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Equation (29) of the section "Drag Due to Lift" (pp. 10-12) has been
found to be in error as a result of the omission of a compressibility
factor in the treatment of the two-dimensional leading-edge suction force.
This factor can be obtalned by application of the well-known Prandtl-—
Glauert rule by which incompressible solutions can be corrected to cobtain
the corresponding compressible—flow solution. For the two—dimensional
cage 1t is found that the effect of compressibility on a flow having a
glven vorticity distribution in & plane is to reduce the velocities nor—

mal to the surface by the factor V/l — M'? vwhere M' 1is the Mach num-
ber of the flow. Therefore, if the strength of each vortex element is
1

)

/1 - M2
the surface will again be equal to those of the incompressible flow. In
this case, however, the tangential velocities at the surface and therefore

increased by a factor the resultant velocities normal to

L
the forces on the surface are increased by the ratioc ———— , This

1 - Mt
concept i1s well known in thin-airfoil theory where it gives the result
1

V1 — M2

and also that the total resistance for M < 1 1is zero. This result also
indicates that the leading-edge suction force has been increased over

that the lift-—curve slopes of thin airfoils are increased by

that of the incompressible flow by the ratio e :
1 - M2

.1t appears that the incompressible equations governing the leading—
edge suction force (equations (21) and (22)) must be corrected as follows:

- The leading-edge suction force on a two—dimensional plate will be

2

pnG

h = ‘::::gfff (22)
NS

when the vorticity distribution 7 at the leading edge or the tangential
velocities are given by the following relations:

y 2G
>0 /1o iid e




or
G

R L e S ssol el
i S ST (21)

If the corrected relations are now carried through the enalysis as given
on peges 10, 11, and 12, the final result for the drag coefficient CD1

given in equation (29) should feed

>

18

2 s o
Cp, = /2 [2(1'+ -) - /(1 +0®) Ja -u)

g

In this case M' 1is the Mach number component normal to the leading
edge and can be shown to be ;

) Jl—B%z

~/1~M‘2=—:.—_TTT::
J1+ 2
Equation (29) therefore beccmes
CL2 [’ k'\ b & ey i > :
Cpy = — 2<1+—\—A1— sidd 29)
T =]~ B=C (29

. It should be noted that, because of the infinite pressure locading
.at the tip of the triangular wing, the sucticn force indicated will
‘probebly be nonexistent in the very highly lcaded tip regions, as is
the case at subsonic speeds with sharp—nose alrfoils at finite angles
of attack. The amcunt of sucticn force cbtainable in practice will de—
pend cn the leading—edge radius and angle of attack and, in the final
case, must be obtained experimentally.
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SUMMARY

A method is derived for calculating the 1lift and the drag due
to 1ift of point-forward triangular wings and a restricted series
of sweot-back wings at supersonic speeds. The elementary or

supersonic source  solution of the linearized equation of motion
is used to find the potential function of a line of doublets. The
flow about the triangular flat plate is then obtained by a surface
distribution of these doublet lines. The lift-curve slope of
triangular wings is found to be a function of the ratio of the
tangent of the apex angle to the tangent of the Mach angle. As the
apex eangle aporoaches and becomes greater then the Mach angle, the
1ift coefficient of the triangular wing becomes equal to that of a
two-dimensional supersonic airfoil at the same Mach number.

i The drag coefficient due to Lift of triangular wings with

leading edges behind the Mach cone is shown to be close to that of
elliptically loaded wings of the same aspect ratio in subsonic

flight. The resultant force on wings with leading edges outside the
Mach cone, however, is shown to act normal to the surface and thus

an induced drag equal to the 1lift times the angle of attack 1s obtained.

INTRODUCTICN

In reference 1, Jones calculated the 1ift of thin point-forward
triangular wings for the cases in which the apex angle of the wing
vas very small. It was pointed out that the results obtained should
be applicable in both supersonic and subsonic flight, the criterion
for the case of supersonic flight being that the avex angle be emall
as conpared with the Mach angle of the flow. The present paper,
meking use of less restricted theory, extends Jones' work to the case
of trisngular wings having large apex angles and traveling at super-
sonic speeds. A recent paper was published by H. J. Stewvart
(reference 2) in which the 1lift of triangular winges has been computed
but the method used appears to be entirely different.
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N

In the present theory, the linearized equation of motion was
used and the results must therefore be restricted to small angles
of attack and moderate supersonic Mach numbers. The solution
which has been found should hold good for large values of the apex
engle up to and coincident with the Mach angle. dJones (reference 3)
and Puckett (reference 4) have found colutions for the drag of
triangular wings of smell thicknese at zero angle of attack. The
solutions are applicable to winge having the leading edges either
in or out of the Mach cone springing from the apex of the wing.
Puckett has pointed out that,for the case where the leading edge
is ahead of the Mach cone, these solutions can also be used to
calculate the lift; thus, with the present solution, the 1ift for
the whole range of epex angles at supersonic speeds may be obtained.
The pressure distributions and lift-curve slopes obtained in the
present paper can be used to obtain the 1ift and drag characteristics
of & 1limited series of swept-back wings. The drag due to 1lift of
the triaangular wing hae been calculated and a suction force has
been found to exist on the leading edge. In order to use the suction
force, however, it aopears necessary to provide an airfoil sectlon
with a rounded leading edge. The aut.or is indebted to
Mr. Arthur Kentrowitz of the Langley Memorial Aeronautical Laboratory
for suggesting the method used to calculate the induced drag.

SYMBOLS e

a engle of attack

b2
A agpect ratio | ~—

S

b maximum span of wing
g e -
C tangent of apex angle

C. 1ift coefficient (J;)

as
C drag coefficient due to lift { =
D qS/

D; drag force due to 1lift
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E source strength
€ apex angle of wing measured from flight direction

f(o) doublet-distribution function

F suction force on wing leading edge
Z
T = _]_'.
8
1=v-1
11 strength of line doublet
I
gl =i~=
e !
Cp length of wing or root chord
L 1ift force
C
) e L —=
A= / e tenn™! /1 - $%6° o
R 0 L 42 V1 - 8242
M Mach number
i Mach angle (sin"l l)
M
Ap lifting pressure
ok
q dynamic pressure <§pV )
R distance along leading edge from wing apex
o) density of the fluid
S wing area
Sn distance normal to leading edge
u velocity increment in x-direction <%Q>
b

U veloclity increment normal to leading edge (§§Q>

%



L NACA TN No. 1183

v velocity increment in y-direction (§Q>
Y
v flight velocity
w velocity in the z-direction (QQ)
\ 0z
w resultent velocity in z-direction created by

the doublet distribution

Ty ¥y 2 coordinates of an arbitrary field point

X 5¥1,2y coordinates of a source or doublet

@ disturbance-potential function

¢O potential of a supersonic source

N " potential of a line of supersonic sources
P potential of a line of supersonic doublets

Subscripts:

n normal to leading edge
A triangular~-wing condition
o infinite-span or two-dimensional wing condition

THEORY FOR LIFTING TRIANGLE

The linearized equation of motion of a nonviscous compressible
fluid may be writtea

'a-g—g +§E_Q= (M2 = l)
8y2 322

t§§

(1)

[
v

&
o

where ¢ is the potential function assumed to represent the effect

of a small disturbance set up by the body being considered. The

body in this case is a triangular flat plate having its vertex at

the center of the coordinate system and lying in the xy-plane (fig. 1).
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The problem is to find a solution of equation (1) that will satisfy
the known boundary conditions which are (1) that the flow be
guiescent ahead of the Mach cone and (2) that the flow at the surface
of the plate be tangent to that surface. Because of the linear
character of the differential equation (1), more general potentials
can be built up from simpnle well-known solutions such as that for

a single source

" £ (2)
e

where B =) /MZ - 1. The potential of a line of sources with
strength proportional to x can be found as follows:

& iz S d
¢l =/ . i : (3)

o fx - x)? - %y - ox)® - B2(z - TRy)°

i =1 ! s
where 0 =-—=, T = -—=, end x 1is the value of x; for which
T 5%

il Al
the denominator of the integrand is zero. DPhysically interpreted,
the rangs of integration 1s from the origin to the last source point
which can influence the field point. Performing the integration
yields

e

1 X = Bzcy = ﬁ2Tz
o - 208 - 22 - 2062 + 2
()

If two such source lines of opposite gtrength ere brought together
from the z-direction at the xy-plane while the product of source
strength and the angle between them is kept constant, the potential

5 x - oy - ﬁETZ

ctnh”
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of a line of doublets in the xy-plane at an eangle taanc from the
x-axls is obtained. Thus differentiating with respect to T and
setting =0 gives

e 178 ¢ A =)
@ (1 - p2e2)32 [£% - 1 Bl e

where

= T BEU.Y -
/ (1 - 62%62) |22 - B2(32 + £2)]

end I is the doublet strength. Differentiating the potential
function with respect to 2z gives the vertical velocity w:

. 2y i
W o= "IB .C o ctnh'lg
¥ 2
(1 i 5202}3/2 g - 1 “

£ 212 82(x - BPay) /a2 - BP(5° + 32) 3 (6)
| o # 11N )
g (== peoy)? - ’_l v BQU?_H_"Q i Zezl -

3 2

It will be noticed that the line doublet creates a conical field as
the velocity is only a function of z/x and y/x. Since the
triengular-flat plate 1s a conical body which creates a conical field,
an attempt will be made to build up the flow about the lifting
triangle by a suitable distribution of line doublets inasmuch as the
addition of two or more conical fields having the same vertex always
creates another conical field. The distribution of line doublets
must satisfy the boundary conditions at the body surface which may

be written:

W = Vo (7)
7=
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where W is the resultant vertical velocity of the line-doublet
distribution. If the distribution of line doublets is f£(o)

W= /"C (o) w(c; L, _Z.) ao (-c <;l£ <c> - (8)

z—2>0 ¢/ =C X x \

in which tan-lC = €, the angle of the leading edge. The distribution

function f(s) can be found in a rather simple way by analogy with
the solution for incompressible two-dimensional flow about a flat
plate. Differentiating equation (8) with respsct to y/x and
setting z = 0 gives

which is of the same form as the integral equation obtained when the
incompressible flow normel to a two-dimensional flat plate is
constructed by a doublet distribution. The expression f(o) for
the incompressible case would be

ps oo Ve w g2 (10)

That this expression 1s a solution of equation (8) must be verified
by substitution in equation (8), inasmuch as equation (9) is a
divergent integral. This proof is carried out in appendix A. The
value of the velocity in the x-direction u can now be obtained

C
u =J TR I (11)

c BX

The integration indicated in equation (11) is presented in appendix B.
The cxpression obtained from equation (11) on the lifting surface
(z = 0) gives

2

L P ‘(1
x

5
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the sign of the expression being opposite for the two sides of the
plate. The result in equation (12) shows that the shape of the
pressure distribution is independent of aspsct ratio.

The 1ift for the isosceles triangle with root chord c¢, 1is

A
c
B =U/Ap as = / oVuc,” ae (13)
Ueg :

and substituting equation (12) in equation (13) and integrating gives

I = pVIcrengc2 ' (14)
and
2
____IL_QIT[C i
G st s (15)

The value of the constent I must be obtained by solving equation (8).

The value of the normal velocity at the plate and hence the
angle of attack may be found by integration of equation (8) and
letting 2z = 0. The integration is involved and the method of
integration is given in appendix A. The resulting expression for W
is obtained as

C ol )
2 0
W =In+f PN x| s tanh'l\/l-BogdG (16)
=0  FAR o R

From this equation the valve of I may be calculated. If the numerator
and denominator of the integrand are multiplied by B the resulting
integrel can be seen to be dependent upon only the quantity BC

or tan €/tan pu. The value of the integral may be obtained easily by
meking the substitution 202 - 8202 = n°® and plotting the resultant
expression. This procedure has been followed for values of PBC
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between O and 1 end the result is given in figure 2. The
value of I 1s found to be

vhere ) 1is the integrel term of equation (16). The lift-curve
slope is now

- Erl (18)

a | $?

As BC approaches zero, A also approaches zero and the lift-curwe
slope from equation (18) approaches Jones' value. (Reference 1.)
Equation (18) shows that the lift-curve slope is a function of only
the apex angle and the parameter tan e/tan e It is interesting
to note that mathematically there is a finite lift-curve slope at
the Mach number 1.0. .The theory is not valid, however, near M =1
because of the original assumotions used in obtaining equation (1).
The lift-curve slopes of two triangular wings are plotted in

figure 3 against Mach number.

Rewriting equation (18) in a convenient form gives

| 2 ten
(EL) NGB (19)
a/A
\

(r + )V M2 - 1

Now, according to Ackeret's result (reference 5) the lift-curve
glope of a two-dimensional flat plate is

i A S
(a )m i i

A single curve for all Mach numbers can therefore be plotted if the
ratio ten €/ten p is used for the abscissa and (?L/G)A/(CL/G)
4 <o

is used as the ordinate. This curve is shown in figure 4.
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It can be seen that as the apex angle approaches the Mach angle
the triangular wing provides the same lift coefficient as a two-
dimensional wing at the same Mach number.

The case of the triangular wing having the leading edge ahead
of the Mech cone from the apex has been treated in reference L.
It was found that the 1lift coefficient obtained is the same as that
of a two-dimensional airfoil flying at the same Mach number. The
curve shown in figure 4 therefore becomes flat at values of

tan € Sl

ben u A typical pressure distribution over a wing having

ten ‘€
ten p

> 1 is shown in figure 5.

DRAG DUE TO LIFT

The thin-airfoil theory used herein gives the result that the
resultant force is directed normal to the plate, a result quite
like thet obtained from the thin-airfoil thesory at subsonic speeds.
In the solution for subsonic speeds, however, a simple extension
described in reference 6 permite calculating the force due to the
suction on the leading edge. It is reasonable to suppose that the
game method is feasible for the triangular wing, as the pressure
distribution in the neighborhood of the leading edge is identical
in the limit with that for a two-dimensional flat plate in subsonic
flow; that is, the velocities normal to the leading edge are in the
form

= -G (1)

U
Sn"') 0 V/ Sn

where s, 1is the distance measured normal to the edge and G is a

constant. According to reference 6 the force normal to the edge in
the direction of the velocity is

F = O‘I[GQ (22)

The value of the velocity in the y-direction on the trianguwlar wing
has been calculated to be

In L

V = pemmsfeseses

| SR oA IR
/ 2
%
/73
v X
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Combining this expression with equation (12) gives

o - Sl o
L3¢ V/ g [
X C Q =
In X Sk
)
o L et (23)

/ 5]
where R = x Y1 + C°. The normal force on a small element dR of
leading edge becomes

Ty _ pnCRICK® (1)
R 2

and the force on one edge of the isosceles triangle with root

chord Cr is:

PR
cr\/ 20

or 3150
- omI%e

B & RdR

0

pﬂ3I2CCrg(l + C2)

- : (25)
and the force in the flight direction from two edges becomes
F=2F sin ¢
pﬂ302 R/i + C2 cszg
= = (26)

2
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Substituting from equation (14)

p o 1M % 0

ﬂbeq

Mo P (e7)

where b 1is the maximum span of the triangular wing. The induced
drag or, more exactly, the dreg resulting from the 1lift may be
written

Di = LCI. w B
T & 3{ + 2\\
e A
3 l ple ==
\ 2
\

It will be noticed that this result is identical with Jones' result
(reference 1) in the limiting case of C = 0. The induced drag
coefficiert is found to be

c.2 |
Cp, = = l2(1+ i.) -1+ c? (29)

where A 1is the aspect retio. Equation (29) indicates that the
triangular wings can obtain a considerable suction force at the
leading edge and that the dreg coefficient due to 1ift of ths vings

is very close to that obtained from elliptical wings of the same
aspect ratio at subsonic speeds. It ghould be pointed out, however,
that as soon as the wing leading edge passes through the Mach cone,

the possibllity of obtaining a leading-edge suction is gone and the
resultant force must become normal to the plate surface. This
transition corresponds quite similarly to the case of a two-dimensional
alrfoil passing through the speed of sound.
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DISCUSSION AND CONCLUSICNS

The 1ift at supersonic speeds of triangular wings having
straight trailing edges has been shown to approach the 1ift of a
two-dimensional airfoil as the leading edge approaches the Mach cone
springing from the apex of the triangle. For the case where the
trianguler wing lies behind the Mach cone, a suction has been found
to exist on the leading edge. In order to utilize this suction
force in practice it would appear necessary, as in subsonic flow,
to provide an airfoil section with a rounded leading edge. Triangular
wings should be capable of higher L/D ratios than unswept wings
at supersonic speeds when operating with their leading edges not too
far behind the Mach cone; the improvement should be due to both
reduced wave drag and reduced induced drags.

The 1ift end drag of a series of limited swept-back wings
may also be calculated with the method developed. It will be noted
that the pressure distribution over the triangular wing cannot be
changed if the trailing edge is cut off from the tip to the center
line along an angle always greater than the Mach angle. This fact
arises from the nature ef the supersonic flow in which disturbances
camnot propagate any farther forward than the Mach cone from the
origin of the disturbence. The aforementioned procedure produces
therefore a series of tapered swept-back wings having pointed tips.
A new series can also be constructed by cutting off the tips along
lines having angles greater than the Mach angle. In each case the
pressures over the remaining portions of the wing will be the same
as though the cutbacks had not been made.

Langley Memorial Aeronautical Laboratory
National Advisory Committee for Aeronautics
Langley Field, Va., Nov. 29, 1946
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APPTNDIZ A
CALCULATICN OF VERTICAL VELOCITY INCREMENT

The value of W is, from equations (6) and (8},

& i B2 v
W I/ \/C o 1{1 ¥ 6?02)3/2

I

ctnh'.'g -

(t?

-

+ 222 do (X 2 BQGIL\/XQ oy Bg(ya # 22)

D o "'2 (‘Al)
Efg’:x; - BLZQ) - 2xy0 + y2 + '1,2_'
4
Integrating by parts gives
ﬁ —}
/ o g r - ctqh'lg do s
i O' U’ (l - BP )3/ _g
C
+ TV - (2GR + oF) fe r 9x =¥
PR |- -
L \ C2 - 02 t " (5 - BC‘ZE} PV y2 + 22
. I
2 2 P,
- - ip s LA
4 - L P (a2




The intesration of the term under the indefinite iIntegral cen te performed by perts to E
obtain the result <
=
=
o
S S SRR, %,
\/ 4 2\ /2 e l E
R &
VA2 - B2(5° + o7 lagfs® - 2622 . Rp%) + iy *;:-i;)-]
br_,y2 s P"_),,, 5 } 5 / ": = \2_._2{\ ey ‘:’ _)
&y X p=4 r,\kr)‘ + !1/ + 7 (
P SRS SIS L -
Bz 74/ x2 - B° (ya + z%)
Substituting in equation (A2) and rearrsnging terns gives:
(6]
22 /
W = I/ =9 6 s o /Ct-nh"l{ PO do
-G ‘/l-B“c‘: ‘//C‘-J-cz\ § =1
;‘-\C a ~
27 2 B o
T 8252 + £8) o <;2[_x? i 87 (32 + z?')J 0x - y(zf - p°y° - EBQZQ)Ldu
= \ ¥ r\ - P
(22 - p222) VER - o2 L ’Ug(x"' - §°2°) - 2xyo + y© + ZEJ l
=C e =
s ()

(A3)
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It will be noticed in the preceding overation that all the terms
containing the singularity of the form 1/z cancel. If =z is
made to approach zero and terms are collected, equation (A%)
becones

&
4 22 i
w::[f o’ B ctnh™l¢ dg
-C V/l - p2g° L/Ce - g

" IJ/; . 62<§>é T T BE<§§TdU (A4)

V2 2
Vs - -

Completing the integration of the second terms gives

C e i
£ 0 I B“c{'}() !
O COUIE il TSRO, SRR st - | O | do
B Dy D A
J-c /1 - B2o?V/2 - o i‘/l - B‘o?'/l g ‘32(92!
iy e
i
+ In-/l 3 eg(l) (45)
X

Differentiating expression (A5) with respect to (y/x) and performing
the integration gives

\
W “52@ “52(375/

3T /1 - g2fr\ /1 - BE(T
Q) Vi-wef /-
the vertical velocity is thereforeconstant over the plate surface and
the exvression (s} = V(2 - ¢° is truly a solution of equation (8).

It is poszible thet this solution is not unique; however, other
solutions would undoubtedly lead to physically impossible conditions.
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APPENDIX B
CALCULATION OF THE AXTAL VELOCITY INCREMENT

The value of the x-component of velocity may be written from
equation (11)

A C ..
- 221V - (5 + zz)h// i S ALY x
-C ‘0?(31‘? BQZQ) - 2o0yx + J - z,?J

(1)

This integral can be broken up into two separate integrals, as follows:

o ~ o
; [ \/C(u - g éo_ o 2;". )
. g.j;’vd - Be(y° + 2 ) xy P - PP ao
i 5222) o </02 - . y° + z°
L 2R 2. 2P
e i
TR / V2 - &2 ag "
e (82)
2 - Bz - >9
: g2 - —=2XJI0 il 3
% A
e T £ - B

The first integral appearing in equation (B2) can be integrated by
parts to give, for the first complete term, the integral

- I P - L2 ) 4q <
(22 - %) \/C‘0 L~V S -

x? - Bez2 x° - 62z2

(B3)
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Evaluation of this integral, which mey be found in reference T,
equation (228), gives finally

+  Ixyx .J xy - 12/ 2@ - p2(32 + 5°2)
% BT TS " "
e B ]\/02 ) ‘XY - 12V2 - B2+ )| °
[ > - Bzz?'
3 N i ~
B Xy + iz\/x9 - Be(ye * Z'?)
=== -~ S (BY4)
N L
/02 -[ > & e 12/ - B%(y° + 2°)
s 2 _ 02
i X = B Ut

the sign of the expression being ovposite for the two sides of the
plate. The second integral term of equation (B2) can be integrated
by breaking the integrand up into four partial fractions, as follows:

)
———
Vel o2 | - (2 - 8%27)3 a0
< e i =~ 1 i ]
}hiz3a/'/fx2 - pe(y° + ZC)_iJ 'l'(y - xy - 12V - pP(° + 2P
' g o) 2 0
: ISR S ‘
L_‘ S AEv

(2 - BQ::Q)Q do

uﬁﬂ@ - Bg(yg + z2)~? gi.e B2 izj/:cg s fsg(v2 % 22)

2

52 = 5222
i (.- &222)3 do
’*123/';2 - B2(y° +‘22) iy - S iz&/x2 - 8°(y° + 2°)
i = -l
[ 2 i
= (2 - 8%2%)° 4ag
P - T ()
¥ § " Sy N
hze\/'xe - BE(yQ 4 29).]2 o v BLE 121/3_2 - &;(.},2 + 2°) >
AT L - o
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The expressions (B5) may now be integrated (reference 7, equation 207)
giving the expression for the complete second term of equation (B2)

£o)
o '
xy + 17 Va2 -»Bg(y2 + 22) S
V/ l x2 = B? 2 |
~/
Lphos i Va2 - (PR 4 4% | xy - 12V/x2 - 2% + 2°)

O’A 1} B)ZO)E \ / ._..“ o

& e
[ - m- 12V - B2G2 + 4P
/ 7 * - B222

(B6)

Combining equations (B4) and (B6) end setting z = 0 yields for u
on the surface

(B7)
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Figure 3.- Variation with Mach number of Cr/a for two triangular wings,
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Figure 4,- Lift-curve slope of triangular wings,
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Figure 5.- Typical pressure distribution for triangular wings with pue 1.
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