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EFFECT OF LONGITUDINAL STIFFENERS ON THE BUCKLING
LOAD OF LONG FLAT PLATES UNDER SHEAR

By Harold Crate and Hsu Lo

SUMMARY

An investigation was made to determine the effect of longitudinal
gtiffeners on the buckling load of long flat plates under shear.
Tests were made of long flat plates reinforced by one and by two
longitudinal stiffeners. A theoretical study of the buckling load of
such plates, made by the energy method, is presented in the appendix.
The results of the tests and the results of the theory are compared
and are found to be in fair agreement.

INTRODUCTION

Buckling of the stressed skin of a wing under applied shear
loads results in a reduced torsional stiffness and a reduced aero—
dynamic fairness of the wing. Because there is danger of flutter or
aileron reversal occurring if the torsional stiffness of the wing is
not maintained up to high loads and because high-speed pull—outs may
be difficult or impossible if reduced aerodynamic fairness causes
premature separation of the flow over the wing, it is desirable to
determine the shear stress at which the reinforced skin of the wing
buckles. The problem is of particular importance in the case of
high—speed airplanes which are normally subJject to flutter and
control problems. With a view toward eliminating some of the
problems in high-speed flight, therefore, a solution to the problem
of the shear buckling of a type of panel likely to be used in the wings
of fast airplanes has been sought.

The thin wings needed for high—speed airplanes have thick skins
and several shear webs. The wing panels are narrow and, therefore,
are reinforced by relatively few stiffeners. Accordingly, tests were
made to determine the shear buckling load of long plates reinforced
by one and by two longitudinal stiffeners. In addition, a theoretical
solution of the problem for any number of stiffeners was made. The
results of the tests are presented herein and are compared with the
results of the theory.

The symbols are defined in the appendix.
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TEST SPECIMENS

The specimens tested were flat plates with a length—width ratio
of 8 reinforced by longitudinal stiffeners. The general construction of
the test specimens is shown in figure 1, and the specific dimensions of
the individual specimens are listed in table I.

Two groups of specimens were tested. Fach specimen of the first
group had one stiffener riveted along the longitudinal center line of the
panel. Each specimen of the second group had two longitudinal stiffeners
of equal size riveted to the panel in order to divide the panel into three
bays of equal width. The dimensions of the specimens of the first group
were nominally 6 inches wide and 48 inches long. For the dimensions of

gpecimens of the second group, the width was made 7% inches in order that

the attached legs of the stiffeners would not cover a large part of the
width of the bays, and the length was increased to 63 inches in order that,
at the same time, the length—width ratio should remain at a value of 8.

The webs of all specimens were of nominally O,032—inch—thick
2L S-T aluminum-alloy sheet. The stiffeners were of 24LS-T aluminum—alloy
sheet bent to the shape of angles. Two angles were used for each stiff—
ener, one on each side of the web, to provide symmetry about the plane of
the web., The thickness and leg dimensions of the angles were varied to
produce the bending stiffness desired.

The short edges (ends) of the specimens were reinforced with angles.
These angles were of uniform size for all specimens with one stiffener and
were proportionally larger and of uniform size for all specimens with two
gtiffeners. These end angles were so designed that there was a margin of
pafety against failure of the angles before buckling of the web occurred.

TEST APPARATUS AND TESTING PROCEDURE

The specimens were tested in a Jig as shown in figure 2. One part of
this Jig distributed the applied load along one edge of the web, and the
other part picked up the reaction from the opposite edge of the web and
transferred this reaction to a heavy supporting structure. Both parts
of the jig were essentially the same, and each part consisted of two
heavy steel bars bolted to each side of a steel plate which protruded
from between the bars and to which the specimen was riveted. The large
cross—sectional area of the bars insured that the distribution of load
was essentially uniform over the full length of the web.

A portable hydraulic Jack which indicated loads with standard
testing—machine accuracy of one—half of 1 percent, was used to apply the
load to the specimens.

Two dial gages graduated to l/lOOOO inch were used to measure the
gshear displacement of the loaded edge of the sheet relative to the fixed
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edge. These gages were mounted on each side of the web at the midlength
of the specimen.

The test procedure was as follows: The specimen was preloaded in
several increments to about 25 percent of the estimated buckling load, and
the dial gages were read after each increment of load had been applied.

If the dial—gage readings indicated equal movement on both sides of the
web up to the full preload, it was assumed that the Jjack was properly
positioned under the specimen and the load was released. The load was
reapplied and the dial-gage readings were taken at a number of loads until
buckles were clearly visible in the web. Readings were then taken less
frequently until the specimen could sustain no further increase in load.

ANATYSTS AND DISCUSSION

Theoretical critical stresses.— The theoretical study of the shear
buckling load of a long flat plate, reinforced by longitudinal stiffeners,
with shear load acting at the longitudinal edges is presented in the
appendix. Two different restraining conditions at the longitudinal edges
are investigated — simply supported edges and clamped edges. The results
of the theoretical study are summarized in figure 3. For each edge
regtraint condition, three separate curves are shown. The curves corres—
pond to the plate reinforced by one stiffener, by two identical equally
spaced stiffeners, and by a large number of identical equally spaced
gtiffeners. The three curves are essentially one with a maximum deviation
of approximately 2 or 3 percent. The appendix points out that the curve
for a large number of identical equally spaced stiffeners can be used to
represent, within 2 or 3 percent, the solution of the plate reinforced by
any number of identical equally spaced stiffeners.

Each curve in figure 3 has an upper limit corresponding to the crite—
rion that the plate buckles in such a way that the stiffeners can be
replaced by simple supports. In the case of a simply supported plate with
one gtiffener, for instance, the shear buckling coefficient k cannot be
increased beyond approximately 21.4 by increasing the stiffness of the
gstiffener.

Experimental buckling data.,— In figure 4 are shown typical results of
a test in the form of a curve of shear deformation, as measured by the
dial gages, plotted agalnst load on the specimen. The first part of this
curve is linear (i.e., deformation is proportional to load) and corres—
ponds to a constant shear stiffness for the web. The second part above
the linear part shows a gradual increase in the rate of deformation of the
web with load (i.e., a gradual decrease in the shear stiffness of the web).
Since, for all specimens tested, the stress at which the second part of the
curve started was well below the yield stress for the web material in
shear, it is reasonable to assume that the change in shear stiffness of the
web was due to buckling. Since, however, the shear stiffness changes very
gradually, it is difficult to select consistent buckling loads from plots
such as figure 4; and in order that the selection be confined to a
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reasonably short range of load, the effect of a change in the shear
gtiffness of the web was accentuated in the following manner.

Method for defining experimental critical stress.— For each specimen
tested, the deviation of the load—deformation curve from an extension of
the linear part of that curve was computed. This quantity was squared and
plotted against the load on the specimen., The resulting plots of load
against deviation squared, arranged in the order of increasing stiffness
ratio 7, are shown in figure 5(a) for one—stiffener specimens and in
figure 5(b) for two—stiffener specimens. Each of the curves of the figure
exhibits a knee which starts as soon as the deformation of the specimen is
no longer proportional to the load. The buckling load corresponds to some
point on the knee of the curve of load against deviation squared.

Comparison of theory and experiment.— A theoretical critical buckling
load P.,., based on the buckling coefficient from figure 3 and on the

dimensions listed in table 1, is marked on each test curve of figures 5(a)
and 5(b) in order to provide a means of direct comparison between test
data and theory. The subscripts s and c¢ are used to denote whether
the edges are simply supported or clamped. It will be noted that for 18
of the 20 specimens the start of the knee of the test curve lies within
or very close to one edge of the range bracketed by the two extreme
values (Pcr)s and (P

CI') i
C

Maximum stresses.— The maximum load sustained by each specimen is
marked on the curves of figures 5(a) and 5(b). For both one—stiffener
and two—stiffener groups of gpecimens, the load at failure tended to
increase slightly with increase in the stiffness ratio 7. In all cases,
failure ultimately occurred by twisting and collapse of the angle across
the top edge of the specimen. Since this top angle was of one size for
all one—stiffener specimens and of another size for all two—stiffener
specimens, the size and proportions of the longitudinal stiffeners must
have affected somewhat the maximum load carried by the specimen by
restraining the top angle from twisting.

CONCLUDING REMARKS

The theoretical shear buckling coefficient for a long flat plate
reinforced with any number of longitudinal stiffeners, of equal stiffness
and equally spaced across the plate, can be obtained from a single curve
for each of the edge conditions — simply supported or clamped. The test
results were found to be in fair agreement with the theoretical studies.

Langley Memorial Aeronautical Laboratory
National Advisory Committee for Aeronautics
Langley Field, Va., December k4, 1947
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Two solutions applicable to the problem of the shear buckling
of a flat plate reinforced by longitudinal stiffeners are presented
in references 1 and 2. The first of these two solutions (reference 1,
p. 360) is an approximate solution for the case of simply supported
edges and is obtained by the energy method. The deflection function
used was limited to a single half sine wave across the width of the
plate and did not completely satisfy the conditions of simply
supported edges along the length of the plate. The solution con—
sequently yields buckling loads which are too high and unconservative.
The second of the two solutions (reference 2) presents results for
the shear buckling of a long orthogonal—anisotropic (often called
orthotropic) flat plate with either gimply supported or clamped
edges. These results were obtained by solving the differential
equations of equilibrium of a slightly deflected plate element. It
is reasonable to expect that this second solution would be applicable
to the case of a plate reinforced by numerous closely spaced and
uniformly spaced longitudinal stiffeners.

It was deemed desirable to obtain a more exact solution than
given in reference 1 for a long flat plate reinforced by only a
few longitudinal stiffeners and to obtaln some idea of the extent to
which the solution for an orthotropic plate in reference 2 is
applicable to a plate with a finite number of longitudinal stiffeners.
Two energy solutions were therefore obtained. The first solution was
for a plate with a few or a finite number of stiffeners and the
second solution, for a plate with a very large number of identical
closely spaced stiffeners. (In both cases the stiffeners were
assumed to have some flexural stiffness but zero torsional stiffness.)

Two different edge conditions were investigated. In the case of
simply supported edges, the infinite series type of deflection function
introduced by Kromm (reference 3) was used. This function not only
provides simple support along the edges but also provides a complete
get of functions which degcribe the shape of the deflected surface
at any section across the plate. Also, in the case of clamped edges,

a complete set was used. With either function, it is possible to
approach as closely as desired the exact solution to the problem.
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SYMBOLS
b width of plate
ci distance from x—axis to ith stiffener
d stiffener spacing
iy stiffener under consideration
2
()
k shear buckling coefficient =
7°D
My B, P integral number of half waves across plate
T thickness of plate
W deflection in z—direction
Y deflection of plate in z—direction
Wy deflection of stiffener in z—direction
Xy e, L7, coordinate axes
Am, Bp
A, B, parameters used in deflection function of plate
Ap, Bp
: Ept3
D flexural stiffness per unit width of plate _—
121 - )
Ep Young's modulus for plate material
EI bending flexibility of stiffener
EiI4 bending flexibility of the ith stiffener
ny resultant shear force per unit length acting in middle
plane of plate
J number of bays across plate

N number of stiffeners
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Ik work done by applied shear
Vp energy stored in buckled plate
Vg energy stored in bent stiffeners
B ratio of half wave length in x—direction to width of
A
late —>
lato (2
7 ratio of stiffness of single stiffener to stiffness
of 'a strip of plate of width d when alllribslares
identical and equally spaced (%)
¥y ratio of stiffness of ith stiffener to stiffness of
E.I;
Al
lat
-
30n Kronecker delta (1 if n =0; O if n # 0)
SJmp gymbol representing the sum of a trigonometric series
which takes the value 1 if = 5 P ig even and if
=P 4 not even, —1 if T R 35 oyen andiiie
J
2 3 P is not even, and O for all other cases
By, Ty parameters used in deflection function of ith stiffener
A half wave length in x—direction
n Poisson's ratio for plate material (taken as 0.3)

V, e @5, ¥; Lagrangian multipliers

2mc 5
Hi =

Il

i Sg (—1)"R, cos
i
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K = (1 + w262)°
Kn' = (l + 4m262>2

(o]
2mstc 4
Li = Z m(-1)"Ry sin bcl

m=1

Mnlp = %k53(m_;.lp__2_> =0 when m* p 1is even

=D
| myc e
Nmp = Z 71 sin 'bi sin L bi
L5 i
00 2me
Bl= y (-1)%y sin 1 "
m=1
F 72
( xy)cr 2 ]
Q e = 4Bk
K t
Ry = o
2= 2
(=) -
Ry =l
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Ll 2mmcC 3
Ty = Z_ m(-1)"s, cos - =
m=1
£ emmcq emc y
Wij = }Zj Sy cos T gin 3
=il

= 2mmncy 2mnce 4
Xij= 9 By sin sin

_ b b
m=1
i
7o='5_
T .
oF
gt = S
2F
g -
it oF
Vs
L RO
Wl oF
Subscript:

ce critical
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SIMPLY SUPPORTED EDGES

Finite Number of Stiffeners

The deflection function

o0
2 nx ; ms
w = s8in ~ An sin + cos 5= Bm sin —sz

m=1 m=1

i1s assumed to express the buckled shape of the plate. (The coordinate
system is shown in fig. 6.) The integer m 1in the deflection function
represents the number of. half waves across the plate, and the
parameters Ap and B, are associated with the amplitude of the

mth wave. The width of the plate is b and the half wave length of
the buckle in the x—direction is .

In order to find the energy stored in the buckled plate Vps
the energy stored in the bent stiffeners V,, and the work T done
by the applied shear, the following equations were used:

3% g Baw A 3 §
Yo" ax2 ayz - 2(1 — ) 2 aya"(axay ixdy

which 18 equation (199) of reference 1, and where D 1is the flexural
stiffness per unit width of plate;

1 ZN Ty
S -2- 1 Ii f <8x2> dx
1=1 ¥y

=C1

where E;Iy 18 the flexural rigidity of the ith stiffener and cy; 1s

the distance of the ith stiffener from the edge of the plate (only
bending energy of the stiffeners 1s considered and the summation is
extended over all the stiffeners on the plate); and

(1)

(2a)

(2p)
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x
- xyff a"a"’dxdy (2¢)

which 1s obtained from equation (201) of reference 1, and where Fyy

is the resultant shear force per unit length acting along the longi—
tudinal edge of the plate.

It was necessary to consider only the energy and work over one

half wave length along the length of the plate since the variation
in deflection i1s sinusoidal in that direction.

The deflection function was substituted in equations (2) for

energy and work, and the indicated integrations were performed with
the following results:

SO 2
D nl"bz ma) 2

m=1
Ly E < =
A w0 111 ' mxcy PRy
Vg =% o ~5= Z z (Am_Ap + Bme> sin —— sin <=l En)
1=1 |m=1 p=1
[+ 2} (-]
m=1 p=1

where a value for T exists only when m* p 1is odd.

When the buckling load is reached, the structure is in neutral
equilibrium and is capable of maintaining either the flat or buckled
form. Mathematically, this neutral equilibrium can be expressea by
setting the work done by the external load in deforming the plate
equal to the sum of the energlies stored in the buckled plate and in
the bent stiffeners; that 1is,

T =V .+ Vs

From this equation, the following critical shear force per unit length
of the plate 1s obtained:
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F 1 2Drrb3 Am+32<l+22>”—2>2
(xy)cr b2 §x3 2ZZAme 2 Z< ) i

m=1 p=1

122 (AmAp + BmBQ sin sin n.:i (k4a)

i= m=1 p=1

Considerable simplification in the form of equation (La) can be
made by use of the following substitutions:

B =X
b
Eq4ly
& Sl
. (ts) v®
CI‘

. i

K, = (1 + m262)2

N mnc prc
= 2 2! i
Nmp 2 71 sin 5 sin o Npm

Equation (L4a) now reduces to

Z(An? + B)Ky + ZZ(% + Bydy) Mo

k= - 2 Ll (4b)
. azzwpﬁ
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The wave pattern which causes the shear buckling coefficient k to
be a minimum is obtained by differentiating equation (L4b) with respect
to each of the parameters Ap and Bp 1In turn and setting each of
the derivatives equal to zero. Two sets of linear algebraic equations
in Ap and B, result. Thus

I
o

(5a)

A +; (NmpAp A Mmpo) E

1}
(@)

: B.K, +Z”l (Nm - MmpAp> (5b)
p=

where

_ 883 _ mp

Mp™ T B Do

m= - p

and Mp, =0 when mt p 1s even.

Neither equation (5a) nor equation (5b) contains a constant term;
therefore, In order that the parameters A, and B, have values
different from zero (1.e.; the plate takes a form other than flat),
the determinant in the coefficients of the Ap's and Bp's must be

equal to zero. The complete determinant is infinite in extent and
may be represented in the following manner:




Equation (5&), m=1 Kl-l-Nll M12 Nl3 Ml’-‘- e o e 0 N12 0 Nlh— o o o
Equation (5b), m=2 _M21 K2+N22 ‘-M23 NQLL o o . N2l 0 N23 0 s g lp
Equation (5a), m=3 N3y M32 K3+N33 M3h b 0 N32 0 N3y T
Equation (5b), m=h =My, NLL2 —Mh3 Ky+Np), « o & Nl&l 0 Nu3 0 o

. . . . . . . . . 0 . = 0 (50)
Equation (5b), m=1 0 ng 0 Nl’-& o e e K1+Nll —M12 Nl3 —Mlh o o o
Equation (5a), m=2 Noqy 0 No3 0 ... My Koty Mo3 Noyp o«
Equation (5b), m= 0 N32 0 N3h 5o o N3l —M32 K3+N33 “M31¢ s o s
Equation (5a), m=l N1 0 Ny 0 ... My Nyo Mys  Kp+Nyy, ...

=

=

General analysis of determinant.— Determinant (5c) may be factored as follows: First, mltiply g

all the ddd columns in the right half of the determinant by V —1 and all the even columns in the =

right half of the determinant by —V—l, and add each column to the corresponding column in the i

left half of the determinant; and, second, multiply the odd rows in the upper half of the resulting \:’é

determinant by —\f—l and the even rows in the upper half by \/ -1, and add each row to the O




corresponding row in the lower half of the determinant. The lower left quadrant of this altered
determinant contains only zeros; the upper left and lower right quadrants are equivalent and are
factors of the original determinant. The factored determinant (infinite in extent) can be
represented as follows:

63GT °ON NI VOVN

Ky + §3  Mpp - V-1 Npp ¥ My, V-1 Ny ..
M12 + ﬁ N12 KQ =+ N22 -M23 = \J—_l N23 Ngh ¢ . e

=0 d

. . . .

It is not readily apparent how the factored determinant might yield a solution in series form;
but in order to obtain approximations to the true answer for the problem, finite subdeterminants
can be used.

A first approximation is obtained by considering only the terms common to the first two rows
and first two columns of determinant (5d) — the determinant which results from surming m and p
in equations (5a) and (5b) over 1 and 2. Such a procedure is equivalent to the use of a limited
deflection function, which is a combination of only one and two half waves across the plate. A
second approximation is obtained by summing m and p over 1, 2, and 3, which is equivalent
to adding to the deflection function used for the first approximation, s term containing three
half waves across the plate. Similarly, approximstions of higher order are obtained by adding to
the deflection function, terms containing more half waves across the plate.

Gt
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For example, from determinant (5d) there is obtained for the
first approximation the following subdeterminant:

Ky + Nyy Mjp — V-1 Npp
=0 (5e)
The expansion of determinant (Se) is
K N )K N B 2 (6)
G ey oF Roa Sradigen = o =

Equation (6) represents a stability criterion for the shear
buckling of & long plate with any number, spacing, and size of stiffeners
along the plate. If the number, spscing, and size of stiffeners are
known, the proper values of Np, may be substituted in equetion (6)
and the resulting equation solved for k or 7.

Special analysis of determinant for identical equally spaced
stiffeners.— Generally, the stiffeners on a plate are of uniform
size and are uniformly spaced. Some simplification in the foregoing
solution may then be introduced.

In generzl,

N

- mncy prcy
Nmp = 2 E 74 sin 5 sin 5

1=1

If the stiffness ratio 74 is the same for all stiffeners and J 1is
the number of bays across the plate, then

b pr, b
Nmp 271E sin i-J-, sin biJ

2EL JgJ
Db 2~ WP

I

ElgJ
Dd mp
J

75 ap
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where
i
J
BJmP =1 1if m.; P 45 even and 1f EL%%EZ 18 not even
BJ#P 1 1f EL%}E is even and if ELE—E 1s not even
J
s) = 0 1n all other cases
mp

(See reference 4 for derivation of this sum.)

J

mp
The upper right and lower left quadreants will be
5Jﬁp
odd. The upper left and lower right quadrants then remaln as
equivalent factors. The rewritten upper left quadrant (one factor)
of determinant (5c) appears as follows:

The determinant (5c) may now be rewritten in terms of &

rather than Nmp.

composed entirely of zeros since has no value if m* p 1is

J J
R 1 Mo e M 1y
J J
J J
76 13 —M23 K3 + 76 33 M3h o an e
=0 (
J J

Since the Mmp—terms containing the shear buckling coefficient
appear in each zcolumm, the order in k of the expsnsion of deter—
minant (7) is the same a&s the order of the determinant itself.

Jhp and determinent (7) shows that the value

alternates end recurs at intervals and thzt all the values

A study of B

J
of 5 mp

B




of SJmP are O when either m or p 1is equal to J. Adding and subtracting appropriate rows

and columns eliminates the BJmp—terms (also y) from all but the firet J — 1 columns. As a

result, the order in 7 of the expression resulting from the expansion of determinant (7)
is J - 1. It is therefore more expedient to solve this expression for y than for k.

As in the case of the more general determinant (5c), the finite subdeterminants of
determinant (7) can be used to obtain epproximations to the true answer of the problem. Criterions
resulting from first, second, and third approximations are given as follows for the web with one
stiffener (J = 2) and with two stiffeners (J = 3):

First approximation, J =2

My, |
Yy =Ky g=— -1 (8a)
KlK2
Second epproximetion, J =2
2 2
K K.K
- 2K3 12 : (8b)
i oo (M5 — )
Ky Ky K KoK

Third approximation, J =2

2 2 2 2 2
s N (M12M31+ + MMoo) o

s KK, KK, KK KK K KKK, o
A (Mg, + My))2 = (Mog - Ml2)3
Brs kg LS L ol

ot

6QST °"ON NI YOVN



First approximation,

J=3
y =% li\/(xl - KQ)Q + o2 ~ (Kp + Kz)} (92)
Second approximation, J = 3
2
2 2
1 Ma3 2 Mp3
7:—2-\/<K1—K2+ K3>+hM12 —<Kl+K2—'T(3— (9b)
m
Third approximation, J = 3 Z
o
<5
1 1 & 2 2% E‘\;
y -1 : 5| | 4Rake + Tl - XK - (2 (3 + 1) LY
X, + K - K—3<M23 + M3,4> -é § &
880
BT A
2 % % =
K X ; 1 Py
= I‘(—3M3u = K—Me{‘} = (M12 5 Mlh) + “l%z“m + K Mjp E; (M23 * M3@ <M12M3!+ + Mth%)jl 25
V3]
A%
»
X
-
Ky o K o K o 2

61

68GT °"ON NI VOVN
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In equations (8) to (9) the value of y 18 a function of k
eand B. For any of these equations, 7y can be computed for various
values of B at a prescribed value of k. The maximum value of Y
for the prescribed k can be obtained from a plot of 7y against B.
Curves of k plotted against 7y, as shown in figures 3 and 7, are
obtained by repeating the procedure for other values of k. It
appears from figure 7 that the third-approximation solution is
accurate enough and the solution of the determinant of higher orders
18 not needed.

Large Number of Stiffeners

If all the stiffeners are identical and are equally spaced, the
condition of uniform longitudinal stiffness at any point across the
width of the plate is approached as the number of stiffeners is
increased. Consequently, for a very large number of stiffeners, the
bending energy stored in all the stiffeners may be expressed as

b nx 2
EX <1§E! dx dy
¢, (B

The work done by the applied shear T and the energy stored in the
plate Vp are given by the same expressions used in the development
for a finite number of stiffeners. Following the same procedure as
that used for the case of a finite number of stiffeners — that 18,
equating energy and work, solving for the critical load, setting the
derivatives with respect to each of the unknown parameters A,

and Bp equal to zero, setting a finite determinant in these

parameters equal to zero, and solving in this case for the shear
buckling coefficient k — results in the following equation:

Vg =

ae]

o TR ) (% + ) (K5 + 7)
Mlze(K3 + 7) + M232(Kl + 7)

(10)

Equation (10) was obtained by a second approximation, that is,
by limiting the deflection function to one, two, and three half waves
across the width of the plate. By a graphical procedure, as previously
presented, there is found for each value of 7, chosen in equation {20},
a value of B which will make k a minimum. A curve of k plotted
against 7 obtained from equation (10) is shown in figure 8. For
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purposes of ccmparison, there is also plotted in the same figure the
results of the exact solution for an orthogonal plate from reference 2.
The second approximation is sufficient to give excellent agreement
with results obtained from the exact solution.

Although equation (10) is obtained for the case of a very large
number of stiffeners, 1t actually represents the second—epproximation
solution for all cases of three or more stiffeners. This fact can be
seen from equation (7) in that the second—approximation solution of
equation (7) for all cases of three or more stiffeners gives the same
results as equation (10).

CLAMPED EDGES

Finite Number of Stiffeners

The problem is more involved in the case of clamped edges. A
different deflection function is assumed =2nd the Lagrangian multiplier
method (references 5 and 6) 1s used. With the new coordinate system
shown in figure 9, the deflection function for the plate is assumed
to be expressed by

00

oo
i X 2myy nx 2nny
wp = sin 5= E Ap sin == + cos E By, cos — (11)
m=1 n=0

This expression is a complete set of functions symmetric with respect
to the origin. Since the plate is infinitely long, the expression of
deflection by a complete set of antisymmetricel functions will give
the same results. In order to ensure zero deflection and zero slope
at the edges, the expression vp (equation (11)) is subject to the

following restraining conditions:

el

}m (=1fte, =0 (12a)
n=0
Z m(-1§ Ay =0 (12b)

m=1
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A set of new deflection functions is used for the longitudinal
stiffeners. For the ith stiffener,

(ws)i = Ay sin %% + T, cos %% {1 = 1,2, 48 (13)

where N 1is number of stiffeners. In order that the deflection of
the plate directly under the stiffener and the deflection of the
stiffener i1tself be the same, the expressions for Yp and (ws>1

are subject to the following restraining conditions:

- 2mncy
b=y Mpstn h o0 (1-1,2,..N) (1ba)
m=1

¥ 2n
Ly -> Bncos—:°-1=o (1 =1,2,...N) (1ub)

n=0
where cy is the distance from the x—exis to the ith stiffener.

When the expressions for vp and wg are substituted in
equations (2), the energy expressions become

v, =F ; Ky'Ay” +nz; Kp'By” (L + 50n) (158)
N

Vg = F 1>_=i 73(8s? + I'f) (15b)

T = nyngi mA B (15¢)

m=1
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where

B D(E)hh. b
28Ny 2 2

Ky' = (i + hm?B?>2

T
8gy =1 1f n =0
Bop =0 if n £0

The total energy V = V? + Vg — T 1is then to be minimized. During

the minimizing process the restraining conditions, equations (12)
and (14), can be satisfied by the Lagrangian mltiplier method. (See
reference 5.)

The following notation is used for the Lagrangian mmltipliers:

v and € correspond to equations (12a) and (12b), respectively;
f, and ¥; correspond to equations (1ka) and (1kb), respectively.

Then the function to be minimized is

o0 [}
£ aVp+Vg=T-v> (APBa-e> (2w
n=0 m=1

N = 2mm
c
- é P4 <é1 2 ; Ap sin i)
R = b
stk

m=1

N X on
FofTaem)
=i

n=0

If the function f 1is minimized with respect to each of the
parameters Ap, B,, Ay, and Ty 1in turn, the following expressions

can be obtained:
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N
af (=) m 2mnc
SK; = OFK,'Ap — nyﬂﬁmgm —e{-1) + ¢1 sin 5 -
i=1
=0 (m=1,2,...0) (17)
o (1 + 8,,)B,, - F. xnA_ —v(-1)?
N 2FKp * On) n " g Bg TV
n
N 2nnc1
+ E ¥4 cos = 0] (B =0,1,28,:..») (18)
1=1
of
e T A () - 8
=0 (1 1,2, 40 (19)
of
T 2Py (2Fy) - %
=0 (1 =1,2,,...N) (20)
Equation (18) can be separated into the following parts:
N
LFBy — V+ ZE‘ vy =0 (corresponding to n = 0) (21a)
1=1
(o]
2mnc
2FK,*B,, — nynzmAE—V(—l) 3 E ¥; cos =0 (21b)
(& = L,200.0)
Selving equationa (17) and (21) togsther and using the notations V' =
' = £ t =l and V.t - i | result in the following expressions
€ QF’ ¢1 EF’ 1 oF su g expre

for the A's and B's:
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N
= 2mn
A, = L ZE; #;* sin bci
i=1
N
s sl ) Ty 1 (m-1,2,...)
i=1 i
N 2mnce
B, =R (=) = E V' cos 5 i
i=1
e N 2m:nci
+Syle'n(-1)" = 4" stn — (m=1,2,...%)
i=1
l N
1l
Bo=3vi-1) W
1=
where
(ka")? - (m)?
mQ
Sm =
(Km')2 o (M)2
F n2
Qe 2 o hg
2F

If equations (19) and (20) are substituted in equations (1k), the
following expressions result:

2mnci
¢ — :S A q8in =0 (1 '=1,2,) 088)
27i i
00
ﬂCi
B,, cos s =0 (1 = 1,2,..80)

2D

(22)

(23a)

(23b)

(2k4a)

(2kp)




26 NACA TN No. 1589

If Ap and B, as given by equations (22) and (23) are put into

equations (12) and (24), the following set of simultaneous equations
is obtained with v', ¢°', ¢1', and ¥4' as the variables:

N N
VIR 4 ¢t 4 Z pr (-2y) + Z ¥' () =0 (252)
=1 =1

N N
V'S + ¢'G + Z¢i'(—Li) +Z*1'(-—T1) =0 (25Db)
1=1 1=1

N N
V'(—PJ) + e'(—LJ) +Z ¢1.(Xij) £ ¢J' 2_1’.3 +Z*1'(W1J> =0 (25¢)
1=1 1=1
i (3 =1,2,...N)
i N N |
V'('HJ) i "("TJ) +Z¢1'("’1,j) +Z *1'(213) +¢J'<27'LJ>= 0 (25d)
1=1 i=1

(J =1,2,...N)

where

m=
|
| o0
G = m2Rm
m=1
o0
2mnc
1 E iy i |
Hy =5+ (—l)m'Rm cos —
m=1

L]

2mnc
m-(-'l)mRm 8in ——.b—Q

(.
Cn
[}
=]
I
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= emre 2mrc
xi,j = 7_’Rm gin 5 sin 5 =XJ1
m=1
1 ol g 2mrnc 2m7rcJ
Zi,j"g"’ E Rmcos 5 cos 5 ‘Zji
m=1

® 2m:tci 2mrtc:J
wiJ = E Sm cos 5 s8in A
m=1

There are 2N + 2 equations in the preceding system of simultaneous
equations and there are 2N + 2 unknowns, namely, V', €', ﬂl',

¢2', ...¢N', vl', \U2', ke Chotel WN'. In order to ensure a

nonvanishing solution for these Lagranglan multipliers, the following
determinant must be zero:

27




vt ¢t ¢l' *l' ¢2| *21 - S ¢Nl *Nl

Equation (25a) R 8 -P; -H, -P, -E, ... =Py —Hy
Equation (25b) S G 4l =T, -L, =T o B =Ly =Ty
Equation (25¢c), J=1|-P; -L; x11+5-;—1 Wiq Xa IR Wiy
Equation (254), J=1| =H; -T; Wy, zn+27—11- Wio B oo WOy 21
Equation (25¢), J=2| —P, L,  Xjp Vo 122*5,%' S SN NI 9 Vs
2 = 0
Equation (25d), J=2| -H, -T,  Wp; Z1o Woo z22+-2i . Won Zxo
Equation (25¢), J=N| -Py -Ly Xy V1N - Woxg .. xNN+-2—;-§ Van
Equation (254), J=N| -Eg -Ty Wy f Wyo s v o il +2—;E

Determinant (26) is of the 2N + 2 order; it can be greatly simplified by using the numbering
system shown In figure 9 for the longitudinal stiffeners, which are assumed to have equal stiffness 7,
and are equally spaced across the width of the plate. In this system, the first stiffener, if any,
is the central stiffener; the numbers 2, 4, . . . denote the stiffeners on the positive y—side of
the plate, and the numbers 3, 5, . . . indicate the stiffeners on the negative y-side, numbering
out from the center in each case. With this numbering system and where p =1, 2, 3, . . ., the
following relations follow immediately:

8c
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Cop = —Cop+l 211 =R
Hop = Hopyy Eee = —P2P+l
Top = Togel Lop = —Lops1
w2p,1 5 w2p+l,i X2p,i & _12p+l,i
Zop,1 = Zop+l,t Wi,2p = My opel
P owl ek eSS0

With these relations, the determinant can be simplified by means of operations of the
following type: First, columns under ¢2p' are added to columns under ¢2p+l'3 then rows

corresponding to equation (25c) with J = 2p + 1 are subtracted from rows under equation (25¢)
with J = 2p. In this way, all the columns under ¢2p+l' are eliminated in determinant (26).

Similar operations can be used to eliminate all columns under w2p+l" After dividing some

rows for convenience by 2, the resulting determinant becomes

68GT °“ON NI VOVN
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30
B 8 ~H; ~Ps
g6 -T -Ls

. T, Ry W

1 1 275 12
1
£ RN W X sy e
2 2 12 22 g

-H, -Tp Z1p Woo

=Py =Ly, Wy Loy

=H, -Ty 21 Wyo

Determinant (27) 1s now of the N + 2
of one and two longitudinal stiffeners, the corresponding determinan‘s

are as follows:

For one stiffener

For two stiffeners

order.

NACA

TN No. 1589

=0 (27)

For the particular cases

S -H
CY E— Tl = O
=0 Ry
=)
=Bs -Hp
Lo -Tp
X 1 W
22 Iy 22
;
Won Zop+ 15—

(28)

(29)
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In determinants (27) to (29), each elemsnt is an infinite series
consisting of functions of k and B. For sach of the determinants,
Yo can be computed for various values of B at a prescribed value

of k. A maximum value of 7y, for this prescribed k can be

obtained by plotting 7, against B. A number of these maximum
values of 7y, corresponding to various values of this prescribed k

cean be obtained. Instead of plotting k agalnst 75, k was

plotted against ¥, as was done for the case of simply supported
edges, where y =Jy, and J equals the number of bays into which

the plate is divided by the stiffeners. Thus, J = 2 for one
stiffener and J = 3 for two stiffeners. The advantage of such a
plot is that the various curves for different numbers of stiffeners
become almost coincident. (See fig. 3.)

Large Number of Stiffeners

In the case of a very large number of stiffeners of equal
stiffness and equally spaced across the width of the plate, the
bending energy stored in the stiffeners may be expressed, Jjust as
in the case of simply supported edges, as follows:

b/2 DX 2
ET f / f 82w>
—- — | dx dy
d e

-b/24 0 X

If, now, the same deflection function as given by equation (11) for
the plate 1s used for the stiffeners, the following expressilon is
obtalned for the bending energy stored in the stiffeners:

Vg =

o] ]

00 (<}

Vg = Fy g Aty E Bn2(l s it (30)
m=1 n=0

There 18 no change of expressions in Vp and T. Of course, since a

separate deflection function for the stiffeners 1s no longer used,
there 1s no need for the restraining conditions of equations (1k4).

The function to be minimized is

o«

£ o=V, + Vg —T-v;m(—l)an—eZm(-—l)mAm (31)
n=0

=i
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If the sams steps are followed as before, the following determinantal
equation is found to be the condition for the existence of nonvanishing
solutions for the Lagrangian multipliers:

:Ef::maRm' :Ef: mS, ¢

m=1 m=1

o . g~ = 0 (32)
;nﬁm' 2(1 + v) +;Rm'

where

R = i 7
m _(Km. + 7)2—(mQ)2

mq

8, =
(Kn' + 7)2 - (ma)?

In determinant (32), each element contains an infinite series of
functions of k, 7y, and B. For prescribed values of both 7y and B8,
several values are assigned for k and the corresponding values of the
determinant can be determined. If the values of the determinant are
plotted against k, one value of k can be found which mekes the value
of the determinant vanish. This particular value of k 1is called kg.

Now, if the value of B 1s changed (while the value of 7y remains:
the same), the corresponding value of ko, 1s also changed. There

exists a certain B which makes the value of ky a minimum. This
minimum value of k, 1s the critical shear buckling coefficient k

corresponding to the prescribed value of 7. In a simllar manner,
other critical shear buckling coefficients can be determined for other
prescribed values of 7. Finally, a curve can be obtained with k
plotted against 7. This curve is presented in figures 3 and 8. 1In
figure 8, the exact solution for an orthotropic plate from reference 2
was also plotted for comparison.

From the results obtained In the case of simply supported edges,
it is believed that the curve obtained for a large number of identical
equally spaced stiffeners represents the solution for all cases of
three or more stiffeners.
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DISCUSSION OF THEORETICAL RESULTS

In the foregoing analysis it is seen that for both simply supported
and clamped edges a determinant is obtained for the determination of the
shear buckling coefficient k. In the case of simply supported sdges,
the usual energy method was used and the determinant has been solved by
first, second, and third approximations. They converge very fast,
however, as may be Judged from the results of the solution for one
stiffener. (See fig. T7.) Also, figure 8 shows that the second-approxi-—
mation solution for a large number of stiffeners 1s sufficient to glve
excellent agreement with results obtained from reference 2. In the
case of clamped edges the Lagrangian mmultiplier method was used and
the solution of the determinant is exact. If enough terms in each
infinite serles are taken, the solution can be made to any desired
accuracy.

Curves of the stiffness factor 7y plotted against the shear
buckling coefficient k for one centrally located stiffener, two
identical equally spaced stiffeners, and a large number of identical
equally spaced stiffeners are shown in figure 3 for both simply
supported edges and clamped edges. The curve for a large number of
identical equally spaced stiffeners represents the solution for all
cases of three or more stiffeners. Since the curves of figure 3 do
not depart from one another by more than about 2 or 3 percent over
the range shown, practicability would dictate the use of the curve
for a large number of identical equally spaced stiffeners to predict
the buckling load for a plate with any number of stiffeners, provided
the buckling coefficient so obtained i1s not higher than could be
obtained by replacing the stiffeners by simple supports. On the basis
of the criterion just stated, it is apparent from figure 3 that in
the case of a simply supported plate reinforced with a single stiffener
no further increase in the shear buckling coefficient k can be
obtained by increasing 7y beyond about 2000. Similarly, it is seen
that for the case of a simply supported plate reinforced by two
identical equally spaced stiffeners no further increase in the shear
buckling coefficient k can be obtained by increasing 7y beyond
about 45,000,
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TABLE 1
DIMENSIONS OF SPECIMENS
Plate Plate Plate | Stiff—| Stiff— S:;gf"
Specimen width, |thickness, length,| ©ner ensr | itnicok— o UReL
b t (1n.) | helant | etdth ORGSR
fin.) (in.) {18e) | Cin.) (in.)
One—stiffener specimens
1 6.00 0.0340 LB8.00 | =ewsz | ssdco ]SS 0
2 6 .04 L0334 L7.98 0.8 | 0.31 0.0281 16.5
3 6.02 .0337 4L8.05 .300 .315 .0376 78.4
L 6.00 .0330 48.12 .305 290 03311158
5 6.01 .0325 4L8.09 120 460 .0391| 234
6 5.99 0334+ | 48.00 | .510 | .385 .ohok | 177
7 6.00 .0326 L8.07 .550 .500 .0391| 503
8 6.00 .0327 48,06 550 650 oLkg2 | 633
9 5.96 .0313 418.00 622 6L2 .0395| 82k
10 5.98 .0316 48.02 581 653 .0626 | 1050
31 5.96 .0315 L8.0k 623 718 L0621 | 1290
12 6.00 .0315 48.05 668 .700 .0630 | 1570
13 6.00 .0312 48.03 665 Wl .0622 | 1590
14 6.06 .0330 418.02 .985 .795 .0618 | 4180
Two—stiffener specimens
15 7.88 0.0326 63.0 | ===-= | -e-ee | —m-ma- 0
16 7.88 .0326 63.0 0.248 |0.505 | 0.0327 53.4
17 7.88 .0321 63.0 .348 649 03341 1 1bi
18 7.88 .0326 63.0 .550 721 .0328 | L84
19 7.88 .0325 63.0 685 9L .0510 | 1390
20 7.88 .0325 63.0 9l 783 L0634 | 4540
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Figure 1.- Test specimens. (All dimensions are in inches.)
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Figure 2.-
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Photograph of test setup.
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Figure 3.- Variation of shear buckling coefficient with rib Stiffness.

€€




Lo

Load, kips

18

16

1k

12

10

NACA TN No. 1589

/

i

e (O

.01 .02 .03 Ok .05 .06

Shear deformation, in.

Figure 4.- Typical load-deformation curve for shear webs.
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NACA TN No. 1589 43

Nodal lines

A Locations of stiffeners
(for clarity, only two
are indicated)

Figure 6.- Coordinate system used in theory for simply supported plates.
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Figure 8.- Comparison of results of energy solution of present paper with results
of exact solution from reference 2.
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Figure 9.- Coordinate system used in theory for clamped plates.
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