
$$

[^10]The values of $A_{n, m}$ and $O_{n, m}$ are given in tables 5 and 6 , respectively.

By writing

$$
\begin{equation*}
g(n)=S(n)+1 T(n), \quad n=-1,0,1,2, \ldots \tag{18}
\end{equation*}
$$

there is obtained

where

$$
\zeta=p e^{1 \varphi}
$$

The evaluation of the $S(n)$ and $T(n)$ on a punch caramachine proceeds as follows:

Theivalues of $\rho^{k / a}, k= \pm 1, \pm 2, \pm 3, \ldots, \ldots p^{1 / a}=0.1$, $0.2, \ldots$ of $\cos \left(\frac{k_{\varphi}}{2}\right)$, and of $\sin \left(\frac{k}{2} \varphi\right), k= \pm 1, \pm 2, \ldots \mu$, $\varphi=0^{\circ}, 30^{\circ}, 60^{\circ}, \ldots 330^{\circ}$ can easily be computed (see tables 7 and 8) and entered on three sets of punch cards A, B, C, respectively (G operation). By using set A, two now gets, D and \# are then prepared (the following are all (s operations)), On every punch card of the set d the values of $A_{n, m}^{+} \rho^{n+m-1 / a}$ and of $C+p_{n}^{+} p^{m}$ for a fixed n and fixed p are entered, say A $A_{i, 0}^{+} p^{n-1 / a}$ are punched in columns 1 to 6 , $A_{n, 1}^{+} \rho^{n+1 / 2}$ in columns roil to,$A_{n, z^{+}} \rho^{n+3 / 2}$ in columns lu to 18, and so forth. Here $A_{n, m}^{+}$denotes $A_{n, m}$ if $A_{n, m}$ ip positive, and 0 if $A_{n, m}$ is zero or negative; $C_{n+m i n a}^{+}$has an
 $O_{n, m}^{-} \rho^{m}$ are entered on the cards of set A^{\prime}. (Again $A_{n, m}^{-}=0$ if $A_{n, m}>0$, and equals- $A_{n, m}$ if $A_{n, m}>0$; the same holds for $O_{n, n}^{-}$, By using the sets 0 and D,

$$
\begin{equation*}
\sum_{m=0}^{\mu} A_{n, m}^{+} \rho^{n+m-1 / 2} \sin \left[\left(n+m-\frac{1}{2}\right) \varphi\right]+\sum_{m=0}^{n-1} c_{n, m}^{+} \rho^{m} \sin m \varphi \tag{20}
\end{equation*}
$$

is evaluated, and by using the sets C and \mathbb{B} there may be computed

$$
\begin{equation*}
\sum_{m=0}^{\mu} A_{n, m}^{-} P^{n+m-1 / 2} \sin \left[\left(n+m-\frac{I}{2}\right) \varphi\right]+\sum_{m=0}^{n-1} 0_{n, m}^{-m} \sin m \varphi \tag{21}
\end{equation*}
$$

By subtracting (20) from (21) $S^{(n)}$ is obtained. Similarly, $T(n)$ can be determined. By interpolation, the values of $S^{(n)}(\lambda, \theta)$ and $T^{(n)}(\lambda, \theta)$ mey be determined at intermediate points. [Note that peip $=(\lambda-i \theta)+\log 2$, which yields the relation between (ρ, φ) and (λ, G). Alternately, the expressions (19) may be evaluated by adaing on cards of the sets B and 0 an extra column, sey, column 7 , in which nothing is punched if the corresponifing alne or cosine is positive and, say, I is punched if.it is negativc. In columns 1 to 6 the gbsolute value of the sine or cosine is entered.

Analogously, on cards of the set D an additional column is orovided in which 1 or nothing is punched according to the sign of $A_{n, l}$ or $G_{n, m}$. The actual multiplication of the two factors proceeds similarly to that of method A.

Since in the future it will be necessary to have values of $s(n)$ and $T(n)$ along lines $\lambda=$ constant, these values for various values of θ and for $\lambda=-0.02,-0.06$, -0.10, and so forth, were computed. (See table 9.)
O. The method described below is essentially the same as that degcribed in method A; however, now, instead of punch card methode, graphical means are employed.

On millimeter paper the values of $s^{(0)}(\lambda, \theta)$ and $T^{(0)}(\lambda, \theta)$ at first for some fixed values of λ, gay, for $\lambda=-0.02,-0.06$, and so forth, and then for some fixed values of θ, are drawn. (All operations of C are (S operations).) (See figs. 8 to 15.)

[^11]Step in.- The second stage of the method is then to obtain the values of the Etramminction sind its dorifetives

$$
\begin{align*}
\Psi_{V}(\lambda, \theta): R^{(0)}(2 \lambda) I m g_{z} & +R^{(2)}(2 \lambda) \mathbb{T}^{(0)}(\lambda, \theta)+\ldots \\
& +R^{(n)}(2 \lambda) T^{(n-1)}(\lambda, \theta)+\ldots \tag{23}
\end{align*}
$$

$$
\psi_{\theta}(\lambda, \theta) \Rightarrow L^{(0)}(2 \lambda) \operatorname{Re} g_{z}+L(1)(2 \lambda) s(0)(\lambda, \theta)+\ldots
$$

$\psi_{\theta}(\lambda, \theta)=I^{(0)}(2 \lambda) \operatorname{Re} g_{z}+I^{(1)}(2 \lambda) S^{(0)}(\lambda, \theta)+\ldots$.

$$
\begin{equation*}
+L^{(n)}(2 \lambda) S^{(n-2)}(\lambda, \theta)+\ldots \tag{24}
\end{equation*}
$$

${ }^{2}$ Since it is assumed in this case that the speed at every point of D_{a} ia considerably smaller than that of sound, the expression (8) is replaced here by

$$
\psi(\lambda, \theta)=\operatorname{Im} H(2 \lambda)\left[g(z)+\sum_{n}^{\infty} \frac{(2 n)!}{2^{2 n} n!} Q^{(n)}(2 \lambda) g^{(n)}(z)\right]
$$

$$
\begin{aligned}
& \text { If } S_{\lambda}(0), T_{\lambda}^{(i)}, S_{\theta}^{(0)}, T_{\theta}^{(0)} \text { are replaced by } \\
& (\Delta S(0) / \Delta \lambda),(\Delta T(\theta) / \Delta \lambda),(\Delta S(0) / \Delta \theta),(\Delta T(0) / \Delta \theta), \text { respectively, } \\
& \text { approximate values for } \psi \lambda \text { and } \psi_{\theta} \text { are obtained. (See } \\
& \text { table LO.) An integraph may be used to determine } \\
& \int S(c)(\lambda, \theta) d \lambda, \int T(u)(\lambda, \theta) d \lambda, \int S(0)(\lambda, \theta) d \theta, \int T(c)(\lambda, \theta) d \theta \text {, and } \\
& \text { so forth (approx.), and so obtain, using equation (12), } \\
& g^{(1)}(Z)=S^{(I)}(\lambda, \theta)+1 T^{(1)}(\lambda, \theta) \text {. similarly, g(n)(z), }
\end{aligned}
$$

See equation e (30), (31), and (33) of reference 4. Since the $L^{(s)}(2 \lambda), \quad=0,1,2, \ldots$. are independent of g, they caa be entered os master cards once and for all, for differont values of s and different values of λ; that is, they are (G operations). Fer instance, on master card No. in in columns 1 to 6, the value of $L(0)(2 \lambda)$ for a fixed value λ_{1}.. say λ_{0}. is entered while nothing is punched in column 7 if $I^{(0)}$ is positive; in columns 8 to 14 the absolute value of $L^{(1)}(z \lambda)$ fisentered, and in column li the number in 18 punched, if $I(1)$ is negative, and so forth. Similarly, ion master card No. 2 the corresponding values af $I(s)(2 \lambda(2))$ are punched, and 6 forth.

The remainder of step II consists of (Spperatienc).

 ar $\binom{0}{s}$ obtained; both sets of cards, that is, the $L(s)$ and arr then put into the multiplex, which then yields the Values of (22) for the get of points $(\lambda(0), \theta(0)),$.
$(\lambda(0), \theta(1)), \ldots \ldots$
 obtained in similar fashion. The -values of $\psi, \psi_{\nabla}, \psi_{\theta}$ obtanned fer the case under consideration are. given in tables 11 and 12.
 along the abeeisar of which the values of θ are given. By using this diagram, the values of θ can be determined for which $\psi(\lambda(0), \theta)=$ constant, say, $0 \pm 0.1, \pm 0.2$, and so. forth. The values of $\psi_{v}(\lambda(0), \theta)$ and of $\psi_{\theta}(\lambda(0), \theta)$. corresponding to $\psi(\lambda(0), \theta)=$ constant may then be detersmined. This procedure is then repeated for different values. of λ.

See table 13 and figure 13.
Step III.- To every value $\lambda^{(K)}, \kappa=0,1,2$,-the values of $\theta^{(K T)}$ were determined for which

$$
\begin{equation*}
\cdots-\psi\left(\lambda^{(n)}, \theta^{(n T)}\right)=T=\text { constant } \tag{25}
\end{equation*}
$$

Es well as the corresponding values of $\psi_{\lambda}(\lambda, \theta)$ and $\psi_{\theta} \overline{(\lambda, \bar{\theta})}$.
Tables (or figures) of $V^{2}, 1-M^{2}, \frac{1}{\rho v^{2}} \frac{d \lambda}{d \nabla}$, can be prepared, which, since these quantities are functions of λ alone, have to be computed only once, that $1 \mathrm{~s}, \mathrm{th}$, y are (G^{λ}
operations).

The image of a streamline (25) In the physical plane is given by

The integrals (26) will be approximated by the sums

$$
\begin{aligned}
& \left.\begin{array}{l}
x=x\left(v_{l}\right)=\sum_{s=0}^{s=l} \Delta x_{s}(T) \\
y=y\left(v_{l}\right)=\sum_{s=0}^{s=l} \Delta y_{s}(T), \quad l=1,2,3, \therefore .
\end{array}\right\}(27) \\
& \left.\Delta x_{s}=\frac{\rho_{0}}{\rho_{s} v_{s}}\left[\psi_{\epsilon}(s T)^{z}\left(I-M_{s} \bar{z}\right)+v_{s} \mathcal{z}_{v}(s T)^{z}\right] \frac{\cos \theta^{(s T)}}{\psi_{\theta}(s T)} \Delta v_{s}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \Delta v_{s}=v_{s+2}-v_{s}
\end{aligned}
$$

The ramainder of step III consists of (S operations). By using tables for squares and the reciprocal, the values of $\psi_{\theta}(s T)^{2}, \psi_{\nabla}(s \tau)^{2}$ and $\frac{1}{\psi_{\theta}(s T)}$ are determined, together With the previously described tables for $\frac{1}{\rho v^{2}}, 1-M^{3}$, and so forth. The quantity

$$
\begin{equation*}
\frac{\rho_{0}}{\rho_{g} v_{s}{ }^{2}}\left[\psi_{\theta}(s \tau)^{2}\left(I-M_{s}\right)^{2}+\nabla_{s}^{2} \psi_{V}(s \tau)^{2}\right] \frac{\Delta V_{s}}{\psi_{\theta}(s \tau)} \tag{29}
\end{equation*}
$$

is determined with the use of punch cards faquation (29) is then multiplied by cos $e^{(s T)}$ and $\sin \theta(s T)$ to yield the first and second terms of equations (28), respectively.

Since the cosine and sine may vary in sign, an extra column must be provided with each terin of the product as de-
 which is set for procsesfira turilifis, tia valuos (27), which corresponit to (25) taen rasulting.
3. Description of the Second Method For the Construction of
a Compreasible Fluic Fiow
As indicatedin section 1 , this molrca will often be applied if the locai ilash number ie mezatil. Fcr this rea-
 now necessary to uas sce Guscj tormicia (8), that is,

$g^{(n)}=\int_{0}^{Z} \cdot \cdot \cdot \int_{0}^{\xi_{n-1}} g\left(\zeta_{n}\right) d \zeta_{n} \cdot \cdot \cdot d \xi_{1}$,
$I^{(0)}(2 \lambda)=H(2 \lambda), \quad I_{\text {II }}^{(n)}(2 \lambda)=\frac{(2 n)!}{E_{\text {EnI }}^{E n}} H(2 \lambda) Q_{\text {II }}(n)(2 \lambda)$
dixI. method for determining the $\mathrm{J}_{\mathrm{m}}(\mathrm{n})$ is given in appen-

As indicated in reference 3 , sections 9 and 15 (sea also appendi:x I of the present paper), if λ is considered only in arange $\lambda \leqq \lambda_{0}<0$, where λ_{0} is e fixed negative number, then a fixed m can be determined so that equation (6) can be jeplaced by ${ }^{3}$

$$
\begin{equation*}
\frac{I}{4}\left(\Psi_{\lambda \lambda}+\psi_{\theta \theta}\right)+\mathbb{N}_{m} \psi=0 \tag{31}
\end{equation*}
$$

The solv.tions of-(21) are given by

$$
\begin{equation*}
\psi_{m}(\lambda, \theta)=\operatorname{Im}\left\{I^{(0)}(2 \lambda)_{g}(z)+\sum_{n=i}^{\infty} I_{(n)}^{(n)}(2 \lambda)_{g}(n)(z)\right\} \tag{32}
\end{equation*}
$$

In the following f.t will be assumed that λ_{0} is a very small number, say $\lambda_{0}=-0.01$ (i.e., that the flows with local Mach number $=M_{0}=0.99$ can be considered). Then m will be a very large but fired number.

Remgrk: In order to avoid confusion, all quantities which depend on m will have a subseript m; however, it is necessary to bear in mind that in this section m ia a very large but fixel quantity, which remains unchanged in all conaiderations of this section.

As lndicated in aection 1 , in this method, certain tables can be einployed which are independent of the flow and which, therefore, can be computed once and for all, and used in all subsequent computations.

[^12]
A. Description of Two Kinds of Tables

1. If a sufficiently large number of the ${ }^{1}$. $I_{m}^{(n)}$ are computed, the functions $X_{\text {m }}(3 p)(v, \theta)+i X_{\text {m }}(a p+i)(v, \theta)$ which correspond to $g(z)=Z^{p}$; that is,

$$
X_{n}(z p)(v, \theta)+1 X_{m}^{(2 p+1)}(v, \theta)=F(2 \lambda) z^{p}
$$

$+\sum_{n=1}^{\infty} I_{m}^{(n)}(2 \lambda) z^{p+n} /(p+1) \ldots(p+n) \quad$ (G operation) (33) where $Z=\lambda-i \theta$ and λ in given by (5), may be determined.

Remark: In the case of an incompressible fluid, where $\lambda=\log \quad V, \quad H(2 \lambda)=1$, and $I_{\text {III }}^{(n)}(2 \lambda)=0, n=1,2, \ldots$. the corresponding functions are

$$
\begin{align*}
x^{(2 p)} & =\operatorname{Re}(\log v-1 \theta)^{p-1} \\
x^{(2 p+1)} & =\operatorname{In}(10 g \quad v-1 \theta)^{p-1} \tag{34}
\end{align*}
$$

Analogously, as every function of (34) :is a solution of (3), every function $X_{\text {m }}^{(p)}, p=0.1, \ldots$. . is a solution of (31), and since for $\lambda \leqq \lambda_{0}, N_{\text {m }}$ practically equals N, every one of these functions is a solution of (6).
2. To every function $x_{m}^{(p)}(v, \theta), \quad p=0,1, \ldots$, two real functions are determined: : . . i.
${ }_{1}^{1}$ See appendix I.
Exactly speaking: An approximate solution of (6). It, however, does not differ essentially from the corresponding exact. solution of (6).

$$
\begin{align*}
& x_{m}^{(p)}(v, \theta)=\int_{(0,0)}^{(v, \theta)} \frac{\rho_{Q}}{\rho}\left\{\left[\frac{-\left(1-M^{2}\right) \cos \theta}{v^{2}} \frac{\partial x_{m}^{(p)}}{\partial \theta}\right.\right. \\
& \left.\left.\left.-\frac{\sin \theta}{\nabla} \frac{\partial x_{m}^{(p)}}{\partial \nabla}\right] d \nabla+\left[\cos \theta \frac{\partial X_{m}^{(p)}}{\partial v}-\frac{\sin \theta}{\nabla} \frac{\partial x_{m}^{(p)}}{\partial \theta}\right] d \theta\right\}\right] \\
& Y_{m}^{(p)}(\nabla, \epsilon)=\int_{(0,0)}^{(v, \theta)} \frac{\rho_{0}}{\rho}\left\{\left[\frac{-\left(1-M^{2}\right) \sin \theta}{v^{2}} \frac{\partial X_{m}(p)}{\partial \theta}\right.\right. \tag{35}\\
& \left.\left.\left.+\frac{\cos \theta}{v} \frac{\partial x_{m}(p)}{\partial v}\right] d v+\left[\sin \theta \frac{\partial x_{m}(p)}{\partial v}+\frac{\cos \theta}{v} \frac{\partial x_{m}(p)}{\partial \theta}\right] d \theta\right\}\right\}
\end{align*}
$$

Remark: Since the above integrand e are complete differentials, the values of the integrals are independent of tine path of integration (G operation).

Remark: In the case of an incompressible fluid, there is obtined for the corresponding functions $X^{(p)}, Y^{(p)}$ the exprecessions:

$$
\begin{aligned}
X^{(z p)} & =(p-1)^{-1} p v^{(p-1)} \sin ((p-1) \theta) \\
Y^{(a p)} & =(p-1)^{-1} p \nabla^{(p-1)} \cos ((p-1) \theta) \\
X^{(a p+1)} & =(p-1)^{-1} p \nabla^{(p-1)} \cos ((p-1) \theta) \\
Y^{(2 p+1)} & =(p-1)^{-1} p \nabla^{(p-1)} \sin ((p-1) \theta)
\end{aligned}
$$

In the following it is assumed that the above-described functions, $\quad X_{m}^{(p)}(v, \theta)$ and $X_{m}(p)(\nabla, \theta) \quad F_{m}(p)(\nabla, \theta)$ are computed for a sufficiently large number of values of p and tabulated for a larine number of values of (∇, θ).
B. Determination of Flow Using the Above-Described Tables

Ster I: Determination of streamlines $\psi_{m}(v, \theta)=$ constant In the hodograph plane: According to the assumption of section l, the function $g(z)$ can be represented in the domain D_{1}, in which it will be coneideredin this section, in the form of a power series

$$
\begin{equation*}
g(z)=\sum_{p=0}^{\infty}\left(\alpha_{a p+1}+1 \alpha_{a p}\right) z^{p} \tag{36}
\end{equation*}
$$

where α_{p} are real constants. For s sufficiently large, the power series (36) can be replaced in D_{1} by the polynomial

$$
\begin{equation*}
\sum_{p=0}^{s}\left(a_{z p+2}+i \alpha_{z p}\right) z^{p} \tag{37}
\end{equation*}
$$

By substituting (37) into (30) and by observing (33), there is obtained for the stream function ψ_{n} corresponding to (37)

$$
\begin{align*}
\Psi_{\text {m }}(\nabla, \theta) & \left.=\operatorname{Im}\left\{\sum_{n=0}^{\infty} I_{m}^{(p)}(2 \lambda) \sum_{p=0}^{s}\left(\alpha_{2 p}+i \alpha_{2 p+1}\right) \frac{i^{n+p}}{(n+1) \ldots(n+p)}\right)\right\} \\
& =\operatorname{Im}\left[\sum_{p=0}^{s}\left(\alpha_{z p+1}+i \alpha_{a p}\right)\left(x_{m}^{(2 p)}+1 x_{m}^{(2 p+1)}\right)\right] \\
& =\sum_{p=0}^{s}\left(\alpha_{z p} x_{m}^{(z p)}+\alpha_{2 p+1} x_{m}^{(2 p+1)}\right)=\sum_{p=0}^{p=a s+1} \alpha_{p} x_{m}^{(p)}(38) \tag{38}
\end{align*}
$$

Since, as a rule, it is necessary to determine the values of $X_{m}(v, \theta)$ at many points, it is convenient to use punch cards. Tor every point (v, θ) a master card is prepared, and in this, in columns to \quad, the value of $\chi_{\text {f }}(0)$ at the conoidere point (σ, θ) is entered and, in general, in columns $6 p+1$ to $6(p+1)$ the value of $X_{m}^{(p)}$ (G operations).

Since α_{p} can be positive and negative, (38) will be represented ${ }^{1}$ by

$$
\begin{equation*}
\psi_{m}(\nabla, \theta)=\sum_{p=0}^{2 s+1} \alpha_{p}^{+} x_{m}^{(p)}(\nabla, \theta)-\sum_{p=0}^{2 s+1} \alpha_{p}^{-} x_{m}^{(p)}(\nabla, \theta) \tag{39}
\end{equation*}
$$

Each of the sums in the right-hand expresion of (39) can be. easily evaluated for a lures n omber of ofris lias pinch card machines is oueraticnil. Fins curves $\psi_{m}(v, \theta)=$ constant can then be determined by interpolation.

$$
{ }^{1} \alpha^{+}=\max (\alpha, 0), \alpha^{-}=\max (-\alpha, 0)
$$

Step Ir. Trangition to the phriciesi plane- To every point (∇, θ) of the hadograph plane there corresponds a point (x, y) of the physical plang: which i obtained by writing $x=x(v, \theta)=\int_{(0,0)}^{(v, \theta)} \frac{\rho_{0}}{\rho}\left\{\left[-\frac{\left(1-M^{2}\right) \cos \theta}{v^{2}} \frac{\partial \psi_{m}}{\partial \theta}-\frac{\sin \theta}{\nu} \frac{\partial \psi_{m}}{\partial v}\right] d v\right.$. $\left.+\left[\cos \theta \frac{\partial \psi_{m}}{\partial v}-\frac{\sin \theta}{v} \frac{\partial \psi_{m}}{\partial \theta}\right] d \theta\right\}=\sum_{p=0}^{2 s+1} \alpha_{p} x_{m}^{(p)}(v, \theta)$ $y=y(v, \theta)=\int_{(0,0)}^{(v, \theta)} \frac{\rho_{0}}{\rho}\left\{\left[-\frac{\left(1-M^{2}\right) \sin \theta}{v^{2}} \frac{\partial \psi_{m}}{\partial \theta}+\frac{\cos \theta}{v} \frac{\partial \psi_{m}}{\partial v}\right] d v\right.$

$$
\left.\left.+\left[\sin \theta \frac{\partial \psi_{m}}{\partial v}+\frac{\cos \theta}{\nabla} \frac{\partial \psi_{m}}{\partial \theta}\right] d \theta\right\}=\sum_{p=0}^{2 g+2} \omega_{p} Y_{m}^{(p)}(\nabla, \theta)\right]
$$

See reference 3, equation (136); alse equations (35) and (38) of this paper.

Let $\Psi_{m}(\tau, \theta)=0=$ constant be a ptreamine (in the hodograrh plane). To every value of v on $\Psi_{m}(v, \theta)=c$, there cerresponds a value of θ, say $\theta(v)$, which can be easily determinet by interpolation or directiy from the diagram for the $\psi_{m}(v, \theta)=$ conetant.

By interpolation (and the use of tha tablea deacribed under II) the values of $X_{m}(p)(v, \theta(v)), F_{m}(v, \theta(v))$ are determined. Substituting these values into (40) gives the coordinates (x, y) of tie streamlite $\psi_{m}=c$ in the physleal plane (s operatiois).

Remark: Clearly, in ordef to apply this method, ft is sufficient that the function $g(Z)$ can be approximated in the domain under consideration by a polynomial

$$
\sum_{p=1}^{s}\left[\alpha_{z p}^{(s)}+1 \alpha_{z p+1}^{(s)}\right] z^{\mathrm{F}}
$$

On the other hand, by Ruage's theorem, an analytic function can be approximated by a polynomial in every simply covered

[^13]and simply connected domain. Because of this fact, the method described in this section may be applied not only when D_{1} is some region which lies ingide of the circle of convergence of (36) but for a much larger class of domains.

CONGLUDING REMARES

A method of obtaining a subsanic flow pattern of a compressible fluid from a given analytic function g(Z) is described in this report. The amount of time and labor needed for this method is reasonably small once certain tables have been prepared. Z These tables are completely independent of the ilow, and. consequently once prepared, the problem of determining the flow pattern may be regarded as solved, not only from a theoretical but from a practical point of view as well.

The present method yielde only subsonic flow patterns, ${ }^{3}$ but by combining those with those described in section 17 of reference 3 , it will then be possible to construct mixed, (i.e., partially supersonic) flow patterns, from b given function $g(Z)$.
${ }^{7}$ The method described in this report, and references 8 , 2 , and 3 , is a generalization of the determination of fiow patterns of an incompressible fluid from the complex potential $g(\xi)=\varphi(\log v, \theta)+\{\psi(\log v, \theta) \xi=\log v-1 \theta$, which potential is given in the logarithmic plane.

Assuming that the necessary auxiliary tables have been prepared and that punch card machines, are available, the emount of labor needed in determining the pattern of a subsonic flow corresponding to a given function $g(z)$ will only slightly exceed that needed for determining the flow pattern of an incompressible fluid froma given g(lug $v-i \theta)$.
$z_{\text {The }}$ author would like to emphasize that the tables of sec. 9 of reference 3, and those of the present report (the former are only an approximation to those of appendix i) serve merely to illustrate the procedure. The functions are computed for comparatively fow values of the argumenta, and hence by using them it is possible to obtain only a rather inaccur rate picture of the flow pattern.
${ }^{3}$ Note that a similar method can be developed for purely supersonic flows. See appendix III.

A method for determining various flow patterns is, of course, only the initial gtep in the study of compressible fiuld flows, since the aerodynamicist is, in the main, interested in determining the influence of different factore buch as the shape of the profile, the maximum Mach number, and on forth, on the flow pattern.

By the choice of suitable functions for g, it should be possible to obtain many cases of flows which are of considerable practical interest and value in studying various. phenomena in the thoory of compressible fluids.

Hemark: As has been emphasized in the introduction, it is. frequentiy of considerable importance to solve the lidirect!. problem determining the flow in the phybical plane arounda profile, which flow behaves ia a prescribed fashion at infinity (i.e., far from the profile). Although in many instances it is posible to determine the function $g(z)$ o there if obtained a flow around a profile approximating the given ore, it seema desirable to have a method of colving the "direct" problem, and to determine when golutions to this "direct" problem do or do not exist. The author hapestoreturn to thig question in a future report.

Brown University,
Providence, R. I., September 6, 1945.

${ }^{2}$ Once a sufficientiy large number of flows corresponding to various functions g have been "catalogued."

APPENDIX I

THE DETERMINATION OF THE $Q_{\text {II }}^{(n)}$ AND $I_{\text {II }}^{(n)}$

The operator (8) (see also secs. 9 to 11 of reference 3) was obtained in the following manner: As was proved in referene 3 , the function $\psi(\lambda, \theta)$ satisfies equation (6) where. M is given by (7); λ and M are connected by relation (5).: every solution ψ of (6) can be written in the form

$$
\begin{equation*}
\psi=H(2 \lambda) \psi^{* \cdot} \tag{HI}
\end{equation*}
$$

where H is given by (reference 3 , (111)) and ψ^{*} satisfies the equation

$$
\begin{equation*}
\frac{I}{4}\left(\frac{\partial^{2} \psi^{*}}{\partial \lambda^{2}}+\frac{\partial^{2} \psi^{*}}{\partial \theta^{2}}\right)+F(2 \lambda) \psi^{*}=0 \tag{42}
\end{equation*}
$$

$F(2 \lambda)=-\frac{1}{8}\left[\frac{5(1+k)}{\left(1-M^{2}\right)^{3}}-\frac{12 k}{\left(1-M^{2}\right)^{3}}+\frac{2(3 k-7)}{1-M^{2}}\right.$

$$
\left.+4(k+2)-(3 k-1)\left(1-M^{2}\right)\right](43)
$$

 as a function of λ from (5) and'ther substitute into (43). The obtained function becomes infinite for $\lambda=0$ (ie., for $M=1$), which causes certain difficulties. On the other hand, since only the subsonic case is considered here, and since a small modification of the function $F(2 \lambda)$ recticoly does not change (in the subsonic region) the solution f the equation ${ }^{2}$, it is expedient to approximate \quad (2λ), in the range $-\infty \leqq \lambda<\lambda_{0}, \mid \lambda_{0}!$ sufficiently sural, by a function Which remains finite at $\lambda=0$, fer instance, by a pulywinial

${ }^{I} B y$ using the theory of integral equations, it if fossilbile to prove the following theorem. Int B be a given bounded domain in which: $\lambda \leqq \lambda_{3}, \lambda_{0}<0$ and in which F_{m} differs from \vec{H} by a sufficiequiy simply amount. To sर्चery
 $\psi^{*}(\lambda, \theta) \quad 0 f \frac{7}{} / 4 \Delta \psi^{*}+F^{*}=0$ can be so determined that $\left|\psi^{*}(\lambda, \theta)-\psi^{+}(\lambda, \theta)\right| \stackrel{\leftrightarrow}{\rightleftarrows}(\lambda, \theta) \in B$, and E is a giver, small posfive number.

$$
\begin{gather*}
S=1-T=x_{1}+\frac{1}{4}(2 k+1) x_{1}^{a}+\cdots \cdot \tag{44}\\
x_{1}=2\left(\frac{(k+1)^{1 / 2}-(k-1)^{1 / 2}}{\left.(k+1)^{1 / 2}+(k-1)^{1 / 2}\right)^{\sqrt{k+1}}} e^{a \lambda}\right.
\end{gather*}
$$

This series converges for $-\infty<\lambda<0$. Substituting $k=1.4$ into (44) yield e

$$
\begin{equation*}
T=\sum_{n=0}^{\infty} A_{n} x_{1}^{n}=\sum_{n=0}^{\infty} a_{n} x^{n} \tag{45}
\end{equation*}
$$

and

$$
\begin{align*}
T^{-1}=\sum_{n=0}^{\infty} B_{n} x_{2}{ }^{n} & =\sum_{n=0}^{\infty} b_{n} x^{n} \tag{46}\\
x_{2} & =0.239 e^{2 \lambda} \\
x & =e^{2 \lambda}
\end{align*}
$$

The values of $A_{n}, a_{n}, B_{n}, b_{n}$ are given in table 1 , Since (45) and (46) converge for $-\infty<\lambda<0$; for $-\infty<\lambda<\lambda_{0}$, where $\lambda_{\theta}<0$ is a fixed quantity, it is possible to approxmate (4.5) and (46) by polynomials

$$
\begin{equation*}
\mathbb{T}_{m}=\sum_{n=1}^{m} a_{n} e^{3 \lambda_{n}} \tag{47}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(T^{-1}\right)_{m}=\sum_{n=2}^{m} b_{n} e^{a n \lambda} \tag{48}
\end{equation*}
$$

By substituting these polynomials into (43) instead of $\frac{1}{\left(1-M^{2}\right)}$ and $\left(I-M^{2}\right)^{\frac{3}{2}}$, respectively, polynomials of approximation, $\mathbb{F}_{m}(2 \lambda)$ in ea 入, are obtained. Clearly, if a given degree of accuracy is required, m will increase as λ_{0} approaches 0 . By platting $T, I / T, T_{m}$ and $(I / T)_{m}$ fur a given m and comparing the corresponding values, the upper bound λ_{0} of the values of λ for which $\left|F_{m}(2 \lambda)-F(2 \lambda)\right|$ is sufficiently small, may be determined.

TABED 1

n	$-A_{n}$	$-a_{n}$	B_{n}	B_{n}
0	-1	-1	1	1
1	1	.2392	1	.2392
2	1.9	.1087	2.9	.1659
3	4.81	.0658	9.61	.1315
4	13.939	.0456	33.869	.1108
5	43.68	.0342	123.696	.0968
6	144.02	.0270	462.39	.0865
7	492.11	.0220		.0786
8		.0185		.0724
10		.0158		.0672

For instance, in the case under consideration where $m=10$, the values of T and T m are given intable 2 and plotted in figure l6. As can be seen from figure 16 , $\lambda<\lambda_{0}=-0.11$ (i.e., $M=0.75$), $F_{i n}(2 \lambda$) is practically equal to $F(2 \lambda)$. If a good approximationis desired for bigger values of λ, more coefficients a_{n}, b_{n} must be computed. In order to check the obtained values of a_{n}. as function of n, see figure 17.

The coefficiento $Q_{m}^{(n)}(2 \lambda)$ of the operators which yield \qquad solutions of the equation $\Psi^{*} \xi+F_{m} \psi=0$ can be obtained in the same way as derived in reference 3 , from which reference the results are obtained

[^14]| -2入 | T_{10} | I | $\sqrt{1-T^{2}}=M$ |
| :---: | :---: | :---: | :---: |
| 0.0160 | 0.43644 | 0.300 | 0.954 |
| 0.019 | 0.44208 | 0.320 | 0.947 |
| 0.0230 | 0.44758 | 0.336 | 0.942 |
| 0.026 .5 | 0.45300 | 0.350 | 0.937 |
| 0.03 CO | 0.45835 | 0.365 | 0.931 |
| 0.0335 | 0.46360 | 0.380 | 0.925 |
| 0.0370 | 0.46877 | 0.390 | 0.921 |
| 0.0405 | 0.47385 | 0.401 | 0.916 |
| 0.0440 | 0.47885 | 0.412 | 0.911 |
| 0.0475 | 0.48377 | 0.421 | 0.907 |
| 0.0510 | 0.48861 | 0.430 | 0.903 |
| 0.0545 | 0.49338 | 0.439 | 0.898 |
| 0.0583 | 0.49807 | 0.448 | 0.894 |
| 0.0615 | 0.50268 | 0.455 | 0.890 |
| 0.06510 | 0.50723 | 0.463 | 0.886 |
| 0.0685 | 0.51170 | 0.470 | 0.883 |
| 0.0720 | 0.51610 | 0.477 | 0.879 |
| 0.0755 | 0.52033 | 0.484 | 0.875 |
| 0.0790 | 0.52471 | 0.491 | 0.871 |
| 0.0825 | 0.52892 | 0.497 | 0.868 |
| 0.0860 | 0.53306 | 0.502 | 0.865 |
| 0.0895 | 0.53714 | 0.507 | 0.862 |
| 0.0930 | 0.49225 | 0.512 | 0.859 |
| 0.0965 | 0.49790 | 0.520 | 0.854 |
| 0.1000 | 0.54902 | 0.525 | 0.851 |
| 0.1035 | 0.55287 | 0.530 | 0.848 |
| 0.1070 | 0.53639 | 0.535 | 0.845 |
| 0.1105 | 0.56040 | 0.540 | 0.842 |
| 0.1140 | 0.56408 | 0.545 | 0.838 |
| 0.1175 | 0.56771 | 0.550 | 0.835 |
| 0.1210 | 0.57129 | 0.554 | 0.832 |
| 0.1245 | 0.57481 | 0.559 | 0.829 |
| 0.1280 | 0.57829 | 0.563 | 0.826 |
| 0.1315 | 0.58172 | 0.567 | 0.823 |
| 0.1350 | 0.58511 | 0.571 | 0.821 |
| 0.1385 | 0.58844 | 0.575 | 0.818 |
| 0.1420 | 0.59173 | 0.579 | 0.815 |
| 0.1455 | 0.59498 | 0.583 | 0.812 |
| 0.1490 | 0.59818 | 0.587 | 0.810 |
| 0.1525 | 0.60134 | 0.591 | 0.806 |
| 0.1560 | 0.60446 | 0.594 | 0.804 |
| 0.1595 | 0.60754 | 0.598 | 0.801 |
| 0.1630 | 0.61054 | 0.601 | 0.799 |
| 0.1665 | 0.61357 | 0.604 | 0.797 |

$$
\left.\begin{array}{c}
Q_{m}^{(1)}=-4 \int_{-\infty}^{\lambda} F_{m} d \lambda \\
Q_{m}^{(2)}=-\frac{4}{3} F_{m}+\frac{1}{6} Q_{m}^{(1)^{2}} \\
Q_{m}^{(3)}=-\frac{4}{15} \frac{\partial}{\partial \lambda} F_{m \lambda}+\frac{4}{15} F_{m} Q_{m}^{(1)}-\frac{16}{15} \int_{-\infty}^{\lambda} F_{m}^{2} d \lambda+\frac{1}{40} Q_{m}^{(1)^{3}}
\end{array}\right\}
$$

APPENDIX II

THE EQUATION (IN THE CANONICAL FORM) BOR TED POTENTIAL FU.ATION
AN APPLICATION OF INTZGRAI EQUATIONS TO TH M

THEORY OP COMPRESSIBLE FLUIDS

```
    1. In section 6 of reference 8 and section 7 cf refer-
ence 3 the equation (in canonical form) for. the stream func-
tion has been derived. See equation (6.6) of reference 8 or
(46) of reference 3.
There are instances, however, where it is more conventlent to operate with the potential function \(\phi\) rather than with the stream function \(\psi\).
In this section the canonical form of the equation for \(\phi\) will be derived.
```

[^15]Functions ϕ and ψ satisfy the system of equations

$$
(\partial \phi / \partial \theta)=(\partial \psi / \partial H), \quad l(H)(\partial \psi / \partial \theta)=-(\partial \phi / \partial H) \quad(50)
$$

[equation (6.21) of reference 8 and equation (30) of referonce 3]
where

$$
\begin{equation*}
(d H(\nabla) / d \nabla)=\rho / \nabla, \quad l(H)=\left(1-M^{2}\right) / \rho^{2} \tag{51}
\end{equation*}
$$

$$
\begin{aligned}
& \text { If, now, the new variable } \lambda_{1} \text { given by } \\
&(d \lambda / d H y=\left(1-M^{2}\right)^{\frac{1}{2}} / \rho, \text { that } 1 \mathrm{~s},(d \lambda / d v)=\left(1-N^{2}\right)^{\frac{1}{3}} / v(52)
\end{aligned}
$$
\]

[équation (6,4) of reference $\begin{gathered}\text { and equation (48) of reference }\end{gathered}$ 3], is introduced (50) becomes

$$
\begin{equation*}
\phi_{\theta}=\rho^{-1}\left(1-M^{a}\right)^{\frac{1}{3}} \psi_{\lambda}, \quad \rho^{-1}\left(1-M^{2}\right)^{\frac{1}{2}} \psi_{\theta}=-\Phi_{\lambda} \tag{53}
\end{equation*}
$$

Differentiating the first equation (53) with respect to θ and the second with respect to λ yields

$$
\begin{gather*}
\phi_{\theta \theta}=\rho^{-1}\left(1-M^{2}\right)^{\frac{1}{2}} \psi_{\lambda \theta} \tag{54}\\
\rho^{-1}\left(1-M^{2}\right)^{\frac{1}{2}} \psi_{\lambda \theta}+\left[d\left(\rho^{-1}\left(1-M^{2}\right)^{\frac{1}{2}}\right) / d \lambda\right] \psi_{\theta}=-\phi_{\lambda \lambda}
\end{gather*}
$$

Replacirie the first term of the second equation of (54) by $\phi_{\theta \in}$ and. ψ_{θ} by $-\rho\left(1-M^{2}\right)^{-\frac{T}{2}} \phi_{\lambda}(\operatorname{see}(53)$) yields

$$
\begin{equation*}
\phi_{e \in}+\phi_{\lambda \lambda}-\rho\left(1-M^{2}\right)^{-\frac{1}{2}}\left[d\left(\rho^{-1}\left(1-M^{2}\right)^{\frac{1}{2}}\right) / d \lambda\right] \phi_{\lambda}=0 \tag{55}
\end{equation*}
$$

Now, by the second relation of (52)

$$
\begin{align*}
& \rho\left(1-M^{3}\right)^{-\frac{1}{2}}\left[d\left(p^{-1}\left(1-M^{3}\right)^{\frac{1}{3}}\right) / d \lambda\right] \\
& =p^{2}\left(1-M^{2}\right)^{-1}(v / \rho)\left[\alpha\left(\rho^{-1}\left(1-M^{a}\right)^{\frac{1}{2}}\right) / d v\right]=4 N \\
& =-\frac{(k+1) M^{4}}{2}\left(1-M^{2}\right)^{-3 / 2} \tag{56}
\end{align*}
$$

[equation (6.6) and errata of reference 8 , or equation (47) of reference 3]. Thus, the equation for ϕ becomes

$$
\begin{equation*}
\phi_{\lambda \lambda}+\phi_{e_{\theta}}-4 N \Phi_{\lambda} \equiv 4\left[\phi_{\xi} \bar{\xi}-N\left(\phi_{\xi}+\phi_{\bar{\zeta}}\right)\right]=0 . \tag{57}
\end{equation*}
$$

$$
\xi=\lambda(v)-1 \theta
$$

2. A case in which it is more advantageous to consider ϕ.rather than ψ is the following:
[equation (7:i) of reference 8; equation (119) of references]

$$
\zeta=\lambda-1 \theta, \quad \xi=\lambda+1 \theta .
$$

is taken.
As was explained. in section lu of reference 3 , it is lmportent (in connection with the transition to the physical plane) to have (working in the λ, θ-plane) singularities the derivatives of which with respect to λ and to are single-valued functions of λ and: θ.

The point. $\zeta(0)$ corresponds to the point $z=\infty$ of the physical plane, and ff for the potential function, $\phi_{2} a \quad \therefore$ fundamental solution:

$$
A *\left(\zeta, \bar{\zeta} ; \xi(0), \xi^{(0)}\right) \log 1 \xi-\xi^{0} 1+B *\left(\xi, \bar{\xi} ; \xi^{(0)}, \overline{(0)} ; \text { (} 59\right)
$$

of (57) is taken, a flow with a "sourcemikel singularity is obtained. (Expresision(59) and, therefore, its derivatives are sfngle-valued functions of λ and 6.)

The names "vortex-like" and "source-likell are used because in the case of an incompresisiblefluid (and in the physital plane). in the case of e vortex the stream function is given by m log la -mol, and in the case of a source the potential function is given by $\phi=m \log \mid z-z_{0}, m$ being a real constant. (See reference lo, pp. 19° sid 320.)

$$
\begin{align*}
& \therefore \text { In section } 7 \text { of reference } 8 \text { and in section } 13 \text { of refer- } \\
& \text { once } 3 \text { singularities of functions satisfying equation (6) } \\
& \text { were considered. As was indicated there, a.flow with. a. } \\
& \text { "vortex-likeil singularity at (} \lambda^{\circ}, \theta^{\circ} \text {), is obtained if for } \\
& \text { the stream function, the so-called fundamental solution } \\
& W *(\lambda, \theta ; \lambda(0), \theta(0)) \\
& =A(\xi, \xi ; \xi(0), \xi(0)) \log 1 \xi-\xi^{0} \mid+B(\xi, \xi ; \xi(0), \xi(0)) \tag{58}
\end{align*}
$$

A single-valued solution of (57), which is infinite of the first order at $\xi=\xi(0)$ may be obtained by taking the derivative with respect to θ of (59).
3. A problem of considerable interest is that of determining a flow of a compressible fluid around a given profile, or at least around a profile the shape of which approximates the given profile. Since, in meny instances, by reasoning from the incompressible case, the approximate image in the hodograph or (λ, θ)-plane is known ${ }^{2}$, it is possible to consider, instead of the above problem, the question of determining a flow for a given hodograph, and the bohavior at the point of the hodograph corresponding to $z=\infty \quad \sum_{i s}$ proscribed. Olearly, inatead of the image in the hodograph plane the image in the (λ, θ)-plane may be used. If the results of section 7 of reference 8 , section 13 of reference 3 , and those of section 2 of this appendix are employed, it is possible to determine a lunction $\psi_{2}(\lambda, \theta)$ satisfying (6), which posseases the required behavior at $z=\infty$. Naturally, $\psi_{1}(\lambda, \theta)$ for the point ${ }^{3}\left(\lambda_{\infty}, \theta_{\infty}\right)$ must have a singularity which satisfies the concitions indicated in section 14 of reference 3 , in order that the flow in the physical plane will be a flow around a closed curve. (See, in particular, equation (145) of reference 3.) Function $\psi_{1}(\lambda, \theta)$ is as yet, not the required stream function, since it does not assume constant values on the boundary of the domain. In order to determine this function, it is necessary to find a solution $\psi_{a}(\lambda, \theta)$ of (6) which is regular in the domain H_{1}, and which asaumes, on the boundary h_{1}. of H_{1}, the values ${ }^{4}$
${ }^{\text {The }}$ image in the logarithmic plane of an incompressible fluid flow around a profile P is often used as a first approximation of the image in the $\lambda \theta$ oplane of the flow of a compressible fluid around a profile similar to P. Seefigi. 4, 5, and 6, where the boundaries (and some streamlines) of a flow around a Joukowski profile in the physical, hodograph and (pseudo-) logarithmic plane, respectively, are given.
${ }^{2}$ The coordinate z refers to the physical plane.
${ }^{3}$ The point $\left(\lambda_{\infty}, \theta_{\infty}\right)$ corresponds to the point $z=\infty$ of the physical plane.
${ }^{4}$ Since the domain H_{1} extende to infinity and, in general, is multiply covered, it is necespary to alter somewhat the method of attack to be described, by mapping E_{1} conformally on a finite and Schlicht domain.

For the sake of brevity this atep will be omitted in the followints.

$$
\begin{equation*}
\psi_{2}\left(\lambda_{h}, \theta_{h}\right)=-\psi_{1}\left(\lambda_{h}, \theta_{h}\right) \tag{60}
\end{equation*}
$$

$\left(\lambda_{h}, \theta_{h}\right)$ being an arbitrary point of h_{1}.
Function $\Psi_{a}(\lambda, \theta)$ can be determined using the theory of integral equations. (See footnote 8, p. 281 of reference 2.) Indeed, let $\psi_{3}(\lambda, \theta)$ be that harmonic function which assumes the prescribed values on h_{l}, then

$$
\psi_{4}=\psi_{3}-\psi_{3}
$$

satisfies the equation

$$
\begin{equation*}
\Delta \psi_{4}+4 N \frac{\partial \psi_{4}}{\partial \lambda}=-\frac{4 N}{} \frac{\partial \psi_{3}}{\partial \lambda} \tag{61}
\end{equation*}
$$

and vanishes on the boundary h_{1}.
By employing classical results ψ_{4} can be obtained as the solution of the integral equation:

$$
\begin{aligned}
\psi_{4}(\psi, \theta) & =\frac{I}{2 \pi} \iint_{H_{2}} \frac{\partial(4 N G)}{\partial \lambda_{1}} \psi_{4}\left(\lambda_{1}, \theta_{1}\right) d \lambda_{1} d \theta_{1}+\psi_{5} \\
\psi_{5} & =-2 \pi \iint_{H_{1}} 4 N \frac{\partial \psi_{3}}{\partial \bar{\lambda}_{1}} G d \lambda_{1} d \theta_{1}
\end{aligned}
$$

where $G \equiv G\left(\lambda, \theta ; \lambda_{I}, \theta_{1}\right.$) is Green's function (of Laplace's equation) with respect to the domain H_{i}.

APPENDIX III

A METHOD FOR DETERMINATION OF STRTAM FUNCTIONS OF

PUREIT SUPERSONIC FLOWS

1. As indicated in reference 8 , section 10 and reference 3, section 16, the approach developed in these papers makes it possible to construct mixed (i.e., partially subsonic and partially supersonic) flows by use of the following procedure:

In preceding papers two methods have been described (one given by Chaplygin, the other by the author ${ }^{2}$), which yield certain types of particular solutions ψ_{v}, the stream function of a compressible fluid flow. (See sec. 8 (8.3), (8.6), (8.2.2) of reference 8 and sec. 2 of reference 2.) The ψ_{v} represent streain functions of flows, which, in general, include subeonic and supersonic fegions.

As was pointed out in detail in reference 2 , section 3 and in the introduction of reference 3 , the flow patterns generatied by the ψ_{v} mentioned above or a linear combination of thea $\Sigma \alpha_{\nu} \psi_{j}, ~ a r e ~ o f ~ r a t h e r ~ s p e c i a l ~ c h a r a c t e r . ~ I n ~ p a r t i c-~-~$ ular, the flow patterns with stream function $\Sigma \mathbb{C}_{v} \psi_{v}$, cannot (in general) represent an entire flow around a closed body.

Frequently, in the theory of analytic functions of a complex veriable in a similar situation (i.e., when one expression of a certain kind - o.g., power esies - does not reprem sent the function, say, f, in the entire domain B in which the furction has to be considered), the procedure employed is to deccmpose ${ }^{B}$ into smaller regions, say, into $B_{K}, K=1$, $2, . . . n, \sum_{K=1}^{n} B_{K}=B_{n}$ (seefig. 7) such thatitis poseible to find in every region B_{K}, another analytic expression, say, f_{K}, which represents f in thet region. Genoralizing
${ }^{2}$ Bers and Gelbart, in referencell, ottainea the same solutions independently of the author. They denote the functions $\varphi_{v}+i \psi_{V}$ as Σ-monogenic functions. Here φ_{V} is the potential funotion which corresponds to the stream function ψ_{v}.
this method of represantation of a function of a complex variable, the author described in section 10 of reference 8 and in section 77 of reference 3 a method for representing the stream function and in a similar manner; that is, in decomposing the domain B into parts B_{K}, and representing ψ in every B_{K} by another analytical expression.

In order to apply this method a representation for a purely supersonic fiow is frequently required.

A method for generating purely supersonic flows, completely analogous to thet developed for the subsonic case, will be given in this appendix.
2. The oquation

$$
\begin{equation*}
S(\psi)=\left(\frac{\rho_{0}}{\rho}\right)^{2}\left(1-M^{2}\right) \frac{\partial^{2} \psi}{\partial \theta^{2}}+\frac{\partial^{2} \psi}{\partial H^{2}}=0 \tag{63}
\end{equation*}
$$

(equations (43) and (6.2) of references 3 and 8, respectively) serves once more as the starting point for the following considerations.

In order to write the equation for ψ in the "canonical formin ${ }^{\frac{1}{2}}$, it is. necessary to introduce new rariables ξ, η,

$$
\begin{equation*}
\xi=\theta+\beta(M), \quad \eta=-\theta+\beta(M) \tag{64}
\end{equation*}
$$

where

$$
\begin{align*}
& \left.\beta(M)=\int \rho^{-1} \rho_{o}\left(M^{2}-I\right)^{\frac{1}{2}} d H=\frac{1}{2} \int \nabla^{-2}\left(M^{2}-I\right)^{\frac{3}{2}} \mathrm{~d} \nabla^{2}\right] \text {. } \\
& =\left[\frac{1}{h} \tan ^{-1}\left(h\left(M^{2}-1\right)^{\frac{2}{3}}\right)-\tan ^{-1}\left(M^{3}-1\right)^{\frac{1}{2}}\right] \tag{65}\\
& h=\sqrt{\frac{k-1}{k+1}}, \quad k>1 \\
& \text { IIt may be noted that purely super sonic flow patterns can } \\
& \text { oocur upon considering flows in channels or around a body with } \\
& \text { a cusp, in which case the flow has no stagnation point. } \\
& { }^{2} \text { Since in the supersonic case } M>I \text {, equation (63) is } \\
& \text { of hyperbolic type. By introducing auttable variablea, } \xi, \ldots \\
& \text { every equation of hyperbolic type can be transformedinto the } \\
& \text { so-called canonical form. } \Psi_{\xi \eta}+A \psi_{\xi}+B \psi_{\eta}+0 \psi=0 \text {. }
\end{align*}
$$

Wquation (63) then becomes

$$
\begin{equation*}
\psi_{\xi \eta}+A\left(\psi_{\xi}+\Psi_{\eta}\right)=0 \tag{66}
\end{equation*}
$$

Where

$$
\begin{equation*}
A=\frac{1}{8}(k+1) M^{4}\left(M^{2}-1\right)^{-3 / a} \tag{67}
\end{equation*}
$$

The function

$$
\begin{equation*}
\psi^{*}=H \psi, \quad H=\exp \left[\int^{(\xi+\eta)} A(s) d s\right] \tag{68}
\end{equation*}
$$

satisfies the equation

$$
\begin{equation*}
\psi_{\xi \eta}^{*}-\vec{F} \psi^{*}=0, \quad W=A^{2}+(\alpha A / \alpha B), \quad s=\xi+\eta \tag{69}
\end{equation*}
$$

3. By use of considerations similar to those developed in references 8 and 3 , the following theorems can be derived:

Theorem I.- Suppose that F_{m} is a function which possoses a continuous first derivative. Let $\mathbb{H i}_{i}^{*}(\xi, \eta, t)$ and $\mathbb{E}_{\xi}^{*}(\xi, \eta, i)$ be solutions of
and

$$
\begin{equation*}
\left(1-t^{2}\right) \frac{\partial^{2} \mathbb{B}_{z}^{*}}{\partial \xi \partial t}-\frac{1}{t} \frac{\mathbb{E}_{a}^{*}}{\partial \xi}+2 t \Pi\left[\frac{\partial^{B_{B}^{*}}}{\partial \xi \partial \eta}-H_{m^{E}}^{*}\right]=0 \tag{71}
\end{equation*}
$$

respectively.
Let \mathbb{E}_{1} and \mathbb{H}_{a} possess continuous second derivatives, and let $\left(\partial \mathbb{N}_{1}^{*} / \partial \xi\right) / \eta t$ and $\left(\partial W_{a}^{*} / \partial \eta\right) / \xi t$ be finite for $t=0$.

$$
\begin{aligned}
& \text { Then } \\
& U(\xi, \eta)= \int_{-1}^{+}\left[E_{1}^{*}(\xi, \eta, t) f_{2}\left(\frac{1}{2} \xi\left(1-i^{2}\right)\right)\right. \\
&\left.\left.+E_{z}^{*}(\xi, \eta, t) f_{2} \frac{1}{2} \eta\left(1-t^{2}\right)\right)\right]\left(1-t^{3}\right)^{-\frac{1}{2}} i t \quad \text { (72) }
\end{aligned}
$$

where $f_{1 K}, K=1,2$ are two arbitrary, twice coitlinioualy differentiable functions of their respective arguments, is a solution of the equation

$$
\begin{equation*}
\frac{\partial^{2} U}{\partial \xi \partial \eta}-F_{m} U=0 \tag{73}
\end{equation*}
$$

The proof of this theorem is given in reference l2, section 2 .

$$
\text { Theorem II.- Let } F_{m}(\beta) \text { possess derivatives of all or- }
$$ ders in the interval $\beta_{0} \leqq \beta \leqq \beta_{1}, 0<\beta_{0}<\beta_{2}<\infty$. It a constant c exists such that the inequalities

$$
\begin{equation*}
\left|\frac{d^{K_{F_{m}}}}{\alpha \beta^{K}}\right| \leqq \frac{c(K+2)}{\beta^{K}+2}, \quad K=0,1,2, \ldots ., \beta_{0} \leqq \beta \leqq \beta_{1} \tag{74}
\end{equation*}
$$

obtain, then there exist solutions $\mathbb{E}_{1}(\xi, \Pi, t)$ and $E_{a}(\xi, \eta, t)$ of (70) and (71), respectively, satisfying the conditions of theorem I.

By substituting the functions $\mathbb{F}_{K}^{*}, K=1,2$ into (72) for the ${ }_{\mathrm{K}} \mathrm{K}$, there is obtained a representation for solutions of equation

$$
\begin{equation*}
\psi_{\xi}^{*} \eta-\mathbb{F}_{m} \psi^{*}=0 \tag{75}
\end{equation*}
$$

in terms of two arbitrary, tuice differentiable fūncioñ .
."': 4. There exist various other integral representationg of solutions of (69) in terms of two arbitrary functions of one variable. One such representation, differing from that given in the preceding section, will be discussed here.

Let $R\left(\xi, \eta ; \xi^{*}, \eta^{*}\right)$ denote the Fiemann functions of equations (69). (see reference 9. p. 22) - that is, a function of the four real variables $\xi, \eta, \xi^{*}, \eta^{*}$. which satisfies equation (69) for every fixed ($\xi^{*}, \|^{*}$), and which further has the properties that.

$$
\left.\begin{array}{l}
\mathbb{R}\left(\xi, \eta^{*} ; \xi^{*}, \eta^{*}\right)=1 \tag{76}\\
R\left(\xi^{*}, \eta ; \xi^{*}, \eta^{*}\right)=1
\end{array}\right\}
$$

This function (for (69)) may be represented in the form
$R\left(\xi, \eta_{;} \xi^{*}, \eta^{*}\right)=1-\int_{\xi *}^{\xi} \int_{\eta^{*}}^{\eta} F\left(\xi_{I}, \eta_{1}\right) d \xi_{1} d \eta_{7}$

(See reference 8, sec. 7.)

The classical theory of partial differential equations of hyperbolic type yields the following results:

Let $f K(K=1,2)$ be any two arbitrary differentiable functions of one real variable, and if u satisfies the diffferential equations $u \xi \eta+F u=0$, then

$$
\begin{align*}
u(\xi, \eta)=u(0,0) R(\xi, \eta ; 0,0) & +\int_{0}^{\xi} R(\xi ; \eta ; \xi *, 0) f_{1}(\xi *) d \xi * \tag{78}\\
& +\int_{0}^{\eta} R(\xi, \eta ; 0, \eta *) f_{2}\left(\eta^{*}\right) d \eta^{*}
\end{align*}
$$

(R is, of course, the Riemann function associated with the differential equations satisfied by u.)

Remark: A representation of the form (78) is a' sn isitifor the subsonic region.

Indeed, suppose that ξ is repiaced by $\xi=\lambda-i e, \eta$ by
 formed expression will not differ essentially from the function $x(\xi, \bar{\zeta})$ introduced in (7.4) of reference θ°.

If the complex variable ξ, ξ instead of λ, θ, is used, the equation for the function ψ^{*}, in the subsonic case, assumes the form

$$
\psi_{\xi}^{*} \bar{\xi}+\mathbb{F}_{m} \psi^{*}=0
$$

(equation (86) of reference 3)
a new representation for ψ^{*} in terms, of two arbitrary analytic functions h_{1}, h_{z} of one complex variable may then be

$$
\begin{align*}
\text { obtained: } \\
\begin{aligned}
\psi^{*}(\xi, \bar{\xi})=\psi^{*}(0,0) R(\xi, \bar{\xi} ; 0,0) & +\int_{0}^{\xi} R\left(\xi, \bar{\xi} ; \bar{\xi}^{*} ; 0\right) h_{1}\left(\xi^{*}\right) d \xi^{*} \\
& +\int_{0}^{\xi} R\left(\xi, \bar{\xi} ; 0, \bar{\xi}^{*}\right) h_{a}\left(\bar{\xi}^{*}\right) d \bar{\xi}^{*}
\end{aligned}
\end{align*}
$$

(R. is the Riemann function of the differential equation for ψ^{*}.)
5. It is of considerable interest to show that both (8) and (72) are different forms of tine same operator, the former obtaining in the same subsonic case while the latter holds in the supersonic case. In order to derive this conclusion, it is necessary to develop further the method of attack initiated in sections 6 and 8 of reference 3 . The following result is a slight generalization of theorem (E3) of reference 3 .

Let \mathbb{F}_{1} be a solution of
$G_{B}^{(z)}(\Lambda, \theta, t) \equiv\left[\frac{\left(1-t^{2}\right)^{\frac{1}{2}}}{t(\Lambda+i \theta)} \Lambda_{H}^{2}\left(\frac{1}{\Lambda H} \frac{\partial W_{I}}{\partial H}+i \frac{\partial E_{I}}{\partial \theta}+\frac{\Lambda_{H H^{M}}}{2 \Lambda_{H}^{2}}\right)\right]_{t}$

$$
\begin{equation*}
+\frac{1}{\left(1-t^{2}\right)^{5}}\left(\Lambda_{\mathrm{B}}{ }^{2} \cdot \frac{\partial^{2} \mathbb{E}_{1}}{\partial G^{2}}+\frac{\partial^{2} \#_{1}}{\partial H^{3}}+B \mathbb{I}_{I}\right)=0^{1} \tag{80}
\end{equation*}
$$

[^16]Which j possesses the property that

$$
\begin{equation*}
\left(\frac{1}{\Lambda_{H}} \frac{\partial \mathbb{M}_{1}}{\partial H}+i \theta\right) \frac{\Lambda_{H} a \sqrt{1-t^{3}}}{t(\Lambda+i \theta)}+\frac{\mathbb{I}_{1} \sqrt{1-t^{2}} \Lambda_{H H}}{2 t(\Lambda+i \theta)} \tag{81}
\end{equation*}
$$

is continuous at $t=0$, at $\Lambda=0$, and at $\theta=0$, then

$$
\Psi(H, \theta)=\int_{-1}^{+1} E_{1}(H, \theta, t) f\left[\frac{1}{2}(\Lambda(H)+1 \theta)\left(1-t^{2}\right)\right] \frac{d t}{\sqrt{1-t^{2}}}(82)
$$

Where f is an arbitrary, twice differentiable function of one variable will be a solution of

$$
\begin{equation*}
\Lambda_{H}^{3} \frac{\partial^{2} \psi}{\partial \theta^{3}}+\frac{\partial^{2} \psi}{\partial H^{3}}+B \Psi=0 \tag{83}
\end{equation*}
$$

The proof of the above theorem follows step-by-step the proof of theorem (53) of reference 3.

Denote by $y_{a}(H, \theta, t)$ a solution of $G_{B}^{(z)}(\Lambda,-\theta, t)=0$ and obtain the following representation for solutions of (83) in terms of two arbitrary, twice differentiable functions f_{i}, f_{z} of one variable.

$$
\begin{align*}
\psi(H, \theta) & =\int_{-1}^{+1}\left\{\mathbb{F}_{1}(H, \theta, t) f_{1}\left[\frac{1}{2}(\Lambda(H)+1 \in)\left(1-t^{2}\right)\right]\right. \\
& \left.+\mathbb{B}_{a}(H, \theta ; t) f_{a}\left[\frac{1}{2}(\Lambda(H)-1 \theta)\left(1-t^{2}\right)\right]\right\} \frac{d t}{\sqrt{1-t^{2}}} \tag{84}
\end{align*}
$$

For $\quad M<1, ~ \Lambda(H)=A(M) \quad$ (see equation (48) of reference. 3) is real and therefore $\zeta=\Lambda-1 \theta, \quad \zeta=\Lambda+1 \theta$ represent conjugate complex variables. For $M>I, ~ \Lambda(H)=\lambda(M)$ becomes purely imaginary and therefore $\quad \mathcal{L}=\Lambda+i \theta=1\left(\frac{\Lambda}{i}+\theta\right)$ $=1 \xi$ and $\xi=\Lambda-1 \theta=1\left(\frac{\Lambda}{i}-\theta\right)=i \eta$ where ξ and η are the real variables introduced in (64). It remains merely to show that (80) can be written in the form (6) for $M<1$ and in the form (66) for $M>1$. Suppose first that $M<1$ noting that $\bar{H}_{\Lambda}=\frac{\partial E}{\partial \Lambda}=\frac{E_{H}}{\Lambda_{H}}=\frac{\partial E}{\partial H} / \frac{\partial \Lambda}{\partial H}, \quad(80)$ can be written in the

$$
\begin{align*}
& {\left[\frac{\sqrt{1-t^{3}}}{t \xi} \Lambda_{H}^{2}\left(2 \frac{\partial E_{1}}{\partial \zeta}+\frac{\Lambda_{H H_{I}}}{2 \Lambda_{H}^{2}}\right)\right]_{t}+\frac{1}{\sqrt{1-t^{2}}}\left[\Lambda_{H}^{z} \frac{\partial^{3} \mathbb{F}_{1}}{\partial \theta^{2}}\right.} \\
&\left.+\Lambda_{H}^{3} \frac{\partial^{2} \mathbb{H}_{I}}{\partial \Lambda^{2}}+\frac{\partial E_{1}}{\partial \Lambda} \Lambda_{H H}+B \mathbb{F}_{I}\right]=0 \tag{85}
\end{align*}
$$

Since

$$
\frac{\partial^{2} \mathbb{W}_{1}}{\partial H^{2}}=\left(\frac{\partial \mathbb{E}_{1}}{\partial \Lambda} \Lambda_{H}\right)_{H}=\frac{\partial^{2} \mathbb{H}_{1}}{\partial \Lambda^{2}} \Lambda_{H}^{2}+\frac{\partial \mathbb{E}_{1}}{\partial \Lambda} \Lambda_{E H}
$$

equation (85) can be replaced by
$\frac{2 \sqrt{2-t^{3}} \Lambda_{H}^{3}}{t \xi}\left(\frac{\partial \mathbb{I}_{1}}{\partial \xi}+\frac{\Lambda_{H H}}{4 \Lambda_{H}^{2}} \frac{\partial \mathbb{I}_{1}}{\partial t}\right)-\frac{2 A_{H}^{2}}{t \bar{\xi} \sqrt{1-t^{2}}}\left(\frac{\partial \mathbb{I}_{2}}{\partial \xi \partial \bar{\xi}}+\frac{\Lambda_{H H}}{4 \Lambda_{H}^{2}} \mathbb{E}_{1}\right)$
$+\frac{4 \Lambda_{H}^{2}}{\sqrt{1-t^{2}}}\left(\frac{\partial^{2} \mathbb{E}_{1}}{\partial \zeta \partial}+\frac{\Lambda_{H H}}{\Lambda_{H^{2}}}\left(\frac{\partial \mathbb{E}_{1}}{\partial \zeta}+\frac{\partial \mathbb{R}_{2}}{\partial \bar{\zeta}}\right)+\frac{B}{4 \Lambda_{H}^{2}} \mathbb{E}_{1}\right)=0 \quad(86)$
or introducing $\mathbb{F}_{2}{ }^{*}=\mathbb{J}_{1} \exp \left(\cdot \int^{\overline{\xi+\bar{\xi}} N(s) d s}\right)$ where $N=\frac{\Lambda_{H H}}{4 \Lambda_{H}{ }^{2}}$
$\left.\frac{2 \Lambda_{H}^{a} \exp \left(-\int^{\zeta+\bar{\xi}} N(s) d s\right.}{t \bar{\xi}_{N^{\prime}}-t^{a}}\right)\left[\left(1-t^{2}\right) \frac{\partial^{3} E_{2}{ }^{*}}{\partial \xi \partial t}-\frac{1}{t} \frac{\partial \mathbb{F}_{1} *}{\partial \xi}\right.$

$$
\begin{equation*}
\left.2 \bar{\xi} t\left[\frac{\partial^{2} Z_{2}^{*}}{\partial \zeta \hat{\sigma}_{\xi}^{\xi}}+\left(F+\frac{B}{4 \Lambda_{H}^{2}}\right) \mathbb{F}_{1}^{*}\right]\right\}=0^{1} \tag{87}
\end{equation*}
$$

If $F+\frac{B}{4 \Lambda_{H}{ }^{2}}$ is replaced by F_{m} and divided by a nonvanishing factor, it is seen that (87) is essentially the same as equation (75) of reference 3 .

[^17]Title: " β as a function of $\mathrm{M"}$

M	β	M	β	M	β
1.00	0.0000	1.47	0.1921	5.90	1.4703
1.01	0.0008	1.48	0.1974	6.00	1.4827
1.02	0.0020	1.49	0.2026	6.10	1.4944
1.03	0.0039	1.50	0.2078	6.20	1.5061
1.04	0.0061	1.60	0.2590	6.30	1.5172
1.05	0.0085	1.70	0.3108	6.40	1.5279
1.06	0.0110	1.80	0.3618	6.50	1.5388
1.07	0.0140	1.90	0.4216	6.60	1.5491
1.08	0.0169	2.00	0.4602	6.70	1.5591
1.09	0.0200	2.10	0.5076	6.80	1.5689
1.10	0.0235	2.20	0.5535	6.90	1.5785
1.11	0.0268	2.30	0.5983	7.00	1.5877
1.12	0.1304	2.40	0.6413	7.10	1.5966
1.13	0.0339	2.50	0.6827	7.20	1.6054
1.14	0.0376	2.60	0.7229	7.30	1.6143
1.15	0.0415	2.70	0.7613	7.40	1.6225
1.16	0.0455	2.80	0.7983	7.50	1.6308
1.17	0.0494	2.90	0.8310	7.60	1.6388
1.18	0.0535	3.00	0.8682	7.70	1.6466
1.19	0.0577	3.10	0.9013	7.80	1.6542
1.20	0.0518	3.20	0.9329	7.90	1.6617
1.21	0.0563	3.30	0.9637	8.00	1.6688
1.22	0.0707	3.40	0.9930	8.10	1.6761
1.23	0.0 '754	3.50	1.0213	8.20	1.6829
1.24	0.07798	3.60	1.0487	8.30	1.6898
1.25	0.08345	3.70	1.0748	8.40	1.6964
1.26	0.0887	3.80	1.1002	8.50	1.7028
1.27	0.09132	3.90	1.1243	8.60	1.7093
1.28	0.0981	4.00	1.1481	8.70	1.7155
1.29	0.1027	4.10	1.1707	8.80	1.7216
1.30	0.1075	4.20	1.1926	8.90	1.7276
1.31	0.1124	4.30	1.2136	9.00	1.7335
1.32	0.1172	4.40	1.2339	9.10	1.7391
1.33	0.1220	4.50	1.2537	9.20	1.7447
1.34	0.1268	4.60	1.2724	9.30	1.7502
2.35	0.1319	4.70	1.2908	9.40	1.7557
1.36	0.1359	4.80	1.3088	9.50	1.7608
1.37	0.1417	4.90	1.3257	9.60	1.7659
1.38	0.1467	5.00	1.3424	9.70	1.7710
1.39	$0.15: 19$	5.10	1.3585	9.80	1.7760
1.40	0.1567	5.20	1.3740	9.90	1.7809
1.41	0.16 .9	5.30	1.3891	10.00	1.7858
1.42	0.1668	5.40	1.4038		
1.43	0.171 .9	5.50	1.4179		
1.44	$0.17{ }^{\prime} / 2$	5.60	1.4315		
1.45	0.181 .9	5.70	1.4451		
1.46	0.1873	5.80	1.4579		

For the case $M>1$, a similar procedure yields
$\frac{2 \Lambda_{H}^{a} \exp \left(-\int^{\zeta+\bar{\zeta}} N(s \nmid d s)\right.}{1^{2} t \xi \sqrt{1}-t^{2}}\left\{\left(1-t^{2}\right) \frac{\partial^{3} z_{1}{ }^{*}}{\partial \eta \partial_{t}}-\frac{1}{t} \frac{\partial s_{1}^{*}}{\partial \eta}\right.$

$$
\begin{equation*}
\left.+2 \xi t\left[\frac{\partial^{2} \mathbb{B}_{1} *}{\partial \xi \partial \eta}-\mathbb{F}_{I}^{*}\left(F-\frac{B}{4 \Lambda_{H}^{2}}\right)\right]\right\}=0 \tag{88}
\end{equation*}
$$

which up to a constant factor coincides with (70).

APPENDIX IV

$T H \mathbb{C O M P I E X ~ P O T E N T I A I ~ I N ~ T H E ~ H O D O G R A P E ~ P L A N E ~ F O R ~}$

A JOUKOHSKI PROFILE

1. In connection with the second method for the determination of $g^{(n)}(Z)$ it is necessary to have an analytic reppresentation for the complex potential (in the hodograph plane) of an incompressible flow around various profiles.

This problem will be treated in the following for a symmetric Joukowski profile.
2. The function

$$
\begin{equation*}
z^{+}=\eta a+z^{*}+\eta z^{*}, \eta>0 \tag{89}
\end{equation*}
$$

maps the circle $\left|z^{*}\right|=a$ into the circle $\left|z^{+}-\eta a\right|=a(1+\eta)$. The transformation

$$
\begin{equation*}
z=\frac{1}{2} \cdot\left(z^{+}+\frac{a^{2}}{z^{+}}\right) \tag{90}
\end{equation*}
$$

maps $\left|z^{+}-\eta a\right|=a(I+\eta)$ into a Joukowski profile. Therefore

$$
\begin{equation*}
z=\eta a+(1+\eta) z^{*}+\frac{a^{2}}{\eta a+(1+\eta) z^{*}} \tag{91}
\end{equation*}
$$

maps $\left|\mathbf{z}^{*}\right|=a$ into a Joukowski profile.

Since the complex potential around $\left|x^{*}\right|=a$ is

$$
\begin{equation*}
w\left(z^{*}\right)=-V\left(z^{*} e^{i \alpha}+\frac{a^{2}}{z^{*} e^{1 \alpha}}\right)-1 \frac{\Gamma}{2 \pi} \log \frac{z^{*}}{a} \tag{92}
\end{equation*}
$$

the complex potential $W(z)=W\left[z^{*}(z)\right]$ is obtained by substitutlag the function

$$
\begin{equation*}
z^{*}=\frac{(z-2 \eta a)+s}{2(1+\eta)}, \quad s= \pm\left(z^{a}-4 a^{z}\right)^{\frac{1}{2}} \tag{93}
\end{equation*}
$$

(which is the inverse to (91)) into (92).

$$
\begin{array}{r}
W(z)=-V\left[\frac{(z-2 \eta a+s) e^{i \alpha}}{2(1+\eta)}+\frac{2 a^{2}(1+\eta)}{e^{1 \alpha}(z-2 \eta a+s)}\right] \\
-\frac{1 \Gamma}{2 \pi} \log \frac{z-2 \eta a+s}{2(1+\eta) a} \tag{94}
\end{array}
$$

Denoting by q the conjugate to the velocity vector gives

$q \equiv v \theta^{-1 \theta}=\frac{d W}{d z}=\frac{d W}{d z^{*}} \frac{d z^{*}}{d z}$

$$
\begin{equation*}
=\left[-V_{\theta} 1 \alpha+V \frac{a^{2}}{e^{i x_{z^{*}}}}-\frac{1 \Gamma}{2 \pi} \frac{I}{z^{*}}\right]\left[\frac{+s+z}{2(I+\eta)_{B}}\right] \tag{95}
\end{equation*}
$$

Tho aim of this appendix will be to represent W as a function of q. By writing

$$
\begin{gather*}
\theta^{1 a} \frac{(z-2 \eta a+s)}{2(1+\eta)}+\frac{2 a^{a}(1+\eta)}{e^{1 a}(z-2 \eta a+s)}=r_{1}(z, s) \tag{96}\\
\frac{z-2 \eta_{a}+s}{2(1+\eta \sqrt{a}}=r_{g}(z, s) \tag{97}
\end{gather*}
$$

It is seen that r_{1} and r_{a} are rational functions of g and, where z, s, and q are connected by the relation
$q=-V \frac{(s+z) e^{i a}}{2(I+\eta)_{s}}+\nabla \frac{2(1+\eta) a^{2}(s+z)}{e^{i a}\left(z-2 \eta_{a}+s\right)_{s}^{z}}-\frac{i \Gamma}{2 \pi} \frac{s+z}{(z-2 \eta a+s)_{s}}(98)$.
and

$$
\begin{equation*}
s^{2}=z^{2}-4 a^{3} \tag{99}
\end{equation*}
$$

Introducing a new variable t, defined by

$$
z=\left(t+\frac{1}{t}\right) a
$$

gives

$$
s=a\left(t-\frac{1}{t}\right)
$$

and it is found that r_{1} and r_{z} become rational functions of t, which will be denoted by R_{1} and R_{z}. A formal compotation fields

$$
\begin{aligned}
& B_{1}(t)=a\left[\frac{(t-\eta) e^{i \alpha}}{(1+\eta)}+\frac{(1+\eta)}{(t-\eta) e^{i a}}\right] \\
& R_{z}(t)=\frac{(t-\eta)}{(1+\eta)}
\end{aligned}
$$

t and q are connected by a relation
$q-R_{3}(t)=0 ; \quad R_{3}(t)=\left(\frac{-t^{2}}{t^{2}-I}\right)\left[\frac{e^{i} a_{U}}{I+\eta}-\frac{U(I+\eta)}{(t-\eta)^{2} e^{i x}}+\frac{i \Gamma}{2 \pi a} \frac{1}{(t-\eta)}\right]$
which is obtained by replacing in (98) s and z by $a\left(t+\frac{1}{t}\right)$ and $a\left(t-\frac{1}{t}\right)$, respectively. $\quad R_{I}, R_{a}, R_{3}$ are rational
functions of $t ; R_{1}, R_{z}$ are so-called algebraic function a of q.
The determination of singular points of these functions as well as determination of series development of R_{1} and R_{a} around these points can be achieved using classical methods of theory of functions.

The derivation of the corresponding developments of \mathbf{H}_{1} and $\log R_{z}$ as a function of $Z=\log q$ does not involve additional essential difficulties.

RETERENCES

1. Krafif, Hans, and Dibble, Charles G.: Some Two-Dimensional Adiabatic Compressible Flow Patterns. Jour. Aero. Sci., vol. 11, no. 4, Oct. 1944, pp. 283-298.
2. Bergman, Stefan: A Formula for the Stream Function of Certain Flows. Proc. Nat. Acad. Sci., Vol. 29, no. 9, 1943, pp. 276-281.
3. Bergnan, Stefan: On Two-Dimenaional Flows of Compressible Fluide. NACA TN No. 972, 1945.
4. Bergman, Stefan: Graphical and Analytical Mothoda for the Determination of a Plow of a Compresifble Fluid around an Obstacle. NACA TN No. 973, 1945.
5. Garrick, I. \#., and Kaplan, Carl: On the Flow of a Compressible Fluid by the Hodograph Method. II - Fundamental Sot of Particular Flow Solutions of the Ohaplygin Differential 田quation. NACA ARA No. L4129, 1944.
6. Tsien, HsuenShen: Two-Dimensional Subsonic Flow of Compressible Fluids. Jour. Aero. Sci., $\forall o l .6$, no. 10, 1939, pp. 399-407.
7. von Kármán, Th: Compressibility Effects in Aerodynamics. Jour. Aero. Sci., vol. 8, no. 9, July 1941, pp. 337355.
8. Bergman, Stefan: The Hodograph Method in the Theory of Compressible Fluid. Suppl. to Fiuid Dynamics by R.. von Mises and K. Friedrichs. Brown Univ. (Providence, R. I.), 1942.
9. Tamartin, J. D., and Feller, Willy: Partial Differential巴quations. Brown Univ. (Providence, R. I.), 1941.
10. Milne-Thomson, L. M.: Theoretical Eydrodynamics. McNillan \& Co. (London), 1938.

1l. Bers, Lipman, and Gelbart, Abe: On a Class of Differential Wquations in Mechanics of Continua. Quarterly of Appl. Math., vol. 1, no. 2, July 1943, pp. 168-188.
12.. Bergman, Stefan: The Approximation of Functions Satisfying a Iinear Partial Differential Iquation. Duke Math. Jour., vol. 6, 1940, pp. 537-561.

BIBLIOGRAPHY

Chaplygin, S.A.: On Gas Jets. Scientific Memoirs, Moscow Univ., Math. Phys. Sec., vol. 21, 1902, pp. 1-121. (Gng. trans., pub. by Erown Univ., 1944.) (Also NACA TM No. 1063, 1944)
von Mises, Richard, and Friedrichs, Kurt O.: Fluia Dynamics. Brown Univ. (Providence, R. I.), 1941.

Theodorsen, Theodore: Theory of Wing Sections of Arbitrary Shape. NACA Rep. No. 4II: 1931.

Table 4

The values of $\mathrm{S}^{(0)}$ and $\mathrm{T}^{(0)}$ (s operation)												
	$0=0=0$		$0-0.1$		$\theta=0.2$		$0=0.3$		$\theta=0.4$		$0=0.5$	
- λ	$\mathrm{s}^{(0)}$	$T^{(0)}$	$\mathrm{s}^{(0)}$	$\mathrm{T}^{(0)}$	$\mathrm{s}^{(0)}$	$T^{(0)}$	$S^{(0)}$	$T^{(0)}$	$\mathrm{s}^{(0)}$	$\mathrm{T}^{(0)}$	$s^{(0)}$	$\mathrm{T}^{(0)}$
0	0.0000	0.0000	-0.0993	0.0049	-0.1950	0.0188	-0.2841	0.0394	-0.3654	0.0639	-0.4388	0.0898
0.1	0.0000	-0.1058	-0.1113	-0.0983	-0.2165	-0.0777	-0.3116	-0.0480	-0.3955	-0.0139	-0.4685	0.0208
0.2	0.0000	-0.2270	-0.1297	-0.2152	-0.2486	-0.1833	-0.3509	-0.1396	-0.4363	-0.0921	-0.5075	-0.0462
0.3	0.0000	-0.3735	-0.1599	-0.3562	-0.2982	-0.3005	-0.4074	-0.2344	-0.4943	-0.1693	-0.5573	-0.1086
0.4	0.0000	-0.5649	-0.2147	-0.5240	-0.3794	-0.4303	-0.4895	-0.3275	-0.5643	-0.2372	-0.6188	-0.1624
0.5	0.0000	-0.8524	-0.3312	-0.7491	-0.5166	-0.5637	-0.6062	-0.4069	-0.6564	-0.2898	-0.6911	-0.2020
0.6	0.0000	-1.4440	-0.6377	-1.0263	-0.7424	-0.6523	-0.7566	-0.4445	-0.7619	-0.3134	-0.7690	-0.2219
0.7	-6.0916	0.0000	-1.3012	-0.9458	-1.0117	-0.5906	-0.9102	-0.4139	-0.8638	-0.2998	-0.8439	-0.2196
0.8	-1.7353	0.0000	-1.4350	-0.3981	-1.1560	-0.3995	-1.0166	-0.3280	-0.9449	-0.2580	-0.9198	-0.2015
0.9	-1.3726	0.0000	-1.2987	-0.1737	-1.1671	-0.2397	-1.0628	-0.2345	-0.9943	-0.2039	-0.9517	-0.1676
1.0	-1.2247	0.0000	-1.2013	-0.0914	-1.1355	-0.1456	-1.0717	-0.1617	-1.0186	-0.1539	-0.9803	-0.1349

	$\theta=0.6$		$0=0.7$		$0=0.8$		$0=0.9$		$\theta=1.0$	
- λ	$\mathrm{s}^{(0)}$	$T^{(0)}$	$s^{(0)}$	$\mathrm{T}_{1}(\mathrm{0})$	$\mathrm{s}^{(0)}$	$\mathrm{T}^{(0)}$	$\mathrm{S}^{(0)}$	$\mathrm{T}^{(0)}$	$s^{(0)}$	$\mathrm{T}^{(0)}$
0	-0.5048	0.1750	-0.56	0.1383	-0.6184	0.1590	-0.6723	0.1765	-0.7136	0.1910
0.1	-0.5325	0.0536	-0.5892	0.0832	-0.6399	0.1090	-0.6859	0.1308	-0.7281	0.1483
0.2	-0.5677	-0.0045	-0.6259	0.0322	-0.6660	0.0629	-0.7076	0.0889	-0.7457	0.1102
0.3	-0.6099	-0.0674	-0.6565	-0.0139	-0.6966	0.0221	-0.7328	0.0517	-0.7660	0.0758
0.4	-0.6617	-0.1016	-0.6985	-0.0525	-0.7310	-0.0125	-0.7683	0.0201	-0.7888	0.0462
0.5	-0.7192	-0.1347	-0.7444	-0.0818	-0.7680	-0.0397	-0.7908	-0.0057	-0.8129	0.0217
0.6	-0.7791	-0.1536	-0.7916	-0.1007	-0.8058	-0.0587	-0.8213	-0.0249	-0.8376	0.0025
0.7	-0.8366	-0.1577	-0.8371	-0.1090	-0.8424	-0.0697	-0.8510	-0.0377	-0.8619	-0.0115
0.8	-0.8866	-0.1490	-0.8777	-0.1080	-0.8759	-0.0736	-0.8788	-0.0449	-0.8848	-0.0209
0.9	-0.9260	-0.1323	-0.9110	-0.1003	-0.9048	-0.0720	-0.9033	-0.0474	-0.9153	0.0265
1.0	-0.9546	-0.1120	-0.9381	-0.0887	-0.9286	-0.0666	-0.9243	-0.0464	-0.9237	0.0287

Table 5
(s operation)'
$A_{n, m}$

n	0	1	2	3	4	5
0	-0.5	0.62500	0.119797	0.024741	0.003871	0.004286
-1	0.25	0.31250	0.1796955	0.0618525	0.0135485	0.019287
1	-1	0.416667	0.047919	0.007069	0.000860	
2	-0.6666	0.166667	0.013691	0.001571	0.000156	
3	-0.26667	0.047619	0.003042	0.000286	0.000024	
4	-0.076190	0.010582	0.000553	0.000044	0.000003	

Table 6
(s operation)
$C_{n, m}$

n	0	1	2	3	4	5
1	0.5708	0	0	0	0	0
2	-0.0817	+0.5708	0	0	0	0
3	+0.0124	-0.0817	+0.2854	0	0	0
4	-0.0016	+0.0124	-0.0409	+0.0951	0	0

Table 7: The Values of ρ^{k} (G operation)

$\rho^{-3 / 2}$	ρ^{-1}	$\mathrm{P}^{-1 / 2}$	ρ°	$\rho^{1 / 2}$	ρ	$\rho^{3 / 2}$	p^{2}	$5^{5 / 2}$	ρ^{3}	$p^{7 / 2}$	ρ^{4}	$p^{9 / 2}$
1000.00000	100.00000	10.00000	1.	0.1	0.01	0.001	0.0001	0.00001	0.000001	0.(6)*1	$0 .(7) 1$	$0 .(8) 1$
125.00000	25.00000	5.00000	1.	0.2	0.04	0.006	0.0016	0.00032		0.000013	0.000003	0.000001
37.03704 15.62500	11.111711	3.33333	1.	0.3	0.09	0.027	0.0081	0.00243	0.000729	0.000219	0.000066	0.000020
15.62500	6.25000	2.50000	1.	0.4	0.16	0.064	0.0256	0.01024	0.004096	0.001638	0.000655	0.000262
8.00000	4.00000	2.00000	1.	0.5	0.25	0.125	0.0625	0.03125	0.015625	0.007813	0.003906	0.001953
4.62963	2.7T778	1.66667	1.	0,6	0.36	0.216	0.1296	0.07776	0.046656	0.027994	0.016796	0.010078
2.91545	2.04082	1.42857	1.	0.7	0.49	0.343	0.2401	0.16807	0.117649	0.082354	0.057648	0.040354
1.95313	1.56250	1.25000	1.	0.8	0.64	0.512	0.4096	0.32768	0.262144	0.209715	0.167772	0.134218
1.37174	1.23457	1.17711	1.	0.9	0.81	0.729	0.6561	0.59049	0.531441	0.478297	0.430467	0.387420
1.00000	1.00000	1.00000	1.	1.0	1.00	1.000	1.0000	1.00000	1.000000	1.000000	1.000000	1.000000
0.75131	0.82614	0.90909	1.	1.1	1.21	1.331	1.4641	1.61051	1.771561	1.948717	2.143589	2.357948
0.57870	0.69444	0.83333	1.	1.2	1.44	1.728	2.0736	2.48832	2.985984	3.583181	4.299817	5.159780
0.45517	0.59172	0.76923	1.	1.3	1.69	2.197	2.8561	3.71293	4.826809	6.274852	8.157307	10.604499
0.36443	0.57020	0.71429	1.	1.4	1.96	2.744	3.8416	5.37824	7.529536	10.541350	14.757891	20.61047
0.29630	0.44444	0.66667	1.	1.5	2.25	3.375	5.0625	7.59375	11.390625	17.085938	25.628906	38.443359

ρ^{5}	$p^{37 / 2}$	p^{6}	$p^{13 / 2}$	p^{7}	$9^{25 / 2}$
0. (9)1	$0 .(10) 1$	$0 .(11) 1$	$0 .(12) 1$	$0 .(23) 1$	$0 .(14) 1$
$0 .(6) 1$	0. (7)205	$0 .(8) 410$	$0 .(9) 819$	$0 .(9) 164$	$0 .(10) 328$
0.000006	0.000002	$0 .(6) 531$	0. (6)159	$0 .(7) 478$	0. (7) 143
0.000105	0.000042	0.000017	0.000007	0.000003	0.000001
0.000977	0.000488	0.000244	0.000122	0.000061	0.000031
0.006047	0.003628	0.002177	0.001306	0.000784	0.000470
0.028248	0.019773	0.013841	0.009689	0.006782	0.004748
0.107374	0.085899	0.068719	0.054976	0.043980	0.035184
0.348678	0.313811	0.282430	0.254187	0.228768	0.205891
1.000000	1.000000	1.000000	1.000000	1.000000	1.000000
2.593742	2.853117	3.138428	3.452271	3.797498	4.177248
6.191736	7.430084	8.916100	10.699321	12.839185	15.407022
13.785849	17.921604	23.298085	30.287511	39.373764	51.185893
28.925465	40.495652	56.693912	79.971477	.111. 120069	155.568096
57.665039	86,498086	129.747129	194.620693	291.931040	437.896560

(*) Hote: The manbor in parentheses indicates the number of zerob following the deoimal point. Thus, 0. (7)205 = 0.0000000205.

Table 8: The Vaiues of $\cos \frac{m}{2} \varphi$ and $\sin \frac{m}{2} \varphi$ (G operation)

4	$\sin \varphi / 2$	cos $\Phi / 2$	$\sin 9$	$\cos \varphi$	日in 39/2	cos 3¢/2	$\sin 20$	$\cos 2 \varphi$	$\sin 56 / 2$
00°	. 000000	1.000000	. 000000	1.000000	. 000000	1.000000	. 000000	1.000000	. 000000
30°	. 258819	. 965926	. 500000	. 866025	. 707107	. 707107	. 866025	. 500000	. 965926
60°	. 500000	. 866025	. 866025	. 500000	1.000000	. 000000	. 866025	-. 500000	. 500000
90°	. 707107	. 707107	1.000000	. 000000	. 707107	-. 707107	. 000000	-1.000 000	$-.707107$
120°	. 866025	. 500000	. 866025	-. 500000	. 000000	-1.000 000	-. 866025	-. 500000	-. 866025
150°	. 965926	. 258819	. 500000	866025	$-.707107$	-. 707107	-. 866025	. 500000	. 258819
180°	1.000000	. 000000	. 000000	-1.000 000	-1.000 000	. 000000	. 000000	1.000000	1.000000
21.0°	. 965926	-. 258819	-. 500000	-. 866025	-. 707107	. 707107	. 866025	. 500000	. 258819
240°	. 866025	-. 500000	-866 025	-. 500000	. 000000	1.000000	. 866025	-. 500.000	-. 866025
270°	.707107	-. 707107	-1.000 000	. 000000	. 707107	. 707107	. 000000	-1.000 000	-. 707107
300°	. 500000	-. 866025	-. 866025	. 500000	1.000000	. 000000	-. 866025	-. 500	. 500000
330°	. 258819	-. 965926	-. 500000	. 866025	. 707107	-. 707107.	-. 866025	. 500000	. 965926
360°	. 000000	-1.000 000	. 000000	1.000000	. 000000	-1.000 000	. 000000	1.000000	. 000000

9	$\cos 5 \mathrm{P} / 2$	$\sin 39$	$\cos 3 \varphi$	Bin 79/2	$\cos 78 / 2$	140	cos	4Φ	$\sin 99 / 2$	$\cos 99 / 2$
0	1.000000	. 000000	1.000000	. 000000	1,000 000	. 000000	1.000	000	. 000000	1.000000
30°	. 258819	1.000000	. 000000	. 965926	-6258819	. 866025	-. 500	000	. 70710	-. 707107
60°	-. 866025	. 000000	-1.000 000	-. 500000	-. 866025	-. 866025	-. 500	000	-1.000 000	. 000000
90°	-. 707107	-1.000 000	. 000000	-. 707107	. 707107	. 000000	1,000	000	. 707107	. 707107
120°	. 500000	. 000000	1.000000	. 866025	. 500000	. 866025	-. 500	000	. 000000	. 000
150°	. 965926	1,000 000	. 000000	. 258819	-. 965926	-. 866025	-. 500		-. 7071	. 707107
180°	000000	. 000000	-1.000 000	-1.000000	. 900000	. 000000	1.00		1.000000	. 000000
210°	-. 965926	-1.000 000	. 000000	. 258819	. 965926	. 8660025	-. 5000		-. 70711007	-.707107
240°	-. 500000	. 000000	1.000000	. 866025	-. 500000	-. 8600025	-. 5000		. 70001007	1.007 1007
$270{ }^{\circ}$. 707107	1.000000	. 000000	-..707 107	-. 867107		1.000		. 1.000000	. 000000
	. 866025	. 000000	-1.000000	. .500000 .965926				000	- 1.007107	. 707107
330°	-. 2588	$\begin{array}{r}-1.000 \\ .0000 \\ \hline\end{array}$.000000 1.000000	. 965926	. 25008000	$\begin{array}{r}-.866025 \\ .000 \\ \hline\end{array}$	I. 0	-	. 000000	. 0000000

Table 9 (s operation)
NACA TN NO. 1018
Computation of the stream function (in the logarithmic plane) of a compressible flow generated by the analytic function (2.5)

(continued on next page)

Table θ (Continued)

$-\lambda$	θ	$\mathrm{s}^{(0)}$	$S^{(1)}$	$\mathrm{s}^{(2)}$	$S^{(3)}$	${ }_{5}(4)$	$\frac{\partial S}{\partial \lambda}$	$\frac{\partial S}{\partial \lambda}$
: 80	. 50	-. 9096	. 4958	-. 1450	. 0233	-. 0012	. 5409	. 0425
	. 70	-. 8844	. 5258	-. 1238	-. 0005	. 0076	. 3759	. 3753
	. 90	-. 8924	. 5407	-. 0676	-. 0453	. 0212	. 2666	. 2625
	1.05	-. 9090	. 5448	-. 0020	-. 0928	. 0334	. 2089	. 1999
	1.10	-. 91.66	. 5449	. 0236	-. 1129	. 0396	. 1916	. 1819
	1.20	-. 9323	. 5445	. 0832	-. 1526	. 0457	. 1648	. 1496
	1.40	-. 9721	. 5401	. 2281	-. 2515	. 0592	. 1242	. 0959
1.00	. 54	-. 9729	. 6908	-. 2628	. 0602	-. 0075	. 2251	. 2292
	. 75	-. 9428	. 7120	-. 2373	. 0246	. 0093	. 2156	. 2211
	1.00	-. 9453	. 7247	-. 1534	-. 0589	. 0426	. 1612	. 1685
	1.10	-. 9538	. 7270	-. 1036	-. 1045	. 0586	. 1319	. 1459
	1.20	-. 9664	. 7277	-. 0.0446	-. 1578	. 0756	. 1191	. 1246
	1.35	-. 9903	. 7262	. 0611	-. 2522	. 1020	. 0927	. 0949
1.20	. 58	-. 9925	. 8907	-. 4198	. 1231	-. 0231	. 0816	. 0892
	. 80	-. 9726	. 9049	-. 3869	.0722	. 0070	. 1082	. 1230
	1.05	-. 9748	. 9131	-. 2937	-. 0397	. 0623	. 0869	. 1108
	1.15	-. 9830	. 9152	-. 2405	-. 1001	. 0895	. 0725	. 1000
	1.22	-. 9899	. 9157	-. 1945	-. 1495	. 1098	. 0625	. 0919
	1.30	-1.0008	. 9149	-. 1411	-. 2090	. 1346	. 0508	. 0822
	1.40	-1.0171	. 9159	-. 0653	-. 2924	. 1662	. 0357	. 0699

(continued on next page)
Note: Columns $1-\sigma_{h}, 1 . \theta . S^{(0)}, S^{(1)} ; \ldots, \frac{\partial S}{\partial \lambda}$ were computed by means of series as described in method II; column. 7 namely , $\frac{\partial S}{\partial \lambda}$ was computed directly from the formula for the stream function, see reference 3.

Table 9 (Continued)

	θ	$\mathrm{T}^{(0)}$	$\mathrm{T}^{(1)}$	$\mathrm{T}^{(2)}$	T ${ }^{(3)}$	$\mathrm{T}^{(4)}$	$\frac{\partial T}{\partial x}$	$\mathrm{T}^{(0)}$	$\mathrm{T}^{(1)}$	$-\mathrm{T}^{(2)}$	T(3)	dT
. 02	. 05	-. 0329	. 0057	. 0032	-. 0007	-. 0014	1.0258	-. 0188	-. 0010	. 0000	. 0000	1.0146
	=20	0003	$=0198$	-0004	.0001	.0001	. 9140	.0001	-. 0201	-.0004	.0000	. 9412
	. 40	. 0476	-. 0773	. 0006	. 0012	. 0002	. 7729	. 0484	-. 0775	-. 0024	. 0010	. 7756
	. 60	. 1005	-.1658 -.2627	-.0010 -.0333	. 0054	.0002 $-.0000(01)$. 612363	. 1025	-.1659 -.2794	-.0080 -.0206	. 0051	. 6219
	. 80	. 1503	-. 2627	-. 0333	. 0156	-.0000(01)	. 4863	. 1487	-. 2794	-. 0206	. 0163	. 5105
. 06	. 08	$\therefore .0576$	-. 0015	. 0002	. 00001	.0000(4)	1.0534	-. 0579	-. 0022	-. 0001	. 0000	1.0528
	. 30	-. 0129	-. 0443	. 0018	. 00003	. 0002	. 8775	-. 0125	-. 0446	-. 0029	. 0003	. 8777
	. 34	. 0006	-. 0533	-. 0010	. 0012	.0000(5)	. 8480	-. 0009	-. 0574	-. 0037	. 0004	. 8386
	. 40	. 0195	-. 0719	-. 0034	. 0019	.0000(2)	. 7930	. 0172	-. 0791	-. 0052	. 0008	. 7798
	. 50	. 0468	-. 1204	. 0050	. 0027	-. 0001	. 6840	. 0482	-. 1209	-. 0087	. 0020	. 6893
	. 70	. 0917	$-.2160$. 0080	. 0086	-. 0008	. 5382	. 1048	-. 2247	-. 0195	. 0083	. 5487
	. 90	. 1390	-. 3407	. 0020	. 0236	-. 0014	. 4319	- 1486	-. 3508	-. 0377	. 0233	. 4544
	1.10	. 1565	-. 4689	-. 0008	. 0478	-. 0070	. 3602	. 1720	-. 5077	-. 0670	. 0521	
. 40	. 35	-. 3338	. 0123	. 0188	-.0048	. 0006	. 6196	-. 2808	-. 0129			.7482
	. 60	-. 1228	-. 1559	. 0725	-. 0112	. 0001	. 5370	-. 1017	-. 1637			. 3921
	. 85	-. 0100	-. 3397	. 1366	-. 0074	-. 0053	. 4818	. 0045	-. 3401			. 2979
	. 93	. 0152	-. 4023	. 1582	-. 0023	-. 0086	. 4627	. 0284	-. 4008			. 2823
	1.05	. 0476	-. 4978	. 1879	. 0106	-. 0156	. 4349	. 0573	-. 4950			. 2637
	. 30	. 1650	-. 7081	. 2173	. 2080	-. 0584	. 3458	. 0970	-. 7031			. 2338
. 10	. 15	-. 0893	-. 0073	. 0010	-. 00002	. 0001	1.0554	-. 0895	-. 0077	-:0009	. 0000	1.0548
	. 35	-. 0317	-. 0598	. 0054	. 0005	. 0001	. 8365	-. 0312	-. 0600	-. 0063	. 0002	. 8379
	. 50	. 0198	-. 1218	. 0098	. 0023	-. 0001	. 6777	. 0207	-. 1223	-. 0123	. $001 / 4$. 6829
	. 60	. 0519	-. 1717	. 0179	.0048	-. 0003	. 5925	. 0536	-. 1721	-. 0181	. 0039	. 6001
	. 70	. 0816	-. 2282	. 0145	. 0091	-. 0008	. 5221		-. 2288	-. 0252	. 0067	. 5343
	. 00	. 1488	-. 4270	.0147	. 0376	-. 0039	. 3808	.1487	-. 4270	-. 0693	. 0341	.4047
. 20	. 22	-. 2753	-. 0091	. 0035	-. 0014	. 0019	1.0753	-. 1752	-. 0092	-. 0035	-. 0001	1.0744
	. 40	-. 0923	-. 0730	. 0141	-. 0006	.0000(4)	. 7760	-. 0901	-. 0734	-. 0127	-. 0008	. 7783
	. 70	. 0604	-. 2573	. 0326	. 0095	$-.0005$. 4738	-. 0006	-. 2677	-. 0384	. 0022	. 4803
	. 80	. 0626	-. 2984	. 0453	. 0127	-. 0030	. 4250	. 0629	-. 2986	-. 0465	. 0052	. 4365
	1.00	. 1123	-. 4402	. 0588	. 0347	-. 0075	. 3485	. 1102	$-.4395$	-. 0661	. 0156	. 33653
	1.10	. 1316	-. 5165	. 0631	. 0513	-. 0108	. 3204	. 1272	-. 5164	-. 0740	. 0268	. 3396

Table 9 （ooncluded）

	θ	${ }_{T}(0)$	$\mathrm{T}^{(1)}$	$\mathrm{T}^{(2)}$	$T^{(3)}$	${ }_{4}{ }^{(4)}$	$\frac{\partial T}{\partial \lambda}$	$T^{(0)}$	$\mathrm{T}^{\text {（1）}}$	$-T^{(2)}$	$T^{(3)}$	$\frac{29}{2 \lambda}$
	． 30	－． 2856	－． 0012	.0111	－． 0019	－． 0108	． 9945	－． 2344	＋． 0153	＋． 0081	－． 0025	． 9547
	． 75	－． 0165	－． 2681	：0821	$-.0014$	－． 0069	． 3566	－． 0049	－． 2682	－． 0517	－． 00004	． 4002
号占息	． 85	＋．0208	－． 3396	． 1008	＋．0053	－． 0056	． 3226	． 0376	－． 3379	－． 1029	． 0030	． 3614
	． 95	＋． 0501	－． 41142	． 1183	＋．0144	－． 0092	． 2983	． 0643	－． 4171	－． 1199	． 0125	． 3325
	1.10	＋． 0855	－． 5320	.1438	＋． 0358	－． 0169	． 27176	． 0952	$-.5273$	$-.1245$	． 0162	． 2998
	1.20	＋． 0985	－． 6144	． 1600	＋． 0566	－． 0240	． 2577	． 1104	－． 6082	\rightarrow－1539	．0211	． 2823
慁思！	． 40	－． 3132	＋． 0168	．0291	－． 0102	＋．0019	． 0564	－． 3198	＋． 0139			
	． 45	－． 2639	－． 0214	． 0447	－． 0135	＋．0022	． 0777	－． 2636	－． 0211			． 0638
	． 60	－． 1533	－． 1369	． 0943	＋．0224	＋．0015	． 1147	－． 1535	－． 1371			． 1131
品員	． 75	－．0774	－． 2552	． 1475	＋．0286	＋．0004	． 1459	－． 0786	－． 2556			． 1431
¢	． 95	－． 0076	－． 4180	． 2212	＋．0270	－． 0075	． 1704	－． 0104	－． 4188			.1632
	1.00	＋． 0060	－． 4597	． 2398	＋．0244	－． 0307	． 1747	＋．0025	－． 4628			
	1.15	＋．0406	$-.5872$	． 2955	＋．0088	－． 0240	． 1847	＋．0342	－． 5872			．16\％
．BO	． 50	－． 1986	－． 0163	． 0679	－． 0297	＋．0070	－． 2726	－． 1985	－． 0159			－． 2766
	． 70	$-.1078$	－． 1939	． 1704	－． 0571	＋． 0097	－． 0434	－． 1079	－． 1939			－． 0486
W：\％	． 90	－． 0446	－． 3692	． 2775	－． 0767	＋．0058	＋． 0581	－． 0449	－． 3689			$+.0463$
	1.05	－． 0094	－． 5014	． 3587	－． 0817	－．0041	＋． 1016	－． 0104	－． 5020			． 0880
	1.10	＋．0007	－．5463	． 3864	－． 0814	－． 0090	＋． 1130	$\therefore .0008$	－． 5467			． 0900
	1.20	＋．0185	－． 6358	． 4408	－． 0757	－． 0216	＋． 1322	＋．0157	－． 6362			． 1019
	1.40	＋． 0465	$\therefore .8783$	． 5505	－． 0447	－． 0596	＋．1643	＋．0400	－． 8187			． 1137
${ }_{\infty}^{0}$	． 54	－． 0619	＋． 3863	－． 5576	－． 0538	＋． 0168	－． 2056	－． 1260	－． 0218			－． 2693
H：${ }_{\text {¢ }}$	． 75	$+.0923$	＋． 3747	－． 7101	－． 1071	＋．0263	＋． 0015	－． 0780	－． 22213			－． 0939
$\underset{\sim}{\oplus}$	1.00	＋． 2105	＋．3884	－． 9227	－－1568	＋．0235	＋+1543	－． 0194	－． 4525			＋．0094
\％¢	1.10	＋．2556	＋． 4009	－1．0174	－． 1697	＋． 0157	＋．2010	－． 0019	－． 5451			． 03306
枵惐易	1.20	＋． 2995	＋． 4164	-1.1175	－． 1767	＋．0033	+.2439 +.3041		-.6376 -.7782			． 06778
¢ ${ }_{\text {¢ }}^{\text {¢ }}$	1.35	＋．3640	＋．4450	－1．2776	－． 1752	－． 0255	＋．3041	＋．0171	－． 7782			． 067
↔ 1.20	． 58	＋． 0785	＋．4983	－． 7305	－． 0903	＋． 0338	－． 0975	－． 07577	$-.0414$			－． 1764
${ }_{\text {m }}^{\text {m }}$	． 80	＋． 1662	＋． 5113	－． 8962	－． 1796	＋． 0566	＋． 0375	－． 0511	－． 2558			-.0808 -.0089
最	1.05	＋． 2708	$+.5484$	－1．1099	－． 2664	＋． 0621	＋． 1665	－． 0213	－． 4945			－．
安思	1.15	＋． 3122	＋． 5696	－1．2038	－． 2934	＋． 0556	＋． 2123	－． 0107	-.5896 -.6563			＋+.01043
${ }^{\circ} \mathrm{m}$	1.22	＋．3412	$+.5857$	－1．2717	－． 3120	+.0475 +.0335	+.2436 +.2788					＋．0315
	1.30	＋． 3733	＋．6061	-1.3535	－． 3215	+.0335 +.0102	+.2788 +.3220	$\begin{aligned} & +.0029 \\ & +.0106 \end{aligned}$	$\begin{array}{r} -.7325 \\ -.8283 \end{array}$			＋．0614
	1.40	＋．4133	＋．6350	－1．4595	－． 3322	＋．01．02	＋．3220	＋．016	－． 8203 ：			

Table 10
The values of $\frac{\Delta S(0)}{\Delta \lambda}, \frac{\Delta T(0)}{\Delta \lambda}, \frac{\Delta S(0)}{\Delta \theta}, \frac{\Delta T(0)}{\Delta \theta}$ *

	$\lambda=0$		$\lambda=0,1$		$\lambda=0,2$		$\lambda=0,3$		$\lambda=0.4$		$\lambda=0.5$	
θ	$\triangle s(0)$	$\Delta T(0)$	$\Delta s(0)$	$\triangle T(0)$	$\Delta s(0)$	$\Delta T(0)$	$\overline{\Delta s}(0)$	$\Delta \mathrm{T}$ (0)	${ }^{1}$ (0)	$\Delta t(0)$	$45^{(0)}$	$\ln ^{2}(Q)$
	$\Delta \lambda$	$\Delta \boldsymbol{\lambda}$	$\Delta \lambda$	4λ	$\Delta \lambda$							
0.0	0.00	0.7	0.00	1.05	0.00	1.40	0.00	1.75	0.00	2.1	0.00	
0.1	0.13	0.8	0.15	1.05	0.17	1.30	0.46	1.5	0.75	1.7	1.75	3.0
0.2	0.2	0.8	0.33	1.07	0.46	1.24	0.6	1.4	1.2	1.3	1.8	1.2
0.3	0.2	0.9	0.33	0.9	0.46	0.9	0.6	0.9	1.0	0.8	1.4	0.7
0.4	0.3	0.65	0.4	0.70	0.5	0.75	0.6	0.8	0.85	0.625	1.1	0.45
0.5	0.33	0.7	0.42	0.65	0.51	0.59	0.6	0.53	0.675	0.415	0.75	0.3
0.6	0.28	0.6	0.35	0.56	0.42	0.53	0.5	0.5	0.55	0.365	0.6	0.23
0.7	0.23	0.55	0.29	0.49	0.35	0.43	0.4	0.37	0.43	0.31	0.46	0.248
0.8	0.18	0.5	0.22	0.46	0.26	0.42	0.3	0.38	0.327	0.31	0.354	0.247
0.9	0.14	0.44	0.18	0.40	0.22	0.36	0.26	0.33	0.273	0.28	0.286	0.228
1.0	0.1	0.42	0.14	0.385	0.18	0.35	0.21	0.315	0.25	0.28	0.246	0.22

	$\lambda=0.6$		$\lambda=0.7$		$\lambda=0.8$		$\lambda=0,9$		$\lambda=1.0$	
-	$\mathrm{s}^{(0)}$	$\frac{\Delta T}{}{ }^{(0)}$	$\Delta S^{(0)}$	$\Delta T(0)$	$\frac{\Delta s^{(0)}}{\Delta \lambda}$	$\Delta T(0)$	$4 s^{(0)}$	$\Delta T(0)$	$0 s(0)$	$\Delta T(0)$
θ	$\Delta \lambda$									
0.	0.00			0.00	-5.0	0.00	-3.0	0.00	1.	0.00
0.	4.2	0.3	2.1	-2.3	0.0	-3.2	-1.1	-1.5	-0.7	-0.4
0.2	2.8	0.0	2.5	-1.3	0.7	-1.8	0.05	-1.25	0.6	-0.7
0.3	1.6	0.1	1.4	-0.5	0.3	-1.1	0.175	-0.85	0.05	-0.6
0.4	0.95	0.05	0.9	-0.3	0.66	-0.333	0.43	-0.366	0.2	-0.4
0.5	0.8	0.05	0.7	-0.17	0.56	-0.213	0.43	-0.256	0.3	-0.3
0.6	0.6	0.1	0.5	-0.03	0.416	-0.103	0.333	-0.176	0.25	-0.25
0.7	0.5	0.18	0.4	0.0	0.35	-0.043	0.30	-0.086	0.25	-0.13
0.8	0.38	0.18	0.35	0.02	0.32	-0.003	0.29	-0.026	0.26	-0.05
0.9	0.3	0.17	0.27	0.10	0.25	0.057	0.23	0.014	0.21	-0.05
1.0	0.243	0.1	0.24	0.1	0.23	0.08	0.115	0.05	0.0	0.02

* Note that $\frac{\Delta S(0)}{\Delta \lambda}=\frac{\Delta \Gamma(0)}{\Delta \theta}, \frac{\Delta \Gamma(0)}{\Delta \lambda}=-\frac{\Delta S(0)}{\Delta \theta}$.
(s operation)
$\psi(\lambda, \theta)$ in the $v i c i n i t y$ of the curve $\psi=0$. (s operation)

Table 12
The values of $a_{0} \psi_{v}, \psi_{\lambda}, \psi_{\theta}$ along the curve $\psi=0$.
(s operation)

λ	$a_{0} \Psi_{v}$	Ψ_{λ}	Ψ_{θ}
-.02	1.024	1.085	.256
-.06	1.055	.990	.377
-.10	1.002	.845	.400
-.20	.852	.580	.431
-.30	.715	.410	.392
-.40	.528	.260	.286
-.50	.483	.208	.274
-.60	.418	.159	.269
-.80	.366	.110	.229
-1.00	.254	.061	.134
-1.20	.166	.031	.090
-1.90	.067	.006	.023

Table 13
(s operation)
θ eis a function of v / a_{0} for one quadrant of the curve $\psi=0$

∇ / a_{0}	M	T	λ	θ
.707	.74523	.66681	-0.12091	.177
.669	.70111	.71305	-0.15905	.307
.633	.66000	.75127	-0.19962	.403
.557	.57513	.81806	-0.30026	.582
.494	.50652	.86223	-0.40123	.698
.440	.44877	.89365	-0.50296	.805
.395	.40131	.91594	-0.60065	.885
.355	.35956	.93312	-0.69930	.962
.288	.29042	.95690	-0.89731	1.067
.234	.23529	.97193	-1.09784	1.168
.183	.18362	.98300	-1.33821	1.245
.089	.08907	.99603	-2.05277	1.406

Table 14
(s operation)
The values of $\frac{a_{0}}{\rho_{0}} x, \frac{a_{0}}{\rho_{0}} y$ elong the curve $\psi=0$, for one quadrant of the
curve. The curve is symmetric with respect to both the x and y axes.

v / a_{0}	M	T	$.1 \lambda$	$+\frac{a_{0}}{\rho_{0}}\|y\|$	$+\frac{a_{0}}{\hat{p}_{0}}\|x\|$
.10	0.10010	.99498	-1.93676	.027	.002
.20	0.20081	.97963	-1.25082	.055	.009
.30	0.30274	.95307	-0.85821	.080	.020
.40	0.40656	.91362	-0.58907	.103	.034
.50	0.51299	.85839	-0.39083	.123	.052
.55	0.56743	.82342	-0.31062	.131	.063
.60	0.62284	.78235	-0.24069	.138	.077
.65	0.67933	.73383	-0.17949	.146	.093
.70	0.73704	.67585	-0.12761	.152	.113
.725	0.76640	.64236	-0.10237	.156	.135

Table 15
(s operation)
The values of $\frac{a_{0}}{\rho_{0}} \frac{d y}{d v}, \frac{-a_{0}}{\rho_{0}} \frac{d x}{d v}$ along the curve $\gamma=0$ for one quadrant of the
curve.

M	v/a	T	λ	$-\frac{a_{0}}{\rho_{0}} \frac{d y}{d v}$	$a_{0_{0}} \frac{d x}{d v}$
. 766	. 725	. 64284	-0.10477		∞
. 745	. 707	. 66707	-0.12111	. 99	5.54
. 701	. 669	. 71316	-0.15921	1.29	4.07
. 660	. 633	. 75127	-0.19961	3.48	3.49
. 575	. 557	. 81816	-0.30044	1.69	2.56
. 507	. 494	. 86195	-0.40029	1.82	2.17
. 401	. 395	. 91608	-0.60128	1.95	1.59
. 360	. 355	. 93295	-0.69820	2.19	1.53
. 235	. 234	. 97200	-1.09880	2.65	1.13
. 184	. 183	. 98292	-1.33648	2.75	. 94
. 089	. 089	. 99603	-2.05277	2.80	. 45

Figure 2

Figure 3

Figure 4.- Joukowski profile.

Figure 5.- The hodograph of a flow around the profile in fig. 4.

Figure' 6. - The image of the hodograph
(itg. 5); the (pseudo-)loga-
rithe. plane.

Figure 9.- The valuee of $8^{(0)}(-, 1,0), \mathrm{T}^{(0)}(-, 1, \theta)$.

Figure 10.- The valuaf of $g^{(0)}(\lambda, . a), T^{(0)}(\lambda, .9)$,

Figure.11.- Tho-Tilue of $f^{(0)}(\lambda, .1), I^{(0)}(\lambda, .1)$.

Figure 14.- The inage of $Y(\lambda, \theta)=0$ in the phyianl pleine. (The contour of the compreasible flow obtained

Figure 25, - The valuea of $\frac{n_{0}}{\rho_{0}} \frac{d x}{d y}, \frac{n_{0}}{f_{0}} \frac{d y}{d v}$.

Figure 17.- The coerfioients $-a_{n}$; b_{n}.

[^0]: ${ }^{3}$ The method of Von Kármán and Tgien vields a flow around a closed curve. However, this method assumes a innear pressuremspecific volume relation, i.e., that $p=A+\sigma / P$ where A and σ are constant instead of the actual relation $p=\sigma \rho^{k}$ (adiabatic case).

[^1]: ${ }^{1}$ The introduction of functiona of the variable \quad (instead of the customarily employed functions of $x+1 y,(x, y)$ being Cartesian coordinates in the plane) causes some difficulties of a mathematical nature; however, in contrast to the latter method, the former, more complicated approach (often called the hodograph method), admits of direct generaligation to the case of a compressible fluid.
 $z_{\text {The function }} \lambda(M)$ is real if $M<1$, and purely imaginary if $M>1$. Thus, $s=\theta+i \lambda(M)$ is a complex variable in the subsonic case and a real variable in the supersonic case. Note that in the body of the text $\lambda(M)-1 \theta=-1(\theta+1 \lambda(M))$ is employed.

[^2]: ${ }^{2}$ This analogy often serves as an indication of the proper method for obtaining resulta in the theory of compressible fluid which are similar to the case of an incompressible fiuid.
 ${ }^{2}$ In the only case of a flow around a closed body which has heretofore been considered, Von Kármán and T sien have assumed a ilnear pressure-specific volume relation, $p=A+\sigma / \rho$, A, σ being constant, instead of the actual relation $p=\sigma \rho k$, $\mathbf{k}=1.4$, which is used in papers of the author.
 ${ }^{3}$ The author would Iike to point out that other devices, in particular, the differential analyzer, are also of considm erable importance for many of the above computations. (See reference 1.$)$

[^3]: ${ }^{I}$ In order to make possible this generalization, it is, however, mecessary to consider the stream function in the socalled "rodograph" plane (i.e.. in the plane the Cartesian coordinates of which are the components of the velocity vector) instead of considering it in the "physical" plane (i.e., in the plane of the flow).

[^4]: ${ }^{1}$ In the following, instead of λ and θ the complex variables $Z=\lambda-i \theta, Z=\lambda+i \theta$ will frequently be used. The derivatives with respect to 2 and $\frac{2}{2}$ have the following meaning
 $\frac{\partial}{\partial z}=\frac{1}{2}\left(\frac{\partial}{\partial \lambda}+i \frac{\partial}{\partial \theta}\right), \quad \frac{\partial}{\partial \bar{Z}}=\frac{1}{\tilde{2}}\left(\frac{\partial}{\partial \lambda}+1 \frac{\partial}{\partial \theta}\right), \quad \frac{\partial^{a}}{\partial z \partial \bar{Z}}=\frac{1}{4}\left(\frac{\partial^{2}}{\partial \lambda^{2}}+\frac{\partial^{a}}{\partial \theta^{a}}\right)$

[^5]: ${ }^{1}$ It may be remarked here that often a first approximation to the desired flow pattern of a compressible fluid is obtained by substituting for $g(z)$ in (8) that analytic function the imaginary part $G(\log \nabla, \theta)=\operatorname{Im} g(\log \nabla-1 \theta)$ of which gives the desired flow pattern in the physical plane for an incompressible fiuid. The corrections which are necessary in obtaining a better approximation, as well as other methods of determining. $g(Z)$, will be discussed in future reports. (See also reference 2.)
 ${ }^{2}$ In seci. 16 of reference 3 a procedure is described which makes it possible to generalize this method to the case, of partially supersonic flows.
 ${ }^{3}$ The author intends in a succeeding report to consider analogous questions for the case of mixed flow in the light of methods described in sec. 17 of reference 3 .
 ${ }^{4}$ The need of tabulating various functions which appear in the theory of compressible fluide has been emphasized by some authors. (See, for example, Garrick and Kaplan (reference 5), where the chaplygin solutions have been tabulated.)

[^6]: ${ }^{1}$ As has been emphasized by Kraft and Dibble, certain aspects of this theory may be auccessfully treated by use of the differential analyzer. (See reference l.)

[^7]: ${ }^{1} 0_{1}$, if more convenient, by a polynomial approximation.

[^8]: ${ }^{2}$ In sec. 2 of reference 4 , it was assumed that only an ordinary computing machine was to be used in performing the operations described there.

[^9]: ${ }^{1}$ The symbol "| |" indicates that sign of $\mathrm{S}^{(0)}$ has to be disregarded.

[^10]: ${ }^{2}$ A derivation of the analxtic expression for the complex potential in the hodograph piane for a flow of an incompressible fluid around a Joukowaki profile is given in appendix IV. By using this formula together with classical results of the theory of functions, the series developments for the above case can be derived.
 ${ }^{2}$ Note that in example under consideration ψ is determined not merely in D_{a}, but also in D_{1} by the method described in the present section.

[^11]: ${ }^{2}$ A portion of these values had already been computed (much less exactly) and presented in table If pr reference 4, where the symbol T_{n} was used instead of $T(n)$.

[^12]: ${ }^{1}$ sirice N does not satisfy the hypothesis of theorem (83), equation (6) was replaced by equation (31), where N_{m} doen satisfy the conditions of the above theorem and differs only sifghtly from N for values of λ smaller than $\lambda_{0}<0$. And λ_{0} can be taken as near zero as deaired.

 In appendix I a method is given for determining N_{m} for a given λ_{0} with any prescribed degree of accuracy.

 Note that instead of $\frac{1}{4}\left(\psi_{\lambda \lambda}+\psi_{\theta \theta}\right)+N_{m} \psi \lambda=0$ in appendix I, the equation $\frac{I}{4}\left(\psi_{\lambda \lambda}^{*}+\psi_{\theta \theta}^{*}\right)+F_{m} \psi^{*}=0$ is employed. This last equation is obtained from (3I) by means of the transformation (4I).

[^13]: ${ }^{1}$ Or several values, ayy, $\theta_{1}: \theta_{2}, \ldots ., \theta_{n}$.

[^14]: ${ }^{I}$ It may be remarked that other methods of obtaining approximating polynomials for F exist. These will not be investigated in the present report, despite the fact that they merit considerable attention.

[^15]: ${ }^{1}$ By introducing suitable new variables $\xi=\xi(x, y)$, $\eta=\eta(x, y)$, every equation $L(\psi) \equiv a \psi_{x x}+D b \psi_{x y}+c \psi_{y y}+d \psi_{x}$ $+e \psi_{y}+g \psi=0$ of elliptic type can be reduced to the form $\Psi_{\xi \xi}+\Psi_{\eta \eta}+A \Psi_{\xi}+B \Psi_{\eta}+C \psi=0$, so-called "canonical form of equation I." (See reference 9.)

 In the case considered in the present section $x=H$, $\#=\theta$, and $\xi=\lambda, \quad \eta=\theta$.

[^16]: ${ }^{2}$ Note that Λ ie a function of H alone and that $\Lambda_{H}=\frac{\partial \Lambda}{\partial H}, \quad \Lambda_{H H}=\frac{\partial^{2} \Lambda^{2}}{\partial H^{2}}$. Inde日d, $\Lambda_{H}{ }^{2}=l(H)=\rho_{O}^{a} \rho^{-2}\left(I-M^{a}\right)$ and $\Lambda(H)=\lambda(M)$. (See sec. 8 of reference $3^{\text {. }}$)

[^17]: ${ }^{1}$ Note that $t^{-2}{ }^{-1}$ of reference 3 cholla be corrected to $-t^{-1} \xi_{j}^{*}$ and that (88$)^{3}$ is the conjuncts of equation (55) of reference ${ }^{3}$: $1 . e .$, the later may be obtained from the former by replacing ξ by $\bar{\xi}$ and $\bar{\xi}$ by ξ.

