FILE COPY FOR AERONAUTICS

TECHNICAL NOTE

No. 1269

METHOD FOR CALCULATING WING CHARACTERISTICS BY LIFTING-LINE THEORY USING NONLINEAR

SECTION LIFT DATA

By James C. Sivells and Robert H. Neely
Langley Memorial Aeronautical Laboratory Langley Field, Va.

NATICNAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE NO - 1269

METHOD FOR CALCULATIING WING CiARACTERISTICS
BY LIFTING-LINE THEORY USING NONLINEAR
SECTION LIFT DATA
Py James C. Sivelle and Robert H. Neely

SUMDARY

A method is presented for calculating wing characteristics by lifting-line theory uing nonlinesr section lift data. Naterizi from various sources is combined with sone original work into the single complete method deecribed. Multhopp's systems of multipliers are employed to obtein the induced angle of attack directly from the spanwise lift distribution. Equations are developed for obtaining these multipliers for any even number of spanwise stations, and values are tabulated for ten stations along the somispan for asymmotrical, symnetrical, and antisymmetrical lift distributions. In order to minimize the computing time and to illustrate the procedures involved, simplified corputing forms containing detailed examplee aro given for symmetrical lift distributions. Similar forms for asymmetrical and sntisymetrical lift distributions, although not shown, can be roadily constructed in the same manner as those given. The adaptation of the method for use with linear section lift data is qliso illustrated. This adaptation has bsen found to require less computing time than most existing mothods.

The wing characteristics calculated from general nonlinear section lift data have been found to egree much closer with experimental data in the region of maximum lift coefficient than those calculated on the assumption of linear section lift curves. The calculations are subject to the limitations of lifting-line theory and should not be expected to give accurate results for wings of low aspect ratio and large amounts of sweop.

INTRODUCTION

The liftine-line theory is the best known and most readily applied theory for obtaining the spanwise liet dietribution of a wing and the subsequent detorminetion of the aerodynanic cheracteristics of the wing from two-dimensional airfoil data. The characteristics so dotermined are in fairly close agreement with experimental results for wings with small amounts of sweep and with moderate
to high values of aepect ratio; for this reason, this theory has aerved as the bacis for a lase part of recent acronauticul knowlede?.

The rypothesis upon which tho thecry is baced is thet a lifting wing can be ropluced by a liiting life and tict tie Incremental vortices shed along the span trail behind the wing in straieht lines in the direction of the free-stream velocity. The strength of these trafling vortices is oronortional to the rate of change oi the lift along the gean. The trailing vortices induce a velocity normal to the direction of the freo-stream velocity and to the lifting line. The eifective angle of attack of each section of the wing is therefore difforent from the gecmetric angle of attack by the amount of the engle (called the induced angle of attack) whose tangent is the ratio of the value of the induced velocity at the lifting line to the value of the free-stream velocity. The effoctive angle of attack is thus related to the lift distribution through the induced angle oi sttack. In addition, the effective angle of attack is related to the section lift coefficient according to twomimensional data for the airfoil sections incorporatel in the wing. Both relationshifs must be simultaneously satisfied in the calculetion of the lift distribution of the wing.

If the section lift curves are linear, these relationships may be exprecsod by a alngle equation which can be solved analytically. In general, however, the section lift curves are not linear, particularly at high angles of attack, and analytical solutions are not reasible. The method of calculating the syonwise lift distribution using noninear section lirt data thus becomes one of making succosesive apnroximations of the lit't distribution until one is found that simultaneously satisfles the aforementioned relationehips.

Such a method has been uscd by Wieselsberger (reference 1) for the region of maximm lift coefficient and by Boahar (reference 2) for high-subsonic epeeds. Both of theso writers used Tani's sycten of milipliers for obtaining the induced nngle of attack at ifve stations along the semispen of the wing (reference 3). Tant, however, considerod only the cese of wings with gymmetrical lift diatributions. Multhopp (reference 4), using a somewhat different mathematical treatment from that which Iani used, derived systems of muitipliers for symetrical, antioymotrical, and Ebymmetrionl lift distributions for four, eiclt, and sixteen stations along the semispan. Multhomp's derivetion, in slightly different form and nomenclature; is presented herein and tables are given for the multinliers for ton stations alone the semispan (the usual number of atations considered in meny reports in the United States).

For symmetrical distributions of wing chord and angle of attack, the multipliers for symmetrical lift distributions may be used with nonlinear or linear section lift curves. For asymmetrical distributions of angle of attack, the multipliers for asymmetrical lift distributions must be used if nonlinear section lift curves are used. If an asymmetrical distribution of angle of attack can be broken up into a symmetrical and an antis mmetrical distribution, the antisymmetrical part may bo treated separately if the section ilft curves can be assumed to be innear.

The purpose of the present paper is to combine the contributions of Multhopp and several other writers, together with some original work, into a single complete method of calculating the lift distributions and force and moment characteristics of wings, using nonlinear section lift data. Simplified computing forms are given for the calculation of symmetrical lift distributions and their use is illustrated by a detailed exampla. The adaptation of the method for use with linear section lift data is also illustrated. No forms are given for asymmetrical or antisymmetrical lift distributions inasmuch as such forms would be very similar to those given.

SYMBOLS


```
Cm wing pitching-moment coefficient (M/qSc')
a
```

q
R
free-stream dynemic preasuice $\left(\frac{1}{2} p v^{2}\right)$
Reynoles number ($\frac{\rho V c}{\mu}$ or $\frac{\rho V c^{i}}{\mu}$)
mass density
free-streain valocity
coefficient of viscosity
wing lift coefficient (I/qS)
section lift cooificient ($l / q c$)
wing lift
Boction lift
wing drag coerficient (D / qS)
wing profile-drag coefficient
wing induced-drag coefficient
section profile-drag coefilcient
section induced-drag coefficient
wing drag
wing pitching-moment cuefficient (M/qSc')

M wing pitching moment
$C_{2} \quad$ wing rolling-moment coefficient ($\mathrm{I}: / \mathrm{qS}$)
It wing rolling moment
$\mathrm{C}_{\mathrm{n}_{1}} \quad$ wing induced--jawing-moment coefficient
section pitching-moment coefficient about section quarter chord point
wing profile-yawing-moment coefficient
anelo or attack of any section along the bpan referred to its chord line

α_{B}	angle of attack of root section referred to its chord lins
$\alpha_{a_{s}}$	angle of attack of root section referred to its zero lift line
x_{i}	section laduced angle of atteack
α_{e}	effective angle of atiack of uny section
α_{0}	soction angie on attack for two-dimensional airfoils
$\alpha_{l_{0}}$	angle oit zero litt of any section
$\alpha_{l_{0 B}}$	angle of zero lift of root section
$\alpha_{5(L=0)}$	what aride of attack for zero litt
ϵ	geonetric angie of twist of any eection along the spen (negative if washout)
ϵ^{8}	aeroiymaio argio of taist of any section along the syen (negative j.1 washout)
ϵ_{t}	gucnetaic angle of twist of tip dection
$\epsilon_{t}{ }^{\text {P }}$	aerciynanic angle of tuist of tik seotion
e	wing lint-curve slope, per degree
ε_{0}	$\begin{aligned} & \text { section lift-curve glope, rer decree } \\ & \left(\frac{\text { mor Alimonsional lift-ourro slope }}{\text { Jidge-velocity factor }}\right) \end{aligned}$
$\cos \theta$	cocrdinate ($2 \mathrm{y} / \mathrm{b}$)
A_{n}	coefricients in triconometric erries
Fink	multirlier for induced angle of attack (esymmetrical distributions)
$\lambda_{\text {mk }}$	multiplior for induced angle of attack (symmetricel distwibutions)
$\gamma_{\text {ine }}$	multiller for inducod angle of attack (antisymmetrical dietritutions)

```
\({ }^{\eta}\) m
\(\eta_{\mathrm{ms}}\)
    mulbipler for lift, drag, and nitching-moment coefficients
        (symretrical distrihutions)
\(\sigma_{m} \quad\) multiplier for rolling- and vawing-moment coefficients
        (aspmotrical dictritutions)
    maltiplter for rolling-moment cocfficient (antisymmetrical
        distributions)
E eugovolocity factor ( \(\left.\frac{\text { Eemiperimeter }}{\text { span }}\right)\)
Suhsontpts
\(\max\) maximam value
al Value for additional lift \(\left(C_{L}=1\right)\)
b valuc for basic lift ( \(\mathrm{C}_{\mathrm{L}}=0\) )
\(\left(a_{a}\right)\) value for conetant value of \(a_{a_{s}}\)
\(\left(\epsilon_{t}{ }^{i}\right)\) value for given valuo of \(\epsilon_{t}{ }^{\prime}\)
```

THPORETICAL DEVELOEMBNT OT METHIOD
Lift Distrituation

The methods of Tani (referonce 3) and Multhopp (reference 4) for detomining tho induced minge of attack aro fundamentally the same, differing only in the mathomatical treatment. The method presented herein is essentiauly the eame as that given by Multhopp. Tn the iollowine derjvation the spanwise lift distribution is erpressed as the trigonometric series

$$
\begin{equation*}
\frac{c_{2} c}{b}=\sum A_{n} \sin n \theta \tag{1}
\end{equation*}
$$

as in reference 5, where θ is defined by the relation $\cos \theta=\frac{2 y}{b}$. It mar be noted that cach coofficient A_{n}, as used herein, is equal
to four times the correspencing coefficient in reference 5. The inluced argle of attack (in cegrees) at a point y_{1} on the lyting line ia

$$
\begin{equation*}
\alpha_{i}=\frac{180}{\pi} \frac{b}{8 \pi} \int_{-b / 2}^{b / 2} \frac{\frac{c\left(\frac{c_{2} c}{3}\right)}{y_{1} \cdots y}}{d y} d y \tag{2}
\end{equation*}
$$

This Integral (In dfferent nomenclatire) was given by Prandtl in referonce E. If equation (1) is suostituter into equation (2) and the variahle is changed from to to θ, the induced angle of attack at the gonenal point 9 kecowes, according to refenence 5 ,

$$
\begin{equation*}
\alpha_{1}=\frac{130}{4 \pi \sin \theta} \quad n A_{n} \sin n \theta \tag{3}
\end{equation*}
$$

The prcblom of obtaining the induced angle of attack is thus reduced to cne of dotemaining tho coofticlenbs of the trigonometric serien.

Tie lift distrivution (equation (l)) mey te epproxinated by a fint te urigomometric sories of r-1 tems winse, for subsegrent usace, r is asemot to se even. The values of $\frac{c_{2} \text {. }}{b}$ at the equally epacel points $\theta=\frac{m \pi}{m}$ in the rance $0<\theta<\pi$ are oxpressed as

$$
\begin{equation*}
\left(\frac{c_{2} c}{b}\right)_{m}=\sum_{n=1}^{r-1} A_{n} \sin n \frac{m \pi}{r} \tag{4}
\end{equation*}
$$

whore $m=1,2,3, \ldots, \quad r-1$. Conversely, if the values of $\frac{c_{2} c}{b}$ are know at each point the coofficients A_{n} of the finite series mey be found by kamonic analysis as

$$
\begin{equation*}
A_{n}=\frac{2}{r} \frac{r-1}{m=1}\left(\frac{c}{b}\right)_{m} \sin n \frac{m \pi}{r} \tag{5}
\end{equation*}
$$

If equation (5) is substituted in equation (3), a double summation is obtained for the induced angle of attack as

$$
\begin{aligned}
a_{1}(\theta) & =\frac{180}{4 \pi \sin \theta}\left(\sum_{n=1}^{r-1} n \sin n \theta\right)\left[\frac{2}{r} \sum_{m=1}^{r-1}\left(\frac{c_{2} c}{b}\right)_{m} \sin n \frac{m \pi}{r}\right] \\
& =\frac{180}{4 \pi r \sin \theta} \sum_{m=1}^{r-1}\left(\frac{c_{2} c}{b}\right)_{m} \sum_{n=1}^{r-1} n\left[\cos n\left(\theta-\frac{m \pi}{r}\right)-\cos n\left(\theta+\frac{m \pi}{r}\right)\right]
\end{aligned}
$$

If the induced angle of attack is to be determined at the same points θ st mich the load distribution is known, that is, at the points $\theta=\frac{k \pi}{r}$, then

$$
\begin{align*}
a_{1_{k}} & =\frac{180}{4 \pi r \sin \frac{k \pi}{r}} \sum_{m=1}^{r-1}\left(\frac{c_{7} c}{b}\right)_{m} \sum_{n=1}^{r-1} n\left[\cos n \frac{(k-m) \pi}{r}-\cos n \frac{(k+m) \pi}{r}\right] \\
& =\sum_{m=1}^{m-1}\left(\frac{c_{3} c}{b}\right)_{m} \tag{6}
\end{align*}
$$

where

$$
\begin{equation*}
\beta_{m k}=\frac{180}{4 \pi r \sin \frac{k \pi}{r}} \sum_{n=1}^{r-1} n\left[\cos n \frac{(k-m) \pi}{r}-\cos n \frac{(k+m) \pi}{r}\right] \tag{7}
\end{equation*}
$$

It can be shown that, if $\cos \phi \neq 1$,

$$
\sum_{n=1}^{x-1} n \cos n \phi=\frac{r \cos (r-1) \phi-(r-1) \cos r \phi-1}{2(1-\cos \phi)}
$$

If $\phi=0$, a numerical series is obtained

$$
\sum_{n=1}^{r-1} n=\frac{r(r-1)}{2}
$$

By use of these relationships in equation (7) it is found that, when $k \pm m$ 1s odd

$$
\begin{equation*}
\beta m k=\frac{180}{4 \pi r \sin \frac{k \pi}{r}}\left[\frac{1}{1-\cos \frac{(k+m) \pi}{r}}-\frac{1}{1-\cos \frac{(k-m) \pi}{r}}\right] \tag{8a}
\end{equation*}
$$

when $k=m$

$$
\begin{equation*}
\beta_{\mathrm{mk}}=\frac{180 r}{8 \pi \sin \frac{k \pi}{r}} \tag{8b}
\end{equation*}
$$

and when $k \pm m$ is even and $k \neq m$

$$
\begin{equation*}
\beta_{\mathrm{mk}}=0 \tag{8c}
\end{equation*}
$$

For a symmetrical lift distribution

$$
\left(\frac{c_{2} c}{b}\right)_{m}=\left(\frac{c_{2} c}{b}\right)_{r-m}
$$

and

$$
\alpha_{i_{k}}=\alpha_{i_{r-k}}
$$

so that the summition for $\alpha_{1_{k}}$ needs to be made only from 1 to $r / 2$

$$
\begin{equation*}
\alpha_{1_{k}}=\sum_{m=1}^{r / 2}\left(\frac{c_{2} c}{b}\right)_{m} \lambda_{m k} \tag{9}
\end{equation*}
$$

where, when $k \pm m$ is odd

$$
\begin{align*}
\lambda_{m k} & =\beta_{m k}+\beta_{r-m, k} \quad\left(\text { for } m \neq r_{/}^{\prime 2}\right) \\
& =\frac{180}{2 \pi r \sin \frac{k \pi}{r}}\left[\frac{\cot \frac{(k+m) \pi}{\sin (k+m) \pi}}{r}-\frac{\cot \frac{(k-m) \pi}{r}}{\sin \frac{(k-m) \pi}{r}}\right] \tag{10a}\\
\lambda_{m k} & =\beta_{m k} \quad(\text { for } m=r / 2) \\
& =-\frac{180}{\pi r\left(\cos \frac{2 k \pi}{r}+1\right)} \tag{10b}
\end{align*}
$$

when $k=m$

$$
\begin{align*}
\lambda_{m k} & =\beta_{m k} \\
& =\frac{180 r}{8 \pi \sin \frac{k \pi}{r}} \tag{10c}
\end{align*}
$$

and when $k \pm m$ is even and $k \neq m$

$$
\begin{equation*}
\lambda_{\text {mk }}=0 \tag{10d}
\end{equation*}
$$

For an antisymmetrical lift distribution

$$
\left(\frac{c_{7} c}{b}\right)_{m}=-\left(\frac{c_{7} c}{b}\right)_{r-m}
$$

and

$$
\alpha_{1_{k}}=-\alpha_{1_{r-k}}
$$

In this case the summation for $\alpha_{i k}$ needs to be made only from 1 to $\left(\frac{r}{2}-1\right)$ since $\left(\frac{c_{2} c}{b}\right)_{r / 2}=0$; then

$$
\begin{equation*}
a_{1_{k}}=\sum_{m=1}^{\frac{r}{2}-1}\left(\frac{c_{2} c}{b}\right)_{m} \gamma_{m k} \tag{11}
\end{equation*}
$$

where, when $k \pm m$ is odd

$$
\begin{align*}
\gamma_{m k} & =\beta_{m k}-\beta_{r-m, k} \\
& =\frac{180}{2 \pi r}\left[\frac{1}{\sin ^{2} \frac{(k+m) \pi}{r}}-\frac{1}{\sin ^{2} \frac{(k-m) \pi}{r}}\right] \tag{12a}
\end{align*}
$$

when $k=m$,

$$
\begin{align*}
\gamma_{m k} & =\beta_{m k} \\
& =\frac{3.80 r}{8 \pi \sin \frac{k \pi}{r}} \tag{12b}
\end{align*}
$$

and when $k \pm m$ is even and $k \neq m$

$$
\begin{equation*}
\gamma_{m k}=0 \tag{12c}
\end{equation*}
$$

Multipliers can thus be calculated so that the induced angle may be readily obtained by multiplying the known values of $\frac{c_{2} \subset}{b}$ by the appropriate multipliers and adding the resulting products.

The multipliers are independent of the aspect ratio and taper ratio of the wine. Tables I and II present values of β_{mk}, and λ_{mb} and $\gamma_{m k}$, respectively, for $r=20$. Similar tables for $\frac{4 \pi}{180} \lambda_{m k}$ and $\frac{4 \pi}{180} \gamma$ mk are given in references 7 and 8 , respectively, but no derivation is given therein. Tables for $\frac{2 \pi}{180} \beta_{\mathrm{mk}}, \frac{2 \pi}{180} \lambda_{\mathrm{mk}}$, and $\frac{2 \pi}{180} \gamma_{\mathrm{mk}}$ are given in reforence 4 for values of $r=8,16$, and 32. An inspection of tables I and II shows that positive valves occur only on the diegonel from upper left to lower right and that almost half of the values are equal to zero. The multipliers β_{mk} and $\lambda_{\text {mk }}$ may be used with either nonlinear or linear section lift data whereas the multipliers for $\gamma_{m k}$ may be used only with linear section lift data.

```
The method of determining the lift distribution becomes one of successivo neproximations. For a given ceometric angle of attack, a distribution of \(c_{l}\) is assumed from which the load distribution \(\frac{c_{i} c}{b}\) is obtained. The induced angle of attack is then determined by equation (6), (9), or (11) through the use of the appropriate maltipiiers and subtracted from the gemetric angle of attack to give the efeoctivo anglo on a'tack at each spariwise station. From section data for the appropriate airpoil section and local Reynclds number, values of \(c_{2}\) are read whtch correspond to the eifoctive ancle of attack of each section. If these values of \(c_{7}\) do not ag.ee with those originaliy assumed, a socond assumption is made for \(c_{2}\) and the process is repeated. Further assumptions are made until the assumed values of \(c_{2}\) are in agreement with those obtained from the soction data.
```


Wing Characteristics

Once the lift distribution of a wing has been determined, the main part of tho problem of calculating the wing characterictics is completed. The inducad-drag and induced-yaring-moment coefficients are entirely dopendent upon the lift diatribution and it is assumed that the aection profile-drag and pitching-moment coofficients are the same functions of the lift coefficient at each section of the wing as those dotermined in two-dimensional tests.

The calculation of each of the wing coefficients involves a spanwise integration of the distribution of a particular. function $f\left(\frac{2 y}{b}\right)$. This integration can be performed numerically through the use of additional sets of multipliers which are found in the following manner.

NACA TN NO. 1269

If

$$
f\left(\frac{\partial V}{Z}\right)=f(\cos \theta)=\sum A_{n} \sin n \theta
$$

then

$$
\begin{aligned}
\int_{U_{-1}}^{l} f^{\prime}\left(\frac{2 y}{\partial}\right) d\left(\frac{2 y}{b}\right) & =\int_{0}^{\pi}\left(\sum A_{2} \sin n \theta\right) \sin \theta d \theta \\
& =\frac{\pi}{2} A_{1}
\end{aligned}
$$

Since the values of $f\left(\frac{2 y}{v}\right)$ are detemined at the poirts $\theta=\frac{m \pi}{r}$, A_{1} can be found by harmonic analysis as in equation (5)

$$
A_{1}=\frac{2}{r} \sum_{m=1}^{r-1} f\left(\frac{2 Y}{b}\right)_{m} \sin \frac{m \pi}{r}
$$

Therefore

$$
\begin{align*}
\int_{-1}^{1} f\left(\frac{2 y}{b}\right) d\left(\frac{2 y}{b}\right) & =\frac{\pi}{r} \sum_{m=1}^{r-1} f\left(\frac{2 y}{b}\right)_{m} \text { sin } \frac{m \pi}{r} \\
& =2 \sum_{m=1}^{r-1} f\left(\frac{2 y}{b}\right)_{m} \eta_{m} \tag{13a}
\end{align*}
$$

where

$$
\eta_{\mathrm{m}}=\frac{\pi}{2 r} \sin \frac{m \pi}{r}
$$

If the distribution is symmetrical, $f\left(\frac{2 I}{b}\right)_{m}=f\left(\frac{2 \eta}{b}\right)_{r-m}$ and

$$
\begin{equation*}
\int_{-1}^{1} f\left(\frac{2 y}{3}\right) d\left(\frac{2 y}{b}\right)=2 \sum_{I n=1}^{r / 2} f\left(\frac{2 y}{i}\right)_{m} \eta_{\mathrm{ms}} \tag{133}
\end{equation*}
$$

where

$$
\begin{array}{ll}
\eta_{\mathrm{ms}}=2 \eta_{\mathrm{m}} & \left(\mathrm{~m} \neq \frac{x}{2}\right) \\
\eta_{\mathrm{ms}}=\eta_{\mathrm{m}} & \left(m=\frac{r}{2}\right)
\end{array}
$$

The moment of the dist ibution $f\left(\frac{2 y}{b}\right)$ can bo found in a similar
memer.

$$
\begin{align*}
\int_{-1}^{1} f\left(\frac{2 y}{b}\right)\left(\frac{2 y}{b}\right) d\left(\frac{2 y}{b}\right) & =\int_{0}^{\eta^{\pi}}\left(\sum_{n} \sin n \theta\right) \sin \theta \cos \theta d \theta \\
& =\frac{\pi}{4} A_{2} \\
& =\frac{\pi}{2 r} \sum_{m=1}^{r-1} f\left(\frac{2 y}{b}\right)_{m} \text { sin } \frac{2 m \pi}{r} \\
& =4 \sum_{m=1}^{r-1} f\left(\frac{2 y}{b}\right)_{m} \sigma_{m} \tag{14a}
\end{align*}
$$

where

$$
\sigma_{m}=\frac{\pi}{8 r} \sin \frac{2 \pi r}{r}
$$

If the distribution is entisymonetrical, $f\left(\frac{2 y}{b}\right)_{m}=-f\left(\frac{2 y}{b}\right)_{r-m}$

$$
\begin{equation*}
\int_{-1}^{1} f\left(\frac{2 v}{b}\right)\left(\frac{2 y}{b}\right) d\left(\frac{2 y}{b}\right)=4 \sum_{m=1}^{\frac{r}{2}-1} f\left(\frac{2 y}{b}\right)_{m} \sigma_{m a} \tag{14b}
\end{equation*}
$$

where

$$
\sigma_{\mathrm{ina}}=2 \sigma_{\mathrm{m}}
$$

Values of $\eta_{m}, \eta_{m g}, \sigma_{m}$, and $\sigma_{m a}$ are given in table III for $r=20$.

Wing lift coefiicient. - The wing lift coefficient is obtained by means on a senwise integration of the lift distribution,

$$
\begin{aligned}
c_{I} & =\frac{1}{S} \int_{U-D / 2}^{b / 2} c_{i}^{c} d y \\
& =\frac{A}{2} \int_{-1}^{1} \frac{c_{2} c}{b} d\left(\frac{2 y}{b}\right)
\end{aligned}
$$

If the lift distribution is asymmetrical

$$
\begin{equation*}
c_{L}=A \sum_{m=1}^{r-1}\left(\frac{c_{1} c}{b}\right)_{m} n_{m} \tag{15a}
\end{equation*}
$$

If the lift dictribution is gymmetrical

$$
\begin{equation*}
c_{L}=A \sum_{m=1}^{r / 2}\left(\frac{c_{2} c}{b}\right)_{\mathrm{m}} \eta_{\mathrm{mas}} \tag{15b}
\end{equation*}
$$

Induced-dras coefricient. - The sention induced-drae coofficient is equal to the product on tie section lift ccefficient and the induced angle of atteck in radians,

$$
c_{d_{1}}=\frac{\pi c_{2} \alpha_{1}}{180}
$$

The ving induced-irag coefficient is obtained by muans of a spanvise integraion or the section inuuced-drag coefficient multiplied by the local choid;

$$
\begin{aligned}
c_{D_{1}} & =\frac{1}{S} \int_{-i / 2}^{b / 2} \frac{\pi c_{2} c_{i}}{10 c} d y \\
& =\hat{2} \int_{-1}^{1} \frac{c_{2} c}{b} \frac{\pi c_{1}}{180} d\left(\frac{2 y}{b}\right)
\end{aligned}
$$

For asymmetrical lift distributions

$$
\begin{equation*}
c_{D_{i}}=\frac{\pi A}{180} \sum_{m=1}^{r-1}\left(\frac{c_{2} c}{b} a_{i}\right)_{m} \eta_{m} \tag{16a}
\end{equation*}
$$

For symnetrical lift dictributions

$$
\begin{equation*}
C_{D_{1}}=\frac{\pi A}{180} \sum_{m=1}^{r / 2}\left(\frac{c_{1} c}{b} \alpha_{i}\right)_{m}{ }^{7} m s \tag{16~b}
\end{equation*}
$$

Profile-drag coefficient. - The eection profile-drag coefficient can be obtained fron section data for the aypropriate airfoil soction and loosl "eymold number. For each spanise station the profiledrag coofficiont is read at the section lift coofeicient proviously detemined. The ving profilo-drag coefficient is then obtained by mens 0 a a sparvise jntegretion of the section maile-drag coefacient multiplica $\mathrm{y} y$ the local chord:

$$
\begin{aligned}
C_{D_{0}} & =\frac{1}{S} \int_{U-b / 2}^{b / 2} c_{d_{0}} c d y \\
& =\frac{1}{2} \int_{-1}^{1} c_{d_{0}} \frac{c}{c} d\left(\frac{2 y}{b}\right)
\end{aligned}
$$

For asjrmetrical lift distributions

$$
\begin{equation*}
c_{D_{0}}=\sum_{m-1}^{r-1}\left(c_{d_{0}} \frac{c}{c}\right)_{m} \eta_{m} \tag{17a}
\end{equation*}
$$

or for symetricen liit distributions

$$
\begin{equation*}
c_{D_{0}}=\sum_{m=1}^{r / 2}\left(c_{d_{0}} \frac{c}{c_{m}}\right)_{m a} \tag{17b}
\end{equation*}
$$

Pitchinc moment cooficient. - The soction nitching-moment coefficient about its quarter-chord point can be obtained from section data for the appropriate airfoil section and local Reynolde number. For each spanwise station the pitehing-moment coerticient is read at the section lift coefficient previously datermined and then transferred to the wing reference point by the equation

$$
\begin{array}{r}
c_{m}=c_{m_{c} / 4}-\frac{z}{c}\left[c_{i} \cos \left(\alpha_{s}-\alpha_{j}\right)+c_{d_{0}} \sin \left(\alpha_{s}-\alpha_{j}\right)\right] \\
-\frac{z}{c}\left[c_{i} \sin \left(\alpha_{s}-\alpha_{j}\right)-c_{d_{0}} \cos \left(\alpha_{s}-\alpha_{i}\right)\right] \tag{18}
\end{array}
$$

where x end z are measured iron the wing reference point to the quarter-chord point of the section under cossidenation and upward an libackward forces and disteacos are taken as poaitive. The seciion oitching-moment coejfictent about its acrodynamic center may be used instead of $c_{\text {rach }} / 4$, in which cose x and z aro measured to the section aerodymanic center. The term $c_{d_{0}} \sin \left(x_{s}-\alpha_{i}\right)$ may usually bo reglocted. The wing fitching-rment coefficient is obtained ty the spanwiee integretion:

$$
\begin{aligned}
C_{m} & =\frac{1}{S c^{2}} \int_{-b / 2}^{b / 2} c_{m} c^{2} d y \\
& =\frac{1}{2} \int_{1}^{1}\left(\frac{c_{m^{2}}^{2}}{\mathrm{c}^{2}}\right) d\left(\frac{2 y}{b}\right)
\end{aligned}
$$

For asymnetrical lift djetributions

$$
\begin{equation*}
c_{m}=\sum_{m=1}^{r-1}\left(\frac{c_{m} c^{2}}{c c^{2}}\right)_{m} \eta_{m} \tag{19a}
\end{equation*}
$$

For symmetrical lift distribuifons

$$
\begin{equation*}
c_{m}=\sum_{m=1}^{r / 2}\left(\frac{c_{m} c^{2}}{c c^{i}}\right)_{m} \eta_{m s} \tag{19b}
\end{equation*}
$$

Bolling-ncment coerficient. - The roling-moment coefficient is obtained by means of a spanwise integration

$$
\begin{align*}
c_{l} & =-\frac{1}{s b} \int_{-b / 2}^{b / 2} c_{l} c y d y \\
& =-\frac{A}{4} \int_{-1}^{1} \frac{c_{2} c}{b} \frac{2 y}{b} d\left(\frac{2 y}{b}\right) \\
& =-A \sum_{m=1}^{r-1}\left(\frac{c_{l} c}{b}\right)_{m} \sigma_{m} \tag{2ca}
\end{align*}
$$

For an antisymmetrical lift distribution

$$
\begin{equation*}
c_{l}=-A \sum_{m=1}^{\frac{r-1}{2}}\left(\frac{c_{2} c}{b}\right)_{m} \sigma_{m_{a}} \tag{20b}
\end{equation*}
$$

Induced-yawing-moment coefficient.- The induced-yewingmoment coefficient is due to the moment of the induced-drag distribution

$$
\begin{align*}
c_{n_{i}} & =\frac{1}{S b} \int_{-b / 2}^{b / 2} \frac{\pi c_{2} c \alpha_{1}}{180} y d y \\
& =\frac{A}{4} \int_{-1}^{1} \frac{c_{2} c}{b} \frac{\pi \alpha_{1}}{180} \frac{2 y}{b} d\left(\frac{2 y}{b}\right) \\
& =\frac{\pi A}{180} \sum_{m=1}^{r-1}\left(\frac{c_{2} c}{b} \alpha_{1}\right)_{m} \sigma_{m} \tag{21}
\end{align*}
$$

The induced-yawing-moment coefficient for an antisymmetrical lift distribution is equal to zero and has little meaning inasmuch as the lift coefficient is also zero. The induced-yawing-moment coefficient is a function of the lift and rolling-moment coefficients and must be found for asymmetrical lift distributions.

Profile-yawing-moment coefficient.- The profile-yawingmoment coefricient is due to the moment of the rrofile-drag distribution,

$$
\begin{align*}
c_{n_{0}} & =\frac{1}{s b} \int_{-b / 2}^{b / 2} c_{d_{0}} c y d y \\
& =\frac{1}{4} \int_{-1}^{1} \frac{c_{d_{0}} c}{\bar{c}} \frac{2 y}{b} d\left(\frac{2 y}{b}\right) \\
& =\frac{\sum_{m=1}^{r-1}}{m^{c}}\left(\frac{c_{0} c}{\bar{c}}\right)_{m} \sigma_{m} \tag{22}
\end{align*}
$$

APPLICATION OF METHOD USING NONLINEAR SECTION LIFT DATA
FOR SYMMETRICAL LIFT DISTRIBUTIONS

The method described is aprlied herein to a wing, the geometric characteristics of which are given in table IV. Only symmetrical lift distributions are considered hereinafter inasmuch as these are believed to be sufficient for illustrating the method of calculation. The lift, profile-drag, and pitching-moment coefficients for the various wing sections along the span were derived from unpublished airfoil data obtrined in the Langley two-dimensional low-turbulence pressure tunnel. The original atioll data were cross-plotted against Reynolds number and thickness ratio inasmuch as both varied along the span of the wing. Sample curves are given in figures 1 and 2. From these plots the section characteristics at the various spenwise stations were determined and plotted in the conventional manner. (See fig. 3.) The edge-velocity factor E, derived in reference 9 for an elliptic wing, has been applied to the section angle of attaok for each value of section lift coefficient as follows:

$$
\alpha_{e}=E\left(\alpha_{0}-\alpha_{l_{0}}\right)+\alpha_{l_{0}}
$$

Lift Distribution

Computation of the lift distribution at on angle of attack of 3° is shown in table V. This table is designed to be usod where the multiplication is done by means of a slide rulo or simple calculating machine. Where calculating machines capable of performing accumulative multiplication are avallable, the spaces for the individual products in columns (6) to (15) may be omitted and tho table made emaller. (See tables VIT and VIII.) The mechanics of computing are explained in the table; however, the method for approximeting the lift coefficient distribution requires sone explanation. The initially assuaed lift-coefficient distribution (column (3) of first division) can be taken as the distribution given by the geometric angies of attack but it is best determined by some simple method which will give a close approximation to the actual distribution. The initial distribution given in table V was approximated by

$$
c_{\imath}=\frac{A}{A+1.8}\left[\frac{1}{2}+\frac{2 \bar{c}}{\pi c} \sqrt{1-\left(\frac{2 y}{b}\right)^{2}}\right] c_{l(\alpha)}
$$

where ${ }^{c} l_{2}(\alpha)$ is the lift coefficient read from the section curves for the geometric angles of attack. This equation weights the lift distribution according to the average of the chord distribution of the wing under consideration and that of an elliptical wing of the same aspect ratio and span. When the lift distributions at several angles of attack are to be somputed and after tiley have been obtained for two angles, the initiol assumed c_{l} distrfbution for subsequent angles can be more accurately estimated in the following manner: Values of downwash engle are first estimated by extrapolating from values for the preceding wing angles, and then, for the resulting effective angles of attack, the lift ccefficients are read from the section curves.

The lift coefficients in column (18) of table V , read from section lift curves for the effective angles of attaok, will usually not check the assumed values for the first appoximation. In order to select assumed values for eubsequent approximations, the following simple method has been found to yield satisfactory results. An incrementel value of lift coefficient $\Delta c_{l_{\text {in }}}$ is obtained according to the relation (numbers in parenthesis are colums in table V):

$$
\Delta c_{l_{m}}=\frac{[(18)-(3)]_{m-1}+3[(18)-(3)]_{m}+[(18)-(3)]_{m+1}}{K}
$$

where K has the following values at the spanwise stations

$\frac{2 y}{b}$	K
0 to 0.8910	8 to 10
.9511	11 to 13
.9877	14 to 16

and $[(18)-(3)]_{m}$ is the difference between the check and assumed values for the mth spanwise station. The incremental values so determined are added to the assumed values in order to obtain new assumed velues to be used in the next approximation. This method has been found in practice to make the check and assumed values converge in about three approximations if the first approximation is not too much in error.

Wing Coefficients

Computations of the wine lift, profile-drag, induced-drag, and pitching-moment coefficients are shown in table VI. Since the lateral axis through the wing reference point contains the quartorchord points of each section, the x and z distances in equation (18) are zero, and the pitching-moment coefficient of the wing is determined solely by the values of $c_{m_{c} / 4}$.

APPLICATION OF METHOD USING LIINEAR SECTION LIFT DATA
FOR SYMMETRICAL LIFT DISIRIBUTIONS

Although the method deacribed herein was developed particulariy for use with nonlinear section lift data, it is readily adaptable for use with linear section lift data with a resulting reduction in computing time as compared with most existing methods. When the section lift curves can be assumed linear, it is usually convenient to divide any symetrical lift distribution (as in reference 10)
into two narts - the additional lift distribution due to angle of attack cheages and the basic lift distribution due to aerodymamic twist. The calculation of these lift distributions is illustrated in tables VII to X for the wing, the geometric charecteristice of whick: were given in teble IV.

It should be noted that tables VII and VIII are essentially the same as taile V but are designed primarily for use with calculating machines capablo of performing accumalative multiplication. If such machines are not available, these tabies may be constructed similur to takie V to allow spaces for writing the individual proáucts.

Lift Characteristics

Two lift distributions are required for the determination of the additional and bacic lift distributions. The first one is obtalnea in table VII for a constant angle of attack $\alpha_{a_{s}}\left(\epsilon^{\prime}=0\right)$ and the second one in table VIII for the angle of attack distribution due to the aerodynomic twist $\left(\alpha_{a_{S}}=0\right)$. The check values of $\frac{c_{2} c^{c}}{b}$ (colum (18)) are obteined by multiplyine the effective angle of attack $x_{0}, \frac{h y}{}, \frac{e_{0} c}{D}$. The final approximations are entered in table JX as $\left(\frac{c_{j}}{b}\right)_{\left(a_{a_{S}}\right)}$ and $\left(\frac{c_{l c}}{b}\right)_{\left(c_{t}\right)}$.

The $\left(\frac{C_{2} c}{b}\right)_{\left(\alpha_{a_{\mathrm{G}}}\right)}$ distribution is the additional lift distribution corresponaing to a wing liet coofficient ${ }^{C_{L}}\left(\alpha_{a_{S}}\right)$ determined in table IX through the use of the multipliers 7ms. It is usually conveniont to uce the additional lift distribution $\frac{c i_{\mathrm{A}]}}{\mathrm{c}}$ corresponding to a wing lift coerficient of unity. This distribution is found by dividing the values of $\left(\frac{c_{2} c}{b}\right)_{\left(\alpha_{a_{5}}\right)}$ by $c_{\left(\alpha_{a_{6}}\right)}$. The $\left(\frac{c_{2} c}{b}\right)_{\left(\epsilon_{t}{ }^{\prime}\right)}$ dietribution is a combination of the basic lift distribution and an additional lift distribution corresponding to a wing lift coaificient $\mathrm{C}_{(}\left(\epsilon_{\mathrm{t}}{ }^{\prime}\right)$ also detormined in tablo IX. The basic lift distribution $\frac{q_{b} c^{c}}{b}$ is then determined by subtractinf, the additional lift distribution $\frac{{ }^{c} \eta_{q 1}{ }^{c}}{b} C_{L\left(\epsilon_{t}{ }^{\prime}\right)}$ from $\left(\frac{c_{\eta^{c}}}{b}\right)_{\left(\epsilon_{t}{ }^{\prime}\right)}$.

Inasmuch as the wing lift curve is assumed to be linear, it is defined by its slope and angle of attack for zero lift which are also found in table IX. The maximum wing lift coefficient is estimated according to the method of reforence 10 which ie illustrated in figuro 4 . The maximum lift coefficient is considered to be the wing lift coerificient at which some section of the wing becomes the first to reach its maximum lift, that io, $c_{l_{b}}+C_{L} c_{l_{a l}}=c_{l_{\text {mex }}}$
This value of C_{L} is mont convenientiy determined by finding the minimum value of $\frac{C_{2} \text { max }}{}{ }^{c} ?_{3}$ along the span as illustrated in table IX. ${ }^{C} l_{21}$

Induced-Drag Coofficient

The gection inducod-crag coefrecient is equal to the product of the section iff conficiont and the induced angie of attack in rediens. The lift distribution for any wing lift coefficient is

$$
\begin{equation*}
\frac{c_{3} c}{b}=\frac{c_{2 a 1} c}{b} c_{L}+\frac{c_{2}{ }^{c}}{b} \tag{23}
\end{equation*}
$$

The correaponding induced angle of attack distribution may be written ass

$$
\begin{equation*}
\alpha_{i}=\alpha_{i_{a l}} c_{I}+\alpha_{i b} \tag{24}
\end{equation*}
$$

The values of $\alpha_{i_{i l}}$ and $\alpha_{I_{b}}$ are determined in table X in the same manner as $\frac{{ }^{c} l_{i 2}{ }^{c}}{b}$ and $\frac{c_{i}{ }^{c}}{b}$ in table IX. The induced-drag distribution is therefore

$$
\frac{c_{d_{2}}}{b}=\frac{c_{2} c}{b} \frac{\alpha_{1}}{57 \cdot 3}
$$

or

$$
\begin{equation*}
\frac{c_{d_{1}} c}{b}=\frac{c_{d_{i_{a l}}}{ }^{c}}{b} c_{L}{ }^{2}+\frac{{ }^{c} d_{1_{a l b}}{ }^{c}}{b} c_{L}+\frac{c_{d_{i_{b}}}{ }^{c}}{b} \tag{25}
\end{equation*}
$$

where

$$
\begin{align*}
& \frac{c_{d_{a 1}}{ }^{c}}{b}=\frac{c_{l_{a 1}}{ }^{c}}{b} \frac{\alpha_{1_{a l}}}{57.3} \tag{26}
\end{align*}
$$

and

$$
\begin{equation*}
\frac{c_{d_{b}}^{c}}{b}=\frac{c_{2 b}^{c}}{b} \frac{\alpha_{1_{b}}}{57.3} \tag{26}
\end{equation*}
$$

The chicuration of each or these induced-drag distributions is illustratod on tuhle X together with tho mareragl intecration of each destribution to obtain tha wing inaced arag coefficient.
Proille-Dag and Fitcaing-Woust Coerficients

Tho mofile-dmok and pitching-ment coeficients for the wing doperd firnctuy won the section ata and therefore thein calculetion is the sefe whether linear or nonlinear section lift data are need. For the linear case the soction lift coerficient is

$$
c_{l}=c_{l_{a l}} c_{L}+c_{l_{\mathrm{L}}}
$$

for any wing coerficient C_{L}. Fy use of thes value for c_{2} the mofilo-amg and pitching monent coerricients are found as in table VI.

dTSCTGSTON

The charactorlatios of three wings with symmetricel lift distiributions have been calsulated by use or both nonlincar and linenr section lirtt date and are presented in figure 5 together with experinental nesults. These data wero taken from reference 11. The lift curvs calculated by use or monlinear section lift data are in ciose aqrecment wioh the experinental results over the entire range of lift coefijcients whereas those calculated by use of linoar section lift date are in agreement only over the linoar portion of the curves as would be exvocted.

It must be remembered that the methods presented are subject to the limitcotions of lilting-inne theory unon which the methods are based; therefore, the clese agreement shown in figure 5 should not bs exoccted for wings of low aspect iatio or large sweon. The use of the edge-velocity factor more or lees compencates for some of the effects or anpect ratio and, in fact, eppeare to over compensate at the larger values of aspect ratio as shown in tiguce 5 .

Additionel comparisons of calculated and experimental data are given is reference 11 for wings with symetrical lift disuributions, but vexy little comparable data are availebie for wings with asymetrical lift distributions. Such deta are very desirable in order to determine the roliapility with which calculated data may be used to predict experimertal wing cheracterictics.

Langley Monoriel Aoronautical Laboretory
National Arlvisory Commitoe for Aeronautics
Laneloy Field, Va. December 20, 2946

REFTRENCES

1. Woeclsbercor, $\mathrm{C}:$: On the Distribution of Lift ancoss the Span neer und bey ond the stall. Jour. Acro. Sci., vol. 4, nc. 9, July 1937, py. 363-365.
2. Boshar, Johr: The Netermination of Spen Load Distribution at Hitgh Speods by Use of Figh-Gpeed Wira-rumel soction Data. IINOA ACR NO. 4B2a, 194.
3. Tant, Itiro: A Simple Mothod oif Calculating the Induced Velocity of a Monoplane wing. Rep. No. 111 (vol. IX, 3), Aero. Rea. Inst., Tolyo Imperial Univ., Ale. 1934.
4. Multhor, IV: Dte Perechune der Auftuieberortoilung von Tiugingetn. Iurtrahrtfonscima Bd 15, Wr. 4, Arril 6, 1933, 20.193-169.
5. Giauert, Ho: The Elements of Aerofoil and Airscrew Theowy. omonide Univ. Press, 192'7.
6. Diontt, L.: Apheations of Modern Hydrodynemica to Aercnatice. MaCA rev. No. 116, 1921.
7. Merik, Mer M.: Caiculation of Spen Lift Distribution (Fart e). Aero. Digest, vol. 46, no. ?, Feb. 1, 1945, p. 34.
8. Munk, Max M.: Calculation of Span Lift Distribution (Pert 3). Aero. Dieest, vol. 48, no. 5, March 1, 1945, p. 98.
9. Jocec, Robert T.: Correction of the Lifting-Iine Theory for the meet of the Chord. $\mathbb{N A C A}$ TN No. 317, 1941.
10. Andorson, Reymond F.: Determination of the Characteristics oi Tarerod Wjnss. INACA Rep. Ho. $572,1936$.
11. Noely, Robert II., Bollech, Thomes V., Westrick, Gertrude C., and Grahem, Robert R.: Experimental and Calculated Characteristics or Several NACA 44 -Sicries Vings with Aspect Ratios 8, 10 , end 12 and Tuper Ratios 2.5 and 3.5. M.CA TN NO. 1270, 1947.
table i.- indiced-angle-of-attack multpliers $\beta_{m k}$ fur asymmetrical lift distribution ${ }^{2}$ $a_{1_{k}}=\sum_{m=1}^{19}\left(\frac{c_{i}{ }^{c}}{v}\right)_{m} \beta_{m k}$

		-0.9877	-0.9511	-0.8910	-0.8090	-0.7071	-0.5873	-0.4540	-0.3090	-0.1564	0		
		19	18	17	16	15	14	13	12	11	10		
-0.9877	19	915.651	-166.985	0	-7.019	0	-1.401	0	-0.486	0	-0.230	1	0.9877
-. 9511	18	-329.859	463.533	-122.749	0	-7.438	0	-1.792	0	-0.701	0	2	. 9511
-.8910	1.7	0	-180.336	315.512	-96.737	0	-7.073	0	-1.920	0	- . 819	3	. 8910
-. 3090	16	-26.3714	0	-125.246	243.694	-81.067	0	-6.680	0	-1.977	0	4	. 8090
-. 7071	15	0	-17.020	0	-97.524	202.571	-71.139	0	-6.391	0	-2.026	5	. 7071
-. 5878	14	-7.246	0	-12.604	0	-81.392	177.054	-64.735	0	-6.228	0	6	. 5878
-. 4540	13	0	-5.166	0	-10.126	0	-71.296	160.761	-60.725	0	-6.192	7	. 4540
-. 3090	12	-2.958	0	-4.022	0	-8.596	0	-64.817	150.611	-58.514	0	ε	. 3090
-. 1564	11	0	-2.241	0°	-3.322	0	-7.604	0	-60.768	145.025	-57.812	9	. 1564
\bigcirc	10	-1.468	0	$-1 . \mathrm{EO}_{4}$	0	-2.365	0	-6.950	0	-58.533	143.239	10	0
.1564	9	0	-1.153	0	-1.518	0	-2.554	0	-6.530	0	-57.812	11	-. 1564
. 3090	8	-. 810	0	-. 946	0	-2.319	0	-2.340	0	-6.288	0	12	-. 3090
. 4540	7	0	-.646	0	-. 800	0	-1.176	0	-2.192	0	-6.192	13	-. 4540
. 5878	6	$-.467$	0	-. 530	0	-. 691	0	-1.058	0	-2.092	0	14	-. 5878
.7071	5	0	-. 368	0	-.44.1	0	-. 604	0	-. 981	0	-2.026	15	-. 7071
. 3050	4	-. 261	0	-. 291	0	-.366	0	-. 528	0	-. 903	c	16	-.8090
. 8910	3	0	-. 192	0	-. 225	. 0	-. 297	0	-. 4.42	0	-. 819	17	-. 8910
. 9511	2	. 118	0	-. 130	0	-.161	0	-. 224	0	-. 361	0	13	-.9511
. 9877	1	0	-. 060	0	-. 069	0	-. 090	0	-.133	0	-. 230	13	-.9877
		1	2	3	4	5	6	7	8	3	10		2 y
		.9877	. 9511	. 3910	. 8090	.7071	. 5878	. 4540	. 3090	. 1564	0	$\frac{2 y}{\text { 2 }}$	N

[^0]table if.- induced-angle-of-attack multtpliers $\lambda_{m k}$ for symmetrical lift distributions and $\gamma_{m k}$ por antisymmetrical

muLtipliers $\lambda_{\text {mk }}$											
		0	0.1564	0.3090	0.4540	0.5878	0.7071	0.8090	0.8910	0.9511	0.9877
b		10	7	8	7	6	5	4	3	2	1
0	10	143.239	-58.533	\bigcirc	-6.950	0	-2.865	0	-1.804	0	-1.468
0.1564	9	-215.624	245.025	-67.298	0	-10.158	0	-4.840	0	-3.394	0
. 3030	8	0	-64.902	1.50 .611	-67.157	0	-9.916	0	-4.968	0	-3.768
. 4540	7	-12.384	0	-62.917	160.761	-72.472	0	-10.926	0	-5.812	0
. 5878	6	0	-8.320	0	-65.803	177.054	-82.083	0	-13.134	0	-7.713
. 7071	5	-4.051	0	-7.372	0	-71.743	202.571	-97.965	0	-17.388	0
. 8090	4	0	-2.880	0	-7.208	0	-81.434	243.694	-125.537	0	-26.635
. 8910	3	-1.638	0	-2.371	0	-7.370	0	-96.962	315.512	-180.528	0
. 9511	2	c	-1.062	0	-2.016	0	-7.599	0	-122.880	463.5,33	-329.976
. 9877	1	-0.459	0	-0.620	0	-1.491	0	-7.089	0	-167.045	915.651
$\text { MULTIPLIERS } \quad r_{m k}$											
. 1564	9		145.025	-54.237	0	-5.049	0	-1.804	0	-1.087	0
. 3090	8		-52.226	150.611	-62.477	0	-7.277	0	-3.076	0	-2.147
. 4540	7		0	-58.533	160.761	-70.120	0	-9.326	0	-4.519	0
. 5878	6		-4.136	0	-63.668	177.054	-80.701	0	-12.074	0	-6.779
. 7071	5		0	-5.410	0	-70.535	202.571	-97.084	0	-16.651	0
. 3090	4		-1.074	0	-6.152	0	-80.701	243.694	-124.955	0	-26.113
. 5910	3		0	-1.468	0	-6.775	0	-96.512	315.512	-180.145	0
. 9511	2		-. 340	0	-1.567	0	-7.277	0	-122.619	463.533	-329.742
. 9877	1		0	-. 353	0	-1.311	0	-6.950	0	-166.926	915.651

TABLE III.- WING-COEFEICIENT MULTIPLIERS

$\frac{2 y}{6}$	m	$7 m$	η_{ms}	$\sigma_{\text {m }}$	$\sigma_{\text {ma }}$
-0.9877	19	0.01229		-0.00607	
-. 9511	18	.02427		-. 01154	
-.8910	17	. 030664	-03566	-. 01589	
-. 8090	16	.04616		-. 01867	
-. 7071	15	. 05554		-. 01964	
$-.5878$	14	. 06354		-. 01867	
-. 4540	13	. 06998		-. 01589	
-. 3090	12	.07470		-. 01154	
-. 1564	11	. 07757		-. 00607	
0	10	. 07854	0.078514	0	0
.1564	9	.07757	. 15515	. 00607	0.01214
. 3090	8	. 07470	. 14939	. 01154	. 02308
. 4540	7	. 06998	.13996	.01589	. 03177
. 5878	6	. 06354	. 12708	.01867	. 03735
. 7071	5	. 05554	.11107	.01964	. 03927
. 8090	4	. 04616	.09233	.01867	. 03735
. 8910	3	${ }_{7} .030566$. 07131	. 01589	. 03177
.9511	2	. 02427	.04851	.01154	. 02308
. 9877	1	. 01229	.02457	. 00607	. 01214

NATIONAL ADVISORY COMAITTEE FOR AERONAUTICS
$035 \% 6$
16a
table IV.- GEOMEtric

$\frac{2 y}{b}$	$\frac{1}{c}$	$\mathrm{R} \times 10^{-6}$	$\frac{c}{c}$	$\frac{c}{b}$	$\frac{c}{c}$	$\frac{c^{2}}{c}$	。	$\frac{00 c}{b}$	$\left(\frac{\epsilon}{\epsilon_{\mathrm{t}}}\right)_{\text {Geom. }}$	$\begin{gathered} \epsilon \text { deg } \\ \text { Geom. } \end{gathered}$	$\epsilon^{\prime} \text {, deq }$ Aero.
0	0.200	$4 \cdot 70$	1.0000	0.1429	1.435	1.932	0.0969	0.01385	0	0	0
0.1564	.195	4.26	. 9062	. 1295	1.300	1.586	.0973	. 01260	. 0690	-. 24	-0.235
. 3090	. 188	3.83	. 8146	. 1164	1.169	1.282	. 0978	. 01138	.1517	$-.53$	--. 516
4540	. 180	3.42	. 7276	. 1040	1.044	1.022	. 0984	. 01023	. 2496	-. 87	-. 84
. 5878	.171	3.04	.6473	. 0925	. 929	. 809	. 0992	. 00917	. 3632	-1.27	-1.23
7071	. 161	2.70	.5757	. 0823	. 826	. 640	. 0992	. 00822	. 4913	-1.72	-1.6
8090	. 150	2.42	.5146	. 0735	. 739	. 512	.1007	. 00740	.6288	-2.20	-2.238
8910	. 139	2.18	. 1.654	. 0665	. 668	. 418	.1014	. 00674	. 7658	-2.68	-2.604
9511	. 129	2.02	. 4293	. 0613	. 616	. 356	. 1020	. 00625	. 8862	-3.10	-3.013
. 9877	.123	1.44	.3061	. 0437	. 439	. 181	. 1021	. 00446	. 0.698	-3.39	-3.297
For topered wings with straight-line elements from root to construction tip $\frac{c}{c_{s}}=1-\left(1-\frac{c_{t}}{c_{s}}\right) \frac{2 y}{b} \quad\left(\frac{\epsilon}{\epsilon_{t}}\right)_{\text {Geom. }}=\frac{c_{1}}{c_{s}} \frac{2 y / b}{c} / c_{s}$ ter values of $\mathrm{c} / \mathrm{c}_{\mathrm{s}}$ near tip to allow for rounding) (use volue of c / c_{s} before rounding t p)											

TABLE - CALCULATION OF LIFT DISTRIBUTION FOR_EXAMPRE_WING.

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)
$\frac{2 y}{b}$	$\begin{gathered} \alpha \\ \alpha \alpha_{s^{\prime}} e \end{gathered}$	c_{2}	$\begin{gathered} \frac{c}{b} \\ \hline \end{gathered}$	$\begin{gathered} \frac{9}{b} \\ (0 ; 1 \times(4) \end{gathered}$	$\boldsymbol{\lambda}_{\text {mk }} \times$ column (5)										$\begin{gathered} \alpha_{i} \\ -z_{1}(6) \\ +0(15) \end{gathered}$	$\left(\begin{array}{c} \alpha_{0} \\ (2)-(\mid \sigma) \end{array}\right.$	$\left\|\begin{array}{c} c_{2} \\ \text { (chech } \end{array}\right\|$
					0	1564	3090	4540	5878	7071	8090	8910	9511	9877			
0	3.00	0.51	0.442	0.073	143.239	-58.533	0	-6.950	0	-2.865	0	-1.804	0	-1.468			
					120.50	-4.29	0	-. 51	0	-. 21	0	-. 23	0	-. 11	1.88	1.12	0.464
0.1564	2.76	. 512	- 129	. 0670	-115.624	145.025	67298	0	-10.158	0	-4.840	0	-3.394.	0			
					-7.75	9.72	-4.51	0	-. 68	0	-. 32	0	-. 23	0	. 98	4.78	.532
. 3090	2.47?	. 523	. 116	. 0608	0	64.802	150.611	-67.157	0	-9.916	0	-4.968	0	-3.768			
					d	-3.95	9.17	-4.09	\bigcirc	-. 60	0	-. 30	8	. 23	. 90	L57	. 52
4540	2.18	. 518	$.1040$	$.054$	-12.384	0	-62.917	160.761	-72.472	0	-10.926	0	5.812	-			
					-. 67	,	-3.40	8.68	-3.91	0	-. 59	0	-. 31	0		. 36	. 514
. 5878	1.73	. 502	$.0924$.0463	0	-8.320	0	-65.803	177.054	82.083	0	-13.134	0	-7.713			
						-. 39	0	-3.05	8.20	-3.80	\bigcirc	-. 61	0	-. 36	. 60	2. 13	. 500
7071	1.28	472	. 0823	. 0393	-4051	0	-7.372	0	71.743	202.571	-97.965	0	-17.388	0			
					- -16	\bigcirc	-. 29	0	-2.82	7.96	-3.85		-. 68		. 65	.63	4.4
. 8090	. 80	4.439	. 0735	. 0316	0	-2.880	0	-7.208	0	-81.434	243.694	$\underline{25.537}$	0	-26.635			
					,	-. 09	0	-. 23	- 0	-2.57	7.70	-3.97	\bigcirc	- ${ }^{2}$. 25	. 419
. 8910	. 32	360	. 0665	- 0238	-1.638	0	-2371	0	-7.370	0	-96.962	315.512	-180.528	0			
					${ }^{-0} 0$	- 0	-. 06	-2016	- -18	7.7599	-2.32	2.54	-4.31			. 10	$4{ }^{12}$
. 9511	-. 29	. 281	. 0613	. 0172	- 0	${ }_{-1062}^{-102}$	\bigcirc	-2.016 -.03	0	$\xrightarrow{-7.599}$	0	$\begin{array}{\|} -122.880 \\ -2.11 \\ -2 \end{array}$	$\begin{gathered} 463.533 \\ 7.97 \\ \hline \end{gathered}$	$\begin{aligned} & -329.976 \\ & -5.68 \end{aligned}$		-. 87	. 36
. 9877					-0.459	0	-0.620	0	-1491	0	-7.009	0	67.045	915.651			
			. 04.33	. 0100	0	0	-. 01	\bigcirc	-. 01	0	-. 07	0	- 2.67	2.16	1.94	-2.33	. 268
					1.88	. 28	.30	. 77	. 60	. 65	. 55	. 42	.77	1.94			

0					143.239	-58.533	0	-6.950	0	-2.865	0	-1.804	0	-1468			
	3.00	. 498	. 2429	. 0712	- 10.20.	-4.14.7	0^{2}	- 49	0	- 20	,	$\underline{-13}$	0	10	1.62	1.39	491
0.1564					-115.624	145.025	67.298	0	-10.158	0	-4.840	0	-3.394	0			
0.1564	2.76	. 5216	1295	. 2668	-7.72	- 2.69	$\frac{-4.50}{150.611}$		$-.68$	$\frac{0}{-9.916}$	$-.32$	$-4 . \frac{0}{968}$	-23	$-\frac{0}{768}$	1.07	1.69	. 525
3090					0	-64802	150.611	-67.157	0	-9916		-4.968	0	-3768			
3090	2.47	. 524	. 1164	. 0610	0	-3.95	9.19	-4.10	\bigcirc	-.60	0	-30	\bigcirc	-. 23	. 95	1.52	. 217
					-12.384	0	-62.917	160.761	-72.472	0	-10.926	0	-5.812	0			
40	2.25	. 227	1040	. 2538	-. 67	0	-3.38	8.65	-3.90	0	$-.59$	0	-. 31	\bigcirc	.74	1.39	.517
587					0	-8.320	0	-65.803	177.054	-82.083	0	-13.134	0	-7.713			
7	1.73	. 500	. 0922	. 01463		-. 39	0	- -.05	$\underline{8.20}$	-3.80	0	-. 61	0	-. 36	. 60	1.13	. 500
					-4051	0	-7.372	0	-71.743	202.571	-97.965	0	-17.388	0			
7071	1.28	. 478	. 0823	. 0393	-. 16	0	. 29	0	-2.82	7.26	-3.85	0	-. 68	0	. 58	70	. 480
9					,	-2880	\bigcirc	7.208	0	-81.434	243.694	125.537	0	-26.635			
	. 80	1	20735	Q324		-. 09		-.23	0	-2. 64	3.20	-4.07	0	-. 86	. 62	12	443
8910					-1.638	0	-2.371	0	-7.370	0	-96.962	315.512	-180528	0			
	. 32	. 382	. 0665	. 0254	-. 04		-. 06	-20	- 19	-7599	-2.46	8.01	. 543		. 70	-. 38	.386
9511					0	-1.062	0	-2.016	0	-7.599		122880	3.533	329.976			
	-. 10	. 292	. 0613	0179	0	-. 02	6	-. 04	0	-. 24	0	-2.20	8.30	-5.91	. 28	-. 99	.312
9877					-0.459	0	-0.620	0	-1.491	0	-7.089	0	-167.045	915.651			
	- 32	. 229	. 20.37	. 0099			-. 01	0	-. 01	0	-. 07	0	-1.60	8.79	1.33	-1.79	. 228
				Σ	1.61	1.07	.95	. 74	60	S	61	. 20	- 8.89	1.33			

					143.239	-58.533	0	-6.950	0	-2.865	0	-1.804	0	-1.468			
0	3.00	. 497	. 1429	. 0710	10.17	-4.16	0	-. 49	0	$-.20$	0	13	0	. 10	1.55	145	. 497
01564					-115.62 4	145025	-67.298	0	-10 158	0	-4.840	0	-3.394	0			
0.1564	2,76	. 517	. 2295	. 0670	-7.75	9.72	-4.51	0	-. 68	0	--32	0	-. 23		2,12?	, 64	. 518
					0	-64802	150.611	-67.157	0	-9.916	0	-4.968	0	-3.768			
3090	2.47	. 522	+1264	. 0608	-	-3.94	9.16	-4.08	0	-60	0	-. 30	0	-. 23	. 91	. 56	. 521
					-12384	\bigcirc	-62.917	160761	-72.472	0	-10.926	0	-5.812	0			
	2.13	. 516	. 1040	. 0537	- ${ }^{-67}$	-8.320	$\left[\begin{array}{r} -3.38 \\ 0 \end{array}\right.$	$\begin{array}{r} 8.63 \\ -65803 \end{array}$	$\left\{\begin{array}{l} -3.89 \\ 177.054 \end{array}\right.$	-82.083	$\begin{array}{r} -.59 \\ 0 \end{array}$	$-\frac{0}{-13.134}$	$-\frac{.31}{0}$	-7.713	.24	. 39	. 517
. 5	1.73	. 500	. 0925	. 0463	-4051	-. 39	$\begin{gathered} 0 \\ -7.372 \end{gathered}$	$\left[\begin{array}{c} -3.05 \\ 0 \end{array}\right.$	$-\frac{9.20}{-71.743}$	$\frac{-3.90}{202571}$	$-\frac{0}{-97.965}$	$-.61$	$\frac{0}{-17388}$	$-.36$. 60	15	. 500
7071					-4051	0	-7.372	0	$[-71.743]$	202571	-97.965	0	-17.388	0			
	2.28	. 479	. 2823	. 0394	$-.16$	-2880	$-\frac{29}{0}$	$\frac{0}{-7.208}$	$\frac{-2.83}{0}$	$\frac{7.98}{-81.434}$	$\frac{-3.96}{243.694}$	$\frac{0}{125.537}$	$\frac{-.69}{0}$	$-\frac{0}{-26.635}$. 59	. 69	. 479
8090	. 80	-4.3	. 0735	. 0326	-1638	- 0	-2.371	-	-7.370	-2.65	$\begin{array}{r} \text { 7.944 } \\ -96.962 \end{array}$	- 315.512		-87	. 62	. 18	42
8910	. 32	. 385	. 0665	256	-. 0 L	${ }^{0} 06$	- $\frac{.06}{0}$	$\frac{0}{-2.016}$	- 0	-7.599	$\frac{-2,48}{0}$	8,08 -122.880	$+62$	329.97	. 70	38	. 386
9511	-. 10	299	. 063		0.459	$\begin{gathered} .02 \\ 0 \end{gathered}$	$\begin{gathered} 0 \\ -0.620 \end{gathered}$	$\mathrm{O}_{\mathrm{o}}^{0}$	$-\frac{0}{-1.491}$	$[--7.599$	$\frac{0}{-7.089}$	$\begin{gathered} -122880 \\ -2.25 \\ 0 \end{gathered}$	$\left.\frac{8.48}{-167045} \right\rvert\,$	915.651	.99	. 09	300
	- 3.9	224	0437	09	0	10	. 02	\bigcirc	-. 01	0	-. 07	0	-1.64	8.97			
					1.55	1.12	. 91		60		62			1.37			

table ㅍ. - calculation of wing coefficients for example wing. [$A=10.05 ; \quad \alpha_{s}=3.00$]

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
$\frac{2 y}{b}$	Multipliers η_{ms}	$\frac{\frac{c_{3} c}{b}}{(\text { Table } \bar{y})}$	$\begin{gathered} \alpha_{i} \\ (\mathrm{deg}) \\ (\text { Table } \end{gathered}$	$\frac{57.3 c_{d_{i}} c}{(3) \times(4)}$	$\begin{gathered} c_{2} \\ (\text { Table } \bar{Y}) \end{gathered}$	$\begin{gathered} c_{\mathrm{d}} \\ (\text { Section } \\ \text { dota) } \end{gathered}$	$\frac{\frac{c}{\bar{c}}}{(\text { Table } \overline{\text { I }})}$	$\frac{c_{d_{e}} c}{(7) \times(8)}$	$\left\lvert\, \begin{gathered} { }^{c} m \\ \text { (Section } \\ \text { data) } \end{gathered}\right.$	$\frac{\frac{c^{2}}{c^{\prime}}}{\text { (Table IV) }}$	$\left\lvert\, \begin{aligned} & c_{m} \frac{c^{2}}{E c} \\ & (10) \times(11) \end{aligned}\right.$
0	0.07854	0.0710	1.55	0.1101	0.497	0.0077	1.435	0.0110	-0.081	1.932	-0.156
0.1564	15515	. 0670	1.12	. 0750	.517	. 0078	1.300	. 0101	-. 081	1.586	-. 128
3090	. 14939	. 0608	. 91	. 0553	. 522	. 0076	1.169	. 0089	-. 081	1.282	-. 104
4540	. 13996	. 0537	. 74	. 0397	. 516	. 0076	1.044	. 0079	-. 082	1.022	-. 084
5878	12708	. 0463	. 60	. 0278	. 500	. 0076	. 929	. 0071	-. 085	. 809	-. 069
. 7071	.11107	. 0394	. 59	. 0232	. 479	. 0076	. 826	. 0063	-. 090	. 640	-. 058
8090	. 09233	. 0326	. 62	. 0202	.443	. 0076	. 739	. 0056	-. 092	. 512	-. 047
. 8910	. 07131	. 0256	. 70	. 0179	. 385	. 0076	. 668	. 0051	-. 092	. 418	-. 038
9511	. 04854	. 0183	. 99	. 0181	. 299	. 0076	. 616	. 0047	-. 092	.356	-. 033
. 9877	. 02457	. 0098	1.37	. 0134	.224	. 0079	. 439	. 0035	-. 091	. 181	-. 016
$\left.C_{D_{i}}=A \Sigma[2) \times(5)\right] / 57.3=0.0078$				-0078			$c_{D_{0}}= \pm[(2)$ $c_{m}= \pm[(2)$	$1 \times(9)]=$	$\begin{array}{r} 0.007 \\ -0.084 \end{array}$		

TABLE YII - CALCULATION OF LIFT DISTRIBUTION FOR ___ EXAyple_ WING; $\epsilon^{\prime}=0^{\circ}$

TABLEEIII. - CALCULATION OF LIFT DISTRIBUTION FOR_ WING; $a_{a_{8}}-0^{\circ}$.

table IX - calculation of linear lift characteristics for example wing. ${ }^{\text {a }}$

Numbers appearing in parentheses denote column numbers.

[$A=$							$a_{20}=-3.9$				
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(II)	(12)
$\frac{2 y}{b}$	Muitipliers η_{ms}		$\frac{c_{2_{O_{1}}} c}{b}$ $(3) / C_{1}\left(0_{05}\right)$	$\left(\begin{array}{l} \left.\left(\frac{c_{3} c}{b}\right)_{\left(\epsilon_{i}^{\prime}\right)}\right) \\ (\text { Table } \mathrm{IIII}) \end{array}\right.$	$\left\|\begin{array}{l} \frac{c_{010} c^{c}}{b} c_{L\left(\epsilon_{t}^{\prime}\right.} \\ (4) \times c_{L}\left(\epsilon_{t}^{\prime}\right) \end{array}\right\|$	$\frac{c_{c_{b} c}}{b}$	$\frac{c}{b}$ (Table IV)	$\begin{gathered} c_{{ }_{20_{1}}} \\ (4) /(8) \end{gathered}$	$\begin{gathered} c_{2_{b}} \\ (7) /(8) \end{gathered}$		
0	0.07854	0.1102	0.1323	-0.0029	-0.0105	0.0076	0.1429	0.926	0.053	1.421	1.477
0.1564	. 15515	. 1057	. 1269	-.0040	-. 0100	. 0060	. 1295	. 980	. 046	1.418	1.400
3090	. 14939	. 2984	. 1181	-. 0057	-. 0093	. 0036	. 1164	1.015	. 031	1.423	1.371
4540	. 13996	. 0899	. 1079	-. 0077	-. 0085	. 0008	. 1040	1.038	. 008	1.432	1.372
. 5878	. 12708	. 0811	. 0974	-. 0096	-. 0077	-. 0019	. 0925	1.053	-. 021	1.441	1.388
7071	.11107	. 0722	. 0867	-. 0111	-. 0068	-. 0043	. 0823	1.053	-. 051	1.436	1.412
. 8090	09233	. 0632	. 0759	-. 0121	-. 0060	-. 0061	. 0735	1.033	-. 083	1.418	1.453
. 8910	. 07131	. 0534	. 0641	-. 0120	-. 0051	-. 0069	. 0665	. 964	-.204	1.424	1.564
9511	. 04854	. 0412	.0493	-. 0102	-. 0039	-. 0065	. 0613	.804	-206	1.419	1.897
. 9877	. 02457	. 0232	. 0279	-.0063	-. 0022	-.004 1	. 0437	. 638	-. 09	1×412	2.361
$\begin{aligned} & c_{L\left(\alpha_{a_{s}}\right)}=A \Sigma[(2) \times(3)]=\frac{0.833}{0.0833} \\ & a=\frac{c_{L\left(\alpha_{a_{s}}\right)}}{\alpha_{o_{5}}}=\frac{1.37}{c_{I_{\text {max }}}==\text { min. value in }(12)=1} \end{aligned}$							$\begin{aligned} & c_{L\left(\epsilon_{t}^{\prime}\right.}^{\prime} \\ & \alpha_{0_{S}} 1 \\ & \alpha_{s(L} \end{aligned}$	$\begin{aligned} & =\Delta \mathbb{Z}(2)_{x} \\ & L=0)=-\frac{c_{1}(}{0} \\ & =0)=a_{i_{0}} \end{aligned}$	$x(5)]=$ $\frac{\iota\left(\epsilon_{i}^{\prime}\right)}{\underline{L}}=$ \qquad \qquad $+\alpha_{a_{s}(L=0)}$	$\begin{array}{r} -0.075 \\ -0.95 \\ 01=-2 \end{array}$	25

-

TABLEX.- CALCulation of induced - drag coefficient For EXAMPLE Wing a

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
$\frac{2 y}{6}$	Multpliers η_{ms}	$\left\{\begin{array}{l} \alpha_{\mathrm{i}\left(\alpha_{0_{\mathrm{s}}}\right)} \\ (\text { Toble } \mathrm{ZII}) \end{array}\right.$	$\begin{aligned} & a_{i_{a 1}} \\ & (3) / c_{L}\left(a_{a_{s}}\right) \end{aligned}$	$\begin{aligned} & \alpha_{i\left(\epsilon_{t}^{\prime}\right)} \\ & \text { (Toble VIII) } \end{aligned}$	$\left\{\begin{array}{l} a_{101} c_{\left\llcorner\left(\epsilon_{1}^{\prime}\right)\right.}^{(4) \times c_{1}^{\prime}\left(\epsilon_{t}^{\prime}\right)} \end{array}\right.$	$\begin{gathered} a_{i b} \\ (5)-(6) \end{gathered}$	$\frac{c_{201} c}{b}$ (Table IX)	$\frac{c_{1 b}{ }^{c}}{b}$ (Table IX)	$\frac{\frac{57.3 c_{d_{i g 1}}}{}{ }^{c}}{(4) \times(8)}$	$\left\lvert\, \frac{573 c_{d_{\text {iatr }} b^{c}}}{\text { b }}\right.$	$\frac{573 c_{d_{i b}}{ }^{c}}{b}(7)_{x}(9)$
0	007854	2.060	2.474	0.210	-0.195	0.405	0.1323	0.0076	0.3273	0.0724	0.0031
01564	15515	1.602	1.924	. 085	-. 152	. 237	. 1269	. 0060	. 2442	.0416	. 0014
3090	14939	1.377	1.653	. 009	-. 131	.140	.1181	. 0036	.1952	. 0225	. 0005
4540	13996	1.203	1.445	-. 095	-.114	. 019	. 1079	. 0008	. 1559	. 2032	. 0
5878	12708	1.162	1.395	-. 207	-. 1110	-. 097	. 0974	-.0019	. 1359	-. 0121	. 0002
7071	11107	1.218	1.463	-. 331	-. 116	-. 215	. 0867	-.0042	. 1268	-. 0248	. 0009
8090	09233	1.492	1.792	-. 550	-. 142	-. 408	. 0759	-. 0061	. 1360	-. 0419	. 0025
9910	07131	2.111	2.535	-. 830	-. 200	-. 630	. 0641	-. 0069	. 1625	-. 0579	.0043
9511	04854	3.392	4.081	-1.351	-. 322	-1.029	.0493	-. 0065	. 2012	-. 0773	. 0067
9877	02457	4.840	5.812	-1.915	-. 452	-1.4.56	. 0279	-.0041	.1622	-. 0645	. 0060
$\begin{aligned} C_{D_{1}} & =\left(\frac{A \Sigma(2) \times(10)}{57.3}\right) c_{L}^{2}+\left(\frac{A \Sigma(2) \times(11)}{57.3}\right) c_{L}+\frac{A \Sigma(2) \times(12)}{57.3} \\ & =0.0322 c_{L}^{2}-0.0003 c_{L}+0.0003 \end{aligned}$ NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS											

${ }^{\text {a }}$ Numbers appearing in parentheses denote column numbers.

(a) Lift.
Figure 1-- Variation of characteristics of NACA the al affoll with Reynolds number. (Similar curves
ploted foreach thickness ratio.)

Fig. 3b
NACA TN No. 1269

Figure 3.- Continued.

Pigure 3.- conc 2udoc.

Fig. 4

Pigure 4.- Estimation of $\mathrm{C}_{\mathrm{I}_{\text {max }}}$ for example wing. $\mathcal{C}_{\text {Lmax }}$ estimated to be 1.37 .)

(b) $K=10.05, R=3,490,000$, root section NACA 4420 , tip section NaCA 4412.
Pigure 5,- continued.

(c) $A=12.06, R=2,870,000$, root section NACA $4 \psi_{2} 24$, tip section NACA W W 12 .
Figure 5.- concluded.

[^0]: NATIONAL ADVISORY
 COMMITTEE FOR AEROWAUTICS

