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Equation (29) of the section "Drag Due to Lift" (pp. 10-12) has been 
found to be in error as a result of the omission of a compressibility 
factor in the treatment of the two-dimensional leading-'edge suction force. 
This factor can be obtained by application of the well--known Prandtl-­
Glauert rule by which incompressible solutions can be corrected to obtain 
the corresponding compressible-flow solution. For the two-dimensional 
case it is found that the effect of compressibility on a flow having a 
given vorticity distribution in a plane is to reduce the velocities nor-

i 2 
mal to the surface by the factor J 1 - M' where M' is the Mach num-
ber of the flow. Therefore, if the strength of each vortex element is 

incTeased by a factor 1 
the resultant velociti~s normal to ,. .. - .. -, 

J 1 - Mt2 

the surface will again be equal to those of the incompressible flow. In 
this case, however, the tangential velocities at the surface and therefore 

1 
the f orces on the surface are increased by the ratio 

J-l=-M',2 
This 

concept is well known in thin-airfoil theory where it gives the result 

1 that the lift-curve slopes of thin airfoils are increased by 
'; -1- - M'2-

and also that the total resistance for M < 1 is zero. This result also 
indicates that the leading-edge suction force has been increased over 

that of the incompressible flow by the ratio _ _ ~ __ 
,; 1 - Mt 2 

It appears that the incompressible equations governing tho leading­
edge suction force (equations (21) and (22)) must be corrected as follows: 

The leading-edge suction force on a two-dimensional plate will be 

(22) 

when the vorticity distribution 1 at the leading edge or the tangential 
velocities are given by the following relations: 

1 
s -;::'0 n 



-2-

or 
G 

If the corrected relations are now carried through the 
on pages 10, 11, and 12, the final result for the drag 

given , in equation (29) should ~ead 

= 

(21) 

analysis as given 
coefi'icient CD 

i 

In this case M' is the Mach number component n0rmal to the leading 
edge and can be shown to be 

Equation (29) therefore becomes 

CT 2 
.!..J 

rrA 

J 1 _ ~2C2 

J -i- :;"C'2-

It should, be noted that, because of the infinite pressure loading 
at the tip of the triangular wing, the suction force indicated will 
probably be nonexistent ln the very highly loaded tip regions, as is 
the case , at subsonic speeds with sharp-nose airfoils at finite angles 
of attack. The amount of suction force obtalnabie in practice will de­
pend on the leading-edge radius and angle of attack and, in the final 
case, must be obtained experimentally. 
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SUMMf\RY 

A Plethod i s de~iv3d for calculating the lift and t he drag due 
to lift of point- fo:-,,'vard triangular wingo and a restricted series 
of Slle"9t-back .. Tines at supersC'nic s"9Gerls. The elementar y or 
"super sonic SOtTce II solution of the linearizca. GguClt i on of motion 
is used to f ind the l)otential function of a 11ne of doublets . The 
flo· . ., about the triangu] ar f.L;~.t pla te i s then obtained by a snrf ace 
distribution of these 'l.oublet linGs . 'l'h3 lift- cur ve slo:pe of 
triangular ving8 j s found to be a fvnct.ion of the ratio of the 
tanlScnt of the apex angle to the tungent of the Mach angle . As the 
apex ane:1e alToroaches and becomes gr'3ater thEm the Mach angle , the 
lift coeffjcient of tht'l triangular vinG becomes equal to that of a 
hro-dirnensional super onic airf'Jil at the zaxue Mach number . 

The drag coefficien t c.ue to lift of triang1)~ar v1ngs wj th 
leadL"lg eelgeR behjnd {,he Me.ch cone j s shov-'I1 to be close to tha t of 
elliptically loao.ert ,,;ine-;s of the S8J'~e aspect ratio in su"bsonic 
f] ight . The resul tent force on .. rings "Ti th 10adin.3 edges outside the 
Nach cone, hO'iTever, is shovffi to a c t normal to the surface and thus 
an induced drag eq ual to ~he l i ft Umes the angle of attack is ob taine d . 

INTRODTJCTION 

In r eference 1 , Jones calculated ihe lift of thin "T)o i nt-forvard 
~riangula:r wi.ngs for the cases tn ",hich ,h0 a-pex angle of the .. ring 
vas very fl'·18'.1 . Ii· '.J<lS uointcd. ou t.hat the resul"8 obtElined should 
be n-pulicable in both sU1Jcrsonic ancL sub80nlc flic,h t, the cl'i terion 
for i·he case of su·oe.rsonic fl:i.ght being ~.hat the TOCX angle be small 
as cO'lP8recl wjth the Mach angle of the f lo,., . The present paper, 
making use of less restrict.ed theory, exLends Jones I . 'ork to the case 
of tr-i~Jlgular .. rings having lar ge apex angles and traveling nt super­
sonic speods . A recent pftper w·as published by H . J . Stevrart 
(referonce 2 ) in "':1i ch the lUt of triangular ivings has been computed 
but the met.hod used appears to be entirely differ ent . 
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In the present theory, the linearized equation of motion was 
used and the results must therefo~e be rastricted to small angles 
of attack and moderate supersonic Mach numbers. Tbe solution 
which has been found should hold good for large values of the apex 
angle up to and coincident with the 1-1ach angle. Jones (reference 3) 
and Puckett (reference 4) have found fJolutiona for the drag of 
triangular wings of small thickness at zero angle of attack . The 
solutions are applicable to winf:,s havinc:; th8 leading edges either 
in or out of the Mach cone springing from the apex of the wing . 
Puckett has pointed out that, for the case whel'e the leading edge 
is ahead of the Mach cone, tbese solutions can also be used to 
calculate the lift; thus, With the present solution, the lift for 
the whole range of apex angles at sUDersonic speeds may be obtained. 
The pressure distributions and lift-curve slopes obtained in the 
precent Jy:per con be used to obtain the lift and drag characteristics 
of e. l:Lllj ~ed series of syrept-back yrings. The drag due to lift of 
the triai1gular wing has been calcula ted and a suction force has 
been found to exist on the leading edge. In order to use the suction 
fOl.'ce, hovTever, it IO'.DT)ears nece8sary t-:- provide an airfoil sec tion 
,,71 tb a rOlmded lead inc edge. The au.... 'r is indebted to 
l'I..r . Ar-:hur Kantrowit.z of the Le.ngley He"lorial Aeronautical Laboratory 
for suggesting the one'hod used to calculate the induced. drag . 

8YI1BOLS 

a. angle of at. tack 

(~:) A aspec t 1'a tio ::; 

b maximum snan of wjng 

C tfu!gent of apex angle 

lift coefficient 

(
D. 

CDi drag coefficient due to lift q~J 

Di drag force due to lift 

j 
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E source 8 t.rength 

E: apex angle of V'ing )"Ileasured fro~l flight direction 

f (0) doublet-distribution f1..1Dction 

F suction force on wing leaQing edge 

T = zl 
xl 

I strength of line dou.b1et 

Yl 
o = 

cr length of mng or root chord. 

L lift force 

A. = 

M Mach nu~ber 

IJ. Mach angle ( s ln - 1 ~) 

6p lifting pressure 

g dynanic -pressure (~v2) 

R distance along leading edge from .ring apex 

p densi t y of the fluid 

S "Fing area 

sn distance normal to leading edge 

u 

u 

velocity increment in x-direction 

veloci ty increment normal to leading edge (~) 
dSn 

3 
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v 

v 

w 

w 

x, y, z 

Subscripts : 

n 

co 
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velocity increment in y - direction (~) 
\dY 

flight velocity 

veloci ty in the z-direction (d0.) 
\ d Z/ 

rest- l tant veJ ocj. ty in z-direction created by 
the doublet c.is ~ril>u tion 

coordinates of an arbitrary field point 

coordinat es of a source or doublet 

disturbance-pot ent ial flIDc t ion 

potent ial of a supersonic source 

potent ial of a line ()f supersonic sources 

po t ential of a line of supersonic doublets 

normal to leading edge 

triancular-wing condition 

infini te-spe.n or two-dimensional 1-1ing condition 

'ffiEORY FOR LIFTING TRIANGLE 

The linearized equation of motion of a nonviscous compressible 
fluid may be wri tte_'1 

9'3!1 + 9~ = 
dy2 dZ2 

(1 ) 

where ¢ is he ~otential ftmction assumed to represent the effec t 
of a small disturbance set up by the body bejng considered. The 
body jn this CRse is a triangular flat plate having its vertex at 
the cent er of the coord na t e system and lying in the xy - plane (fig . 1) . 

-----.- . _.-
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The problem is t o find a solution of eguation (1) t hat wHl sat isfy 
the lmown. bOlmdary condi t ions -dhieh are (1) that the flow be 
quiescent ahead of the Mach cone ElLd (2) that the flow at -:he surface 
of the -pla te be tangen+ t.o that surface . Because of t he linear 
character of t he dHferen t ial equation (1), more general -pot.entials 
can be built u1.) from sin-ple well-lmO'lffi solut ions such as that for 
a singJe source 

where ~ = vlM2 - l~ The ~oten~ial of a line of sources with 
s t rengt h propor tional to x can be found as folloVTs : 

Xl 
(1 EX

l 
dX1 

¢l = ; 
.)0 iA~-- - xl)2 132 (y 

,2 2 ( 2 - - aXl) - i3 Z - TX1) 

(3) 

Yl zl 
where a == -- T = -, E.nd x I is the value of xl for which 

x ' x 1 1 

the denominator of tho integrand. is zero . Phys ically interpre ted, 
the rarcgs of integre t::.on is from the ori gln to the last source point 
which can influence the field point . Performing the in-:egration 
yields 

(4) 

If two 8uch source lines of opposite strength are brought together 
from the z-direction at the xy- plane while the product of S01ITCe 
strength and the angle between them is kept constant, the potential 
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of a line of doublets in the xy - plane at an angle tan -lcr f r om t he 
x-axis is obtained . Thus d.ifferentiating with respect to i and 
setting T :::: 0 gives 

¢2 :::: -Iz~2 ~/ Ctnh-l~ (5) 
(1 _ ~2cr2) 3/2 1 

where 

t :::: 
x - .J?2cr y.. 

( (1 - (32cr2 ) r~ - o ( r") z2U w- y'" + 

and I is the doublet strength . DifferentJating the potential 
function "lith respect to z gives the vertical velocity w: 

W' = __ -_I~B~2_. t 
(32cr2 }3/2 b2 - 1 

.' -

(6) 

It will be noticed that the line doublet creates a conical f i e l d as 
the velocity is only 8. flmction of z/x and y Ix . Since the 
triangular-flat plate is a conical bod.y wh5.ch creates a conical fie l d , 
an a ttem:.ot '''ill be made to build up the flow about the lifti ng 
triangle by a suitable distribution of line doublets inasmuch as the 
addition of two or more conical flelds having the same vertex always 
creates another conical field. 'rhe d.istribution of line doublets 
must satisfy the bounclary conditions at the body surface which may 
be writt en : 

1-1 ::: Va 
z:::O 

_J 
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where W is the resultant vertical velocity of the line-doublet 
distribution. If the distribution of line doublets is fCa) 

(-C < I. < c) (3) 
\ x 

7 

-1 in which tan C =~, the angle of the l eading edge. The distribution 
func ti on f ( u ) can be found in a ra ther s i:nple way by analogy "ith 
the solution for incompressible two-dimensional flow about a flat 
plate. Differentiating equation (8) with reSp6ct to y/x and 
se t ting z = 0 gives 

(9) 

which is of the same f orm as the integral equat ion obtained when the 
incompressible flow normal to a two-dimensional flat plate is 
constructed by a doublet distribution. The expression f(cr) for 
the incompressible case would be 

(10) 

That this expression is a solution of equation (8) must be verified 
by substitution in eguation (8), inasmuch as equation (9) is a 
divergent integral. This proof is carried out in appendix A. The 
value of the velocity in the x-direction u can now be obtained 

u. = j'C f ( cr) ~~~ d?1 
t -C dX 

(11) 

The integration indicated in equation (11) is presented in appendix B. 
The expression ob t ained. from equation (11) on the lifting surface 
(z = 0) gives 

(12) 
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the sign of the expression being opposj.te for the two sides of the 
plate . The result in equation (12) show's that the shape of the 
pressure distribution is ind ependent of aspect ratio. 

The lift for the isosceles triangle rith root chord cr is 

and substituting equation (12) in equation (13) and integrating gives 

and 

L 
C = --L qS 

(14) 

(15) 

The value of the constant I must be obtained by solving equation (8) . 

The value of the normal velocity at the plate and hence the 
angle of attack may be found by integration of equation (8) and. 
le ttinG z = O. The inteeT~tion is involved and the method of 
integration is gj.von :'n appendix A. The resulting expression for W 
is obtained as 

W 
z=O 

From this equati0n the yalue of I '11ay be calculated. If the numerator 
and den0"1::.nator of the int.egrand are multlplied. by !3 the resulting 
integral (;an be seen to be dependent upon only the quantity !3C 
or t9.n E: /t3.n I-l. 'l'he vahle of the integral may be obtained easily by 
makin3 the substitution 132C2 - 1320 2 :: n2 and plotting t he resultant 
expression. This ~rocedtrre has been followed far values of I3C 
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between 
value of 

o and 1 and the result is given in figure 2. 
I is found to be 

I = ~ 
:rr + A. 

9 

The 

(17) 

where A. is the integral terill of equation (16) • The lift-curve 
slone is now 

CL = 2n~f- (18) a. :rr + A. 

As ~C approaches zero, A. also approaches zero and the lift-curve 
slope from equation (18) apnroaches'J'ones ' value . (Reference 1.) 
Equation (18) shOvTS that the lift-curve slope is a function of only 
the apex angle and the parameter tan e /tan ~. It is interesting 
to note that mathematically there is a finite lift-curve slope at 
the Mach number 1,0. , The theory is not valid, however, near M = 1 
because of the original assUffiytions used in obtaining equation (1). 
The lift-cUlnve slopes of hlO triangular wings are plotted in 
figure 3 against Mach number. 

Rewriting equation (18) in a convenient form gives 

(19) 

NOiv, according to ACkeret's result (reference 5) the lift-curve 
slope of a two-dimensional flat nlate is 

(20) 

A single curve for all Mach numbers can therefore be plotted if the 
ratio tan ~/tan IJ. is used for the abscissa and (cL!a.)6!(CL!a,) ro 
is used as the ordinate. This curve is shown in figure 4. 
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It can be seen that as the ane"'( ang18 a::;rpr08.ches t he Mach angle 
the triar..gular wing pro rides the SaLle lif t c oefi' ic ien t as a two­
dimensional wing at t he same 1'lach number. 

1he case of the triangular wing having the leading edge ahead 
of the 1'-1ach cone froIi~ the apex has been treated in reference 4. 
It vTaS found that the lift coefficient obta ined is the same as that 
of a two-dim€LSional airfoil flying at the same Mach nl~ber. The 
curve ahmm in fiE,'UT6 4 therefore becOIlles flat at values of 

~:~ ~ > 1. A typical pressure distribution over a vling having 

ten :(O > -- 1 
t an ~ 

is shown in figQ~e 5 . . 

DRAG DUE TO LD'T 

The thin-ail~oil theory ~sed herein gives the result that the 
resultant force is directed normal to the plate , a result quite 
like that ob tained from the thin-airfoil th'30ry at subsonic speeds. 
In the eolution for subsonic speeds, how3ver, a simple extension 
described in reference 6 per .ni ts calcuJ.ating the force due to the 
suction on the leading edge. It is reasonable t o suppose that the 
same method is feasible for the triangular wing, as the pressure 
dis t ribution in the netghborhood of the leading edge is idAntical 
in the limj t 'loTi th that for a t.wo -d imensional flat plate in subsonic 
flow; that is, the velocities normal to the leading eelge are in the 
form 

u 
s --) 0 
n 

= G 

VSn 

(21) 

wheTe sn is the distance measured normal to the edge and G is a 
constant. According to r eference 6 the force normal to the edge in 
the direction of the velocity is 

(22) 

The value of the veloc i ty in the y-d.irec tion on the triangular wing 
has been calculated to be 

I1t 1-
v = x 

1/;2 -(~l 
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Co:rr..bining this expression with equat ion (12) gives 

U :::: + CIn fl-:-:-c2 
--·_0-

Y..--7 C / f"' I Y 2 
x CC - \ X) 

ITl (CR 
+ I 2 

:::: 

/~~o 

wher e Ii =: ::;: \/1 + c2 • 'Ihe normal force on a small element dR of 
l auding ed68 becomes 

and "Ghe force on one edge of the isosceles triangle wi t h roo t 
chord cr 11::3: 

:::: 

pn3I2Cc~2(1 + C2 ) 

4 

BdR 

and the force i n the fltght direction from ti-lO edges becomes 

F ::: 2Fn sin € 

pTl 3C2 \/l~ cr
2I2 

2 

(24 ) 

(26) 
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Substituting from equatjon (14) 

"There b is t he maximum span of the triangular wing. The indu.ced 
drag or, 1I1Or e exactly, the dre.g resul t.ine from t he lif t may be 
"'!'i tten 

./ 

= ~(2 -
" 

'/1 + C(:. \\ 
l+~ ) 

(28) 

It will be noticed t hat this resul t is identical with Jones ' r esult 
(roference 1) in the limiting case of C = o. The j.nduced drag 
coefficieLt is found to 'be 

C 2 
T 

(29) 

where A i s the aspect ratio. Eguation (29) indic~tes that the 
triangular i" jngs can obtain a c.onsidera·ble suction force at the 
leading eelge and that the cu' e.g coeff i ci0nt due to lift of the wings 
i s very close to that obtainect from elliptical vlngs of the same 
as~ect r atio at subsonic sp6eds. It should be pointed out , however, 
that as soon as the wing leading edge pazs00 through the Mach cone, 
the possibility of obtaining a leading-edge suct:ion is gone and the 
r esul tant for ce 'nust become normal to the Flate surfac e . This 
transition corre8~ond8 qu.ite similarly to t he c.ase of a two-dimensional 
airfoil passing through the speed of sound. 



NACA TN No . llR3 13 

DISCUSSION AND CONCLUSIONS 

The lift at supersonic s-peeds of trianguJ_ar wings having 
straight trailing edges has been sho~n to approach the lift of a 
two-di'l1ensional airfoil as the leadi:cg edge approaches the Mach cone 
springing fro'u the apex of the triangle. ]'or the case "There the 
triangular "ring lies behind the Mach cone, a suction has been found 
to exist on the leading edge. In order to utilize this suction 
force in practic'3 it would appear necessary, as in subsonic flm", 
to provide an airfoil section vith a rounded leading edge. Triangtuar 
wings should be capable of higher L/D ra tios than lLl1.SWept wings 
at supersonic speeds when operating with their leading edges not too 
far behind the Mach cone; the improvement should be due to both 
reduced "Tave drag and reduced induced drag . 

The lift and drag of a series of lLmited swept-back wings 
may also be calculated with the method developed. It will be noted 
that the ~ressure distribution over the triangular wing cannot be 
changed if the traiHng edge is cut off from the tip to the center 
line along an angle alvlays greater than the Mech angle. This fact 
arises from the nature 0f the supersonic flow in which disturbances 
carmot propagate any farther fonlard than the Mach cone from the 
origin of the distill'bance. The aforementioned procedure produces 
therefore a series of tapered swept-back 'wings having pointed tips. 
A :cew series can also be constructed by cutting off the tips along 
lines having angles greater than the Mach angle. In each case the 
pressures over the remaining portions of the wing will be the same 
as though the cutbacks had not been made . 

Langley Memorial Aeronautical Laboratory 
National Advisory C mmittee for Aeronautics 

Langley Field, Va . , Nov. 29, 1946 
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APPENDI~ A 

CALCULATION OF VERTICnJ VELOCITY INCREMENT 

The va~ue of W is, fra~ equations (6) ~~d (8), 

(AI) 

In t egrating by parts eiyes 

j_C ___ 0 f----- 0.7i:...::.. ... y. __ 

I 2 t)' ~. - ? Q2 2\ " + 2 + 2 II C - o t:: tJ \. Z - f-' Z J - cJ-::!a y z 
~ -C l 

+ ,r; 
z V XC -

(A2) 



Tr.e ··nte:ro.::i :l. rf t~e te~ un:ler the intiefinite jDtt:}gral cen bEl performed. 'by parts to 
0'0 cain the rc s ..L.G 

- 1 

_ :2 .. __ ." . ( _ t 
-' .. -" . ; \ '- 2 
1 - p'-0 - \!, 

cm"-l~ 

I r , 2 2 ."). : 2 r. 2 I"' 0 . f). ') ~. ,- -l 
\/;t: _ B -'- 7 -j -· ·1 ~ - 21= ' -' .. 0 (". ", - \ + (lL '-l y'- J.. ..,-) ~,._ .. ____ <..x. __ .' ', ... , = -l ' . _ _ _ :~ ___ ._.1: .... '~_ .... _ _ ._ ...1 _ ... :' _'," _ . ... 

w- IJ:' - r:. - Z i cr" r x,:: • ~)"- :l,'- ) - c. ' ?rJ + y " + z--I" 2 ' ) 2 , r , ,-, r c; '"' ',j r) J 

+ x ---- t a - 1 
l3?z n 

r. ~ 

(. ':: - ~ ~ l.:J.£.....:....XL _ ... _-- - .-

z Vx.2 .. [32 (y2 + z2 ) 

But s tH,uting i.n eq'l.l.9. tion (Jl2) and. rearr~ill.g5.n[S terr2S g:' ves : 

n C 

H = IJ 
-C 

.. _-_. ",262 

, /;:-~ .;; ;;, --; /c2 ~=;; (c tnh -It 
___ t __ 
t2 

- 1 d~ 
'-lC o ~ 

/c __ 0 __ (1 2 [.](:2 ~. ~?(y2 + z2~.~ (x2 _ [32y~, - 2~2z2)1~d.a 
V~02l ~2 (x~ - [32 z2) - 2xyo + y2 + z~ ....J 

. /2 .) I) 2 
+ I V }. - Q L 0'- + z ) 

(x2 - p2 z2) 

(A3) 

~ 
!l:> 
(") 

~ 

~ 
~ 
o 

f-' 
f-' 
~ 

W 

I-' 
\J1 
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It vill be noticed jn the precerUng oneration thae all the terms 
containing the singularity of the forrn. l/z cancel. If z is 
made to apl,)roach zero and tel'nlfJ are collected, equation (A'-3) 
becones 

"C 

/ ---,-== ... O~~ i ----.1fL + 
/ \/C2 

0
2 :l.. 

G - C 0 

(A4) 

x 

Completing the integration of the second terms gives 

(A5 ) 

Differentiating expression (A5 ) with respect to (y/x) and performing 
the integration gives 

the vertical velocity is -Lherefore constant over the plate surfac e and 

the exnr8'3 s io:l f (rJ) ::: VC2 - 0
2 is trul;y a solution of equation (8 ). 

It is pos::. -.'o',-e ~:',c. t this solution is not unique; however J other 
solutions "Iould undoubtedly lead to physically impossible conditi ons . 

--------" ----- ---- ----; 
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APPENDIX B 

CAJJCULATION OF THE AXIAL VELOCITY INCREMENT 

The value of the x-com~onent of velocity may be written from 
equation (11) 

(Bl) 

This i~tegral can be broken up into two separate integrals, as follows: 

,---
u = -;...:.. _'/f - f3:J.y2 + z2 ) 

(X2 - f32 z2) 2 

(B2) 

The first integral appearing in equat ion (B2) can be integrated by 
~artB t o give, for the firs t corr~lete term, the integral 

Iz:x;y \R - @2 (12 + 

(x2 _ [32 z2) 2 J
'C 

. -C 

(B3) 
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Evaluation of this integral, which may be found L~ reference 7, 
equation (228) , gives finally 

(B4) 

the sign of the EH.--presBlOn being onposi te for the two sides of the 
ulate . Tho second inte(ral term of equati on (B2) can be 1ntegr ated 
by breaking the integrand up int o four partial fractions, as follmTs: 

+ 

L 

I~ -
L 

.1 0 2 ( 2 2)1 
xy - h ]Lx- - By + Z I 

~ _ (32 z2 

--' 

________________ ~(x~2 __ -~@_2~z_2 ~)2~d=a~ ________________ _ 

(135 ) 
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The expressions (B5) may now be inteerated (reference 7, equation 207) 
giving the expression for the complete second term of equation (B2) 
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J 
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; 
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(B6) 

Combining equations (B4) and (B6) and setting 
on the surface 

z = 0 yields for u 

(B7) 

. 
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Figure 2.- Variation of A with tan f. 
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