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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE NO. 1558 o L

NOTES ON THE LAGRANGIAN MULTIPLIER METHOD
IN ELASTIC-STABILITY ANALYSIS

By Bernard Budiansky, Pai C. Hu, and Robert W. Connor
SUMMARY

New applications of the Lagrangian multiplier method to stablility
analysis are described by means of elementary examples. The use of
the method in analyzing the stability of (a) clamped plates in shear
and (b) plate—stiffener combinations is demonstrated. A detailed
anaelysis Por finding upper and lower limiits to critical stresses of
clamped rectangular plates is presented in an appendix.

INTRODUCTION

The use of the Lagrangian multiplier method to calculate upper and
lower limits to the critical compressive streses of a clamped plate was
presented in reference 1. The procedures of reference 1 have been
directly used to analyze the stability of clamped plates under com—
pression in two dlrectlons (reference 2, footnote) and may be used,
with 11ttle modification, to find vibration frequencles of clamped
plates. The purpose of the present paper is to describe additional
applications of the Lagranglan multiplier method to the elastlic—
stabllity analysis of (a) clamped plates in shear and (v) plate—
stiffener combinations. FElementary examples are used to bring out the
essential features involved in applying the method to these typss of
problems. A detalled analysis for finding upper and lower limits to
eritical shear stresses of finites clamped plates is glven in an
appendix.

SYMBOIS
a length of plate
b width of plate
A half—wave length

B afo or M/b
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plate thickness

Young's modulus of elasticity

-‘Poimsson's ratio

Et3
12(1 - u2)

effective flexural rigidity of stiffensr attached
to plate

plate stiffness in bending

stiffener cross—sectional area

critical compressive stress
critical shear stress

critical compressive stress coefficient in the

formula o = k 5;2
bt

critical shear stress coefflicient In the

1))
formula T = k. [ ——
B\p2¢

plate coordinate parallel to length
plate coordinate parallel to width

dseflection normnl to plane of the plate

Fourier coefficients

Lagrangian miltipliers

internal bending energy
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T external work of applied stress
m,n,i,J,p,a integers

Spm Kronecker delta: 1 1f m=n3; O if m#n
Ap = G. + hn282>2@ + SOn)
B = An

n An2 - Dn2

C, = Dn

2" AP _p2
D, = bkp3n

1
2 3\
l+n8 - Bak C‘L + Bon)

H = 23

2(r - Bask)

Am = 2@2 + n282>2@. +8 5+ 50n>

B Am
m =

Am2 - Dm2
c Dm

m = 2
Am "Dnm2
Dy, = kgBom
2

A'ym = (ma + kn2f32> (l + 50:1)
B! A'm

= E -
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REOSEIS; |

D'y = 4kgB3mn

Subscripts: _ . ro—
Pl plate
stiff stiffener

BUCKLING IN SEEAR OF AN INFINITELY LONG CLAMPED PLATE

Considler an infinitely long clamped plate loaded in shear as shown
in the accompanying sketch: Y

/4

/ -
— ~ - 7 7

The problem of finding the critical shear stress, for which there exists
an exact sclution by the differential squation approach (reference 3),
will be solved by the Lagrangian maltiplier method.

Boundary conditions.— It 1s evident that only the boundary condi-—

tions along the long edges affect the buckling stress. The boundary
conditions of the problem are then:

Zero deflection, long edges

w@‘a-’) - w(x,.—g -0 - (1)

Zero slope, long edges

gwix’g)-g;-x’—g =0 (2) -
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Fourler expansion.— The deflection surface of the buckled plate is

known to be harmonic along longitudinal sections; the deflection surface
mey therefore be represented in the form

= £1(y) sin % + fa(y) cos % (3)

where A 18 the half-wave length. The necessity remains of choosing
sultable Fourier expressions for fl( y) and fazy) for use in the

Lagrangian mltiplier method. It is desired that the series chosen
patisfy the conditions that:

(2) In the reglon (—-%,g, (-—g— ,%), the deflection w be

symmetrical (see preceding sketch) about the origin

(b) The potential energy expression for the buckled plate, calcu—
lated on the basls of the specified expression for w, consist of
integrals of products of functions which form orthogonal sets.

An expression satlisfying these requirements is

w=sin%iansin2r.1:y

n=1

[« o]
+ cos -’%—Zdncos —’—Mb (k)
n=0

The fulfillment of condition (b) is verified in the following section,
in which the energy expreasions are calculated. The desirability of the
condition will becoms evident when the final stabillity criterion 1is
derived.

Energy expressions.— Substlituting the value for w from equation (4)
into the formulas for bending energy and work

D Pw | 2\ Rw 32
v'5ff{¥+ay_2 _a(l-u)[a:@ay? G:ﬁy} dx dy  (5)
T=—thf§§%dxdy (6)
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Constralining relationships.— Relther of the clamped—edge boundary
conditions (1) and (2) are satisfied term by term by the expansion (4);
constraining conditions mist therefors be imposed on the Fourier coef-—
ficients a, and dn These constraining relationships are, for zero

deflection,

Z ()% a, =0 (8)
n=0 '
and for zero slope,
Z (1) ay = 0 (9)
ool R

Stability oriterion.— The energy method requires that V — T dDe
minimized with respect to the a's and d's. Since the a's and d's
are, howsver, bound by equations(8) and (9), the minimization is
performed by the Lagrangien multiplier method by minimizing

Far=0_, (L)% a, -¢ n(-1)" ag | (10)
L-w D ety -

(&) =

with respect to the a's and d's. The Lagrangian multipliers are n
and (. The complete set of equations for minimizing V — T with
the a's and d's bound by the conditions given in egquations (8)

and (9) then becomes

— =0 (n =1,2,3,...) (11)
dan
F_ .o (n = 0,1,2,...) (12)
adn IR RRER

D (ure -0 (8)

na0 '

@

> a(-1)%a, =0 (9)

n=1 S
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Substituting equation (7) into equation (10) and equation (10) into
equations (11) and (12) gives -

2(1 + hB2n2>2an - @)y = (-1 (n=1,2,3,...) (13)

- (&Bs%an +2( + mazna)a(l R Bon)dn = (-1)° (1k)

(n = 0,1,2,..-)

Solving equations (13) and (1) simultaneously for a, and 4, gives

a, = %Eann(-l)n; + cn(—l)nu] (15)
4, = % con(-1) B¢ 4+ Bn(-l)nu] | (16) -
where _
Bp = Anefl_n_ D2 -
=T An"‘Df D2 :
in which

a = (14 hnzpz)a(l + abn)

Dy = tkgB3n
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A
Substituting equations (15) and (16) into equations (9) and (8),
respectively, ylelds
uan+§§ncn-o -
n=0 n=1l ' k
_ - (17)
uincn+;in2an.o
n=1 n=l
-

The condition that a nonvanishing solution exists for ¢ and § gives
as the final stabllity oriterion

C-) . 2
inn @n%n - chn =0 (18)
n=0 =

1 n=l

For a given value of B, the value of kg that satisfies
equation (18) can be found by trisl substitution and interpolation.
The correct valus of B 1ie that which gives the lowest value of kB.

For B = 0.80, equation (18) yields k = 8.989 which agrees with the

solution obtained by Southwell by the differential-equation approach
(reference 3).

Discussion of method; further spplications.— In the usual appli-—

cation of the Raylelgh-Ritz method, an infinite set of equations
involving infinitely meny deflection coefficlents is obtained when the
energy expression V — T 1s minimized; the exact stablility criterion
18 then an infinite determinant obtained from these equations. The
simplicity of the solution Jjust obtalned, however, is due to the fact
that 1t was practicable to transfer consideration of infinitely many
Fourier coefficients to consideration of only two Lagrangian
miltipliers. An essential festure of the solution that permits this
simplification is the fact that the substitution of the expansion
chosen for w (equation (4)) into the expressions for V and T
(equations (5) and (6)) leads to integrals of products of functions
which form orthogonal sets. It then becomes a simple matter to solve
the minimizing equations (13) and (14) for the Fouriler coefficlents in
terms of the Lagrangisn multiplier (equations (15) and (16)), substitute
back into the constraining relationships (8) and (9), and derive the
stebility criterion from the condition that there be a nonvanishing
solution for the Lagranglien multipliers.
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Stability problems involving finite rectanguler plates may require
double rather than single Fourler expansions for use In the Tagruuzian
mltiplier method. However, s proper choice of series, with due
attention tc orthogonality conslderatlions, would still wmake i1t possible
to solve for Iinfinltely many Fourler coefficients In terms of
Lagranglan multipliers. Appendix A presents a solution by the
Lagranglian rultiplier method for the problem of ths buckling in shear
of a rectangular plate clampe& on all sides. Although it was possible
to obtaln an exact solution for the infinitely long plate, the solution
for finite plates is approximate; however, as in the compressive
buckling problem dlscussed in reference 1, it is possible to obtaln
approximate solutions in two different ways, which permit the compu-—
tation of an upper limit as well as a lower limit to the true critical
stress. The true critical stress can thus be bracketed to within any
desired degree of accurecy by taking sufficiently close upper— and
lower—limit approximations.

The lagrunglien multiplier method may, with ths use of appropriate
deflection functions, find applications to other problems. A general
discussion of Fourier series and their use in stabillity analysis is
contained In appendix B.

BUCKLING OF PLATE-STIFFENER COMBINATIONS

The spplication of the Rayleigh-Ritz energy method to buckling .
problems involving plates with stiffeners usually results in energy
expressions that are complicated functions of the deflection coeffi-—
clents. That is, even if the térms of the assumed deflection function
have the orthogonality properties previously dlscussed, energy terms
due to stiffener deformations will usually involve quadratic cross
products of all combinatlons of the deflection coefficients.
Occaslonally, for scme special problems (see reference 4) relatively
simple stability criteria can still be derived by algebraic manipula—
tions; however, in genersl, it 1s tc be expected that an exact sta— .
bility criterlon for a stiffened plate, derived by the Raylelgh~-Ritz
method, will consist of an infinite determinant that 1= obtalined from
osxpliclt consideration of infinltely many deflectlon coefficlents.

The Lagranglan multiplier method can be used to slmplify the
analysie considerably. As in the unstiffened plate buckling problems
previously discussed, an appropriate application of the Lagrangian
miltiplier method makes it possible to solve for Fourler coefficlents
In terms of Lagrenglian multlpliers, so that explicit consideration of
a finite number of Lagrangian multipliers takes into account infinltely -
many Fourier coefficlents. The elsments of the method of appllcation
of the Lagranglian multiplisr method to stiffensd plates will be pre- =
sented by glving the analysis of the stability under longitudinal -

q
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compression of an infinitely long clamped plate having a longitudinal
stiffener along its center line as illustrated in the following sketch:

J

/\ S8tiffener
////KU”M §777777770717/7/4044777/717777777707/17774

B

'

% <— \ —> -
TIIT77777777 7777777777777 /777777 7777777/777777 — — *

In this exampls, the stiffener is assumed to have no torsional rigidity.
(See reference 5 for solution of this problem by the differential—
squation approach.)

Boundary and continulty conditions.— The boundary conditions along
the clamped edges are zero deflection,

Vpl(xso) - Vpl(zab) = 0 (19)

and zero slope,

i:-’;’,&(x,o) = :?—l(x,'b) =0 (20)

The condition that there be continuity betwsen the plate and
stiffener is given by

Vatiee — Wp1 = O (21)

Fourier expansions.— The buckled deflsction surface is known to be
sinusoidal in the long direction. However, the deflsctions in the short
direction may be either symetrical or antisymetrical, depending on
vhich mode corresponds to a lower buckling stress. For the present,
the symmetrical mode will be considered. Then, let

..

= xx Z s DY {2
¥p1 = 8in > by cos oy (22)
n=0,2,4,...
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xx
Vatipr = O oln 37

where XA 1is the half-wave length of the buckled surface.

Energy expressions.— In addition to the plate—bending energy
(equation 5), the stiffener-bending ensrgy

2
v _EDarsre [ (Pvaurr)
stifs 2 .-

the work cf the plate stresses

-Tpl - %/Y(%%ge dx dy

and the work of the stiffener stresses

) dw 2
T oA stiff dx
stiff = —é_ dx

must be talten into sccount. Substituting equation (22) into

1558

(23)

(2k)

(25)

(26)

equations (5) and (25) and equation (23) into equations (24) and (26)

glves, in the region (O,)),(0,b),

Vp1 *+ Vetire — Tp1 — Tatirr - i [(1 + neﬂz)a - Bak]cl + 6011)1"n2

n:hD‘b

3 n=0,2,h,...

+-2(7 - szk) A2

(27)
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where

Constraining relationships.— Whiles the boundary comdltions of

zero slope (equation (20)) are satisfied by each term of equation (22),
the boundary conditioms of zero deflection (equation (19)) are satisfied

only by making
@0
E 'bnso (28)
n=0,2,k4,...

The continuity condition (equation (21)) will be satisfied by means of
the constraining relestionship

A - _—; by cos = = 0
n=0,2,k4,...

or

2
A - (—:_L)_’_‘/ by = O (29)
n=0,2,4, ...

Stability criterion.— The energy expression (27) must be minimized,

with A and the b's bound by the constraining relationships (28)
and (29). Let . L
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V.+V -T.-T j
F = pl stiff pl stiff ¢ by

( *I'D'D) nw0,2,k4, ...
83

- nla - :gi: (_i)n/é By
n=0,2,4,...

where ¢ and 1n are Lagrangian maltiplieras. Then,

%%; -0 = 2[§i + naﬂé)2 - 82%](i + Bog)bn -t + n(—l)n
JF

& =0 =u(y - p2eK)A — u

Solving for b, and A gives

by = —;-Enlﬁ L
A= %nu

where

E, == L
l.(l + n262)2 ~ 3219

(1 + BOn)

1
: 2(7 - 8%x)

(20)

(31)
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Substituting equations {30) and (31) into equations (28) and (29) gives

[ ) [ j
n
5 E LI _;_ (-1)" E =0
n=0,2,4,... n=0,2,k,...
©
, > (32)
-t E (-1)*B, + n (B + E Ey) =0
n=0,2,4,... n=0,2,h4,...

-t

Setting the determinant of the coefficients of & and 7 in
equations (32) equal to zero glves as the stability criterion for
symmetrical buckling

Z Ep||E + i Ey| - i ()% By

n=0,2,%,... || n=0,2,h,... n=0,2k,...

2
o (33)

For a given value of B, this criterion can be used to find k; the
correct value of B 1 that which gives the lowest value of k.

The stabllity criterlion for antisymmetrical buckling is obtained
simply by letting

w = sin % g b, cos E.Ez
n=l,3,5,...

and using thes Lagrangisn multiplier method to introduce the zero N
deflection constraining relationship T

E by =0

n=l,3,5,...
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(Since the stiffener has no torsional rigidity and lies along a node,
it does nct affect the buckling stress.) The stabllity criterion for
entisymeetrical buckling becomes

n=1,3,5,..-

If equation (34) gives a minimum value of k that is lower than that
obtained from egquation (33), the gtiffener will remain straight and
the plate will buckler antisymmetriceally.

Further applications.- It is evident that the method glven may be
uged to take into account any nunber of stiffeners with arbitrary
spacing. Furthermore, the effect of stiffener torsional restraint can
also be included by adding to-the energy expression the twisting energy
of* the stiffener end introducing conditions of rotational continulty
between plate and stiffener. The method can be extended to analyze
stiffened plate problems in which double Fourler series must be used
(for example, a finite rectangular stiffened plate, clamped along all-
edges); 1in such problems, approximate upper- and lower-limit solutions,
rather than exact-solutions, may be expected. Stabllity problems
involving plate-stiffener combinations in shear, or in combined
compression and shear, might also be conveniently solved by the present
method.

CONCLUDING REMARKS

Elementary examples have been given to demonstrate the application
of the Lagrangien multiplier method to the elastic-stability analysis
of (&) flat rectangular clamped plates in shear and (b) plate-stiffener
combinations. ZExact msolutlions were obtained for the examples con-
sldered; for other problems, such as the shear buckling of a finite
clamped plate (appendix A) epproximate solutions may be obtalined in
two different ways providing upper and lower limits to ths true value
of the buckling stresses.

Langley Memorial Aeronautical Laboratory
National Advisory Committee for Aeronautics
Langley Field, Va., September 12, 19L7
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APPENDIX A
. BUCKLING IN SHEAR OF A CLAMPED RECTANGULAR PLATE

A thin rectanguler plate clamped along all four sides and loaded
in shear along the edges is i1llustrated in the following sketch:

y
-~ AL

YILLLLIN LI /¢
¥k 1

% b / S X
\J f‘/ - > f‘

V1111717777777 7777777777s

N N N

The problem is to determins the critical value of the shear stress
under which a plate of given aspect ratio begins to buckle.

Approximate analyses of this problem have been given by Smith
(reference 6) and Iguchi (reference 7). Smith uses the Rayleigh-Ritz
method and hence obtains an upper—limit solution, whereas Iguchi uses
a method that leaves the type of solution unspecified. Both upper
and lower limits to the true buckling stress may be obtained by the
present Lagrangian mltiplier solution.

The buckling configuration may be either symmetrical or anti—
symmetrical about the plate midpoint, depending on which buckling mode
corresponds to a lower critical stress; the two buckling patterns will
be consideresd ssparately.

Symmetrical Buckling

Boundary conditions.— The boundary conditions of the problem (see
preceding sketch) are: :

Zero deflectlion, all edges:

w(x,%) =w<x, —g)-o (Ala)
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(2 ’y) - "< 3 ) (A1b) )

Zero slope, all edges:

5e2)- 36 (e

6,5 -2(-2, ).o (A2b)

Fourier expeansions.— In appendix B, conditions to be considered in

choosing fourier series for use in stability analysis are discussed.
On the basis of this discussion the following expansion was chosen to
represent the symmetrical buckled surface:

w = Z Z & 8in ain —-1b—"1 ___ .- —

m=) n=1

YD 095 BT cos BT (a3) -

m=0 n=0

Energy expressions.— Substituting the expansion for w (eguation (A3))
into squations (5) and (6) gives .

V = @xhabzn i(‘:—g + g)zE.mnz(i— S0 —"801;)

m=0 n=0

2(1 + B + 50n)]
T=atn2iimamn¢m - | | ;

m=l n=1
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Then
v-T =2D::'b ;; %Am[ama(l-aw—f’oxb +¢m2]
- kg mapd ' (Ak)
where

2
A -26112+n232> <1+5m0+50n>
Note that V — T 1is independent of dgpp since Aggy = O.

Constraining relationships.— In order to satisfy the boundary con—

ditions of zero deflection (equations (Ala) and (Alb)) it is necessary
to impose ths constraining relationships

X i (-1)" dpy = 0 (J =0,1,2,...) (A5a)
© m=0 _
Z (1)* a4, =0 (1 =0,1,2,...) (a5p)
n=0

Similarly, in order to satisfy the zero slope conditions (equations (A2a)
end (A2b)), it mst be true that

Z n"‘l)m 2my = 0 (3 = 112:3:--_-) (Aba)
m=1
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Equations (A5a) and (A5b) contain the term dpg, which is missing
from the expression for V — T. The term dgp may be eliminated from-

the conatraint relationships by subtracting the first of equations (ASbH),
the equation for 1 = O, from the first of equations (AS5a), the equation
for J = 0. The final set of necessary constraining relationships then

becomes
© . . h
D - (a0
m=] n=l
> ar e
m=0
D (Dt ay,
n=0

1,2,3,...) -  (ATa)

]
o

(3

L}
(o)

(1

1,2,3,.4.) ,J

Zm(—l)mamdu . (3 1,2,3,...-)- T

= 0 =
me (ATD)
Zn(—l)n ayp = O (1 =1,2,3,...)
n=] i : -

Iower—limit solution.— As described in reference 1, a lower lim!t

to the buckling stress can be found by minimizing the energy
expression V — T (equation (AL)) with respect to all the coefficients ap,

and ‘- dp, dut satisfyling only some of the constraining relationships (A7)
and (A7b), say, as far as 1 =p and J = q.

If V~-T 1s divided through by the constant term

function to be minimized becomes
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m=0 n=0
-a . (-1)™ 4, - Z” (-1, .
m=1 n=1
q o D ® _
S > MY (MRay - > w > (DRay '
J=1 m=0 i=1 n=0
q ) b 0 . .
=) Gy m(APay - ) 1y a-DRay (28)
J=1 m=1 i=1 n=

The quantities a, XJ, by, o %, end 1, are Lagrangian
mltipliers. The minimizing equations become I

-~

= (mn = 1,2,3,...)
darm _
; (A9)
2 _ -
e, (m,n = 0,1,2, )
Equations (A7a) and (A7b) teken up to 1 =p ‘and J =g
~7
By evaluation,
oG 3 m n _
% = Amfmn - KB mmdy, - Em(-1)" - n.n(-1)" =0 ] ~ (a10)
Bc;.i = Aymdmpn - ksf331’3:05"mn - An(-1)" - up(-1)" =0 (m,n # b) (All)
 ddpm et Lo
3 m
Sy ~ fmodmo - @(-1)T -y =0 __ (a12)
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Se- = Aondon + a(-1)% =g = 0 (a13)

In equations (A10) to (A13), &, amd A, do not appear for
values of n >gq, nor do ny and u, appear for values of m > p.
When both m >p end n >q, €n, Ay, 7y &and uw, vanish from

equations (Al0) and (All). Then one of two conditions is possible,
either

A2 ~ 12800202 - 0
or
&m = 4 =

The filrst altermative, however, for given values of m >'p
and n > ¢ wlll ordinarily lead to & very high value of the buckling
stress ccefficient ky. ZFor the lowest buckling load, therefore,

wvhen m>p and n >gq,

o = G = O

For the remaining a's and d's, solving equations (Al0) and (All)

glves

8y = By [m(-1)" € + n(2)" ﬂm:‘ + Cpp, E—l)m Ap + ()T (Alka)

L —

dmn = Bun| ( —1) Ay o+ (A1) um} cmEn(—l) tn + n(=1)" ny (ALkb)

— - -—
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where -
fm
an = o 2
Arn - — Do
Cugy = 2Dm _ _
Amn = Dim
Dyn = kp3m
From equetions (A12) and (Al3),
e 2
don = ﬁ:ﬁ(—l)n + ).n:l (A16)

It is to be emphasized that in equatioms (Alka) to (Al6), for

values of m % p

T

and for values of n >q

§n=

p.m=0

Substituting the values of a's and d's glven by equations (Alka)
to (Al6) 'ba,ck into the constraining relationships (A"(a) and (A7b) taken
uwp o J = and 1 =p glives



(an Bon ) + Z("l)mamﬂ‘m S 0 sy -
n=1

n=1

] P i

J w+) J .

x3§ I L Bmun+§‘1§ o, § HD™ ey =0 (1=1,2,3,..)
m=0 n=1 m=1 m=l

n=1 n=1

S (e, warts, DI IS TR S TS R
=1

. [ P - o P |
J J
¢ E 1111213]],J + Elm,j(—l)m"' By + My E_l nC,, + E ol -1 )™ Cp gty = © (J=1,2,3,..9)
m~= , m mll

m=1

Z 1n(-1)}* By L+ Znas Zu(-l)1+nl Cyhy + uiZns = Q (1 =1,2,3,..p)

n=1 n=1

In order for thie set of 2(p + q) + 1 equations to be compatible, ths detsrminant of the coefficlente
of the Lagrangian multipliers must vanish, This requiremsnt leads to a determinantal equation from which

the critical wvalue of the buckling cosfficient may be found by trial. An esxample of an elsventh-order
determinant, with p =3 amd q =2, 418 shown in table 1.

gcloT “ON NI VOVN
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Upper—limit solution.— The thsory of the upper-limit solution in
the Lagrangian multiplier method (reference 1) requires that some a's
and d's arbitrarily be set equal to zero, that expression (A4) be
minimized with respect to the remaining a's and d4d's, and that all
the constraining relationships (A7a) and (A7b) be satisfied.

Ag a result of the necesslity for satlisfying all the constraint
relationships, a redundancy exists among equations (AT7a) (see
reference 1); this redundancy can be removed by discarding the first
of equations (ATa). That another redundancy exists in equations (ATb)
may be shown as follows: If

PRSI

is multiplied by J(—l)“j and summed over Jj, the result is

Z (-1’ Z n(-1)" ey, = Z g 1) gy =0 (M8)

J =] m=l m=1

N

Cn
|
[

and 1f

Z n(—l)n 84, =0

n=1

is mltiplied by 1(—1)1 and summsd over 1, the result is

) ) [ @

1=1 n=1 i=1 n=1

BEquations (Al18) and (AlQ9) are identical; hence a redundancy exists,
which may be removed by discarding one of equations (A7b), for example,
the equation for 1 = 1.

With the elimination of the redundant conditions, the necessary
constraint relationships become
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) (U oy

m=0

Z..("l)n din
n=0
2w

m=1 L ( A200)

Z 1‘:;(—1)n &

n=al

]
o

(J

L

1,2,3,...)

s (A20a)

]
o

(1 =1,2,3,...)

]
(@]

(3 =_l,2,3,...)

L]
o

(1 =2,3,4,...)

The sccuracy of the upper-limit result, as well as the ease of
solution, depends in part on which Fourler coefficients are retained
in the analysis., Several possible groupings of included terms were
trled out iIn solutions for the special case of a square piate. The
trials indicated that the optimum arrangesment for practical applica—
tions was a finite rectangular array of cosine coefficients (dm>

together with certain infinite rows and columms of sine coeffi—
cients (&), as illustrated in table 2.

These limits on the existence of the coefficientas can be expressed
as follows:

dyn = O (when etther m> p or n> q)
oy = O (when both m>p and n> q)

When these limits are imposed, the constraint relationships (A20a)
and (A20b) take the form

m

(Dm0 Genes.w
. (aA21)

Me

(-1)® dyp = O (1 =1,2,3,..p)

o}

[

o
—
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Z d—l)m a’m" =0
mm=l

P
D> DT =0
m=l _
i n(-1)" ajgp = 0
n=l

9
Z n(-1)" 8, = 0
n=1

The function to be minimized is

o
g = E
m=0

n=0

(§ = 1,2,3,. q)

() = g+1,042,...)

(1 = 2,3,4,. OP)

(1 = p+l,p+2’-on)

q P P n :
DRI T M
1 n=0

x
351 w0 i=

J=1
P

Setting % - 3% = 0 then gives

m

—i ‘ai w(-1)" &, — i cji m(-l_)_m o0y
.m=al

J=q+1 m=l

> Ny B(-1)% ey, - Z nizn(—l)nam

1=1 n=1 1=p+1 n=1

{%ﬂm[a-f(l - B = Boy) + &’ - ksa%amdm}

27
-
- (A22a)
-
- (a22b)
(423)

A = an[(—l)m o+ (-1)" "mj + cmn[m(—-l)“‘!z1 + o(-1)" qn;]
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For d . £ 0,

o = BME‘(_l)m;n + n(-1)2 '\m] . CmB—l)m Ay + (<1)B um:l
For d, =0,

o = ;f;En('—l)m {y + n(-1)2 n,;l

. 1558

Bubstituting these values back into constraint relationships (A21)

through (A22b) glives

P P P
M3 Bag e ) (D™ mpn s &) aon
m=0 m=0 m=0

P
+Z_ (-1)m+" JCmJnm =0 (J =1,2,3,..q)
m=0
q q q _ .
Z(_l)“n B, A, + uizsm +Z (-0 ac, ¢
n=0 n=0 n=0
.
tn ) mWgp =0 (1=1,23,..p)
n=0

3 i nBpy + ¢ i AL? * ’Z("”m 285

m=1 m=p+1 mJ m=1

(A2ke)

(A2kD)

- E J
+ E S-'ﬂ——ﬂ! T + M3 2 My + E (=)™ MOy gy = O (A252)

m=p+1 m=1

(4 =1,23...9)
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P P '

2 m+ S
¢ Zm + T(—l) B g = O (J = q+l,q42,...)
Jm:-lm ; -

o0 q
i -1 i+n 1
z (-1) +n inBingnf E S_Ln_ﬂ gn -~ ny E n251n

n=1 n=q+1 n=l
+ N ( 1)i+n nC A. + By nC =
1 "-in
n=g+l n=1

(1 = 2,3,4,..p)

q .
S‘ (___)ﬁ’_‘_L n?
L E, + g K =0 (1 = p+l,p+2,...)

n=1 n=1 in

(A25p)

(A268)

(A26b)

These equations involve all the multipliers ¢§ g3 and 7y. They

can be reduced, however, to a set of equations including only the

mltipliere up to 1 =p, J =q as follows:

From equation (A25b), for J = q+l, q+2,...

(=1)™ my l)’“‘"1 my
Z

From equation (A26b), for 1 = p+l, P+2,...

q
_ -1 i+n n¢
n
£ An
4 =
o®
Atn



Substituting these expressions for [ § anrd 1ny  into equations (A26a) and (A25a) respectively

.glves, along with equations (A24a) and (A2Lb), the final stability equations:

q q = h
n Z Tnf-—l)i"'n &, M +Zni(—l)i+n 3, L +u S_ aC; + 1 Z ?T
n=1 Lj__ n=l n=1 "q n
D )
SN Ay 0
- L L p =0 (1 = 2,3’u,b-p)
n=2 n=q+l me
= Am
-3 m+ 3
DI R ARSI YN ST o >
m=1 m=1 m-p+1
w mny(-1)" :
A jA n
- i Z q =0 (J = 112:31'-Q)
D=l m=p4l Z n2
n=1 Am
D P by P
deBmJ +Z(—1) BmJ”m+§JZnCmJ +Z 3(-1) Jcmﬂm“o (J =1,2,3,..q)
m=0 m=1 H=] m=
L i i+n
Ky LBm +Z(-1) Bn +Z 1(-1) cin;n+ qi(l - a]_Dchm =0 (1 =1,2,3,..0)
n=0 nw=l n=1 =]

> {a27)

ot

QGET "ON NI VOVN
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Thé 8tability criterion is a determinant based on equations (A27) s
28 In the lower 1limit solution. An example of a ninth-order deter—
minent, with p =3 and gq =2, 1s shown in table 3.

Antisymme tricel Buckling

For the analysis of buckling antisymmetrical about thes plate
midpoint, the origin of coordinates was taken as shown in the following

sketch:

b
A B J S—
/1L

4 L

| AR
- . N ]
//////////////////7/////// /A

XN

—_—
NN

N

Boundary conditions.— The boundary conditions are now expressed. as:
Zero deflection, all edges .

) eld)-e

w(o,y) = w(a,y) =0

Zero slope, all edges:
ow b ow b
3y <I’§> B 5y<x’-§) =©

o, y)=(a,y) =0
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Fourier expansion.- In accordance with the ideas summarized in
appendix A, the chosen expansion is

w = E E bmncosn;ﬂa—xcoszn%

+ E E Crm sinm?sinzn.-%{ (A28)
m=1,3 n=1

Ener: ression.- When the expansion (A28) is substituted in the
general formilas (5) and (6) the result for the total energy expression
is

V. Dn*b Z Z m[m + 1 - Son)] - WkgB3mb, c, S(A29)

m=1,3 n=0

r

A’m[1 = <m2 + 11.932:12)2(1 + 50n>

where

Congtraint relatlionships.- The necessity of satisfying the
boundary conditions imposes the following conatraining relationships
on the coefflclents:

E (l)n j.n=0 (i::.[_,3-.,5,_..)
n=0
> (A30a)
bm‘j =0 (J =O,l,2,.,_)
m=1,3 e

I
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S )

Z n(-1)* o = (1 =1,3,5...)

n=1L

|
O

> (A30Db)

1,2,3,...)

1}
(@)

(J

>

m=1,3

Note that there is no term bpy 1To be removed from these expressions.

Lower-iimit soilutlon.~ The function to be minimized becomes




The stability equations analogous to equations (Al7) for the symmstrical case take the form

7 B' $E ("l)'j 13'1:1.1“'m + !".1 1- aOQ T “’c'm *+ SL J(—I)J c'nr}"'m =0
e m=1, 3 i a w3 wel,3 )
(J = 011121"‘1)
Z(—l) BY, A4 u'i ZB' ii(—l) c' C' +17 ch' =0 (1 = 1.,3,5,..p)
n=1 )
€y Z w3l Z mi-1)) Bty Z Z e SRR
m=1,3 m=l,3 m=l,3
(J = 1:2133"‘1)
Z (—l) 1nB‘inC' +nt iz_’naﬂ'in Ln(—l) C'inl' + ut 12_ nC'm =0
n=1 n=l
(1 = 1,3,5,..p)
J

From thess equations a detsrminant can be formed to give the critical valus of the buckling
coefficlent.

(A31)

He

QLGT oM NI YOVE
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Upper—limit solution.— Since all of constraint relations (A30a)
and (A30b) are to be satisfied according to the thesory of an upper—
limit solution, it can be seen that ons of equations (A30a) and one of
equations (A30b) are redundant. These redundancies can be proved in
the same manner as for the symmetrical case and are eliminated by dis-
carding the equation for 1 =1 of equations (A30a) and also the
equation for J = 1 of equations (A30b). As was done in the upper~—
limit solution for the symmetrical case, a rectangular array of cosine
coefficlents and infinite strips of sine coefficients will be retained;
thus, let

bym = O (when either m >p or n > g)

Cpn = 0 (when both m >p and n > q)

The final set of constraining relationships then becomss

;ii:(—a)n b, =0 (1
n=0

P

Z"m” (

m=1,3

355,75 .+P)

0,1,2,..q)

=]
~
s
~—
=]
o'
[y
=}
]
o
~~
[EN
L]

1,3,5,..p)

nal
3.
j} n(-1)" b, =0 (1 = p+2,p+h,...)
n=l
g mcpy = 0 (J =2,3,4,..q)
m=1,3 o
P
:;_' mepy = 0 (3 = q+1,0+2,...)



Psrforming operations similar to those for the symmetrical case glves ae the final stabllity
equations:

-
q q q q
ﬂ.iz nBB'in +Z in(——l)n B"Ln;'n +§__ n(-—l)n C'in}.'n + l‘l'i(\l - 511) S D.C'i.n
n=1 n=2 n=1 © n=l
0w
» > P o i_.__.._.__.nim
* Z gt Z Z ‘ 1;A""m =0 (1=1,35,..p)
n=q+1 i m=1,3 n=q+l N~ o
2 o ¥
m=1,3
p P P
Cr N B, + SN m;j(—l)J Bt ' 4+ ¢ me' , + N m('--l')‘1 cr .
1/ TBwt L Vet My L Pyt 2 n*'n
m=1,3 m=1,3 m=l,3 m=3,5
o n’ng(-1)"*
S R T Rgay Oa -
s —_ Y = = .
+ § J L I';E Z__ Z_ q 0 (3 2,3,4,..9)
M=p+2 n=2 m=p+2,p+b Z o2
Al
n=1
q q 9 g
why ZB'in * Z(’l)n 35 s *Zi('l)n bty ) Wm0 (= 35,T,e)
n=0 n=0 ne2 n=1 ,
J
m=l, 3 m=3,5 m=1,3 mal,3
(J = 0,1:2:--Q)
-

> - ' » t

(A32)
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Numerical Example

Upper and lower limits to the symmstrical buckling stress of a
square plate have been computed; certain simplifications are possible
in the operations for that case. From the symmetry about both diagonals
present in the buckle pattern of a square plate, 1t can be shown that

Smn = ®nm
%m = %om

where the a's and d's are the Fourier coefficients of sxpansion (A3).
Then, in the stability equations (A17) and (A27),

a=0
and, for 1 = J,
ijpi

g,j =4

The following upper and lowsr limits to the true symmetrical
buckling stress coefficlent were computed for the square plate,
with p =q =3 1in equations (Al7) and (A27):

Lower limit k¥, = 1k.6k4

Upper limit k = 1k.79

Thus, the true value of kg must differ by lees than 1 percent

from the mean of the upper and lower limits. The numerical results for
the square plate given by Smith (reference 6) and Iguchl (reference T)

are 1k .72 and 14.58, respectively. .
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APPENDIX B
FOURIER SERIES IN STABILITY ANALYSIS

The primery condition in the selection of a Fourier expansion to
be used as a deflection function is that 1t be a complete set over the
region in question. The cholce of the best series for a given buckling
mode, however, depsnds on certain other considerations which will be
outlined hersin, with emphaslis on application of series in the Lagranglian
multiplier method.

Series in one variabls.— It can be shown that any arbditrary

function f(x) in the interval (0,a) may be expressed as the sum of
two other functions, one symmetrical and the other antisymmetrical about

the midpoint x = %.

If
f(x) = S(x) + A(x)

where

8(x) = %f(x) + %f(a - x)

A(x) = %f(x) - %f(a - x)

it is true that S(x) = S(a — x) is symmetrical and A(x) = — A(a — x) 1is
antisymms trical.

When the function f(x) is to be represented by Fourler series,
both S(x) and A(x) can be given by a series of either sines or
cosines, as is shown in figure 1. Thus

D mSx)

s{x)

[}

A x)

]

2 PatalX) D

m

ll ‘ || ‘i| i
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Since f(x) = S(x) + A(x), and both S(x) and A(x) are capable
of representation by either sines or cosines, there are thus (2 x 2)
or 4 possible general series for f(x) that can be constructed from
the functions of figure 1. )

Series in two variables.— Let it be required to represent f(x,y)
in the region (0,a2),(0,b) by a double Fourier series. This double
series representation can be derived by writing a single Fourier series
In x and letting the Fourler coefficlents depend on y; thus,

Hx,7) = > Gu(5x) + > ¥u(PAg(x)
m m

Each of the functions ¢m and *m can in turn be given by Fourler
series in y, in the region (0,b) as follows

9(y) = Z °m‘°‘n(§) + Z d.mSn(,%

n n
n Y R
‘km( y) = Z a'mAn(,g) + 2_ bmnsn( I¥\) | |
n n

Then f(x,y) becomes

f(x57) = 5 aph OA) + ) > boA (08 ()
m 0 m n
+:Z Z cmSm( x):An‘y) + Z z demt_x)sn( y) ._“_“
m n m n

It can be proved that

f(x,y) = 8(x,y) + Alx,y)
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where
, _ ‘T‘ . o ..
S(x,y) E E —ahmﬁh$x?An(y) + b E“dmnsmﬂx)sn(y)
m n m n
1s symmetrical about the midpoint of the region and

Hxz) = 3 D ADS(3) + > S epS (0 ()
m n

m n

1s antisymmetrical about the same point.

Since the terms S, S,, Ap, A, Iin these expressions can be

given by either sines or cosinses from the group depicted in figure 1,
there are thus (2 x 2)2 or 16 combinations of Fourier series by which
& symmetrical or antisymmetrical buckling pattern may be represented.
For a general pattern, neither symmeirical nor antisymuetrical, =a
choice of 16 X 16 or 256 possible series is availsble.

Cholce of series.— The simplest application of the Rayleigh-Ritz

energy method occurs when the series chosen for the buckled surface
not only satisfies the boundary conditions term by term, but also leads
to integrals of products of orthogonal functions in the evaluation of
the energy expressions. This occurs, for example, when a double sins
series is used in the analysis of the compressive buckling of a simply
supported plate (reference 8).

In more difficult buckling problems, such as clamped—plate problems,
the simplicity of this calculation can be approached by choosing series
which do not satisfy the geomstric boundary conditions term by term but
which do have the desirable orthogonal properties; the Lagrangian
multiplier method is then used to make the series as a whole satisfy the
boundary conditions. Thus, in reference 1, a double cosine series was
employed In the Lagrangian multiplier method of finding the compressive
‘buckling load of a clamped plate. One important consideration to be
kept in mind in choosing a particular series for use in this method is
that, for reasons of rapid convergence, the use of cosines rather than
slnes for clamped-edge deflection surfaces 1s preferable. ’

For the case of symmetrical shear buckling of a rectangular clamped
plate, the following series (equation (A3)) was chosen (origin at plate
midpoint):
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© ) ) d e _
w=§ § amsinzznsin&%’ty+§ § clmncosamg‘mcosa!?o’ty

m=1 n=1 m=0 n=0

This expansion, having the general form

D D cmbdOh() ¢ Y > amSi®s(»)
m n m n

-

is a combination of symmetrical cosines and antisymmetrical sines. As
is desired, the energy expressions involve the products of orthogonal
functions; the boundary conditions of zero slope and deflectlon are
applied to the sines and cosines, respectively, by means of Lagranglan
multipliers. It was necessary to Ilnclude sines as well as cosines in
the series In order to achieve the desired orthogonal properties;
however, the portion of the deflection function symbolized

by E E a.msm(x)sn(y) was intuitively believed to be the more
m n

important and therefore, for reasons of rapld convergence, was chosen
to be in terms of coslnes rather than sines. Similar considerations
dictated the choice of equation (A28) as the deflection function for
antisymmetrical buckling.
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TABIE 2.~ CHOSER ARRAYS OF SINE AND COSINE TERMS FOR UPPER-LIMIT SOLUTION
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OF SYMMETRICAL BUCKLING, WITH p =3 AND q = 2

n : 1 2 3 M 5 6 7 8 .
1 81 % %3 My %1y %1 *n % —
2 12 %2 23 &2 85 8 &2 882 —>
3 13 %3 833
: 818 ey a3y
5 215 225 &35
6 ®16 %26 %36

n » 0 1 2 3 I 5 6 7 .
0 %0 %0 420 430
1 do1 411 4z 43
2 Qoo 410 dpp 32
3
"
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TARLE 3.~ URPER-LIMNIT ORABLLETY ORTICETON FOR SYETRICIL BCXLTNG
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