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EFFECT OF LONGITUDINAL STIFFENERS ON THE BUCKLING 

LOAD OF LONG FLAT PLATES UNDER SHEAR 

By Harold Crate and Hau Lo 

SUMMARY 

An investigation was made to determine the effect of longitudinal 
stiffeners on the buckling load of long flat pl ates under shear. 
Tests were made of long flat pl ates reinforced by one and by two 
longitudinal stiffeners . A theoretical study of the buckling load of 
such plates~ made by the energy method~ is presented in the appendix. 
The results of the tests and the results of the theory are compared 
and are found to be in f a ir agreement . 

INTRODUCTI ON 

Buckling of the stressed skin of a wing under applied shear 
loads results in a reduced torsional st i ffness and a reduced aero­
dynamic fairness of the wing . Because there is danger of flutter or 
aileron reversal occurring if the tor sional stiffness of the wing is 
not maintained up to high l oads and because high-speed pull-outs may 
be difficult or impossible if reduced aerodynamic fairness causes 
premature separation of the f l ow over the wing~ it is desirable to 
determine the shear stress at which the reinforced skin of the wing 
buckles. The problem is of particular importance in the case of 
high-speed airplanes which are normally subject to flutter and 
control problems . With a view toward eliminating some of the 
problems in high-speed flight~ therefore ~ a solution to the problem 
of the shear buckling of a type of panel likely to be used in the wings 
of fast airpla~es has been sought . 

The thin wings needed for high-speed a irpl anes have thick skins 
and several shear webs . The wing panels are narrow and~ therefore , 
are reinforced by relatively few stiffeners . Accordingly ~ tests were 
made to determine the shear buckling load of long plates reinforced 
by one and by two longitudinal stiffeners. In addition, a theoretical 
solution of the problem for any number of stiffeners was made. The 
results of the tests are presented herein and are compared with the 
results of the theory . 

The symbols are defined in the appendix. 
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TEST SPECIMENS 

The specimens tested were flat plates with a length-width ratio 
of 8 reinforced by longitudinal stiffeners. The general construction of 
the tes t specimens is shown in figure 1, and the specific dimensions of 
the individual specimens are listed in table I. 

Two groups of specimens were tested. Each specimen of the first 
group had one stiffener riveted along the longitudinal center line of the 
panel. Each specimen of the second group had two longitudinal stiffeners 
of equal size riveted to the panel in order to divide the panel into three 
bays of equal width. The dimensions of the specimens of the first group 
were nominally 6 inches wide and 48 inches long. For the dimensions of 

specimens of the second group, the width was made 7~ inches in order that 

the attached legs of the stiffeners would not cover a large part of the 
width of the bays, and the length was increased to 63 inches in order that , 
at the same time, the length-width ratio should remain at a value of 8 . 

The webs of all specimens were of nominally 0.032- inch-thick 
24s-T aluminum-alloy sheet. The stiffeners were of 24s-T aluminum-alloy 
sheet bent to the shape of angles. Two angles were used for ~ach stiff­
ener , one on each side of the web, to provide symmetry about the plane of 
the web. The thickness and leg dimensions of the angles were varied to 
produce the bending stiffness desired. 

The short edges (ends) of the specimens were reinforced with angles. 
These angles were of uniform size for all specimens with one stiffener and 
were proportionally larger and of uniform size for all specimens with two 
stiffeners. These end angles were so designed that there was a margin of 
safety against failure of the angles before buckling of the web occurred. 

TEST APPARATUS AND TESTING PROCEDURE 

The specimens were tested in a jig as shown in figure 2. One part of 
this jig distributed the applied load along one edge of the web, and the 
other part picked up the reaction from the opposite edge of the web and 
transferred this reaction to a heavy supporting structure. Both parts 
of the jig were essentiall y the same, and each part consi s ted of two 
heavy steel bars bolted to each side of a steel plate which protruded 
from between the bars and to which the specimen was riveted. The large 
crose-sectional area of the bars insured that the distribution of load 
was essential ly uniform over the full length of the web . 

A portable hydraulic jack which indicated loads with standard 
testing-machine accuracy of one-half of 1 percent, was used to apply the 
load . to the specimens. 

Two dial gages graduated to 1/10000 inch were used to measure the 
shear displacement of the loaded edge of the sheet relative to the fixed 
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edge. These gages were mounted on each side of the weo at the midlength 
of the specimen. 
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The test procedure was as follows: The specimen was preloaded in 
several increments to aoout 25 percent of the estimated ouckling load, and 
the dial gages were read after each increment of load had oeen applied. 
If the dial-gage readings indicated equal movement on ooth sides of the 
wet up to the full preload, it was assumed that the jack was properly 
positioned under the specimen and the load was released. The load was 
reapplied and the dial-gage readings were taken at a numoer of loads until 
ouckles were clearly visiole in the weo. Readings were then taken less 
frequently until the specimen could sustain no further increase in load. 

ANALYSIS AND DISCUSSION 

Theoretical critical stresses.- The theoretical study of the shear 
ouckling load of a long flat plate, reinforced oy longitudinal stiffeners, 
with shear load acting at the longitudinal edges is presented in the 
appendix. Two different restraining conditions at the longitudinal edges 
are investigated - simply supported edges and clamped edges. The results 
of the theoretical study are summarized in figure 3. For each edge 
restraint condition, three separate curves are shown. The curves corres­
pond to t he plate reinforced oy one stiffener, oy t wo identical equally 
spaced stiffeners, and oy a large nunilier of identical equally spaced 
stiffeners. The three curves are essentially one with a maximum deviation 
of approximately 2 or 3 percent. The appendix points out that the curve 
for a large numoer of identical equally spaced stiffeners can oe used to 
represent, within 2 or 3 percent, the solution of the plate reinforced oy 
any numoer of identical equally spaced stiffeners . 

Each curve in figure 3 has an upper limit corresponding to the crite­
rion that the plate ouckles in such a way that the stiffeners can oe 
replaced oy simple supports. In the case of a simply supported plate with 
one stiffener, for instance , the shear ouckling coefficient k cannot oe 
increased oeyond approximately 21.4 oy increasing the stiffness of the 
stiffener. 

Experimental ouckling data.- In figure 4 are shown typical results of 
a test in the form-of~curve of shear deformation, as measured oy the 
dial gages, plotted against load on the specimen. The first part of this 
curve is linear (i.e., deformation is proportional t o load) and corres­
ponds to a constant shear stiffness for the weo. The second part aoove 
the linear part shows a gradual increase in the rate of deformation of the 
wet with load (i.e., a gradual decrease in the shear stiffness of the weo). 
Since, for all specimens tested, the stress at which the second part of the 
curve started was well oelow the yield s tress for the weo material in 
shear, it is reasormole to assume that the change in shear stiffness of the 
wet was due to buckling . Since, however, the shear stiffness changes very 
gradually, it is difficult to select consi s tent ouckl ing loads from plots 
such as figure 4j and in order that the selection oe confined to a 
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reasonably short range of l oad, the effect of a change in the shear 
stiffness of the web was accentuated in the following manner. 

Method for defining experimental critical stress.- For each specimen 
tested, the deviation of the load-deformation curve from an extension of 
the linear part of that curve was computed . This quantity was squared and 
plotted against the load on the specimen. The resulting plots of load 
against deviation squared, arranged in the order of increasing stiffness 
ratio Y, are shown in figure 5(a) for ne-stiffener specimens and in 
figure 5(b) for two-stiffener specimens . Each of the curves of the figure 
exhibits a knee which starts as soon as the deformation of the specimen is 
no longer proportional to the load. The buckl ing load corresponds to some 
point on the knee of the curve of load against deviation squared. 

Comparison of theory and experiment.- A theoretical critical buckling 
load Pcr ' based on the buckling coefficient from figure 3 and on the 

dimensions listed in table 1, is marked on each test curve of figures 5 (a) 
and 5(b) in order to provide a means of direct comparison between test 
data and theory. The subscripts s and c are used to denote whether 
the edges are simply supported or clamped. It will be noted that for 18 
of the 20 specimens the start of the knee of the test curve lies within 
or very close to one edge of the range bracketed by the two extreme 

values (pcr)s and (pcr)c ' 

Maximum stresses.- The maximum load sustained by each specimen is 
marked on the curves 'of figures 5(a) and 5(b). For both one-stiffener 
and two-stiffener groups of specimens, the load at failure tended to 
increase slightly with increase in the stiffness ratio Y. In all cases, 
failure ultimately occurred by twisting and collapse of the angl e across 
the top edge of the specimen. Since this top angle was of one size for 
all one-stiffener specimens and of another size for all two-stiffener 
specimens, the size and proportions of the longitudinal s t iffeners must 
have affected somewhat the maximum load carried by the specimen by 
restraining the top angle from twisting. 

CONCLUDING REMARKS 

The theoretical shear buckling coefficient for a long flat plate 
reinforced with any number of longitudinal stiffeners, of equal stiffness 
and equally spaced across the plate, can be obtained from a single curve 
for each of the edge conditions - simply supported or clamped. The test 
results were found to be in fair agreement with the theoretical stUdies. 

Langley Memorial Aeronautical Laboratory 
National Advisory Committee for Aeronautics 

Langley Field, Va., December 4, 1947 



NACA TN No. 1589 

APPENDIX 

THEORETICAL ANALYSIS 

Two solutions applicable to the problem of the shear buckling 
of a flat plate reinforced by l ongitudinal stiffeners are presented 
in references 1 and 2. The first of these two solutions (reference l~ 
p. 360) is an approximate solution for the case of simply supported 
edges and is obtained by the energy method . The deflection function 
used was limited to a single half sine wave across the width of the 
plate and did not completely satisfy the conditions of simply 
supported edges along the l ength of the plate . The solut ion con­
se~uently yields buckling loads which are too high and unconserVative. 
The second of the two solutions (refer ence 2) p~esents results for 
the shear buckling of a long orthogonal-anisotropic (often called 
orthotropic ) flat plate with either simply supported or clamped 
edges. These results were obtained by solving the differential 
e~uations of e~uilibrium of a slightly deflected plate element . It 
is reasonabl e to expect that t his second solution would be applicable 
to the case of a plate reinforced by numerous closely spaced and 
uniformly spaced longitudinal stiffeners . 

It was deemed desirable to obtain a more exact solution than 
given in reference 1 for a long flat plate reinforced by only a 
few longitudinal stiffeners an~ to obtain some idea of the extent to 
which the solution for an orthotropic plate in r eference 2 is 
applicable to a plate with a finite number of longitudinal stiffeners. 
Two energy solutions were therefore obtained . The first solution was 
for a plate with a few or a finite number of stiffeners and the 
second solution~ for a plate with a very large number of identical 
closely spaced stiffeners. (In both cases the stiffeners were 
assumed to have some flexural stiffness but zero torsional stiffness.) 

Two different edge conditions were invest igated . In the case of 
simply supported edges ~ the infinite series type of deflection function 
introduced by Kromm (reference 3) was used . This function not only 
provides simple support along the edges but also provides a complete 
set of functions which describe the shape of the deflected surface 
at any section across the plate. Also ~ in the case of clamped edges~ 
a complete set was used . With either function~ it is possible to 
approach as closely as des ired the exact solution to the problem. 

5 
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SYMBOlS 

width of plate 

distance from x-axis to ith stiffener 

stiffener spacing 

stiffener under consideration 

integral number of half waves across plate 

thickness of plate 

deflect ion in z-direction 

deflect ion of plate in z-direction 

deflection of stiffener in z-direction 

coordinate axes 

parameters used in deflection function of plate 

flexural stiffness per unit width of plate p 
( 

E t
3 

) 
12 (1 _ ~2) 

Young's modulus for plate material 

bending flexibility of stiffener 

bending flexibility of the ith stiffener 

resultant shear force per unit length acting in middle 
plane of plate 

number of bays across plate 

number of stiffeners 

------------~ - - - - -
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T 

1 

J a mp 

i:l.i' r i 

Iv 

~ 

v, E, ¢i' w· ·l 

F ~~)4!: ~ 
222 

00 

G = )- - m2Rm 
ffi=l 

work done ~y applied shear 

energy stored in buckled plate 

energy stored in bent stiffeners 

ratio of half wave length in x-direction to width of 

plate (~) 

ratio of stiffness of single stiffener to stiffness 
of a strip of plate of width d when all ribs are 

identical and equally spaced ( ~~) 

ratio of stiffness of ith stiffener to stiffness of 

plate t~~1) 
Kronecker delta (1 if n 0; 0 if n -f 0) 

symbol representing the sum of a trigonometric series 

which takes the value 1 if m - p is even and if 
J 

m+p is not even, - 1 if m+E is even and if 
J J 

m - p is not even, and 0 for all other cases 
J 

parameters used in deflection function of ith stiffener 

half wave length in x-direction 

Poisson' s ratio for plate material (taken as 0. 3) 

Lagrangian multipliers 

7 
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M = ~k~3( mp ) = 0 when m ± p ·mp ~ 2 2 
m - p 

is even 

sin ~ci sin P~ci 'i b b 

K t R _ m 
m - ( )2 - 2 Kin' - (mQ) 

mQ 
Sm = 2 2 (Kmt) - (mQ) 

00 

S=LmSm 
m=l 
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ex> 2mrrci 
Ti =L m(-l)Il1sm cos --

b 
m=l 

ex> 2mrrci 
WiJ L ~ cos sin 

b 
m=l 

ex> 2mrcci 
Xij =L Rm sin sin 

b 
m=l 

ex> 2mrrci 
ZiJ 

1 +L Rm = - cos 
2 b 

V' =-Y.... 
2F 

E' 
E 

=-
2F 

¢i' 
¢i 

= -
2F 

Subscript: 

cr 

m=l 

critical 

2mrrcJ 
b 

2mrcc j 

b 

2mrrc J 
cos b 

9 
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SIMPLY SUPPORTED EOOES 

Finite Number of Stiffeners 

The deflection function 

00 00 

W :2 sin :x ~ Am sin ~ + cos ~ L Bm sin ~y 
m=l m=l 

is assumed to express the buckled shape of the plate. (The coordinate 
system is shown in fig. 6.) The integer m in the deflection function 
represents the number o~ half waves across the plate, and the 
parameters Am and Bm are associated with the amplitude of the 

mth wave. The width of the plate is b and the half wave length of 
the buckle in the x-direction is A. 

In order to find the energy stored in the buckled plate Vp, 

the energy stored in the bent stiffeners Vs ' and the work T done 

by the applied shear, the following equations were used: 

which is equation (199) of reference 1, and where 
stiffness per unit width of plate; 

D 

dx 

is the flexural 

where ElIi is the flexural rigidity of the ith stiffener and ci Is 
the distance of the Ith stiffener from the edge of the plate (only 
bending energy of the stiffeners is considered and the summation is 
extended over all the stiffeners on the plate); and 

(1) 

(2b) 
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T = - F - - d.x dy l bl). av Ow 
xy Ox oy (2c) 

o 0 

wh1~h ie obtained from equation (201) of reference ~, e.nd. where Fxy 
is the resultant ehear force per unit length acting along the longi­
tudinal edge of the plate. 

It was necessary to consider only the energy and work over one 
half wave length along the length of the plate since the variation 
tn deflection is sinusoidal in that direction. 

The deflection function was substituted in equations (2) for 
energy and work, and the indicated integrations were performed with 
the following results: 

co co . 

T = -2Fxy1f ~ ~ AuPp 2 mp 2 
m - p m=l p=l 

where a value for T exists only when m ~ p is odd. 

When the buckling load ie reached, the structure is in neutlal 
equilibrium and is capable of maintaining either the flat or buckled 
form. Mathematically, this neutral equilibrium can be expresseu by 
setting the work done by the external load in deforming the plate 
equal to the sum of the energies stored in the buckled plate and in 
the bent stiffeners; that is, 

From this equation, the followIng critical shear force per unit length 
of the plate is obtained: 
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N EI ~ ~ ] i i · m1t°l P1tC i 
+ L 2 J)b L L (Vp + BJ3~ sin -b- sin -b-

i=l m=l p=l 

( 4a) 

Considerable simplification in the form of equation (4a) can be 
made by use of the following Bubstitutions: 

~ IIl1TC P1tC 
Nmp = 2 L- 7i sin ~ sin ~ = Npm 

i=l 

Equation (4a) now reduces to 

(4b) 

- I 
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The wave pattern which causes the shear buckling coefficient k to 
be a minimum is obtained by differentiating equation (4b) with respect 
to each of the parrumters Am and Bm in turn and setting each of 
the derivatives equal to zero. Two sets of linear algebraic equations 
in Am and. Bm result. Thus 

co 

v:m + ~ (Nm~p + Mxn~p) = 0 
p=l 

00 

BnhI + ~ (Nm~p - ~~p) = 0 
p=l 

where 

~p = 

and Mmp = 0 when m ± p is even. 

Neither equation (sa) nor equation (Sb) contains a constant term; 
therefore, in order that the parameters Am and Bm have values 
different from zero (i.e.; the plate takes a form other than flat), 
the determinant in the coefficients of the ~'8 and Bm's must be 
equal to zero. The complete determinant 1s infinite in extent and 
may be represented in the following manner: 

13 



Al B2 A3 B4 Bl A2 B3 A4 

Equation (5a), m=l Kl+Nll M12 N13 M14 0 N12 0 N14 · . . 
Equation (5b), m=2 -M;n K2+N22 -~3 N24 N2l 0 N23 0 · . . 
Equation (5a), m=3 N3l M32 K3+N33 M34 0 N32 0 N34 

Equation (5b), m=4 -M4l N42 -M43 K4+N44 • N4l 0 N43 0 · . . 

= 0 

Equation (5b), m=l 0 N12 0 N14 • Kl+Nll -M12 N13 -M14 · . . 
Equation (5a), m=2 N21 0 N23 0 ~l K2+N22 M23 N24 · . . 
Equation (5b), m=3 0 N32 0 N34 N3l -M32 K3+N33 -M34 · . . 
Equation (5a), m=4 N41 0 N43 0 M41 N42 M43 K4+N44 

General analysis of determinant.- Determinant (5c) may be factored as follows: First, multiply 
all the odd columns in the right half of the determinant by V -1 and all the even columns in the 
right half of the determinant by -V-l, and add each column to the corresponding column 1n the 
left half of the determinant; and, second, multiply the odd rows in the upper half of the resulting 
determinant by -Y-l and the even rows in the upper half by ~, and add each row to the 

f--' 
+=-

(5c) 

~ 
~ 
~ 
2l o . 
f--' 
\J1 
co 
\0 



t . 

~------------------------------------------------------------~~~----~------------------------, 

corresponding row in the lower half of the determinant. The lower left quadrant of this altered 
deterndnant contains only zeros; the upper left and lower right quadrants are equivalent and are 
factors of the original determinant. The factored determinant (infinite in extent) can be 
represented as follows: 

Kl + Nn M12 - V-I N12 N13 M14 -,-/-1 N14 . . . 
M12 + ~ -1 N12 ~ + N22 -~3 + ~-l N23 N24 

N13 -~3 -V -1 N23 K3 + N33 M34 - ~-l N34 

M14 +0N14 N24 M34 + f=1 N34 K4 + N44 
1=0 ( 5d) 

It is not readily apparent how the factored determinant might yield a solution in series form; 
but in order to obtain approximations to the true answer for the problem, finite subdeterminants 
can be used. 

A first approximation is obtained by considering only the terms common to the first two rows 
and first two columns of determinant (5d) - the deterndnant which results from summing m and p 
in equations (5a) and (5b) over 1 and 2. Such a procedure is equivalent to the use of a lindted 
deflection function, which is a combination of only one and two half waves across the plate. A 
second approximation is obtained by sunmdng m and p over 1, 2, and 3, which is equivalent 
to adding to the deflection function used for the first approximation, 8 term containing three 
half waves across the plate. Similarly, approximations of higher order are obtained by adding to 
the deflection function, terms containing more half waves across the plate. 

s 
~ 
~ o . 
I-' 
\Jl 

$ 

I-' 
\Jl 
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For example, from determinant (Sd) there is obtained for the 
first approximation the following subdeterminant: 

o 

The expansion of determinant (5e) is 

(5e ) 

(6) 

Equation (6) represents a stability criterion for the shear 
buckling of a long plate with any number, spacing, and size of stiffeners 
along the plate. If the number, spa.cing, and size of stiffeners are 
known, the proper values of Nmp may be substituted in equation (6) 
and the resulting equation solved for k or 7. 

SpeCial analysis of determinant for identical equally spaced 
stiffeners.- Generally, the stiffeners on a plate are of uniform 
size and are uniformly spaced. Some simplification in the f oregoing 
solution may then be introduced. 

In general, 

Nmp 
mltci PltCi 

sin -b- sin -b-

If the stiffness ratio 7i is the same for all stiffeners and J is 

the number of ba.ys across the plate, then 

=~~J 
Db 2 mp 

= MoJ 
Dd m:p 

= 7f/ mp 
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where 

b d :: -
J 

J o mp 1 

J o mp = -1 

m-p m+p 
if ---J-- is even and if --J--- is not even 

if ~ is even and if ~ is not even 
J J 

oJ = 0 in all other cases mp 

(See reference 4 for derivation of this sum.) 

The determinant (5c) may now be rewritten in terms of oJ mp 
rather than Nmp • The upper right and lower left quadrants will be 

~J + composed entirely of zeros since U mp has no value if m _ p is 

odd. The upper left and lower right quadrants then rew~in as 
equivalent factors. The rewritten upper left quadrant (one factor) 
of determinant (5c) appears as follows: 

Kl + 
J yo 11 ~2 

J yo 13 ~4 

M12 ~+ 
J yo 22 -'~3 

J 
)'0 24 

J 'Yo 13 ~3 K3 + 
J 

)'0 33 M34 
0 

M14 
J yo 24 M34 K4 

J 
+ yo 44 

( 7) 

Since the ~p-terms containing the shear buckling coefficient k 

appear in ea~h ~olumn, the order in k of the exp<:nsion of :ieter­
minant (7) is the same as the order of the determdnant itself. 

A study of c/ mp and. deter:llUnent (7) shows that the value 

of oJmp alternates and recurs at intervals and the.t all the values 

17 



of 5J
mp are 0 when either m or p is equal to J. Adding and subtracting appropriate rows 

and columns eliminates the 5J
mp-terms (also r) from all but the first J - 1 columns. As a 

result, the order in r of the expression resulting from the expansion of determinant (7) 
is J - 1. It i6 therefore more expedient to solve this expression for r than for k. 

As in the case of the more general determinant (5c), the finite sUbdeterminants of 
determinant (7) can be used to obtain approximations to the true answer of the problem. Cri terione 
resulting from first, second, and third approximations are given as follows for the web with one 
stiffener (J = 2) and with two stiffeners (J = 3): 

First approximation, J = 2 

Second approximation, J 2 

Third approximation, J = 2 

M12 ~ 2 ~ r =K ---1 
KIK2 

M_ 2 M 2 
:::sl.. + .JL - 1 

r = K~3 KIK2 

l + l _ (~3 - M12) 2 

Kl K3 KIK2K3 

2 2 2 2 ( )2 
M)4 + M14 + ~ + M12 _ M12M34 + M14~3 _ 1 

. _ K3K4 KIK4 K2K3 KIK2 KIK~f4 

r - l + ...l. _ (M34 + M14)2 _ (~3 - M12)2 

Kl K3 KIKf4 Kl~3 

( 8a) 

( 8b) 

(8e) 

f--' co 

~ 
f; 
~ 

~ 
~ 
0 . 
f--' 
\Jl co 
\0 



First approximation, J = 3 

7 .! [V(K1-~)2 + 4M122 - (K1 + ~~ 
Second approximation, J = 3 

7 • ~ [ ~1 - ~ + i~~)2 + 4M122 - ~1 + ~ - i~) J 
Third approximation, J 3 

7 • ~~2 + K4 _ iCM23 + M34)~ (t1~ + K1K4 - ~4 - ~~ (~3 + M30
2 

(9a) 

(9b) 

rn z 
On 
:t::; 
:Jl' 4 
~fTl 

~o~ 

~ 
:x> 

~ 
~ 
0 . 
I-' 
\Jl 
CP 
\0 

lJ",Al 
~<7. 
"'t\ 0 ~) 
OC 
Al"o o ~ 

1/2 - -\ ~ 

- ~342 - ~l] -012 - M1~2} 2 
+ 4~14 + K4Mi2 - K~ (~3 + M30(Md134 + M14~3)J '\ \ \ ~ V ~:tJ 

~ 

- f1K2 + K1K4 + K~4 - ~~ (~3 + M34)2 + ~342 + ~~M.;,3~ - (M12 - M14)i (9c) 

~ 

I-' 
\0 
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In equations (8) to (9) the value of r is a function of k 
and. a. For any of these equations, r can be computed for various 
values of a at a prescribed value of k. The maximum value of r 
for the prescribed k can be obtained from a plot of r against ~. 

Curves of k plotted against r, as shown in figures 3 and 7, are 
obtained by repeating the procedure for other values of k. It 
appears from figure 7 that the third-approximation solution is 
accurate enough and. the solution of the determinant of higher orders 
is not needed. 

Large Number of Stiffeners 

If al~ the stiffeners are identical and are equally spaced, the 
condition of uniform longitudinal stiffness at any point across the 
width of the plate is approached as the number of stiffeners is 
increased. Consequently, for a very large nUlliber of stiffeners, the 
bending energy stored in all the stiffeners may be expressed as 

v =! EI l b 1). (o2..D
2 

dx dy 
s 2 d ox2 o 0 

The work done by the applied shear T and the energy stored in the 
plate Vp are given by the same expressions used in the development 

for a finite number of stiffeners. Following the srune procedure as 
that used for the case of a finite number of stiffeners - that is, 
equating energy and work, solving for the critical load, setting the 
derivatives with respect to each of the unknown parameters ~ 

and Bm equal to zero, setting a finite determinant in these 
parameters equal to zero, and solving in this case for the shear 
buckling coefficient k - results in the following equation: 

( 10) 

Equation (10) was obtained by a second approximation, that is, 
by limiting the deflection function to one, two, and three half waves 
across the width of the plate. By a graphical procedure, as previously 
presented, there 1s found for each value of r, chosen in equation (10), 
a value of a which will make k a minimum. A curve of k plotted 
against r obtained from equation (10) is shown in figure 8. For 

I 

~ 
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purposes of ccmparison, there is also plotted in the same figure the 
results of the exact solution for an orthogonal plate from reference 2. 
The second approximation is sufficient to give excellent agreement 
with results obtained from the exact solution. 

Although equation (10) is obtained for t he case of a very large 
number of stiffeners, it actually represents the second-approximation 
solution for all cases of three or I1Pre stiffeners. This fact can be 
seen from equation (7) in that the second-approximation solution of 
equation (7) for all cases of three or more stiffeners gives the same 
results as equation (10). 

CLAMPED EOOES 

Finite Number of Stiffeners 

The problem is more involved in the case of clamped edges. A 
different deflection function 1s assumed and the Lagrangian multiplier 
method (references 5 and 6) is used. With the new coordinate system 
shown in figure 9, the deflection function for the plate is assUllled 
to be expressed by 

00 00 

= sin ~L Am i 2mrry ~ ""'" B 2n1fY s n -b- + cos )... L. n cos -b- (ll ) 

m=l n=O 

This expression is a complete eet of functions symmetric with respect 
to the origin. Since the plate is infinitely long, the expression of 
deflection by a complete set of antisymrnetrical functions will give 
the same results. In order to ensure zero deflection and zero slope 
at the 'edges, the expression wp (equation (ll)) is subject to the 

following restraining conditions: 

o ( 12a) 

(12b) 

• 
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A set of new deflection functions is used for the longitudinal 
stiffeners. For the ith stiffener, 

(i=1,2, •.. N) (13 ) 

where N is number of stiffeners. In order that the deflection of 
the plate directly under the stiffener and the deflection of the 
stiffener itself be the same, the expressions for wp and (Ws)i 

are subject to the following restraining condition,s: 

00 

~ -L~ sin 
2ID1fCi 

0 = 
b 

(i = 1,2, •.• N) 

m=l 

00 

r i -LBn cos 
2n1fCi 

0 
b 

(i = 1,2, •.• N) 

n=O 

where ci is the distance from the x-axis to the ith stiffener. 

When the expressions for wp and Ws are substituted in 

equations (2), the energy expressions become 

00 

T = FXy1f2 L_ ~m 
m=l 

( 14a) 

(14b) 

( 15a) 

(15b) 

( 1 ~·c ) 
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where 

F = !l (1!.\4~ Q 
2 )..) 2 2 

!Sn' = (1 + 4m2r32) 2 

).. 
r3 = -

b 

COn = 1 if n = 0 

COn = 0 if n ~ 0 

23 

The total energy V = Vp + V s - T is then to be minimized. During 

the minimizing process the restraining conditions, equati ons (12) 
and (14), can be satisfied by the Lagrangian multiplier method. (See 
reference 5. ) 

The following notation is used for the Lagrangian multipliers: 
V and E correspond to equations (12a) and (12b), respectively; 
¢i and .i correspond to equations (14a) and (14b), respectively. 

Then the function to be minimized is 

00 00 

f = Vp + Vs - T - v L (-lFBn - EL (-lr~ 
n=O m=l 

N 
~ ) -L ~1 2mn:c i 

¢ i -L Am sin -b-
1=1 m=l 

N ti 00 

2n<c1) 
-LVi -LBn cos b 

i=l n=O 

(16 ) 

If the function f is minimized with respect to each of the 
parameters ~, Bn, 6 i , and fi in turn, the following expressions 
can be obtained: 
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= 0 (m=1,2, •.• (0) 

N 

+ L ~i 
1=1 

2m1t'Cl 
sin -­

b 

of _ ,( ) 2 (n dB - 2FKn 1 + 50n Bn - Fxy1f nAn - V -1) 
n 

2n1fC1 cos -- = 0 
b 

(n = 0,1,2, ••. (0) 

= 0 (1 = 1,2, •.• N) 

= 0 (i = 1,2, ••• N) 

Equation (18) can be separated 1nto the following parts: 

N 

4FBO - V + L W1 = 0 

1=1 

(correspond1ng to n = 0) 

00 

2FISn'Bm - FXy1t~ - V{_l)m + L Wi 
:=1 

(rr:. = 1,2, ... co) 

2m1fC 1 
cos b = 0 

( 17) 

( 18) 

( 20 ) 

(21a) 

( 21b) 

SolvIng eqUat1on~ (17) anrt (21) together and using the notations V' = 2~ ' 
E' = £, ¢1' = -1, and WI ' =!i result 1n the following eXpresstons 

2F 2F - 2.F 

for the A's and B's: 

I 
-------' 
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2m1{C ij cos -­
b 

25 

(m::: 1,2, ..• 00) (22 ) 

(m ::: 1, 2, • • • co) ( 2 3a ) 

N 

BO ::: ~ v' - ~ L ~i' 
i=l 

where 

If equations ( 19) and (20) are substituted in equations (14), the 
following expressions result: 

1 "'~ 2m1{C 1 
21 i ~. - /.. _ ~ sin b = 0 

m=l 

00 
1 L 2n1{C i 

- 1jr i' - Bn cos -b- = 0 
211 .-.. -

n=O 

( i 1,2, ... N) 

( i 1,2, .. . N) 

(23b) 

(248.) 

(24"0 ) 
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If Am and. Bn as given by equations (22) and (23) are put into 

equations (12) and (24), the following set of simultaneous equations 
ia obtained with v', E', ¢i ., and .i' as the variables: 

(25a) 

( 25b) 

N N 

V'(-Pj) +E'(-Lj) +L¢1'(X1j) +¢j' 2~ +~.1'(Wij) =0 (25c) 
i=l j 1=1 

(j = 1,2, ... N) 

(j = 1,2, ••. N) 

where 

00 

1 ~ ~ 2lllJ(c j 
H j = 2' + L (-l) l'Im cos -b-

m=l 
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2J]u(c i 2nurc J 
s i n --. -b-- s i n b 

1 ~ 2mnc i 2mlfc j 
ZiJ = 2 + ~ ~ cos b cos b 

m=l 

m 2nl1{c j 
(-1 ) 8m s i n b 

~ m 2mnc j 
Tj = L m(-l) 8m cos -b-

m=l 

00 2mn c 1 2mn C J 
Wi j = L 8m cos -b- sin -b-

m=l 

There are 2N + 2 e~uati0ns i n 
e~uations and the re are 2N + 2 

¢2' , .. ·¢N', it 1', W 2' , 

the preceding system of s i multaneous 
unknowns, ~ l y , V " E " /J I ' , 

and ~ N'. In order t o en sure a 

nonvanishl ng solution f or t hese Lagrangi an multi pliers , the following 
deterndnant mus t be zero : 

27 



v ' € ' ¢l' V I' ~2' " 2' ~N' .. N' 

Equation (25a) R S -PI -HI -P2 -H2 . . . -PN -HN 

Equation (25b) s G -Ll -T 1 -L 2 -T 2 -Lri -TN 

Equation (25c), j=l!-Pl -Ll 
1 Wll X21 W21 XNl WNI Xu +-

271 

Equation (25d), j=l! -HI -Tl Wll 
1 W12 Z21 WlN ZNl Zll+-

271 

Equation (25c), j=2! -P2 -L2 X12 W12 
1 W22 XN2 WN2 X22 + 2'r

2 ! E 0 

Eq\lation (25<1)" j=21 -H2 -T2 

Equation (25c), j=N -PN -Lri 

Equation (25d ), j=N -HW -TN 

W21 

XIH 

WNI 

Z12 W22 

WIN X2N 

ZIN WN2 

1 Z22+-
212 

W2N 

Z2H 

W2N 

1 
XNN + 2rN 

WNN 

ZN2 

WNN 

1 
7~_+-
-~~ 2rN 

DeterDdnant (26) is of the 2N + 2 order; it can be greatly simplified by using the numbering 
system shown in figure 9 for the longitudinal stiffeners, which are assumed to have equal stiffness 
and are equally spaced across the width of the plate. In this system, the first stiffener, if any, 
is the central stiffener; the numbers 2, 4, ... denote the stiffeners on the positive y-eide of 
the plate, and the numbers 3, 5, ... indicate the stiffeners on the negative y-eide, numbering 
out from the center in each case. With this numbering system and where p = 1, 2, 3, .•. , the 
following relations follow immediately: 

70 

I\) 
co 

(26 ) 

~ 
~ 

~ 
~ 
0 . 
I--' 
\Jl 

& 



c2p = -c2J)+1 Zn = R 

H2p = H2p+ l P2p = -P2p+l 

T2p = T2p+l ~p = -L2p+l 

W 2p , i = W 2p+ 1, i X2p,i = -X2p+l ,1 

Z~p,i Z2p+l ,i Wi ,2p = -W i ,2p+l 

Pl Ll = Xli = Wi 1 = 0 , , 

With t hese relations, the determinant can be simplified by means of operations of the 
followlng type: First, columns unier ¢2p' are addei to columns under ¢2P+l'; then rows 

corresponding to equation (25c) wlth J = 2p + 1 are subtracted from rows under equation (25c) 
with j = 2p. In t his way, a ll the columns under ¢2p+l' are eliminated in determinant (26). 

Similar operations can be usei t o eliminate ~ll columns under ~2P+l'. After d i vid i ng some 

r ows for convenience by 2 , the r esulting de t erminant becomes 

l _ __ 

~ 
~ 
!2l o . 
f-' 
V1 
f:E 

~ 
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R s -Hi -P2 -H2 -P4 -H4 

s G -T1 -L2 -T2 -L4 -T4 

-H1 -T1 R +--l... W12 Z21 W1 4 Z41 2Yo 
-P2 -L2 W12 

1 W22 X42 W42 X22 + 4 . . . 
Yo 0 

-H2 -T2 Z12 W22 
1 

W2 4 ZJ~2 Z22 +-, -
4')' 0 

-P4 W14 ~4 W24 
1 

Wl~4 -LJ~ Xlill + 4y 
0 

-HII -TJI Z14 Wl12 Z24 W44 
1 

Zl.1-4+ 4 Yo 

Determ1nan~ (27) is now of the N + 2 order. For the particul~ cases 
of one and two longitudinal stiffeners, the corresponding determ1nan~s 
are as fo 110119 : 

For one stiffener 

R S -H1 

S G -Tl 0 

-Hi -Tl R+ -.L 
'2)'0 

For two stiffeners 

R S -P2 -H2 

S G -L2 -T2 

1 = 0 
-P2 -~ X22+~ W22 Yo 

-H2 -T2 W2 2 
, 

Z22 +E Yo 

( 27) 

(28) 
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In determinant s ( 27) to (29), each element is an infi nl t e seri e s 
cons isting of func t ions of k and ~. For each of t he determinan~s, 
70 can be computed for various values of ~ at a prescribed value 
of k. A maximum value of 70 for thi s prescribed k can be 

obtained by p l ot t i ng 70 against ~. A number of these maximum 

values of 70 corr espondi ng to various values of thi s prescri bed k 
can be obtained. Ins t ead of plot t ing k against 70' k was 

plotted against 7 , as was done for the case of simply supported 
edges, where 7 = J r o and J equals the number of bay s i nto which 
the plate is divided by the stiffeners. Thus, J = 2 f or one 
stiffener and J = 3 for two stiffeners. The advantage of such a 
plot is that the various curves for different numbers of s tiffeners 
become almos t coi ncident. (See fig. 3.) 

Large Number of Stiffeners 

In the case of a very large nwmber of sti f feners of equal 
stiffness and e qually spaced across the wid t h of the pl~te, the 
bending energy s t ored in the s t iffeners may be expressed , just as 
in the case of s i mply supported edges, as follows: 

Vs = ~ EfJb/21 A. (d2
;,\2 dx dy 

-b/2 0 dXV 

If, now, the same def lection func t ion as given by equation (11) for 
the pl~te is used f or t he stiffeners , t he fo l l owing expression ts 
obtained for the bending energy s t or ed i n t he s tiff eners : 

There Is no change of expre s sions i n Vp and T. Of course , since a 

separate deflection f unction ~or t he stiffeners is no longer used, 
there is no need for t he r estrain t ng cond i tions of equation s (14). 
The function to be rol ntml zed i s 

00 

f = Vp + Vs - T - V L ( - lfBn 
n =O 

00 

31 
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If the same steps are followed as before, the following determinantal 
equation 18 found to be the condition for the existence of nonvanishing 
solutions for the Lagrangian multipliers: 

co 00 

Lm~m' L mSm' 
m=l m=l 

co = 0 ( 32) co 

L mSm' 
1 +L~' 2(1 + .,) 

m=l m=l 

where 

R ' 
~'+ ., 

m (Km' + .,)2 _ (mQ)2 

S • 
mQ 

m = (Km' + .,)2 - (mQ)2 

In determinant (32), each element contains an infinite series of 
functions of k, r, and ~. For prescribed values of both ., and ~, 

several values are assigned for k and the corresponding values of the 
determinant can be determined. If the values of the determinant are 
plotted against k, one value of k can be found which makes the value 
of t.he determinant vanish. This particular value of k is called ko. 
Now, if the value of ~ is changed (whtle the value of ., remains ' 
the same), the corresponding value of ko is also changed. There 

exists a certain ~ which makes the value of ko a minimum. This 
minimum value of ko is the critical shear buckling coefficient k 

corresponding to the prescribed value of .,. In a similar manner, 
other critical shear buckling coefficients can be determined ~for other 
prescribed values of r. Finally, a curve can be obtained with k 
plotted against .,. This curve is presented in figures 3 and 8. In 
figure 8, the exact solution for an orthotropic plate from reference 2 
was also plotted for comparison. 

From the results obtained in the case of simply supported edges, 
it is believed that the curve obtained for a large number of identical 
equally spaced stiffeners represents the solution for all cases of 
three or more stiffeners. 
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DISCUSSION OF THEORETICAL RESULTS 

In the foregoing analysis it is seen that for both simply supported 
and clamped edges a determinant is obtained for the determination of the 
shear buckling coefficient k. In the case of simply supported edges, 
the usual energy method was used and the determinant has been solved by 
first, second, and third approximations. They converge very fast, 
however, as may be Judged from the results of the solution for one 
stiffener. (See fig. 7.) Also, figure 8 shows that the second-approxi­
mation solution for a large number of stiffeners is sufficient to gi ve 
excellent agreement with results obtained from reference 2. In the 
case of clamped edges the Lagrangian Dnlltipl1er method was used and 
the solution of the determinant is exact. If enough terms in each 
infintte series are taken, the solution can be made to any desired 
accuracy. 

Curves of the stiffness factor 1 plotted against the shear 
buckling coefficient k for one centrally located stiffener, two 
identical equally spaced stiffeners, and a large number of identical 
equally spaced stiffeners are shown in figure 3 for both simply 
supported edges and clamped edges. The curve for a large number of 
identical equally spaced stiffeners represents the solution for all 
cases of three or more stiffeners. Since the curves of figure 3 do 
not depart from one another by more than about 2 or 3 percent over 
the range shown, practicability would dictate the use of the curve 
for a large number of identical equally spaced stiffeners to predict 
the buckling load for a plate with any number of stiffeners, provided 
the buckling coefficient so obtained is not higher than could be 
obtained by replacing the stiffeners by simple supports. On the basis 
of the criterion Just stated, it is apparent from figure 3 that in 
the case of a simply supported plate reinforced with a single stiffener 
no further increase in the shear buckling coefficient k can be 
obtained by increasing 1 beyond about 2000. Similarly, it Is seen 
that for the case of a simply supported plate reinforced by two 
identical equally spaced stiffeners no further increase in the shear 
bUGkling coefficient k can be obtained by increasing 1 beyond 
about 45, 000. 
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TABLE 1 

DIMENSIONS OF SPECIMENS 

Stiff-
Plate Plate Plate Stiff- Stiff- ener 

Specim:m width, thickness, length, ener ener thick- ET r b t (in. ) height width ness - Dd 
( in.) (in. ) ( in.) ( in.) (in. ) 

One-stiffener specimens 

1 6.00 0.0340 48.00 ----- ----- ------ . 0 
2 6 .04 .0334 47.98 0.185 0. 31 0.0281 16.5 
3 6 .02 .0337 48.05 . 300 .315 .0 376 78.4 
4 6.00 .0330 48.12 . 305 .290 .0331 153 
5 6.01 .0325 48.09 .420 .460 .0391 234 
6 5.99 .0334 48.00 ·510 . 385 .0494 477 
7 6.00 .0326 48.07 .550 .500 .0 391 503 
8 6.00 .0 327 48.06 .550 .650 .0492 633 
9 5.96 .0313 48.00 .622 .642 .0395 824 

10 5.98 .0316 48.02 .581 .653 .0626 1050 
11 5.96 .0315 48.04 .623 .718 .0621 1290 
12 6 .00 .0315 48.05 .668 .700 .0630 1570 
13 6.00 .0312 48.03 .665 ·715 .0622 1590 
14 6.06 .0330 48.02 .985 .795 .0618 4180 

Two-stiffener specimens 

15 7.88 0.0326 63 .0 ----- ----- ------ 0 
16 7.88 .0326 63.0 0.248 '0.505 0.0327 53. 4 
17 7.88 .0321 63.0 . 348 .649 .0334 147 
18 7.88 .0326 63.0 ·550 ·721 .0 328 484 
19 7.88 .0325 63.0 .685 .794 .0510 1390 
20 7.88 .0325 63.0 . 94).j. .783 .0634 4540 
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Figure 2. - Photograph of test setup. 
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Figur e 9. - Coordinate system used in theory for clamped plates. 
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