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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS
TECHNICAL NOTE NO. 1328

CALCULATION OF COMPRESSIBLE FLOWS PAST AERODYNAMIC
SHAPES BY USE OF THE STREAMLINE CURVATURE

By W. Perl

SUMMARY

A simple approximate method is given for the calculation of
isentropic irrotational flows past symmetrical airfoils, including
mixed subsonic-supersonic flows. The method is based on the choice
of suitable values for the streamline curvature in the flow field
and subsequent integration of the equations of motion. The method
yields limiting solutions for potential flow. The effect of circu-
lation is congidered.

A comparison of derived velocity distributions with existing
results that are based on calculation to the third order in the
thickness ratio indicates satisfactory agreement. The results are
also presented in the form of a set of compressibility correction
rules that lie between the Prandtl-Glauvert rule and the von Kdrmen-
Tsien rule (approximately). The different rules correspond to

different values of a local shape parameter 4/¥C,, in which Y is
the ordinate and Cg 1is the curvature at a point on an airfoil.
Bodies of revolution, completely supersonic flows, and the signif-
icance of the limiting solutions for potential flow are also briefly
discussed.

INTRODUCTION

The problem of calculating compressible potential flows past
aerodynamic shapes will be considered in this paper by the following
method: An assumption is made as to the variation of the curvature
of the streamlines in the flow field and the equations of motion,
expressed in terms of the streamline curvature, are thereupon
integrated.

This basic method of calculating fluid flows is not new. It
has been described in reference 1 for use in calculating pressure
distributions on closely spaced airfoils in cascade. More recently
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the method was applied to the compressible flow rast an isolated
airfoil and to the incompressible flow past a symmetrical airfoil
in a closed channel. The results of reference 2 are compared with
those of the present paper.

The method is applied to isolated airfoils and the results
are compared with those of references 3 and 4. The limiting solu-
tion for potential flow by this method is identified with the
"limiting line" phenomenon (reference 5) and discussed in relation
to the flow through a converging-diverging channel. Application of
the method to bodies of revolution is indicated.

THEORY FOR SYMMETRICAL AIRFOILS
- The flows calculated in this paper are of the steady, continuous,
isentropic, irrotational type. (See fig. 1.) The equations of
motion are considered in the following form:
Equation of irrotationality (reference 6, p. 43):
ov 2 '
BE Cv=20 (1)

'Equatioh of continuity of mass flow:

)5 I
o
PoVedn = pvdn (2)

0 0

Bernoulli's equation and equation of state for isentropic flow:

i

l .

A ' y=1
B oerlel 81 1. h: elabioe® | B L it
p'o <PO) ” [l 2 MO (Vo2 l>j| ' (5)

v  velocity at a point P of flow field

where
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n distance measured along potential line from airfoil (streamline)
to point P on streamline in flow field

stream

C curvature of streamline at point P, positive when streamline
is convex in positive n direction. (C is the reciprocal

|
n, Drerpendicular distance between same two streamlines in free
of the radius of curvature,)

o density
o) Pressure
; 4 ratio of specific heats

M Mach number
The subscript o denctss fres-shream conditions.

Congider the symmetrical flow past a symmetrical airfoil section
(fig. 1). The potential lines of the flow pattern are assumed
straight and perpendicular to the free-stream direction, or x-direction, =
thereby relaxing the condition of orthogonality between stream and
potential lines. This agsumption is exactly satisfied at the mid-
chord station of the section if the section has fore-and-aft symmetry
with respect to the mid-chord station. The assumption, in effect,
renders the analysis for one chordwise station independent of that
for another.

The element of length dn in equations (1) and (2) is therefore
replaced by the elemcnt of length dy in the y-direction and equa-
tions (1) and (2) are written, respectively:

d
dy = - C—:;- (4)
~To Y
|
i =] ELay (5)
Jo JE1E0 8

The differontials in equations (4) and (5) are understood to be

taken in the y-dircction &t constant x. The lower limits of inte-
gration in equation (2) are on the streamline that coincides with the
airfoil contour. The corresponding lower limits in equation (5) are
therefore O and Y, respectively, where Y 1s the airfoll ordinate,
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a function of the chordwise location x. The upper limits of inte-
gration in equation (5) are on a gtreamline that becomes parallel
to the x-axls at infinity; that is:

limy = y,

y——> o

Hence, the continuity condition (5), which for finite y, y, may
be written

fY ry fyo
! dy = : £ dy - | ay
JO e 5
becomes in the limit as y— o
l.\m \
/
R ;.RPX - 1) dy (6)

Uy Fo'o /

Without loss of generality, the free-stream density p, and
velocity v, are hercinafter censidered as unity (or what is the
same, p and v are written in place of p/p, and v/vy, respec-
tively). Combination of the approximate irrotational condition (4)
and the approximate continuity condition (6) yields

i [l i-‘%%—)dv (7)

in which the lower limit of integraticn, unity, is the free-stream
velocity at ¥y = », and the upper limit V, corresponding to the
airfoil ordinate Y, is the unknown desired velocity at the alrfoil.

A streamline curvature function is nov to be chosen. It must
satisfy the boundary conditions of known airfoll curvature C, at
the eurface of the airfoil and zero curvaturc at infinitys For
convenience, in the integration of equation (7), the curvature C 1is
chosen as a function not of the coordinates x, y of the flow field
directly but of the velocity v(x, y). Tho function chosen is

& i \’V_-T) (8)

in which the airfoil curvature C,, the unknown airfoll velocity
V, and the paremeter 7 (which will be discussed lator) arc func-
tions only of chordwise location x, honce are constant as far as
the integration in equation (7) is concorned.
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The velocity v 1in the flow field is obtained by substitution
ol equation (8) into equation (4) and integration (at constant x),

v
AP 6 (9)
L4 o  Jo vlr-1)0

The streamline curvature function C(y) determined by equations (8)
and (9) varies monotonically, as y increases at constant x, from
the value C, at the airfoil where y = Y to the asymptotic value
zero at y = o, The manner of thils variation depends on the known
airfoil shape parameter YCq, the airfoil velocity V, and the
varameter 1.

The airfoil velocity V is given in terms of the airfoil shape
parameter YC,, the free-stream Mach number M,, and the param-
eter 71 by equations (7), (3), and (8), which yield:

1

_ x*ll - 1,;,—1 M2 (vz-l)i"'l -1
Y6, (VeL)S : av (10)
1

v(v-1)"

The parameter 7 18 limited in its pocsible range of values by
the conditions that must be satisfied infinitely far from the air-
foil, that is, as v—l. These conditions are:

(a) The curvature C-0.
(v)

(c) The continuity integral (equation (10)) is finite. Condi-
tion (a) requires, by equation (&), that O<7n<ew. Condition (b)
requires that the integral in equation (9) diverge as the upper
limit wv—31, which it does for l1<n<ew. Condition (c) requires
that the integral in equation (10) converge at the lower limit, which
it does for -w<N<2, All three conditions therefore limit the
permissible range of W to

5

distance y—sc.

1€n<?2 (11)

Equation (10) and condition (11) represent the basic result of
the present method. The velocity V at a point on the surface of a
gymnetrical airfoil at a given subsonic free-stream Mach number M,
is obtained by assuming that the known data are the shape param-
eter YC; and the incompressible, or low-speed, velocity V; at
that point on the airfoil. The parameter 1 is first obtained from
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equation (10) with M, =0 and V =7Vy. It will appear from later
applications that the value of 17 thus determined falls within the
range given by expression (11) over the region of the airfoil of
greatest intorest. With this value of 1, equation (10) then gives
the velocity V at the point under consideration for the desired
Mach number M,.

The main uncertainty of the present method is represented by
the chosen curvature function given in equation (8). The approxi-
nation involved in the use of this function has becn minimized by
the method just described of fixing the paremeters V and n. By
this method the streamline-curvature function satisfies an approxi-
mate form of the equations of motion (equation (10)) and yields the
knovm exact value of the airfoil velocity in the incompressible case.
Furthermore, the curvature function exactly satisfies the boundary
conditions of end values C, and O and varies between these end
values in the correct general manner (for stations near the maximum
velocity station), namely, monotonically.

As a further condition on the chosen curvature function, the
final solution giver by ecuation (10) should reduce to the Prandtl-
Glauert rule for emall disturbance of the free stream. Thus, neg-
lecting powers of v-1 and V-1 equal to or higher than ‘the second,
equation (10) reduces to

V r l " 2 1) .l
v: - = l"lo (V+J,, (-v-l) R l
(v-1)" - <

YCq = dv
1 v(v-l)n
v .
1)(1-My2
= (v-l)“u(r (v=2)(io) 4y
Tl 0 L
v
= (1-/103)(V-1)“-f (v-1)*" av
1
or, integrating and solving for V-1,
1= AERR, AT (12)

V 1-My=

Equation (12) shows thet, if n is adjusted to give the correct
value of V-1 for M, =0, or

Vi-1 = /2-1/1Cq (13)
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then the compressible value for any subsonic My, is given by

Vi-1
Vel = i (14)

1,2

which is the Prandtl-Glauert rule.

The foregoing considerations indicete that the results should
not be critical with respect to choice of form of curvature function.
A somewhat different form of curvature function satisfying all the
foregoing conditions is

¥ v
C =0y (—38-6—-—; (15)

Comparative results based on this function will be discussed later.

The basic relation (10) connecting the velocity V (expressed
as airfoil velocity increment V-1) at a point on a symmetrical
airfoil, the alrfoil curvature parameter ,/YC; at the same point,
and various free-stream Mach number M, 1is shown graphically in
figures 2, 3, and 4 for 7y = 1l.4. The numericel data from which
these curves were plotted are given in tables I and II. Included
in tables I and II are some corresponding computations based on the
curvature function (15). The integral in equation (10) was evaluated
by Simpson's rule and checked by the closed-form result obtainable
in the cage n = 1. The velocity increment above free-stream velocity
V-1 was plotted against ,/¥C,, hereinafter called the curvature
parameter, rether than against YCg because JYCa is proportional
to the thickness ratic of the airfoil (see, for example, equation (19))
and V-1 1is therefore approximetely linear with respect to this
quantity for small values (equation (12)).

Figures 3(a) to 3(h) correspond to positive velocity increments
above freec-stream velocity, thaet is, evaluation of equation (10) for
V>1. Figures 4(a) to 4(h) correspond to negative velocity increments
(V<1) such as produced on surfaces of negative curvature and ordinate
(hence the negative sign attached to «/YC;). In this case the curva-
ture function, instead of the one given by equation (8), is properly
taken as

e 1=y \1
ek (i‘-’ﬂ

vhich allows equation (10) to be ovaluated without ambiguity as
regards the terms to the power 1n. The curves of negative velocity
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incrcment (figs. 4(a) to 4(h)) may be regarded as continuations of
the corrosponding curves of positive velocity increment (figs. 3(a)
to 3(h)).

It is of interest to note that a parameter eguivalent to the
parameter ,/¥Cs was derived by the authors of reference 8 from a
dimensional consideration of egquation (4) and used to correlate
critical Mach number data for various symmetrical airfoill sections.,

APPLICATION AND RESULTS
Kaplan Section

Kaplan (reference 3) has calculated the compressible-flow zero-
1ift velocity distribution for a particular family of symmetrical
airfoils. The method used was an extension of the Ackeret method
wherein the potential function is expressed as & power series in the
thickness ratio of the section. The corresponding series for the
velocity distribution was evaluated to the term in the third power
of the thickness ratio. A limiting velue of free-stream Mach number
was found, for a given thickness ratvio, above which the terms of the
power series that were calculated (the first three) indicated a
probable failure of the series to converge. This free-stream Mach
number was presumed to constitute an upper limit for the existence
of a continuous potential flow,

The method of the present analysis was tested by determining the
velocity distributions for the Kaplan section from figures s e
and 4 (drawn to a scale commensurate with the precision of the data
of tables I and II). As an example of the procedurc used, the
velocity increment V-1 for the mid-chord location x = 0 of the
Kaplan section of thickness ratio 0.10 was obtained as follows. The
section ordinates and corresponding curvature paramcter »/YCy are
given in figure 5. The incompressible velocity distribution Vi-1,
obteined by conformal mapping, is shown in figure 6 (Mg = 0). At
x = O the values /ICq = 0.1925 and Vi-l = 0.1667 from figures S
and 6, respectively, correspond in figure 3(a) to an_interpolated
value of M = 1.297, For these valucs of 7 and JICy , the
velocity increments V-1 for values of of 0.5, O\N7, 0:8, 000,
and 0.9 were interpolated from figures 3(%3, el Yy Blel,
and 3(h), respectively. Velocity increments were obtained in this
manner in the chordwise range 0<x<0.,616. In the chordwisc range
0.616<x<1.0, the values of A/¥Cy arc indicated in figure 5 a3
imaginary, resulting from a positive ordinate and a negative curvature.
The theory presented, based on the curvaturc function of equation (8),
cannot handlc such values of the curvature paremcter. Approximate
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compressible velocity increments were obtained in this chordwise
range by first noting that the parameter 17 increased toward the
value 2.0 with increase in chordwise digtance from the center

(fig. 5). DNow the limiting value 1 = 2.0 corresponds to the
Prandtl-Glauert rule, as will be shown under COMPRESSIBILITY CORREC-
TION RUIES. In the range 0.616<x<1.0; therefore, the compress-
ible velocity increments were calculated from the incompressible
values by equation (14).

The velocity dlstributions thus obtained for the Kaplan section
of thickness ratic 0.10 are shown in figure 6. The distributions for
My, = 0.85 and My = 0.9 do not extend all the way to the mid-chord
location but come to an end (with infinite slope) at the chordwise
locations x = 0,145 and 0.390, respectively. The immediate reason
for this behavior is evident from figure 2. For example, at the
limiting location x = 0,145 for My = 0.85, the value of 17 was
1.312 (fig. 5). On the set of basic curves for 17 = 1.312 and
similar in appearance to figure 2, a vertical line drawn at
YCq = 0,181 corresponding to x = 0.145 would be tangent to the
Mg = 0.85 curve, at which point the velocity increment V-1 would
be 0.550. No solution exists at this value of ,/¥C; for M, higher
than 0.85; or, for fixed M, = 0.85, no solution existe for higher
values of «/YC, such as correspond to chordwose locations closer to
mid-ehord than x = 0.145. The points of infinite slope on the basic
curves of figure 2 correspond to a limiting solution for potential
flow by the present method. This phenomenon, hereinafter called the
"potential 1limi% phenomenon," is discussed in appendix A,

The potential limit points for the Kaplan 1l0-percent section at
My = 0.85 ané 0.9 were actually obtained from accurately determined
plots of the infinite slope loci of figure 3. These plots are given
in figure 7. The vacuum-line boundary curve in figure 5 corresponds
to D/po = 0 1in equation (3). The intersection of the curve of 10
against J?E;\ for the Kaplan 10-percent section (fig. 5), with, for
example, the My = 0.85 contour in figure 7(a) determined the poten-
tial limit values of n and &/YC, ; hence by figure 5 determined
the chordwise location at which a potential limit point existed for
M, = 0.85. The potential limit value of 17 then determined the
potential limit V-1 by figure 7(b). The free-stream Mach number
at which the mid-chord location x = 0 is a potential limit point,
that is, the lowest My at which a potential limit occurs, is
indicated by point A in figure 7(a). By interpolation this limit
value of M, 1is estimated as 0.843 and the corresponding V-1
(fig. 7(v)) as 0.573. For comparison, the lower critical Mach
number (the lowest froe-stream Mach number at which sonic velocity
occurs on the airfoil) was determined as 0.748.

B
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The velocity distribution at the lowest potential limit Mach
number, obtained by interpolation from the other velocity distribu-
tiong, is shown in figure 6. The velocity gradient at mid-chord
appears to be finite and different from zero. The reason for this
behavior can be seen from the expression for the velocity gradient

&V aV  a4¥C, oV dn
we— 2 e mites A (16)
ax 34/¥c, dx  3n dx

in which the first partial derivative is taken at constant n and
the second at constant 4/YCgh. (The acceleration of the fluid along

the surface 8 of the airfoll is V %g. Hence, the following dis-

cussion applies also to the fluid acceleration.) At & potential
limit point both av/a4yca and OV/On are iafinite (fig. 2). If

dyYC,/dx and dn/dx are not zero at the chordwise station corre-
sponding to a potential limit point, the velocity gradient av/ax is
infinite there, as is the case with the velocity distributions for

Mo = 0.85 and 0.9 in figure 6, If &JYCa/dx and dn/dx are zero,
which is the case at the mid-chord station of the Kaplan 10-percent
section, the occurrence of a potential limit at this point lecads to

an indeterminate expression for the velocity gradient in equation (16).
Closer analytical and graphical examination indicateg the finite
gradient shown in figure 6 (hence, a finitely discontinuous change in
filuid acceleration across the mid-chord station).

The lowest potential limit values of M,, the corresponding
values at mid-chord of V-1, and the local Mach number M for
symmetrical sections of three thickness ratios (t = 0.05, 0.10, and
0.20) were computed. The value of M was obtained by combining
Bernoulli's equation in the form of equation (3) and in the form

' ; 2
M oF s W
2

<£> ORIE g T (17)

¥o B B 2

2
resulting in
M.V

M = & (18)

The values are listed in the following table and compared with values
obtained by Kaplan in reference 3:
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Curvature method Kaplan method

e e s

Mo | V-1 M [ My | V-1] M

910,890{0.2421.164
12,8884 %466y .520
71 .743( .86411.625

0.05 0.898/0.324/1.2
10 .843| .573|1.4
.20 .763}1.200|2.2

Ul o ;M

The limiting values of M, by the two methods agree fairly closely;
the values of V-1, hence also M, less so. The less satisfactory
agreement of V-1 1is to be expected from the rapidity with which
V-1 varies with M, in the neighborhood of the potential limit
golution (fig. 6).

The comparison of the velocity distributions for the 10-percent
thickuess section by the two methods is given in figure 8. The
velocity distributions for My = 0.75 (fig. 8(b)) and 0.83 (fig. 8(c))
were obtained by interpolation from cross plots of the velocity dis-
tributions of figure 6, guided by the notential limit points previ-
ously determined. In the region of greatest interest on the contour,
namely the supcrsonic region given approximately at M, = 0.83 by
O<x<0.4, the velocity by the Kaplan method increascs with My, at
a greater rate than the velocity by the curvature method. A conven-
ient criterion of the accuracy of velocity distributions in local
supersonic regions hag been pointed out by Tsien and Fejer, namely,
if a velocity distribution indicates a local supersonic region, a
velocity digtribution can be derived in this region that must be
greater than the original velocity distribution; the difference
between the two distributions decreasing as the extent of the local
supersonic region increases. This greater velocity distribution
for the supersonic region is the well-known Prandtl-Meyer solution
for the flow over a curved surface (reference 8(a)). The Prandtl-
Meyer velocity distribution extends, in the case considered here,
from the chordwise location for a local Mach number M = 1 to the
mid-chord location. The Prandtl-Meyer solution is obtained from
the change in slope of the airfoil surface A©@ from the M = 1
location to the point under consideration. This change in slope
expressed in degrees is equivalent to the pressure number P, which
is a function of the local (supersonic) Mach number M. From a plot
of slope © of airfoil surface againgt x, included in figure 5,
and a table of P ageinst Mach angle, it is therefore a simple
matter to obtain the Prandtl-Meyer local Mach number distribution in
the supersonic region. The local Mach number M and the free-stream
Mach number M, then determine the local velocity V by equa-
tion (18). If the pressure number P is defined in terms of the
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flow deflection angle A6 as P = 1000 - A9, the pressure number
may be computed by the methods of reference 8(a). The variation of
pregsure number and flow deflection angle with Mach angle is shown
in the following table:

PRESSURE NUMBER AND MACH ANGLE IN PRANDTL-MEYER

SOLUTTON FOR SUPERSONIC FLOW

[ = 1.4]
Pressure low deflec- | Mach angle
number, P |tion angle [ SRS e
P raeis foge sap gt X B L 8
(deg)

1000 0 90° 00!
889 1 670 43!
998 2 620 00'
997 5 580 10'
996 4 440 12°
995 5 520 43!
994 6 500 36'
993 7 480 43!
992 8 470 03'
991 9 450 32°
990 10 440 09*
989 1 420 45 1
988 12 41900 59.5"
987 k3 400 .32.5"

The Prandtl-Meyer sclutions obtained in this menner for the
velocity distributions by the Kaplan method and by the curvature
method are shown in figure 8(c). The velocity distribution obtained

v the curvature method is evidently closer to the true distribution
than that of the Kaplan method in the local supersonic region for
M, = 0.83, Dbecause the curvature velocity distribution is less and
the Kaplen velocity distribution is greater than the corresponding
Prandtl-Meyer distribution. Application of the Prandtl-Meyer solution
to the potential limit velocity distribution by the curvature method
for My = 0.843 (fig. 8(d)) indicates a rapid decrease in validity

of the results by the curvature method for free-stream Mach numwbers
close to the lowest potential limit Mach number.




NACA TN No. 1328 13

From these and similar calculations for thickness ratio of
5 and 20 percent, it is concluded that the curvature method gives
results of at least the same order of accuracy as the Kaplan method
over approximately the middle half of the Kanlan section. Over the
rest of the section the Kaplan method may well be more accurate.

Biconvex Section

The method of curvature may be expected to increase in validity
with decrease in the variation or the curvature parameter .JYCa
along the airfoil. The symmetrical biconvex section (one formed of
two circular arcs) was considered as an example which is more favor-
able in this respect than the Kaplan section. The biconvex section
of 0.20 thickness ratio was analyzed for its incompressible velocity
distribution by conformal mapping. The curvature parameter JYCa
wag calculated from the relation

[ Wzt

YC, = (19)

Yinax /\/ 1+ t2

in which Ypgx is the section ordinate at the mid-cherd location
and t 1is the thickness ratio. The section ordinates Y, the
slope 6, the curvature parameter +/YCg, and the parameter 1,
determined as for the Kaplan 0.10 thickness ratio section, are
given in figure 9. The velocity distributions for My = 0, 0.5,
0.7, and 0.8 are given in figure 10. The curvature method cannot
handle velocities less than the free-stream value (unity), which
correspond to positive values of the curvature parameter; these
velocities were obtained by the Prandtl-Glauvert rule.

The lowest free-gtream Mach number My for which a potential
limit occurs at mid-chord is 0.790. The corresponding values of
local velocity increment and local Mach number are 1.819 and 1.704,
respectively. The Prandtl-Meyer solution (fig. 10) indicates
inadequacy of the curvature method in this case at a free-stream
Mach number somewhat less than 0.8. The local velocity increments
of the biconvex section of thickness ratio 0.20 are higher than
those of the Kaplan section of thickness ratio 0,10. The ratio of

the increments of the biconvex section to those of the Kaplan section

of thickness ratio 0.10 are, in general, less than the ratio of the
thicknesses of the two sections.

CONDITIONS IN FIELD OF AIRFOIL

The variation of streamline curvature and of local velocity
with distance from the airfoil is given by equations (8) and (9).
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For the purpose of illustration, it will be sufficlent first to
meke the simpler calculations corresponding to the curvature func-
tion (15) in place of (8). Eguations (4) and (15) yield
(loge V)N d(loge v)
Ce, (logg 7)1

dy =

which, after integration and adjustment of the constant of integra-
tion to satisfy the boundary conditions, becomes

log. V log. vV-1
Tt o it (2o -J (20)
) 4 ¥C, (n-1). |\legy ¥ |

The curvature variation is given by equations (15) and (20). For

n = 1 these equations are indeterminate. In this case, equa-

tions (4) and (15) (or the well-kmown limiting form of equation (20))
yield

log. V log. ¥V
L=14+ 2— logg bl n=1 (21)
i IC, 1oge v

The curvature and velocity variations given by equations (15),
(20), and (21) are shown in figure 1l and 12, respectively, for
various values of n and My. The valve of YC, of 0.03704 chosen
for the calculation was that corresponding to the mid-chord location
of the 10-percent thick Kaplan section. The corresnmonding values of
V for the various M, were those previously computed for the Kaplan
10-percent thick section. Although these values of V correspond
to only a single value of 7 based on the curvature function (8),
the use of these same values for various n and with the curvature
function (15) give the trend of curvature and velocity variations
sufficiently well for the purpose of illustration. The curvature
and velocity variations of figures 11 and 12 show the expected
trend with free-stream Mach number M,, namely, a slower decrease
to free-stream conditions as My is increased. The limitation of
a single curvature function such as equation (&) or (15) is apparent
from figure 13, for it yields beasically the same kind of curvature
variation in the supersonic region as in the subsonic region, A
more rigorous analysis should take into explicit account the different
type of curvature variation found in supersonic flows.

The extent of the local supersonic regions in the field of the
10-percent thick Kaplan section was next calculated by the more
appropriate equation (9), using the data derived in connection with

3
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the velocity distributions. The results are shown in figure 14, in
which the local Mach number M = 1 boundary is plotted for M, = 0.75,
0.8, 0.83, and 0.843 in terms of airfoil semichord as unit distance.

The rapid increase in lateral extent of the supersonic region
with increase of free-stream Mach number, particularly near the
potential limit, is apparent in figure 14. At the potential limit
M, = 0.843, +the local supersonic region extends 1aterally into the
flow fleld a distance of about 1 chord.

The finite nonzero slope at x = O of the sonic boundary at the
potential limit should also be noted. This finite slope is associated
with the finite velocity gradient at the surface of the Kaplan section
previously discussed. It appears from equation (9) that the slope of
a constant velocity (hence, for given My, constant M) boundary
will be associated with the surface velocity gradient at the same
value of X 1in being finite or infinite. Hence, if the lowest poten-
tial limit solution occurs at a point on a symmetrical airfoil at
which d4/YCy/ax, dn/dx are not zero, then the consequent infinite
velocity gradient at that point on the surface will cause a cusp in
the M = 1 boundary in the field. This cusp (the possibility of which
was suggested by L. Richard Turner of the NACA Cleveland staff) amounts
to an envelope of the Mach lines in the (supersonic) neighborhood.
This behavior is in agreement with a known property of potential limit
solutions, namely, that a potential limit point in a flow field lies
on an envelope of Mach lines (reference 5).

CIRCULATORY FLOW PAST CIRCULAR ARC MEAN CAMBER LINE

The curvature method was next applied to the calculation of the
type of velocity distribution that produces "design" lift, that is,
1ift without a velocity peak near the nose of the airfoil. The
circular arc camber line at zero angle of attack was chosen for this
calculation in order that a comparison analogous to that for the
Kaplan section could be made (reference 4). The camber ratio assumed
was 4 percent, corresponding to an incompressible design lift coef-
ficient of 0.520.

A difficulty of principle ariges in obtaining the curvature
parameter N&Ca for the circular arc section. The ordinate Y as
developed in the curvature method is actually the component in the
y-direction of the distance between a point on the airfoil contour
and a point on the airfoil strcamline infinitely far from the airfoil
(the airfoil streamline is the streamline that includes the airfoil
contour). In the case of the symmetrical airfoil, this projected
distance is the airfoil ordinate as measured from the chord line.
When 1ift is produced, however, a point on the airfoil streamline
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infinitely far from the airfoil in the x-direction is also infinitely
far from the airfoil in the y-direction. Nevertheless, inasmuch as
the slope dy/dx of the airfoil streamline for the circular arc
rapidly apvroaches zero with increasing distance from the circular
arc, it might be expected that the velocity distribution on the
circular arc would not be critical with respect to the finitely
distant point on the airfoil streamline from which the ordinate Y

is measured.

This situation was studied by obtaining in the usual manner the
compressible velocity increment at the mid-chord location, for curva-
ture parameters ,/YC, corresponding to various values of Y as
determined by points on the incompressible (M, = 0) airfoil stream-
line at various distances from the circular arc. The resulting
velocity increments (V-l)pax are plotted for various free-stream
Mach numbers M, in figure 15 against a quantity f characterizing
the distance along the airfoil streamline. The quantity f is the
ratio in incompressible flow of the velocity decrement at a point
on the airfoil streamline to the maximum velocity increment on the
circular arc. As the variable point on the airfoil streamline
approaches the circular arc, the value of n decreases from 1.28 at
f = 0.0032 to the lower limiting valve 1l at f = 0,0102 correspond-
ing to a distance of 0.67 chord from the extremity of the circular
arc. At points on the streamline closer to the circular arc there
is no value of n that yields the known incompressible maximum
velocity increment for the corresponding value of MYCa. Compressible
maximum velocity increments for these points were thereupon arbitrarily
obtained from figure 2 using n = l.

Included in figure 15 are the maximum-velocity increments
calculated from the formulas and constaents given in reference 4.
The maximum-velocity increment by the curvature method is seen to
be always less than Kaplan's value and not to vary greatly with f.

Guided by the results for the Kaplan 10-percent thick symmetrical
section, which had about the same incomprecssible maximum velocity
increment as the 4-percent camber circular arc mean line, and also
by the comparison with Kaplan's results in figure 15, the curvature
parameter 4¥YC,; for obtaining complete velocity distributions was
determined with respect to a reference point on the airfoil streamline
at which the incompressible velocity decrement was 1 percent of the
maximum velocity increment (f = 0.01, 0.68 chord from leading edge).
The basic data are given in figure 16 and the resulting velocity
distributions are compared with the corresponding results by the
Kaplan method in figure 17. The velocity distributions at M, = 058
by both methods are less than the Prandtl-Meyer solution by about
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the same amount and no definite conclusion as to the comparative
accuracy of the two methods is indicated. The uncertainty introduced
into the results by the ambiguity of determination of the curvature
parameter 4 ¥Cs; could presumably be further resolved by additional
comparisons with results by other methods or by calculation of higher
approximations by use of the strecamline curvature.

COMPRESSIBILITY -CORRECTION RULES

A compressibility-correction rule way be defined as a rule by
which the velocity or pressure at a point of a compressible flow field
is expressed as a function only of the low-speed, or incompressible,
velocity or pressure at that point and the free-stream Mach number.
Thus, the curves of figure 2 when cross-plotted against M, conatitute
a set of compresaibility-correction rules for the velocity V. In
general, each value of 17 yields a compressibility-correction rule.
The rules for n =1.0 and 74 = 1.8 are shown in figure 18 in terms
of the pressure coefficient C defined as

p)
2 .1
p- D
e poz v 70 2 A
5 Povo 5 Mo

in which p/p, 1is given in terms of the velocity V by equation (3).
Also showvn in figure 18 are the potential limit curves, obtained from
figure 7(d), the sonic line (M =1 in equation (17)), and the abso-
lute limit or vacuum line (p/p, = O in equation (22)). The differ-
ence between the rules for different values of n illustrate the
allowance for differences in airfoil shape (4/¥C,), which correspond
to the same low-speed pressure coefficient.

Fach compresaibility-correction rule has its own potential limit
curve. The limit curve for n = 1.8 intersects the vacuum line and
would extend to local veolocities higher than that corresponding to
zero preasure, which of course is impossible. Hence, where a potential
limit curve intersccts the vacuum line, the vacuum line becomes the
limit curve.

In figure 19 comparieon of the compressibility correction rules
by the curvature method is made with the rules of

(a) Prandtl-Glauert, equation (14)

(b) Kaplan (reference 3) results for mid-chord location
log, Vv

n
(c) The rule for 7 = 1.0 based on function (15), C = Cy ( )

log, V
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(d) Greene (reference 2)
(e, Garrick-Kaplan, "arithmetic-mean" rule of reference 10
(f) von Karmén-Tsien, equation (62) of reference 9

Portions of the potential limit curve corresponding to each rule
are indicated.

The compressibility-correction curve corresponding to the
curvature function (15) rises somewhat more steeply than that corre-
gponding to equation (8) for the same value of 1. It should be
noted that the two compressibility correction rulcs for n =1 4o
not indicate the difference in calculated pressure coefficient at a
given point on an airfoil (given q/YCa) as a result of choice of
curvature function. In figure 19 the curve for curvature func-
tion (15) corresponds to VYCa = 0,305 and that for curvature func-
tion (8) to yY¥C, = 0.317. For a given value of f C, and low-speed
pressure coefficient, the results by both curvature functions differ
negligibly.

The Prandtl-Glauert rule has been drawn in figure 19 to the
vacuum line (M = ®) because this rule can be regarded as the limit
of the rules derivable by the present method as n approaches the
value 2.0, This fact becomes evident from equation (10), in which,
as 1 approaches 2.0, the velocity V must approach unity in order
for the integral to converge. The approximation leading to the
Prandtl-Glaucrt rule (equation (14)) can therefore be made. As 1
approaches 2.0 the vacuum line becomes a greater and greater portion
of the complete potential limit curve (fig. 18) until in the limit
the vacuum line beocomes the entire potential limit curve. (See
figs. ' T(b) and 7¢a¥.)

The Greene rule, on the other hand, can be regarded as the
limiting rule obtainecd by allowing n to approach zero. For 17 = 0,
equation (10) becomes

1

1

e Ll - MOZ (v2 1)—I dv - logg V (23)

(V3 = 1) - logg ¥

This last equality, namely V as a function of V; and M,, is
Greenc's rule. As has been shown, the significance of 7 =0 is
that the curvature C becomes zero at a finite distance from the
airfoil and remains zero for greater distances. Although this

. circumstance might imply a severe limitation on the validity of
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Greene's rule, this particular derivation is actually more restric-
tive than necessary for it leads not only to Grecne's rule but to
the additional equation involving YC,. A more general discussion
of Greene's rule is given in appendix B.

In general, the compressibility-correction curves derived in
this paper lie between the Prandtl-Glauert curves on the one hand
and (approximately) the von Karman-Tsien curves on the other. It
may be emphasized here that the presentation of the present results
in the form of a set of compressibility correction rules does not
imply an equivalence of these resulis to a simple speed distortion
of the flow field in going from incompressible to compresgsible flows.
Evidently any derived set of compressible-flow patterns for various
free-stream Mach numbers can be compared with the corresponding
incompresgible-flow nattern by means of a set of compressibility
correction rules. A simple speed distortion implies the existence
of only a gingle compressibility correction rule from which
compressible-flow boundary velocities are obtained from given
incompressible-flow boundary velocities regardless of the shape of
boundary that produvces the incompressible-flow velocities. The
present results, however, yield different compressible-flow veloci-
ties for the same incompressible velocities depending on the shape
of airfoil (J?@a) that produces the incompressible velocities.

SUPERSONIC FLOW

In comnletely supersonic isentropic potential flow the same
equations of motion hold as in the subsonic case, namely, in the
form assuwed in this paper, equations (1), (2), and (3). The appli-
cation of these equations, however, to the calculation of the super-
sonic velocity distribution on airfoils is in certain respects dif-
ferent from the subsonic calculation. The differences as well as
gimilarities will be illustrated by derivation of the linearized
(small perturbation) equation for the velocity distribution on an
arbitrary thin airfoil in supersonic potential flow.

For small perturbation of the free stream the approximation for
the density ratio that led to equation (12) is

ov - 1= (1-M.%)(v-1) (24)

Tquation (7) therefore becomes

v ,
Y = -(M,2-1) / (Lé-l-)- dv (25)
U
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The curvatvre C is by definition dB/ds where g is the distance
along a streamline and B 1is the (nositive clockwise) angle between
the streamline and a fixed (say the free-stream) direction. Iqua-
tion (25) may therefore be written

S
Ve -(Moz-l)ﬁ ¥ (v-1) %YB- ds (26)

in which the path of integration is determined as follows: The
assumption is made that at a point in the flow field any field
quantity, such as v, dv/dp, or ds, is constant along a straight
line connecting the point with & point on the airfoil and making an
angle p with the free-stream Girection. (See sketch.)

N/

W
[}

Completely supersonic potential flow

By this assumption a correspondente is set up between points in the
field and points on the airfoil for which the integrand in equa-
tion (26) has the same value. Hence the original path of integra-
tion from infinity to a point on the airfoil in a direction normal
to the airfoil can be rerlaced by a path along the airfoil itself,
from the leading edge to the same point, at a distance sz from the
leading edge (the contribution to the iantcgral from points upstream
of the leading edge is zero because for such points the straight
line at angle p on which the field quantities are constant does
not intersect the airfoil and extends infinitely far ahead of the
airfoil, where frec-stream conditions exist).
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Differentiating both sides of equation (26) with respect to the
distance 8 along the airfoil contcur yields

Y _ _(m2-1)(v-1) & 27
But ay = = B, Hence
dsg
v-1 dy-_da Bl (28)
bodB y 2.1

Inasmuch as all variables have been assumed to differ from their
free-gtream values by small amounts, the quotient . can be set
equal to the derivative dv/dp. Equation (28) therefore becomes

4y _ ok ali (29)
ap A Moz-l

Finally the significance of the angle p is obtained from equa-
tions (4) and (29), and the sketch of completely supersonic potential
flow,

t{j,n Mh o= g'l = - iv-— = = d—v
ds Cvds ap
s 1 (30)
= e
AMG2-1
or
s 4 -
gin p = — (31)
Mo
Hence p is the Mach angle and equation (29) can be written
%% =+ tan p (32)

which (recalling that the free-stream velocity is unity) is the
bagic solution for linearized two-dimensional supersonic flow
(reference 8(b)). All the properties of linearized two-dimensional
supersonic flow can be deduced from the preceding derivation (these
properties were, of course, a guide in sctting up the derivation).




2% NACA TN No. 1328

The fact that the linearized theory for completely supersonic
flows relates streamline curvatures at points connected by Mach
lineg (characteristics) would indicate that in obbtaining higher
approximations to the flow pattern in large local or comnletely
supersonic regions the curvature function should properly be spec-
ified along Mach lines rather than along normals to the free-stream
direction. This circumsbance indicates a possible refinement of the
present treatment for mixed subsonic-suporsonic flows. Consgider a
mixed subsonic-supersonic flow nattern calculated by the curvature
method. The curvature in the local supersonic region can be assumed
constant (and equal to the corresponding airfoil cvnrvature) along
the characteristics emanating from the airfoil at the appropriate
local Mach angle. The curvature function thus determined is contin-
uously Jjoined to the curvature function previously calculated at
the boundary of the supersonic region. As a guide in this process
the curvature of the strsamlines determined by the original calculation
could be used (this information would alego be of use in determining
higher approximations throughout the entire flow field). The equa-
tions of motion (1), (2), and (3) are thereupon integrated, graph-
ically or otherwise. If the local supersonic region is small, this
procedure may not yield more accurate resulss than the original
calculation. It may, however, yicld a closer evaluation of the
accuracy of the original calculation than the Prandtl-Meyer solution
applied to the local supcrsonic region.

The preceding remarks also make evident the possible occurrence
of a curvature maximum away from the airfoil (in a direction normal
to the free stream). Such a maximum will probably occur in a large
local sunersonic region when the point under consideration on the
airfoil is preceded along the airfoil by points of greater airfoil
curvature.

BODIES OF REVCLUTION

The method given for the two-dimensional flow can be applied
gimilarly to the case of axially symmctric flow over a body of
revolution. Thus, if the symmetrical section (fig. 1) is considered
as a meridian secticn of a body of revolution the continuity con-
dition (equation (6)) becomes (freec-stream velocity and density are
unity),

i i
Y? =j (pv-1) y dy (33)
Y

i
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The irrotationality condition (equation (1)) and the Bernoulli-state
equation (3) remein unchanged. If the curvature function (8) is
agsumed, substitution of equations (3), (4), and (9) into equa-

tion (33) yields an equation analogous to (10). From this equation
a set of basic curves analogous to those of figure 2 could be derived
by computation. (The computations would be lessened by use of the
curvature function (15) instead of (8) because equation (20) is
eagier to evaluate than equation (9).)

It will be sufficient here to indicate the results in the case
of small disturbance of the free stream, or v—l. In this case
equations (9) or (20) yield

y (V- pré
SRR | > ] )
Substitution of equations (24), (34), (4), and (8) into (33) gives
(v-1)2 [1+ i }: (2-n) ¥Ca (35)
¥, (3-2n)4  (1-M2) 2

It may be shown as before that the parameter 7 is now restricted
to the range

1€ n< 18 (36)

The parameter rn can again be taken as the value that in equa-
tion (35) yields the exact (known) velocity increment for M, = O.

Equation (35) differs in form from the corresponding expression
for two-dimensional flow given in equation (12) by virtue of the
second term in the brackets. The effect of this term is to reduce
the velocity increment for a given My, that is, to reduce the
effect of speed on the local velocities and pressures. For example,
the increase with free-stream Mach number M, of the maximum velocity
increment on slender ellipsoids of revolution is by equation (35)
about 70 percent of the increase given by the Prandtl-Glauert rule.

If the curvature function is chosen as

o - (2] (¢
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then with £ = 1 a basic equation the same as (10) ie obtained,
IC
with the exception that —EE. replaces YC, on the left-hand side.

Hence the same basic computations as already made for the two-
dimensional case could be used here (with 1= n <2). Although a
more gredusl rise of velocity increment with Mach number is thus
obtained than for the same section in two-dimensional flow, the rise
is greater than given by the Prandtl-Glauert rule, The Prandtl-
Glavert rule ie, in fact, again the limiting rule for small disturb-
ances. It seems, however, that the Prendtl-Glauert rule may over-
estimate the effect of subsonic compressibility speeds on slender
bodies of revolution, :

Perhaps the most reliable way of obtaining compressible velocity
distributions for bodies of revolution by use of a single curvature
function is to use the function (37) with n and { adjusted in
each case to satisfy both the known incompressible value and the
compressible value for infinitegimally smgll disturbance of the
gtream, the compressible value being considered as known or obtainable
from the general linear-perturbation theory of compressible fluids.
The permissible values of n and £ that setisfy the required
conditions at infinity lie in the acute-augled sectors of the ¢
against 17 plane bounded by the lines n =1 and £ = 2n - 3.

SUMMARY OF RESULTS

The present study of compressible potential flows past aero-
dynamic shapes indicates the following:

1. The method presented for the calculation of compressible -flow
velocity distributions yields results for symmetrical sections in
satisfactory agreement with existing results based on calculation to
the third order in the thickness ratio.

| 2. The results can be presented in the form of a set of
compressibility-correction rulesg that lie between the Prandtl-
Glauert rule and the von Kédrmén-Tsien rule (approximately). The
different rules correspond to different values of a local shape
parameter rJiEa, in which Y is the ordinate and Cg 18 the
curvature at a point on an airfoil.

3. The effect of circulation at design 1ift conditions, that
is, without velocity peaks, can be taken into account.

4, Conditions in the field of the airfoil can be calculated
simply.
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5. The method given for two-dimensional flow can be applied
also to bodies of revolution.

6. The general method of using the streamline curvature appears
applicable to any subsonic or supersonic flow problem in which a
satisfactorily accurate estimate of the curvature of the streamlines
can be made in the portion of the flow field of interest.

Flight Propulsion Reseaxrch Laboratory,
National Advisory Committee for Aeronautics,
Cleveland, Ohlo, May 24, 1946.
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APPINDIX A

THE POTENTTAL LIMIT PHENOMENON AND THE ANALOGY
WITH FLOW THROUGH A CHANINEL

The points of infinite slope on the basic curves (figs. 2
and 3) have been seen to correspond to limiting solutions for
potential flow by the present curvature method. These points cor-
respond to points on an airfoil at which the local Mach number M
is greater than 1 and at which the fluid acceleration is infinite
if &/YCa/ds and dn/ds are not zero. Furthcrmore the M =1
boundary in the flow field contains a cusp if the fluid at the
laterally corresponding point on the airfoil has infiinite accel-
eration., This cusp constitutes an envelope of the Mach lines in
the (supersonic) neighborhood. These properties permit identifi- : y
cation of the points in the flow field corresponding to points of
infinite slope on the basic curves with points on the limiting line
of reference 5.

In the determination of the esgential reascn for the existence
of a limiting potential flow solution, as well as the significance
of the possibilities dJ?E;/ds = dn/ds = 0 tle analogy with the
flow through a converging diverging chamnel is illuminating. Con-
sider first the one-dimensional flow through the channel. The
equation of continuity can be written

pVA = 1 (38)

in which A 1is the cross-sectional area of the channel and all
quantities arc cxpressed as fractions of their values at a reference
station O upstream of the minimum section, called the channel frec-
gtream station. Equation (38) yields with equation (3) a family
of curves of velocity V against area A with channel free-stream
Mach number M, as parameter (fig. 20). Theso curves exhibit
points of infinite slope analogous to those of figure 2. It for
the moment only subsonic flow in the channel is considerecd (branch
B@Ein Gk iol 20), there exists at C a minimum channel areca for
given M, or for given channel area a maximum M, for continuous
one-dimensional flow, The Tluid acceloration along the axis x of
the channel is
av dv dA -
VE.—:Va'Ka—i (09) »
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in which, by equation (38), (18), and (3)

s o
A (Me-1)
At a voint of infinite slope in figure 20, @V/dA = ;. hence the
£luid acceleration is infinite unless poesibly dA/dx =0k Ihe
limiting solution occurs, by equation (40), at a local Mach number
of unity. Thus, by a one-dimensional argument independent of the
irrotationality condition a limiting solution analogous to that for
the isolated alrfoil has been derived. It may be noted that the
upper-branch solutions CD (fig. 20), ag well as the upper-branch
solutions of the basic curves (fig. 2), correspond to the over-
lapping supersonic flow patterns that have been obtained by the
hodograph method. (See reference 1l.)

The analogy betwsen the channel and the isolated airfoil can
‘be made still closer by consideration of the two-dimensional features
of the flow in the minimum section of the channel. As the channel
fres-gtream Mach number M, 1is increased by increasing the over-all
pressure difference across the channsel through external means, the
maximum local Mach number at the wall increases at a greeter rate.
For a sufficiently high but subsonic My, local supersonic regions
appear in the neighborhood of the walls (fig. 21)« Thds £law
vattern corresponds to the solution symmstrical with respect to the
y-axis studied by Meyer (reference 12), G. I. Taylor (reference 13),
and others. It is analogous to the continuous mixed subsonic-
supersonic flow pattern for isolated airfoils. The one-dimensional
continuity treatment indicated an upper subsonic limit for M,.
The two-dimensional flow pattern for channels indicates a similar
upper limit on M, and, in addition, provides the desired insight
into the isolated airfoil cass.

The limit on M, ccmes about because the flow at station O

fig. 21) must pass through the minimum section. The local mass

flow intensity pv is, however, a maximum at a local Mach number

of unity and will be less than the flow intensity at the channel
free-stroam station in portions of the local supersonic regions AB

and FG, which increase as My 1s increased. When a further increase
in extent of the local supersonic regions would result in a decreased
mass flow through the minimum section from the cause just indicated,
then the mass flow has reached its maximum possible value and the
channcl is said to be "choked."

The explanation for the limiting solution in the isolated air-
foil case is similerly formulated. Along the potential line AD
traversing the local supersonic rogion (fig. 1) the mass flow
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intensity ratio ppz is a maximum at the sonic point C and less
oVo
than unity over a section AB In the supersonic region., When the
mass flow Intensity, integrated over BD, produces an insufficient
mass flow to counterbalance the decreased contribution to the mass
flow across AB in accordance with the requirements of continuity
and isentropy (equation (6)), then the limit solution for point A
on the airfoil has been reached. The flow field, though infinite
in extent, can under this condition be said to be choked. ZEvidently
a local supersonic region must exist before the limiting velocity is
reached.,

The essentially one-dimensional continuity argument just given
is not entirely sufficient to prove the existence of a limit solution
in the two-dimensional case. Eouation (6) alone, for example, could
always be satisfied by a suitable choice of v(y); or large stream-
line curvatures resulting in large flow deflections might set in at
supercritical speeds, thus destroying the validity of equation (6). -
These possgibilities are eliminated by the irrotationality condition,
which controls and limits the lateral veriation of velocity in the
flow field. Thus, the isolated airfoil limiting solution is actually -
produced by the combination of irrotationality, continuity, Bernoulli's
equation, equation of state, and boundary conditions in equation (10).
The condition of completely irrotational flow is not, however, abso-
lutely necessary for a limit solution. Rotational flows characterized,
for example, by almost any function of v on the right-hand side of
equation (1) would yield limit solutions, at least for small values
of the function {rotation). The equations of motion in the form
analyzed appear, in fact, to offer a convenient means of including
rotational effects and effects of changes in the equation of state.

Finally, some remarks are made concerning the possible relation of
the actual shock wave on an airfoil in the mixed subsonic-supersonic
(supercritical) flow regime to the potential limit solution. As noted
in references 5 and 14, the observed shock on an airfoil in the super-
critical flow regime appcars to be formed as a result of the ever-present
random pregsure disturbances, some of which travel upstream at relative
gonic speed and pile up to form the downstream boundary, roughly speaking,
of the local supersonic region. In other words, shock would not arise
in a completely gteady flow; and an increase of free-stream Mach number
(a nonsteady effect) would presumably permit attainment of the potential-
limit solution. Although it seems possible that the notential-limit
solution might in some cases limit the local Mach number at which the
shock stabilizes, the maximum local Mach numbers corresponding to the
potential limits of this paper are for the most part greater on normal .
airfoils than those at which the shock stabilizes. Hence, the actual
shock normally prevents the potential-limit solution from being reached.
There appears to be no direct relation between the two phenomena.
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The question as to what would happen if the potential limit
solution could be attained in some manner on an isolated airfoil
can perhaps best be answvered by again congidering the converging-
diverging channel. In the channel the limit solution can not only
be reached (point C in fig. 20) but the second solution (branch CD)
can also exist. The mechanism that produces this second sclution is
the over-all pressure difference across the channel, applied thirough
external means. This pressure difference, when sufficiently increased
causes the shock, which hag formed in the local supersonic regions
in a manner similar to that on an isolated airfoil, to move down-
stream from the minimum section as a more or less normal shock
spanning the channel. The region of the channel between the minimum
section and the shock containg the second solution. Thus, the
upper branch solution CD can exist as a contvinuation of the lower
branch solution BC with no shock in the neighborhood of the limit
solution, point €. The fluid acceleration of equation (39) is
finite at the limit point which occurs at the minimum section
dA/dx = 0. In the isolated airfoil case the analogous occurrence of

4/¥Ca dn 0

ds = ds
(equation (25)) leads to the conjecture whether & similar transition

through the potential limit solution could not be effected at such a
point. In normal isolated airfoil operation the only mechanism
available for increasing the local Mach number is to move the airfoil
Taster. Ths over-all ambient pressure remains atmospheric. The fact
that in the channsl the necessarily asymmetrical boundary ccnditions
of over-all pressure difference (the same chammel area at beginning
and end of the channel is assumed) can produce an asymmetrical flow
pattern containing & transiticn through the limit solution would
therefore indicate that on an isolated airfoil subject to the
symnetrical boundary condition of constant atmospheric pressure a
transition through the potential limit solution could not be eifected.
Artificial means, however, such as the proper combination of airfoil
shape and suction slot in the airfoil might "pull the shock through"
in a local region near the airfoil and thus effect a transition
through the potentiel limit solution to operation on an upper branch
of the basic curves, (fig. 3).

& potential limit golution at a point where
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APPENDIX B

THE COMPRESSIBILITY CORRECTION RULE OF GREENE

The compressibility correction rule of Greene (referecnce 2)
can be derived as foliows: For a fixed airfoil ordinate Y, the
right-hand side of equation (7) may be written for both comprzsssible
and inccmpressible flows to yield the equation

~V ~
| " pvad o vl

Jl Bl r jl Oov

dvy (41)

L

in which, for a given airfoil, both the compressible and incompress-
ible curvature functions C and C4 eatigfy the same boundary
conditions,

The Greene rule corresponds to the equation, equivalent to
equation (18) of reference 2:

(‘V M. ll-\ 1y -1
! pV=+ dv = i = dvy (42)
.Jl M Ll W
&7 5
v
i pdv = loge V = (Vi-1) = loge Vi (43)
J1 ¢

For o = 1.4, the integral in equation (43) can be evaluated in
closed form. The result is:

5 ~Y
| P -12.5
I pdv = J 1= 0.2 M2 (v3-1)17"" av
s wHaAn O i
siGeREes Rt |
= ag) [i‘ (p) = F (@O: (44)
where
M,
G (M) = z (45)
(1 + 0.2 M;2)

PR TR L ]
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¥ (9) = S_i-’-‘-s—z‘ﬂ (cos 49 + 9 cos 29 + 23) + 59 (45)
0.2 Mo
sin @, = —:‘:\/:j'-:M-_g::: (47)
N1+ 0.2 M2

sin @ = V sin @,

The functions G (My) and F (9) are plotted in figures 22 and 23,
respectively.

Transition from equation (41) to (42) requires a certain corre-
spondence between the comprcssible curvature function C and the
incomvrossible curvature function C4. In order to see this corre-
spondence, considor the integrands of equation (41) plotted against
v and vy, respoctively (fiz. 24(a)). A one-to-one correspondence
between v and vy can evidently always be established such that
the elemental arecas making up the integrals in equation (41) are
equal, as indicated by the cross-hatched elements in figure 24(a);
thus,

23 vi-1
E.Y_..J.Z.dv = L A

Cv T Civy s (49)

Aside from cases where a large local supersonic region cxists next

to the airfoil, in which case it is possible for the curvature to

have a maximum away from the airfoil, as indicated by the dotted

line in figure 24(b), the compressible curvature function C and

the incompressible curvature function C4 Dboth start from the same
value Cg at the alrfoll and decrease monotonically (for chordwise
stations near that of maximum velocity) to zero at y = or

v =Vvy = 1. Hence, a one-to-one corrcspondence between v and vj
can bo established in figure 24(b) such that C = C; at corresponding
v and vy. If this one-to-one correospondence is the samc as that

by which equation (49) was obtaincd from (41), the curvature functions
cancel out of equation (49), which can then be integrated to yield
equation (42).

In gencral, the two correspondences just discussed are not the
same., In this case the correspondence in v and vy leading to
equation (49) can be regerded as rctained and a compressible curva-
ture function agsumed that is obtained by this correspondcence from
the incompressible curvaturo function (indicated by the dot-dash
line in figure 24(b)). This procedure again yields equation (42)
from (49) by cancelation of C and (i and integration. The com-
pressible curvature function thus set up satisfieg the boundary
conditions and constitutes the essential approximation of Greens's

¥ -
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rule (in addition to the neglect of the curvature of the potential
lines involved in equation (7)).

The potential limit curve corresponding to Greene's rule is

that for which

= = o (50)
dvi
or, by equation (49)
pv = 1 (51)
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TABLE I
BASTIC CALCULATIONS BY CURVATURE METHOD FOR POSITIVE VELOCITY INCREMENTS

Loge v 0.04 0.08 0.12 0.16 0,20 0.24 0.28 0,32 0.36 0.40 0.44
V=1 0,0408)0,0833|0,1275| 0,1735| 0,2214| 0,2712 0,3231 0,377 0,4333| 0. 4918| 0,5527
K ¥Cs
Curvature function, C = C(H)ﬁ
(o] 1,0 | 0.0404|0.0816|0,1237| 0,1666|0,2104| 0.2552 0.3008] 0.3474 0.3950| 0.4435| 0, 4931
1,2 .0452| ,0915) ,1388/ .1871) ,2366| .2872 .3390 ,392 .4462| .5017| ,5585
1.4 | .os23| .10s9| .1609| .2173| .27s2| .3345 .3954 .4579] .5220 .5878| .6554
1,6 | .0642| ,1302| ,1882| ,2681| ,3401| ,4143 ,4906] ,5692 ,6501] ,7335 ,B8l194
1.8 .0910| ,1850| .2823| .3829| ,4869| .5945! ,7057| .8209 .9400| 1.0633|1.1908
1,9 .1287( ,2624] ,4010| ,5447| ,6938| ,8485 1,0088 1,1753] 1,3479! 1,5271(1,7130
4 120 «0369( .0744| .1124] ,1509| ,1899] .2294 .2694] ,3099 ,3509| .3923| , 4341
1.2 .0414| .0834| ,1262| ,1697| ,2139| .2588 .3045 ,3508 .3980| ,4458| .4943
1.4 .0479( .0966( .1465( .1974| .2493| .3023 ,.3564( ,4116 ,4678( ,5252| ,5837
1,6 .0687( ,1189| ,1807| .2441| .3091| .3757 .444l] .5142 ,5861| .6598] ,7354
1.8 .0833| ,1692| .,2580| ,3496( ,4440( .5416 .6423| ,7463] .8536| .9644|1,0788
1,9 .1179| .2402| ,3669| .4982| ,6343] .7752 .9212/1,07250 1.2294|1.3919|1,5604
S 150 .0348( .0699| .1055| .1413| ,1774 .2137 .2503| .2871] ,.3240| .3610| .3981
1.2 .0390| ,0785| ,1186( .1591| ,2001| .241§ .2835| ,3259f .3686| .4117| ,.4551
1.4 .,0452] ,0€11) ,1378/ ,1853] ,2337! .2828 ,3327 .3834 ,4349] .4871] .5401
1,6 «0554| ,1121| ,1702[ ,2295| ,2902 ,.3523 .4159| ,4808 ,5472| .6151| .6844
1.8 .0787| .1597| ,2433| .3294| ,4181| .5096( .6039| ,7011] .8012| ,9045(1,0109
1,9 .1114| ,2268| ,3463| .4701| ,5982| ,7308 .8681/1,010 |1.1576|1,3101(1,4680
-6 1.0 .0321)| .0643| ,0965 .1287| ,1609| .1931 .2251| ,2569 .2883| .3195| ,3501
1.2 .0359| ,0721| ,1085| .1452| ,1820| ,.2189 ,2558| ,2928 .3298| .3666| ,4032
1.4 .0415| ,0837| ,1263| .1695| ,2131| ,2571 .3015| .3463| .3914] .4368| ,4825
1,6 0511 ,1032| ,1563| ,2104| ,2655| .32168 ,3788| ,4369| ,4960| .5562| .6173
1.8 .0726| .1472| ,2240| .3030| .3842| ,4676| .5535| .6418| ,7326| .8259| .9219
1,9 .,1028| ,2093| ,3194| .4332| .5510| .6727| .7986| ,9289|1,0636|1,2029|1,3471
o7 120 .0285| .0568( ,0846| .1122( ,1392| .1657 .1915| .2165| .2405| .2634| .2850
1.2 .,0319| .0637| ,0955| .1269| ,1581| .l1888/ ,2192| ,2489| ,2779| .3061| .3333
1.4 .0370| .0741| .1114| ,.1487| ,1860| .2232 .2603| ,2972| .3337| .3699| ,40S55
1.6 .0455( .0915( .1382( ,1855| .2332| .2814 .3301| ,3792( ,.4286( ,4784( .5284
1,8 .0647| .1310| ,.1989| ,.,2685| ,3398| .4128| ,4876| ,5642| ,6426| ,7229| .8051
1,9 «0917| .1865| .2843| .3853]| .4895| .5970, .7080| ,.8226| .9409/1.0631]|1.1892
«8 1,0 .0237| .0466| ,0686( .0896| ,1093( .1276| .1442| ,1588| .1711| .1807| .1870
1,2 .0267| ,0525| ,0888( ,1020| ,1253| .1473| .1679| .1868| ,.2038| ,.2186| ,2307
1.4 .0308| .0612| ,0912| .1205| ,1490( .1767| .2033| .,2287| .2527| .2751| .2955
1.6 .0380| ,0760| ,1140| .1517| ,1893| .2266| ,.2634| ,2998| .3355| .3705| .4041
1.8 .0541| ,1092| ,1657| .2223| ,2802| .3390| .3987| .4594| .5209| .5832| ,6464
1,9 20769 ,1561| ,2375] ,3212| ,4072| ,4957 ,5866) ,6801] ,7763! ,8752| .9769
.85 1,0 .0206| ,0400( .0580| .0743( .o0888| .1009| .1102| ,.1162| .1177| .1135| ,.1008
2 Lt .0231| .0452| ,0660| .0854| .1031| .l187| .1320| ,1423| .1492| .1518| ,1488
1.4 .0268| .0529( ,0779| .1018| ,1243| .1452| ,1642| ,1810( ,.1952| .2064| .2139
1e6 .0331| ,0659| ,0980| .l296( ,1603| .1901| .2188| ,2461| .2719| .2959| .3179
1.8 .0474) ,0952( ,1436{ .1923| ,2414{ .2907| .3404| ,3903| ,4403| ,4904| .5405
1,9 .0674| .1365| .2073| .2798| ,3541| .4300| ,5078| ,5875| ,.6691| .7527| .8382
.9 1,0 .0167| .0315( .0441| ,0538( ,0600| .0615| .0557( ,0348| .0475| .0880( ,1251
1.2 .0187| .0358| .0507| .0832( ,0725| .0779| .0779| .0698] .0453| .0534| .1016
1.4 .0219( ,0422| ,0608| ,0773| .0918| .1027| .1097| .1116| .1067| .0911| ,0514
1.6 .0270| ,0831| .0779| .1010| .1224| ,1416| .1584( ,1721| .1821| .1878| .1879
1,8 .0390| .0777| .1162| .1543] .1919| .22 .2651] ,300 . 5347] ,3678| ,.3995
1.9 205561 11211 .1696| ,2279| ,28711 .3472 24700] .5327| ,5962| ,6606
loge v)n
urv n =
(o} ature function, C C EF_ETV "

o] 1,0 . 040 .0808| .1218( .1633| ,2052| .2475| .2903| .3335| ,3772| .4214| .4660
5 1,0 .0347| .0693| .1039| .1384| .1729| .2072| .2413| ,2752| .3088| .3421| .3750
.8 1.0 .0319| ,0636| .0950| .1261| ,1568| ,.1870f .2168| ,2460| .2744| .3021| ,3290
ol 1,0 .0283( ,0561| .0833| .1098| ,1355| .1603| .1B42| ,2068| .2282| .2481]| .2664
.8 1.0 .0235| .0460| .0675| ,0876| ,1062| ,1231] .1381] ,1508| .1809| .1679| .1712

NAT IONAL ADV ISORY
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TABLE I - CONTINUED

266

0,48 o.56 |o.6e0 |o.64 |o.e8 |o0,72 |0,76 |0.80 |0.84 |0.88
0.6161 |0.6820|0,7507|0,.8221|0,8965(0.9739|1,0544|1.1383|1,2255(1,3164|1,4109
Yc,
c v=1 W)
urvature function, C = CB(V_-T
1.0 |0.5438[0.5955[0.6484|0.7023 [0,7575]|0.8138/0,8713|0,9301|0,9902(1,0516(1,1143
1.2 | .6166| .6761| .7370| .7994| .8632| .9286| .9955|/1,064 [1.1343|1.2062(1.2798
1.4 | .7247| .7958| .8689| .9439[1,0209(1,0100|1.1812|1,2646|1,3502|1,4383|1.5286
1.6 | .9078| .9990(1.0929|1.1896(1,2893|1.3920(1.4978/1,6070(1,7194|1.8354(1,9549
1.8 [1.3227 |1.4593 |1.6006|1.7469 |1,8983 |2,0550|2.2172|2,3852|2.5589|2,7590|2,9252
1,9 |1,9058|2.1059 |2.3136|2.5291 [2,7527 |2.9848|3,2256(3,4758|3.7350| 4.0045(4.2839
1,0 | .4764| .5190| .5620| .6053| .6489| .6927| .7366| .7808| .8249| .8691| .9132
1.2 | .5435| .5933| .6438| .6949| ,7467| .7989| .8518| ,9052| .9590(1,0132|1,0678
1.4 | .6433| .7041| .7659| .8289| .8931| .9583(1,0247[1,0922(1,1607|1.,2305|1,3012
1.6 | .8129| .8924| ,9738(1.0573|1.1428|1.2305(1.3202|1,4123(1.5064|1,6030|1.7017
1.8 |1.1968[1.3187|1,4446|1,5745 [1,7087 |1,8472|1,9900|2,1378|2,2901|2,4476|2.6099
1.9 [1,7350[1.9159(2.1035|2,2979 [2,4994|2,7082|2,9247|3,1493|3,3817/3,62303,8730
1.0 | .4352]| .4722| .5092| .5459| .5823| .6185| .6554| .6878| .7222| ,7559| .7887 J i
1.2 | .4989| .5428| .5869| .6312| .6755| .7199| .7641| ,8083| .8522( .8959| ,9391
1.4 .5938 | .6482| .7033| .7590| .8153| .8722| .9297| ,9876(1.0460|1.1048(1,1640
1.6 | .7553| .8276| .9015| .9770(1.0540(1,.1326|1.2127|1,2945|1.3778(1.4629|1,5495
1.8 |1.1206(1.23371.3502|1.4703 |1,5941|1,7216(1.8531|1,9887(2,1283|2,2724|2,4207
1,9 |1,6316]1,8010(1,9764|2,1581 |2,3463 [2.5412|2,7430|2,9523(3.1687]3.3933]3.6257 wig
1.0 | .3802| .4097| .4383| .4661| .4928| .5183| .5425| ,5652| ,5861| ,6052) .6221
1.2 | .4396| .4756| .5111| .5461| .5805| .6140| .6466| ,6783| ,7088| .7380| .7657
1.4 | .5283| .5742| .6203| .6662| .7121| ,7579| .8034| .B8486| ,8934| .9378| .9817
1.6 | .6793| .7423| .8063| .8711| .9369(1.0035/1.0710|1,1395|1,2086(1.2787 1.3496
1.8 |1.0206 [1.12201.2263(1.3335 |1,4437 [1,5571|1.6735(1,7934(1,9165[2.0433 12,1755
179 [1.4962[1,6504]1.8100/1,9751 [2,1459 |2,3226|2,5054|2,6948]|2,8904 13,0932 |3.3030
1.0 | 3237 .3404| .5548| .3668| .3759| .5819| .5842( ,3822[ ,3754( .3629 . 5435
1.2 | .3594| .3843| .4076| .4293 | .4491| .4668| .4821| .4949| .5047| .5113| .5145
1.4 | .4406| .4749| .5084| .5408| .5722| .6023| .6310| ,6581| .6836| .7074 .7292 ‘
1.6 | .s787| .6291| .6797| .7302| .7808| .8314| .8817| ,9321| ,9821|1,0321(1,0819
1.8 | .8893| .9754[1.0636(|1.1539 [1.2462 [1,3408(1,4376|1,5369 |1,6384|1,7427|1,8495
1,9 |1.3194(1,4538(1.59261.7360 |1,8841 |2,0371)|2.1951|2,3586 |2,5272|2.7019 2,.8824
1.0 | .1894| .1868| .1780| .1603 | .1285| .0600( .1160( ,1874| ,2484| .3060 L3619
1.2 | .e398| .2452| .2462| .2418| ,2309| .2108| .1771) ,1169) ,0957| .1936 .2876
1.4 | .3139| .3297| .3427| .3524| .3584| ,3602| .3569| .3476| ,331%3| ,3059| .2684
1.6 | .4376| .4695! ,5000| .5291 | .5565| .5822( .6059| ,6276| ,6472| 6581 .6797
1.8 | .7105| .7754| .8411| .9077 | .9752|1.0436|1.1129(1,1834|1,2549(1.3278 1.4020
1,9 {1,0815[1,1891 [1,2998|1,4138 [1,5311 [1,6519/1,7764]1,9047 2,0371(2.1739|2,3151
1.0 | 0725 .0475| 1135 ,1645| ,2129| .2609| .3095] ,3589[ ,4091| .4601 5117
1.2 .1382 | ,1158| .0675| .0895| .1575| .2154| .2707 .3255| .3804| .4357| .4913
1.4 | .2169| .2145| .2050| .1858| .1513| ,0810| .1228| ,2063| ,2763 .3417| ,4050
1.6 | .3376| .3547| .3688| .3795| .3862| .3886( ,3858| ,3772| .3617 .3377| .3020
1.8 | .5907| .6408| .6908| .7406| .7904| .8401| .8897| ,9393| .9889|1,0390 1,0896
1,9 | .9258[1.0156[1.1076]1.2019 [1.2987|1.3980[1.5000]1,€050 |1,7129 1,8244[1.9393
s O o D040 | 2446 2870 | 3512 .3772| .4248[ ,4738| .5240| 5748 .64
1.2 | .1445| .1898| .2335| .2790| .3262| .3753| .4261| .4785| ,5322| ,5869 .6425
1.4 | .0785| .1402| .1917| .2426 | .2944| .2476| .4023| ,4586) .51€3| .5751 .6349
1.6 | .1807| .1605| .1251| .0281 | .1397| .2144| .2815| ,3463| ,4105| .4748 .5392
1.8 | .4297| .4571| .4835| .5078 | .5299| .5496| .5668| ,5815| .5936| .6034 .6110
1.9 | 72s9| .7914| ,8585| .9265| ,9956[1.0659]1.1375[1,2107]1,2855]|1.3625 1,4417
- loge v\" NAT |ONAL ADV ISORY

Chrvatures Eunios ol cﬁ(ro—;-v COMMITTEE FOR AERONAUT ICS
1.0 | .5112] .5568| .6030| .6497| .6969| .7447| .7930| .8420| ,8914) .9415 .9922
1.0 | .4074| .4393| .4706| .5012| .5311| .5600| .5879| ,6147| ,6402 .6644| .6870
1.0 | .3sas| .3796| .4031| .4253| .4459| .4648| .4818| .4967| ,5092| .5192| ,5263
1.0 | .es28| .2972| .3091| .3185| .3247| .327%( .3263| ,3204| ,3089 .2905| .2631 2
10| Z1e09| .1629| .1480| .1207| .0642| .0988| .1659| ,2223| ,2751| .3263 .3766
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TABLE I - CONCLUDED
BASIC CALCULATIONS BY CURVATURE METHOD FOR POSITIVE VELOCITY INCREMENTS - CONCLUDED

Logg V 0.92 0.96 1.00 1.04 1.08 1.12 1.16 1.20 1.24 1.28 1,32
NVaSRY 1,5093(1.6117|1,7183|1,8292|1,9447(2,.0649|2.1899|2,3201|2,4556|2.5966|2,7434
Mo ] n YCa
v- 1\"
Curvature function, C = C‘(V-L)
0 1,0 |1,1784]1,2439(1,3108
1.2 |1,3553(1,4326(1,5118
1.4 (1,6215|1,7168|1,8148
1.6 (2,0781(2,2051 [2.3361
1,8 |3.1182|3,3180 (3,5249
1,9 ]4,574) |4.8752|5.1879
.4 1.0 .9572 [1,0010(1,0444(1,0875[1,1201]1.1721|1.2133|1,2539|1,2035|1.3321|1.369¢C |
1.2 |1,1228/1,1780(1,2334(1,2889(1,3446|1.4002|1,4558|1,5113(1,5665|1,6216|1,6763
1.4 [1.3730(1.4458(1,5197|1.5945|1,6703|1,7471|1.8248(1.9033|1,9828|2.0632|2.1444
1,6 |1,8029(1,9064|2,0123|2,1208|2,2317|2,3452|2,4613|2,5802|2,7018|2,8261|2,9535
1.8 (2,7777)2.9508(3,1296|3,3141|3,5048(3,7016|3.9047(4.1146|4,3313|4,5551|4.7864
1,9 [4.1321(4.4008|4.6794|4.9680|5,2675|5,5779|5.8996|6,2334|6,5794|6,9382| 7,3104
«5 1,0 .8205( ,8511| .B8805| ,9086( ,9351| ,9600| ,9831|1,0045|1,0240|1,041€|1,0576
1.2 .9818(1,0241(1.0656(1,1064|1,1464(1,1854|1,2236(1,2608|1,2970(1,3323|1,3667
1.4 (1,2235(1,2832(|1,3431(1,4033|1,4636(1,5241|1,5847|1,6455|1,7065|1,7677|1.8294
1,6 |1,6378(1,7278|1,8194|1,9128(2,0080|2,1051|2,2039|2,3048(2,4078|2,5131|2,6207
1,8 [|2,5737]2.7314|2,8940]3,0616(3,2345/3,4128/3,5967|3,7866|3,9826) 4.1849] 4.3940
1,9 [3.8665]|4.1160(4.3746]4.6424(4,.9201|5,2079|5.5062/5,8152[6,1358|6,4681(6,8129
.6 1,0 .6368| ,6491( ,6586( ,6653| ,6690( ,6696( ,6671| ,6614| ,6527| ,6414| ,6277
1.2 .7920( ,8165| .8394| ,.8603| .8795| .8968| .9123| ,9261| ,9386| .9501| .9610
1.4 (1,0249/1,0675(1,1095/1,1508(1,1914|1,2315|1.2712(1,3105|1,3499|1.3895|1,4298
1.6 |1,4213(1,4939(1,5675|1,6420(1,7176|1.7944|1.8725(1,9523|2,0337|2,1172|2,2031
1,8 [2,3076|2,4456|2,5876(2,7339|2,8847(3,0401|3,2004|3,3660(3,5371|3.7139|3,8971
1,9 |3.5202|3,7451[3.9781|4.2192[4,4693|4.7284|4.9968|5,2753 |5.5642(5,8638|6.1750
ot/ 1,0 .3435| .3158| ,2759| .2185| ,1206| ,1521| .2544| ,3311
1,2 .5137| ,5088| ,4994| ,4851( ,4657| ,4407| ,4098| ,3725
1.4 .7491| ,7670| ,7831| .7972| .8098( .8211| ,.8315| ,8415
1,6 |1,1316/1,1813(1,2310(1,2811(1,3316(1,3829(1.4353|1, 4892
1,8 |1,9592|2,0719(2,1878|2,3071 |2,4302|2,5573|2,6886|2,8246
1.9 [3,0692|3,2626|3,4628|3,6701(3,8851/4,1081)|4,3392|4,5794
.8 1.0 4170 .4714| .5851| ,5778| ,6293
1.2 .3341| .3970| .4574| .5159| ,5725
1.4 .2120( ,1107| .1699| .2629 | ,3419
1.6 .6929| ,7043| .7142| ,7229( ,7311
1,8 (1,4781|1,5561(1,6363(1,7190|1,8048
1,9 [2,4611(2,6123(2,7690(2,9314(3,1002
.85 1,0 .5635| .6153| ,6666
1.2 .5472| .6031( .6586
1.4 .4672| ,5284| ,5888
1.6 .2530( ,1756| .0859
1,8 (1,1410|1,1936(1,2478
1,9 [2,0582]2,1814(2,3092
.9 1.0 .6780( .7293
1.2 .6983 | ,7542
1.4 | .7560| .8126 NAT IONAL ADVISORY
1.6 | .6038( .6684 COMMITTEE FOR AERONAUTICS
1.8 .6168| .6214
1,9 [1,5236]|1,6085
- og vyl
Curvature functiom, C = Ca(l__s__
loge V
[4) 1,0 [ 1.0435] 1. U654 1, T4R0]
.5 1.0 «7078| .7269| .7439| .7586| .77101 .7804 ,7879| .7921| ,7932| .7913| .7862
.6 1.0 .8303| .5308! .5275| .5201| ,5081| .4911| .4€86| .4399| ,4044| .3607| .3067
il 1,0 «2230| .1604| .0534| .1€94| ,2702| .3374| .3970| .4512
.8 1,0 | ..,4262] .4751| .5228| .5604| ,6143
Loge V 1,26 1.40 1,44 1,48 1552 1.5€ 1,60 1,64 1.68 1.72
=l 2,8962]3,0552(3,2207| 2,3929(3,5722| 3.7588| 3.9530| 4,1552| 4.3656| 4.5845
Yo l n ¢Yca
- = v - 1\n
Curvature function, C Ca(——” —
.4 1,0 |1,406111.4413|1,4753|1,5081(1,5398/1,5705| 1.6003|1,6295| 1,6585| 1.687€
1,2 |1,7308|1.7848|1,8386|1,8920|1,9453|1,9985| 2,0518|2,1055| 2,1597| 2.2148
1.4 | 2,2265|2.3096|2,3937|2,4788(2,5652|2,6528] 2,7420| 2,8329| 2,9258| 3,021C
1,6 |3.0838(3.2172|3,3539|3.4939|3,6375|3.7849] 3,9363| 4,0921| 4,2524| 4. 4175
1,8 | 5,0253(5,2721]5.5273| 5,7909|6.0636|6,3458| 6,6373| 6,9397| 7,2522| 7,5761
1,9 |7,6965]8,0068]8,512118.9429]9.3399/9.853710, 33<4pp B8353111,3540011, 8923
s 1,0 [1,0719[1.0846]1,0964[1,.1074[1,1181
1.2 |1,4005|1,4338]|1,.4668|1,5000|1,5337
1.4 |1.8916|1,9546|2.0186|2,0838(2,1507
1,8 | 2,7309|2,8433|2.9599| 3,0792|3,2022
1.8 | 4.6102(4,8336|5,0648| £,3040|5.5518
1.9 | 7.1707|7.5417|7.9269| 8,3265|8,7415
W
2 Ooge V
Curvature function, C ca<}32;-v
o5 1,0 | 0,7780|0,7662|0,7531| 0,7371|0,7185

36
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BASIC CALCULATIONS BY CURVATURE METHOD FOR NEGATIVE VELOCITY INCREMENTS

TABLE II

NACA TN NoO.

Loge V -0.04 |-0.12 |-0.20 |-0.28 |-0.36 |-0.44 |-0.52 |-0.50
v-1l -0.039210.1131 [0, 18130.2442 [0 3023 (0. 3560[0.405510. 4512
Mo n JYC,y
=3\N
Curvature function, C = C ;TT%
[¢) 1.0 [0.0396[0.1165[0.1904[0.2615 [0.3299|0,3958| 0.4592 0.5203
1.2 .0443| .1299( .2118| .2902 | .3654| .4374| .5065| .5729
1.4 .0510| .1434 | .2429| .3320( .4169| .4979| .5751| .6488
1.6 .0624| .1820| .2950| .4018| .5029| .5986| .6892| .7751
1.8 .0880| .2555| .4124( .5592 | .6967| .8256| .9465|1.0599
1.9 .1243| .3597| .5787| .7824 | .9721(1.1486|1.3131|1.4663
4.4 1.0 .0366| .1077| .1767| .2437 | .3086| .3716| .4325| .4915
1.2 .0406| .1199| .1963| .2700 | .3411| .4097| .4759| .5396
1.4 .0469| .1377| .2248| .3082 | .3883| .4650| .5385| .6090
1.8 .0573| .1676| .2724| .3720 | .4667| .5568| .6425) .7241
1.8 .0808| .2348| .3796| .5156| .6434| .7635| .8666| .9829
1.9 .1140| .3302| .5317| .7195| .8947|1.0580/1.2105]|1.3528
S 1.0 .0345| .1022| .1684| .2330| .2958| .3570| .4165| .4743
1.2 .0385| .1138| .1869| .2578| .3265| .3930| .4574| .5197
1.4 .0444| .1307| .2138| .2939| .3710| .4451| .5185| .5852
1.6 .0541| .1588| .2587| 3540 | .4448| .5316| .6144| .6934
1.8 .0764| .2223| .3598| .4892 | .6112| .7261| .B8344| .9366
1.9 .1078| .3123| .5033| .6815| .8480|1.0034|1.1487|1.2845
6 1.0 .0319( .0953[ .1577| .2191| .2793| .3382| .3958( .4521
1.2 .0356| .1059| .1748| .2420| .3076| .3716| .4337| .4942
1.4 .0411| .1215| .1996| .2753| .3486| .4196| .4882| .5545
1.8 .0501| .1475| .2409| .3306| .4166| .4990( .5780| .6537
1.8 .0706| .2060| .3340| .4550| .5693| .6774| .7797| .8764
1.9 .0996| .2890| .4662| .6319| .7870| .9322(1.0681(1.1954
ol 1.0 ,0286| .0862| .1438| .2012 | .2581( .3143]| .3697( .4240
1s2 .0319| .0958]| .1591| .2217| .2834| .3441| .4035| .4617
1.4 .0367| .1096| .1812| .2513| .3199| .3868| .4520| .5153
1.6 .0448| .1327| .2179| .3004| .3801| .4571| .5314| .6031
1.8 .0631| .1848| .3005| .4106| .5152| .6147| .7092| .7991
1.9 .0890| .2587| .4180| .5675| .7080| .8400| .9639|1.0804
.8 1.0 .0243| .0746| .1261| .1784| .2312| .2840| .3366| .3887
1.2 ,0270| .0825| .1389| .1957| .2526| .3092| .3653| .4207
1.4 .0312| .0941| .1574| .2205| .2831| .3450| .4069| .4658
1.6 .0380( .1135| .1880| .2613| .3331| .4033| .4718| .5384
1.8 .0532| .1568| .2566| .3525| .4447| .5331| .6179| .6991
1.9 .0749| .2186| .3544| .4828| .6042| .7190| .8675( .9301
.85 | 1.0 ,0216| .0669| .1147| .1641| .2145| .2654| .3164| .3673
1.2 .0240| .0740| .1260| .1793| .2334| .2877| .3419| .3958
l.4 .0275| .0841| .1422| .2010| .2601| .3186| .3771| .4349
1.6 .0335| ,1010| .1689| .2359! ,3030| .3691| .4341| .4978
1.8 .0469| .1389| .2286| .3156| .4000( .4817| .5605| .6366
1.9 .0859| .1928| .3137| .4287| .5382| .6422] .7412) .8352
9 1.0 ,0182| .0580| .1015( .1475| .1952| .2441| .2935| .3431
1.2 .0203| .0638| .1109| .1603| .2112| ,2630| .3152| .3675
1.4 .0230| .0722| .1242| .1782| .2334| .2891| .3450| .4007
1.6 .0279| .0860| .1460| .2072| .2688| .3305| .3918| .4524
1.8 .0390| .1170| .1946| .2712) .3466| .4205| .4927| .5630
1.9 .0548| .1612| .2639| .3628| .4580| .5494| .6371| .7212
NAT IONAL ADV ISORY
COMMITTEE FOR AERONAUTICS
Loge V -0,08 |-0.16 |-0.24 |-0.32 |-0.40 |-0.48 | -0.56 |-0.64
vV =1 -0,0769}0.1479 [-0. 2134 [-0.2739 -0, 3297 |-0. 3812}-0,4288|-0.4727
Mo n 1YCa
Curvature function, C = Ca(lggi-z)n
1oge v
(0] 1.0 | 0,0793]0,1569] 0.2331] 0.3078] 0. 3812] 0.4533| 0,5241] 0.5936
5 1.0 .0693| .1382| .2068| .2750| .3425| .4094| .4757| .5412
.6 1.0 .0643| .1291| .1940| .2590( .3237| .3882| .4523| .5160
ot/ 1.0 ,0580| .1172| .1775| .2384| .2998| .3612| .4226| .4839
.8 1.0 .0496| .1020| .1563] .2122| .2692{ .3269| .3852| .443

1328




592

NACA TN No. 1328

BASIC CALCULATTONS BY CURVATURE METHOD FOR NEGATIVE VELOCITY INCREMENTS = CONCLUDED

TABLE II - CONCLUDED

Loge V
V-1

-0.68
—0,4934

~0,.76
0. 5323

-0.84 | =0.92
+0,5683-0,6015

-1.00 [ -1.08
0.632110, 660

-1,16
-0, 6865

-1,24
~0.7106

Mo ] n

T

=N
Curvature function, C = C, %1:%)

0,5792
.6364
.7192
.856€

1,1664

1,6090

0.6361
.6976
.7864
. 9339

1,2664

1,7422

0.6909|0,7439
.7564( ,8129
.8508| ,.9123
1,0073(1,0770
1,3603(1,4487
1,8663|1,9823

0,7951[0.8445
.8673| ,9197
.9713|1,0277
1,1434(1,2065
1,5319(1,6102
2,0905/2,1915

0.8924

. 9702
1.0819
1.2666
1,6840

2,2860

4

.5487
.6012
.6767
.8017
1,0830
1,4857

.6041
.6605
. 7416
«8757
1.1774
1,6099

.6577| ,7097
<7177 7730
.8039| .8638
.9462)1,0134
1,2662(1.3501
1,7259]1,8344

.7601| .8089
.8264| ,8779
.9212| ,9765
1,0775|1,1387
1.4292|1,5039
1,9358/2,0308

8563
09277
1,0296
1,1972
1.5745
2,1198

. 5304
«5800
.6512
.7688
1,0329
1.4114

5880
.6383
.7148
.8408
1,1239
1,5302

.6379| ,6894
.6947| ,7492
.7759| .B348
9095 ,.9753
1,2097|1,2909
1,6413(1,7454

7393 .7877
.8020| ,8530
.8914| ,9459
1,0381(1,0982
1,3676|1, 4402
1,8428]1,9342

«8348
«9024
« 9985
1,1557
1,5089
2,0198

.8

5070
.5529
.6185
.7263
. 9680
1.3147

. 5605
.6099
.6803
.7958
1,0546
1,4285

.8126( ,6633
.6652( ,7188
+7400( ,7976
.8624| ,9263
1,1366|1.2144
1,5314|1,6298

.7127| ,7607
.7708| .8213
.8532| ,9069
.9875|1,0463
1,2881(1,3579
1,7221(1,8088

4774
.5185
.5769
.6721
.8845
1,1899

«529
5739
6366
.7386
.9688
1,2929

.5807| ,6306
.6279| ,6805
.6945| .7506
.8026( ,8642
1,0430(1,1165
1,3898]|1, 4810

,6793| .7269
.7316| .7814
.8050| ,8577
.9234( ,9806
1,1865|1,2530
1,5668(1,6477

«8078
«8702
« 9587
1,1028
1l.4242
1,8903

<7733
8298
. 9087
1,0355
1,3166
1,7240

.44
4753
5243
. 8032
7770
1.0271

. 4910
.5288
5816
. 6680

»5409| ,5900
.5813( ,6327
.6375| ,6919
+7269| ,7859
.9229| ,9913
1,2057)1,2878

.6%80| ,6851
.6830| .7320
.7449| ,7965
.B8430| ,8982
1.0567(1,1194
1,3656(1,4393

o 7011
«7798
«8466
«9516
1.1794
1,5091

] 0 0 1 1 0 e 0 b |t e e e s e [ e e e [ e e

«86

. 4178
« 4491
.4918
«5601
«7100
29246

.5172| ,5658
5534 ,6042
.6025| ,6561
.6800( ,7376
.8486( ,9141
1,0903|1,1671

.6135( ,6603
65381 ,7026
«7084| .7594
7935 | .8477
.9769)1,0374
1,240111,3095

« 7062
«7502
«8091
« 9003
1,0958
1,3755

VOO LNVO|VODOADENOORARLNOOODADNONODALNO|ODOLNO|[ODASNO|OmOLNO

1 1 40 1 1 i e 0 e

ja © 0o 0o © oo o ® o o

« 8707
. 6977
. 8790

«4908| ,5388
.5220( ,5722
«5641| ,6168
6281 .6842
.7621| .,8243
4952911,0237

.5862 | ,6328
.6215| 6699
.6684| ,7189
.7389| ,7922
.8845| ,9427

1,0913/1,1561

«878
7173
+7682
«8441

« 9989
1,2180

NAT IONAL ADVISORY
COMMITTEE FOR AERONAUTICS

1,1514
4384

57'3"£‘7§33

#7637
+8164
8946
1,0832

1,2774

=0, 72
=0,5133

=0, B0
=0, 5507

0,88 |-0.96
0, 58580, 6171

|!5a

Curvature function, C = C, %%%f_;)ﬂ

26774

38
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Figure 1.- Compressible potential flow past symmetrical airfoil.
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Figure 13,- Plot of curvature function (8).
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Fig. 19 NACA TN No. 1328 .
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Figure 20.- One-dimensional curves for converging-diverging channel analogous to curves of

A= |/pV.
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Fig. 21 NACA TN No. 1328
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Figure 24,- Correspondence between compressible and incompressible flow for
compressibility correction rule of Greene,
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