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Solving equations (3) and (L) for 3F(s) and &(s) gives the Laplace
transform of y(x) and 6(x), respectively, as

= (s) (83 + 58)Y2 + (52 + 8)Y3 + Boy - Be-szl[é'(zl _ O) ) 9'(21 . O)Tr
) q(s) _ i

] (EQ . S)e-szl[y'”(zl - O) - }’”'(zl + O)_] 5)

q(s)

and
(o) . 01T 70T = ATy - 0y ¢ e OB Ny o) - 5111, 4 0)]
5= a(s)
NCE )™ "1l61 (1 - 0) - 0'(2y + 0) ] ©
q(s)
where
q(s) = o® + st - as® + 7B - o

Goland and Luke (reference 4) showed that y(x) and 6(x) could be
written as a converging series by expanding the transforms (5) and (6)
in terms of symmetric polynamials of the gquares of the roots of q(s)
and applying the Inverse transform. A discussion of this expansion 1s
given in section 4 of appendix A where it is shown that l/q(s) can be
written as

1 1w T
a0 =8 ;;;);gz (7)
where
TO =1
T, = =8
T2 = 62 + a
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For ng 3,

T, = -8Tp-1 + olp-p *+ (b - BY)Tp-3 (8)

When the serles expansion of 1/q(s), equation (7), is substituted
into equations (5) and (6) the transforms izs) end 6(s) become sums of
infinite series with terms of two distinct types; that is, terms of types

A

S
and
Be~ 8%o
gl

where m 1s a positive integer.

The inverse Laplace transform of ;AE (see pair no. 3, p. 295, of

reference 9) for x>0 1is

Al _ Al |
L ;'i} - ooyt (9)
-8X

and the inverse Laplace transform of (see pair no. 63, p. 298,

8
of reference 9) for X >X5 >0 18

Bl B - x)™t
Ll{BeBm - ’(‘m -xi)z (10)
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TECHNICAL NOTE NO. 1848

FLUTTER OF A UNIFORM, WING WITH AN ARBITRARTLY
PIACED MASS ACCORDING TO A DIFFERENTIAL-
EQUATION ANALYSIS AND A COMPARISON
WITH EXPERIMENT

By Harry L. Runyan and Charles E. Watkins
SUMMARY

A method 1s presented for the calculation of the flutter speed of a
uniform wing carrying an arbltrarily placed concentrated mass. The
method, an extension of recently published work by Goland and Luke,
Involves the solution of the differential equations of motion of the
wing at flutter speed and therefore does not require the assumption of
gpecific normal modes of vibration. The order of the flutter determi-
nant to be solved by this method depends upon the order of the system
of differential equations and not upon the number of modes of vibration
involved.

The differential equations are solved by operational methods and
a brief discussion of operational methods as applied to boundary-value
problems is Included in one of two appendixes. A comparison is made
wlth experiment for & wing with a large eccentrically mounted weight
and good agreement is obtained. Sample calculations are presented to
1llustrate the method; and curves of amplitudes of displacement, torque,
and shear for a particular case are compared wlth corresponding curves
computed from the first uncoupled normal modes.

For convenience, the method employs two-dimensional alr forces
and could be extended to apply to uniform wings with any number of
arbitrarily placed concentrated weights, one of which might be considered
as a fugelage. The locatlion of such masses as englnes, fuel tanks, and
landing-gear Installations might be used to advantage in increasing the
flutter speed of a given wing. ' :

INTRODUCTION

The common procedures in flutter analysis of an airplane wing
involve many simplifying assumptions. In particular the degrees of
freedom of the wing are usually determined by choosing the first few
normel modes of the structure, and the wing motion at flutter is then
described in terms of these chosen modes. This approach of employing
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prescribed modes is often adapted to"the Rayleigh type analyﬁis of
vibration and may be referred to as Raylelgh type analysis. In
specific calculations with this method the amount of work required is

. proportional to the number of normal modes involved. In particular, the
order of the flutter determinant that must be solved depends directly
upon the number of modes involved. For simple wings, without concen-
trated masses, the Rayleigh type analysis usually yilelds satlsfactory
results with not more than two or three normal modes. However, if the
wing carries concentrated masses, such as engine, fuel tank, or landing-
gear installations, s0 many normal modes may be required to obtain satis-
factory results that the Raylelgh method may not be the most feasible
method.

In cases where many degrees of freedaom are Involved the most logical
procedure would be to treat the system of differential equations of
motion of the wing rather than to choose specific modes. This method 1s
in general very difficult and tedlous to oarry through, although it has
the advantage that the order of the flutter determinant that must be
solved depends only upon the order of the system of differential equations
and not upon the number of modes of vibration Involved.

As early as 1929 Kiissner (reference 1) used the differential
equation approach to formulate the problem in the form of an integro-
differential equation for a wing of general plan form. Kiissner set up
some particular examples and suggested a method of solutlon by a process
of iteration. This method was not followed up until during the war
when some related work was undertaken in Germany but not finished.
Wielandt (reference 2) has recently made contributions to the treatment
of nonself-adjoint differential equations by lterative processes. In
the 1light of these contributlions perhaps the problem of flutter analysis
as proposed by Kiissner warrants further investigation.

Recently, Goland (reference 3) applied the differential-equation
method to a uniform cantilever wing and was able to carry out the
solution of the flutter problem by straightforward methods. In refer-
ence 4 Goland and Luke extended the solution of the problem of the
uniform wing to include a uniform wing carrying a fuselage at the
semispan and concentrated welghts at the tips. Goland and Luke made
use of the Laplace transform to solve the differential equations by
operational methods for both the gymmetric and antisymmetric types of
flutter. In both references 3 and k4, the obJectlive was fo compare
flutter speeds and certaln flutter parameters for specific uniform
wings calculated by the differential-equations method with the same
guantities calculated by the Rayleigh method when only the fundamental
bending and torsion modes were used in the calculations. Fairly close
agreement between results calculated by the two methods were obtained
in both references 3 and 4. No comparison with experiment, however,
wag made In either case. T B

The reaults of a systematic series of flutter tests made to
determine the effect of concentrated welghts and concentrated weighv
positions on the flutter speed of a uniform cantilever wing are reported

o
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in reference 5. After these experiments were finlshed, an attempt was made
to compare the results with a theoretical analysis by the Rayleigh method.
In cases where the mass of the welght was of the same order as that of the
wing and placed so that the distance between 1ts center of gravity and the
elastic axis of the wing was a conslderable fraction of the wing chord,
however, several normal modes would have to be employed and there was no
way of knowing in advance Jjust what number should be used. Because of
this difficulty and because the wing was a uniform wing, the most extreme
case wag chosen from reference 5 and investigated by the differential-
equations method by following an extended procedure of Goland and Luke.
The purpose of this paper is to report the results of this investigation.

The paper consisis of the main text and two appendixes. In the
main text the differential-equation method is set up for any uniform
cantilever wing with an arbltrarily placed concentrated weight and the
solution, based on an extenslion of the msthod used by Goland and Luke, is
developed. Application is then made to & particular wing-weight system
used in reference 5, and comparison with experimental results is glven.
The mass of the weight (weight labeled Ta in reference 5) was about
92 percent of the mass of the wing and at each spanwise weight position
the welght was placed so that its center of gravity was about O.41 chord
forward of the elastlc axis of the wing. (It may be mentioned for the
geke of comparison that in the numerical example treated In reference h,
the mass of the welght was only 39 percent of the mass of the wing and
placed 0.1 chord behind the elastic axls of the wing.) The geometric
agpect ratio of the wing was 6, which was considered large enough to
warrant the use of two-dimensional air forces without aspect-ratio
corrections for oscillating instability (not necessarily so for the
divergent type of instability (see reference 6)). One other simpli-
ficatlion was the omission of terms due to structural damping. The
computed results agree remarkably well with experimental results,
particularly in regard to trends.

In appendix A the method used by Golend and Luke, which includes
the derivation of the differential equations, for a wing carrying a tip
welght is outlined and extended to & wing carrying an arbitrarlly placed
welght. A somewhat general but brief discussion of operational methods
of solving boundary-value problems is included and illustrated with a
gimple example for readers who might be Interested but are not familiar
wilth the operational approach.

In appendix B the derivation of the flutter determinant i1s com-
Pleted and a method of solving the determinant 1s illustrated by a
detailed calculation of the flutter speed for the wing and one weight
position of the wing-weight combination discussed in the test. As a
final topic in this appendix the solution obtained for the flutter
determinant is used with the solutions of the differential equations to
calculate the amplitudes and phase angles of the deflectlon curves of
the wing-weight system at flutter speed.
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SYMBOIS

(The symbols are given in terms of a consistent set of units that
are convenient for the computations in this paper. They can be converted
to any desired set of units by proper attention to the dimensions
involved.)

a8 nondimensional distance of elastic axis from midchord
measured in half-chords, positive for positions of
elastic axis behind midchord

b wing half-chord, feet

e1 chordwise distance of wing center of gravity from
elastic axis, positive for center of gravity behind
elastic axds, feet

ep chordwlse distance of weight center of gravity from
elastic axis, positive for center of gravity behind
elastic axis, feet

g gravitational constant, feet per second per second

I mass moment of inertia of uniform wing per unit of
spanwlse length, referred to wing elastic axis,

Pound-second2 (MKl%)

I mae3 moment of inertla of welght referred to wing
elastlic axis, foot-pound-secondg

Ky radlus of gyration of wing sections about wing elastic
axis, feet
Ko radius of gyration of welght about elastic axis, feet
k reduced-frequency parameter /%)
L aerodynamic 11ft force per unit of spanwise length -
Ly + iLy' = nprLh .
1 3 1
Lg + iLG = npdb {ia - Lh<§ + é)J
[2 ~semispan of wing, feet

51 locatlon of welght measured from wing root, feet
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Ly Lo Mp My aerodynamic coefficients as tabulated in refesrence 7

M
1
My + iMy

Mg + 1Mg'

W

O

<

gl

M

Y(x,t)

y(x)

ET

GJd

aerodynamic moment per unit of spanwlse length teken
about elastic axis

npb3E§1- Ih(% + a)]

npb [Ma - La% + a) - Mh(%L + &9 . Lh(% + a)e}

welight of wing model, pounds

mags of wing per unit length

welght of concentrated welght, pounds
transverse shear force in wing at station x
torsional moment in wing at station x

roots of cubic equation

operator used In Laplace transformation

time coordinate

sum of all symmetric polynomial functions in Ry, Ro, B3
which are of degree n

experimental flutter speed for wing without weight,
feet per second

flutter speed, feet per second
reduced flutter speed

spanwise coordinate measured from wing root
general mode shape function in bending

mode shape function in bending after assumption of
( +
harmonic motionr\yl(x) iye(x))

flexural rigidity of uniform wing, pound-feet2

torsional rigidity of uniform wing, pound-feet?



6 NACA TN No. 1848

2

9 1
a = T m+ Ly + iLy)

032 1
B=EIbm61+L9+iL9

y = 02 (me + + IM !
=gy vy

&? 1
5 = o7 I+ Mg+ 1My >
2
K mass ratio <#pb )
m
p alr density, slugs per cubic foot
FAN camplex value of determinant
&g value of A when real and imaginary parts are equal
@(X,t) general mode shape function in torsion
6(x) mode shape function in torsion after assumptlion of
harmonic motion (92(x) + 193(XU
w circular frequency at flutter, radians per second
f frequency, cycles per second (é?-)
s

ANATYSIS

As mentioned in the introduction the differential equations that
govern the motion of & wniform wing at flutter speed, as derived by
Goland in reference 3, and a method of solving the equations for a
uniform cantilever wing cearrying an arbitrarily placed welght, based on
a method developed by Golend and Luke in reference 4, are dlscussed in
appendix A. This section, therefore, is devoted to a brief discussion
of the differential equatlions of motion of the wing, the boundary condi-
tions, solution of the boundary-value problem by means of the Laplace
transform, and the solutlon of the flutter determinent.

The differentlal equations and boundary conditions that govern
the motion, at flutter speed, of a cantilever wing of length 1 with
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a concentrated weight placed 1} units along the span from the root
gsection and ep units forward of the elastic axis of the wing, as derived
in appendix A, are

y(x) - w(x) - po(x) =0 (1)
6''(x) + yy(x) + %6(x) =0 (2)
(a)  y(0) =y'(0) =6(0) =0
(b)  ELy''(?) = Ey'''(2) =cJe'(1)
(=) _E'Ib[y”'(ll -0) -y 1y + oﬂ -:—" QEy(zl) ¥ eQG(Zl)J

(a) . GJ{G' (11 - 0)- o'(1y + o)}zlm?[egy(zl) + X% (zl)]

0

il

where

2
@

a = iﬁg m + Ly + ilyi>

o
w

B = ETE(PBl + 1o + iIef)
(1)2 ]

7=§<mel+My+my>

2
5= %3<; + Mg + ﬂm;D

and where y(x) ig the displacement of a chordwlse element of the elastic
axis of the wing at span position x due to bending; 6(x) is the corre-
sponding displacement due to torsion; primes associated with y and 6
indicate differentlation with respect to xj EIp i1s the flexural rigidity

W
of the wing; GJ 1s the torsional rigidity of the wing; ?¥7 is mass of the

weight; m 1is mass per unlt length of wing; and w 1is the clrcular
frequency of bending and torsion at flutter. In condition (c) the
notation y'''(1; - 0) indicates that y'''(x) is to have the value that
it approaches as x —17 from the inboard side of the weight

and y'''(11 + 0) indicates that y'''(x) is to have the value that 1t
approaches as X —»17 from the outboard side of the welght. Similar
meanings are given to 6'(1; - 0) and 6'(11 + 0).
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The quantities Ly + iL,', Iy + ilg', My + M ', and My + 1My’

can be written 1n terms of tabulated quantities as follows:
t 2
Iy + ily = n1pb~ Iy

o 13+ 3]
ﬂpb3[ﬂh - Lh(% + a)]

My + 1My npb[ -L(—+a)-Mh\%+a)+1h(%+a>2;|

In reference 7 the values of Iy, L Mh, and Mu are expressed in terms

of Theodorsen's F and G functions of reference 8 and tabulated for
various values of the reduced speed v/bw.

Lo + 1iLg'

!
My + iMy

The root conditions (a) and the boundary conditions (b), of the
boundary-value problem, are the usual conditions that must be imposed
upon the equations of a vibrating centilever beam (or wing). Condi-
tions (c) and (4) stipulate discontinuities of determinable magnitudes
in trensverse shearing force and torque, respectively.

Applying the Laplace transform (see appendix A)

o0

JF e 8X%f(x) dx = T(s)
0

to equations (1) and (2) and making use of conditions (&), (c), and (d)
glves

s%5(s) - ¥ - Y3 + e‘“l[y”'(zl -0) -y + 0)] - oj(s) - B8(s) =0
(3)

and
#0(s) - 01+ o™ 0"(21 - 0) - 0'(11 + 0) ] + 83(s) *+ 73(s) =0 (¥)
where

Y = y''(0)

Y3 =y'""(0)

6, = €'(0)
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and
© 2n+l o 2n+h ® 2nts5
T, X ThX - T.x
a(x) =6, » —E——-Yp =

A Y S ¢ S
(n + 1)! _ (en + W) 7 3/Z__(2n +5)!
n=0 n=0

®© B © 2nt+5
Tnx2n+5 Tn(; - ll)
B T “) o
I

L. n=0

)2n+l 7

[~
T—THX‘I:L
L

== o+ 1! ]

- 2n+5

+7[y'”01-® 'Y'“Ol‘*()) ;Tn$:n+;)l (12)

where in both equation (11) and equation (12) the terms involving (x - 11>
are to be consldered as zero when X = 13.

Equations (11) and (12) are general expressions for the amplitudes
or displacements of a point x of the elastic axls of a uniform wing
vibrating in bending and torsion under the conditions of flutter with an
arbitrarily placed concentrated weight. When the weight 1s concentrated
at the wing tip the equations correapond to those obtalned by Goland
except for a difference in root conditions. When the weight 1s con-
centrated at the root (or if the mass of the weight is reduced to zero)
the equations reduce to those for a uniform cantilever wing. These
equations may appear rather formidable in their present form; however,
only the first few terms of each summation seem necessary for most cases.

In the derivation of the flutter determinant in appendix B 1t is
shown that since terms involving (x - 1) drop out of both eguation (11)
end equation (12) at x = 17, the values of y(1;) snd 6(1;) can be
obtained from the terms not involving (x - lﬂ. Then, by meking use of
conditions (c) and (d) again, linear expression in Yp, Y3, and 6; can
be substituted for the bracketed expressions

I

[y"'(zl - o> -3 (1 o\,v]
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For ng2 3,
Tp = -8Tp.y + oTpp + (b - BY)Ty_3 (8)

When the series expansion of 1/q(s), equation (7), is substituted
into equations (5) and (6) the transforms i?s) and 6(s) become sums of
Infinite series with terms of two distinct types; that is, terms of types

A
gt

Be %o
Bl
where m 1is a positive integer.

The inverse Laplace transform of :—m (see pair no. 3, p. 295, of

reference 9) for x>0 1is

p JA| . T_T,Ax““l (9)
sm m - 1 .
Be 5%
and the Inverse Laplace transform of - 2 - (see pair no. 63, p. 298,
. B
of reference 9) for x > x4 >0 1is
-8X, B(x - )m-l
-1 BQ - Xo 1
L =y (m - 1)7 (10)
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When the expression for l/q(s) from equation (7) is substituted into
equations (5) and (6) and the inverse transforms 1s applied, the following
gerles expressions of y(x) and 6(x) can be obtained:

© n5
y(x= Zi?n+2“+52 i2n+hi| +Y38 22n+55'
n=0
Tnx2n+3 « T 2n+5
- + 6B .
(2n + 3): (2n + 5) !
n=0 n=0
d 2nt+5
Tn(x - 27)
1 _ _ 1 ol 1
n=
o0 2nt5
T.(x - Zl)
- 11 - Y 5 n
-0 -5 o) o ) Sy
- n=0
® _ 2n+3 7
+ZTH"‘ 1) (11)
(2n + 3)1

n=0
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and
+ o 00
: o0 TnX?n 1 . Tnx2n+1+ . Tnx2n+5
2} =0 g —_— - —_— - —_—
x) 1/ (2n + 1)} %2 (2n + 4)! 7 341__.(2n +5)!
n=0 n=0 n=0

e +5 - < _ 2n+5
N o (x - 29)
) Tt 'l -0) - e'(11 +0) |« E 7o)
n=0 n=0

o7 (x - 1,7
n 1

N {y”'@l RN CRE | Dy (12)

Iy

where in both equation (11) and equation (12) the terms involving (x - Zl)
are to be conslidered as zero when x = 13.

Equations (11) and (12) are general expressions for the amplitudes
or displacement of a point x of the elastic axis of a uniform wing
vibrating in bending and torsion under the conditions of flutter with an
arbitrarily placed concentrated welght. When the weight is concentrated
at the wing tip the equations correspond to those obtained by Goland
except for a difference in root conditions. When the weight is con-
centrated at the root (or if the mass of the welght is reduced to zero)
the equations reduce to those for a uniform cantilever wing. These
equations may appear rather formidable in their present form; however,
only the first few terms of each summation seem necessary for most cases.

In the derivation of the flutter determinant in appendix B it is
shown that since terms involving (x - 1) drop out of both equation (11)
and equation (12) at x = 1j, the values of y(1;) and 6(1;) can be
obtained from the terms not involving (x - lﬁ. Then, by meking use of
conditions (c) and (d) again, linear expression in Yp, Y3, and 6; can
be substituted for the bracketed expressions

[y'”(ll -0) -y (u+ oﬂ
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and

[e'(zl - 0) - 8'(3 + 0)]

After the substitutlons are made, equations (11) and (12) will contain
only the three undetermined coefflclents Yo, Y3, and 6, for any

particular wing-welght system of the type under consideration. Observe
that conditions (b) have not yet been used. If these conditions are
now imposed upon the equations, there is obtained a system of three
linear homogeneous equations in Yp, Y3, and 631 that may be written
for reference as

AyYp + ByY¥3 + C167 = O (13)
where 1 =1, 2, and 3.

The condition that a system of equations such as equations (13) have
solutions other than the trivial solutlon

Yo =Y¥3 =61 =0

1s that the determinant of the coefficients A4, Bjy, and C3i vanish

(reference 10). This corresponds to the border-line condition between
demped (stable) and undamped (umstable) oscillations or to the point at
which flutter occurs. It will be noted that the order of thls determi-
nant depends only on the order of the system of differentlial equations.

The actual coefficients corresponding to Ay, By, and C; are

complex functions of the frequency w, the reduced flutter speed v/hn,
and certaln determinable characterlstics of the wing-weight system. The
true flutter speed is easily calculated when corresponding values of w
and v/tw are known. These quantities may therefore be considered as
(the only) variable parameters in the determinant of coefficients and
the problem of finding the true flutter speed 1s reduced to that of
finding corresponding values of these parameters that cause the determi-
nant, hereinafter called the flutter determinant, to vanish. If v 1s
get equal to zero the alr forces drop out and the resulting determinant
gives the coupled modes of vibration of the wing in still air. On the
other hand,1f w 18 set equal to zero the nonosclllatory or dlvergence
condition is obtained.

Several ways of solving the flutter determinant are mentioned in
reference 6. Although more informative methods exist, a graphical method
wag adopted for the present work. For example, a value is assigned to
one parameter, preferebly v/bw; the flutter determinant is then evaluated
for this value of v/bw and several values of the other parameter .

The values of the flutter determinant obtalned in this manner are complex
numbers and if the real and imaginary parts of a sufficient number of
determinant values are separately plotted sgalnst w, tro point or polnts
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where the real and Imaginary parts are equal are obtalned. If this
process for other values of v/bm 1s repeated, a locus of determinant
values with equal real and imaginary parts can be plotted against

both v/bw end . When enough polnte are determined these plots give
the values of v/bw and ® that cause the determinant to vanish.

An illustration of the process of solving the flutter determinant
as described in the preceding paragraph is glven in appendix B which
contains the complete solution of the determinant for one weight position
gf the particular wilng-welght system described"in the section entitled
Application to a Specific Wing-Welght System. In general, when solving
the flutter determinant by the preceding method, 1f the assumed values
of v/bw and ® are in the neighborhood of their true values, only a few
points need be computed to obtain a solution. In the absence of experimental
values of these parameters and in view of the work involved in determining
other parameters that depend on v/hn, it will be found advisable to use
gimplified methods to cobtain approximate values with which to start the
solution.

APPLICATION TO A SPECIFIC WING-WEIGHT SYSTEM

Attention is now turned to the application of the boundary-value
problem discussed in the foregoing sectlion to a specific problem. The
wing-welght system that has been analyzed conslsts of a particular
uniform cantilever wing and weight combination described in reference 5.
The weight was considered as concentrated at different specifiled span
positions but always at about 0.4l chord forward of the elastic axis
‘of the wing. This welght was selected because of 1ts high mass compared
to that of the wing and because of the large eccentricity due to the
distance between 1ts center of gravity and the elastic axls of the wing.
Furthermore, by using only the fundamental modes, first bending and first
torsion, the Rayleigh type analysis had falled to glve any reasonable
results for this particular wing-weight comblnation. Pertinent data,
based on measured characteristics of the wing as taken from reference 5,
with the wmnits in feet and pounds are

Chord, feelt o« o o o o o o o o o s 6 » o 6 o 8 0 s 6 s s & s o » 2/3
Lengthv feet © ® & 8 8 8 0 8 s B 0 S ® ¥ B & T 5 B ¥ L OV & s @ h
ASPeCt ra‘tiO (geOmetI'iC . ° * o . - - L] . . . . L] e . . . . L4 6

Taper ratio s 4 & 2 o 8 s s s o 8 s e 8 s 8 b s s s s s s e 1
A1rTo1l 86CHION o o » « o o o o o 5 = o s s o o o » + o + + NACA 16-010
W, Pounds e s ®_08 8 & 0 8 e e © 0 8 s 6 ¥ & 8 ® T v s v O ° o 30h8
I, Pound'secondp 6 ® ® D0 ©0 & ® € & + § 5 & _ 6 85 & 3 - 3 5 s O O-OOQBO
ETp, pound-feet™ a.eo o o o o o v o s o s o s 8 s u e 0 s e s 977.08
GJ, Pound-feet? « + s v 4 s s 4 o o s e s e w e e e e e a0 .. 48056
1/k (standard air, no weight) + o o s & « ¢ o s ¢ o o o o o o & 32.6
81, feet o o o o o o ¢ o ¢ 4 0 e s e e e e s e e e e e e 0.013
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and, based on measured characteristics of the weight, are

Wy, POUNAS ¢ = « o o o s » o » o & o s o 5 o o s o+ o o o v o 3.182
82’ feet . . . . L] L] . ] . . . . L] o . . L] L] . . . . . . . 'O 02728

IW’ fOOt-pound‘Second2 « & & W 8 e v s+ s B s s e ¥ T 3 s+ s v @ O '013625

Calculation of the flutter parameters have been made for the wing
wlthout the welght and for the wing with the welght at seven different
positions. The calculated results are compared with experimental results
in figure 1 and in the following table:

Calculated - Experimental
[ 62) . f v . £ v
(1n.7)w (£t (cps) | V/bw (fps) (cps) | /™ (fps)
0 | ----- 25.27 6.29 333 2.1 | 7.22 334
11 -0.2728 19.23 8.23 331 17k 8.88 32
17 -.2728 28.0L 6.93 Lo7 a26.8 6.81 382
30 -.2728 30.68 8.18 526 (v) (v) (b)
L5 -.2728 25.67 7.5 401 (v) (v) (b)
46 -.2728 24 .87 7.06 368 21.8 | 8.06 368
48 -.2728 23.60 6.07 300 21.4 714 ] 320

8It is found 1n reference 5 that good flutter records for this wing-weight
system were obtalned for several spanwise weight positions between the
root section and a point 17 inches from the root sectionj but with the
weight at 17 inches from the root sectlon the wing appeared to diverge.
However, the oscillograph records for this case showed two possible flutter
points, one corresponding to a frequency of 16.3 cps and another corre-
sponding to a frequency of 26.8 cps (only the first of these 13 recorded
in reference 5). When the welght wes moved farther outward from this
point, definite divergence was noted until the weight was at a point
L6 inches from the root section. At this point and from this point to
the tip good flutter records were obtalned.

bDivergence.

It will be noted in the table that all the calculated flutter
speeds are within 7 percent of the experimental values and the calculated
frequencies and reduced speeds are within 15 percent of the experimental
values. The calculated flutter speeds are generally slightly higher than
the experimental values for 1, <17 and slightly lower for 14 21h6.

There 1s no such consistent trend in the other parameters.

In flgure 1 the ratio of both calculated and experimental flutter
speeds for the wing with a weight to the flutter speed of the wing with-
out a welght are plotted agalnst span positlion of the welght. The
important thing to note in examining figure 1 is that the shape of the
theoretical curve follows the shape of the experimsntal curve very
closely in the regions where experimental flutter was ebtained. The
horizontal dashed line in figure 1 represents the dlvergence speed for
the wing as computed by the method of reference 1l. Although the
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correct divergence speed for different weight positions would probably
vary, being somewhat lower with the weight at the tip than at the root,
owlng to the effect of the presence of the weight on aerodynamic forces,
the agreement of the approximate value with experimental values is
satlsfactory.

General expressions for the deflection curves are derived in
appendix B from which amplitudes and phase angles for curves of deflection,
slope, moment, and shear in bending and amplitudes and phase angles for
curves of angular deflection and torque in torsion can be computed. The
phase angles and amplitudes for the deflection and shear curves in bending
(fig. 2) and the phase angles and amplitudes for the angular displacement
and torque in torsion'(fig. 3) have been computed with reference to a
unit tip deflection for the weight position 17 = 17 inches. In Pigure 4
the emplitudes In deflection and sheer in bending from figure 2 are
campared with the deflection and shear curves due to the fundamental
uncoupled bending mode of the wing,and in figure 5 the amplitudes in
angular deflection and torgue in torsion fram figure 3 are compared with
the angular deflection and torque curves due to the fundamental uncoupled
mode in torsion. There is a notable difference in the shape of the
ampiitude curves computed by the present method and those computed from
the first normal modes. This discrepancy indicates that several modes
would have to be employed to obtain satisfactory results by the Rayleigh
type analysis.

CONCLUDING REMARKS

The method discussed in this paper is not limited to a uniform
cantllever wing with a single welight. By proper attention to the boundary
conditions the theory can quite easily be extended to apply to a wmiform
wing carrying any number of arbitrarily placed weights, one of which
might be consldered as a fuselage and made to yleld the so-called
symetric and antisymmetric types of flutter. Furthermore, for conven-
lence of application, theoretical values of two-dimensional air forces
have been used. However, since the method does not depend on the
rarticular form of air forces involved, any known or avallable aero-
dynamic data could be used. In any event, the method is tedious and
would, therefore, not be recommended over the Rayleigh type analysis
when 1t might be known that only the first few normal modes of the
structure are sufficlent to give satisfactory results.

For wings that are not uniform the differential equations for
flutter conditions reduce to ordinary differential equations with
variable coefficients. 1In this case the solution would, in general, be
much more difficult to obtein. TFor general cases there would be no
adventage in the operational method of solution although an iterative
process probably might be used to great advantagee
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In conclusion 1t 1s pointed out that the locatlon of such masses
as engines, landing gears, and fuel tanks might be used to advantage in
increasing the flutter speed of a given wing. As shown by the particular
problem analyzed herein and by other experiences a definite region exists,
peculiar to a given wing, in which masses added forward of the elastic
axis of the wing tend to Increase the flutter speed of the wing.

Langley Aeronautical Laboratory
National Advigsoty Committee for Aeronautics

langley Fleld, Va., November 30, 1948
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APPENDIX A

OUTLINE AND EXTENSION OF METHODS OF FLUTTER ANALYSIS
AS PRESENTED IN REFERENCES 3 AND L
1. Derivation of the Differential Equations That Govern
the Motion of a Wing at Flutter Speed
Consider a spanwlse element of incremental length dx at station x

of a wing osclillating in bending and torsion in a free stream of fluld
(see sketch).

A
|
|
|
M

B

Elastic axis
Wind
- — ——— : Station x
direction \E

The dlsplacements Y and @ of an element of the elastlc axls are
functions of x and t. In order that thls element remsin in dynamic
equilibrium the external forces and moments on the element must balance

the Inertia force‘s and moments.

AAAANL LA ALAN NN AN SN

A

The extermel forces and moments consist of transverse shearing
forces and torsional moments, which are trensmitted from one element of
the wing to the next, plus the aerodynamic 1lift force end pitching
moment and internal or structural damping. Structural damping 1s not
taken into consideration in this discussion, although its inclusion
would add no compubtational difficulties.
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The transverse shearing force acting upward at x 1is

= ~EIy B3Y (A1)
33x
and that acting downward at (x + dx) is
N e Y '
N + dx = -XT - BT (a2)
dx b 353 b —xE
Similarily the nose-down torsional moment acting at x 1s
_ o)
= GJ = (A3)
and at (x + dx) the nose-up torsional moment is
2
O PG (AL)

T+yd.x GJB_+GJ812

The two-dimensicnal aerodynamic forces acting on an elemerit dx of an
oscillating alrfoil have been derived by Theodorsen (reference 8) and
can be written as a 1ift force and aerodynamic moment acting about the
elastic axlis of the wing, respectively, as

laY 'a@

L ax = (I.yY+u)I:Y—+mI.9@+19 (As)

M dx = <a) BT+ oM 3Y+w2M9@+aMg'§%)dx (6)

The inertia force of the element dx c¢an be wriltten

Y a"‘ca),x
m 22 + mey S— (AT)
< dt2 T o2

and the inertia moment as

2 2

3" 0 Y
I =~ + meq —= ldx (A8)
<at2 1 2)
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Diagrams of the forces and maments acting on an element of wing of
length dx at station x are as follows:

I, dx T

N — M dx

' — QT
T + & dx

N+%§dx =" T x

o) Py

Y e +m81—>

m == + me —= At dt2

( M dt°

Imposing the conditions of dynamic equilibrium of the element at x by
equating inertla forces to external forces and inertia moments to external
momente gives the two differential equations that govern the motion of

the wing:

2 2
m Y + me; L0 - -EL, ahY+w2LyY+cuLy'g%+weLe@+wLe'£-\

¢ (A9)

I§2—®+mel§—ig=w§+a?myy+umy'%+weme@+me'% )

2+ Boundary Conditlons for a Uniform Cantllever Wing Carrying
an Arblirarily Placed Welght at Flutter Speed

The boundary conditions that must be imposed upon equations (49)
for a wniform cantilever wing are

(1) Y(o,t) =0

(2) EI{%{ Y’_x,’c):L__O =0
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(3) efo,t) =0

(&) EI-D[% Y(x,t)} =0

x=1

]
o

3
(5) Erb[g Y(x,ﬂ z
X=

(6) GJ[-B% @(x,ti]

I
O

x=1

These are the usual conditlons that must be imposed on a vibrating canti-
lever beam. Condition (1) is the condition that the end at x =0 is
supported (either hinged or built in). Conditions (2) and (3) lmply
that this end 1e fixed or built in. Conditions (4), (5), and (6) imply,
respectively, that there is no bending moment, transverse shearing force,
or torsional moment acting at the tip x = 1.

If there 1s an arbltrarily placed welght on the wing, other condi-
tions must be 1mposed that will determine the effect of the weight upon
the motion of the wing. If the welght 1s considered as concentrated at
same point on the chord line at station x = 17, 1t will create discon-
tinuities in both transverse shear and torsional moment. The magnitude
of these discontlinuities are known functions of the mass of the welight,
the location of the weight, and the acceleration of the wing. The
remaining conditions required to complete the boundary-value problem for
the general motion of the welghted wing are, therefore,

Wd) EIL [[533 Y(x, ﬂ -[-3—33 Y(x,t{|
Lax z:(Zl-O) ox x=(11+0)

L x QE_ -
= ?[8? Y(x,t) + e 3P O(x,ti]

D=21

(8) GJ {L% @(x’tﬂp(zl-o) ) {% Q(x’tilv(lfo)

== ——[ % ¥(x,t) + R 522 @(x,t;J
ot x=17
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For the purpose of flutter analysis it is assiumed that the motions
in both bending and torsion are harmonic and that the frequencies in
bending and torsion are equal. Therefore, only the particular form that
the solutlon to the boundary-value problem has when these conditions
obtain need be sought. These conditions imply that Y(x,t) and ©(x,t)
are of the forms

Y(x,t) = y(x)eX®

(A10)

iwt
e(x,t) = 6(x)e
where, on the right-hand side of equations (A10), y and 6 are now
complex amplitude functions of the span coordinate x from which the
shape and phase relation of the wing at any fixed time during flutter
can be obtained.

If the values of Y and @ from equations (Al0) are substituted
into both differential egquations (A9) and into the boundary conditions,
the problem 1s greatly simplified. The differentlal equations become
independent of t and appear as ordinary differentlal equations with
constant coefficients. After making the substitution and rearranging
terms, the equations of motion can be written as

—

EIbg—i%-(m+Ly+iLy')w2y-(mel+Le+iLg'>a)26=O

GJ-§+<mel+My+jMy'>w2y+<I+Me+iMe')w28=OJ

or more simply as

" N
&L - oy - o =0
dx
’ (812)
2
49 4,548 =0
dx® _
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The boundary conditlons also become Independent of t and can be written
as follows:

(1) y(0) =0
(2" y'(0) =0
(3')  6(0) =¢
)  y'"(1y=o0
(") §''"'(1) =0
(6" '(1) =0

(1 ER[3 N - 0) - 31+ 0)] = - R P[r() + epe(ur)]

(8") m[%*(u - 0) - 6™ + 0)] = l’ézme[m(m + Keee(ll)j

3. Solution of Boundary-Value Problems in Ordinary Differentlal
Equations by Operational Methods and Application to a Beam
Carrying an Arpitrarily Placed Welght

The boundary-value problem given by equations (A12) and conditions (1')

to (8') can be solved by straightforward methods of solving ordinary
differential equations with constant coefficlents. The operational

method, however, 1s a much easler and shorter approach, particularly i1n
view of the dlscontinulties 1n shear and torque.

Briefly, the solution of a boumdary-value problem by operational
methods conelsts of applylng the ILaplace transform to the differential
equations, the initial conditions (root canditions when applied to beam
problems), and certain forms of other boundary conditionsj of solving
the resulting system for the transform of each dependent variable; and
then by applying the inversion integral to the results. The remaining
boundary conditions are then used to set up relations among whatever
undetermined parameters that might remaln.

In the case of flutter analysls a complete solution to the equations
18 not needed but only the conditions under which an unstable equilibrium
may exist. The relations that can be set up between the undetermined
parameters correspond precisely to this condition. In other words these
relations appear as a system of hamogeneous equations and the satisfaction
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of the condition that thls system of equations have a cammon solution
other than the trivial solution corresponds to the border-line condition
separating the damped and undsmped oscillations of the wing.

The Laplace transform of f(x) is

L{f(x)} =J;w e 8% £(x) dx’= £(s) (A13)

where 8 may be real or complex snd x > 0. The sufficlent conditions
that this infinite integral exist are that f(x) have no infinite discon-
tinuities for x >0 and that f(x) be of exponential order as x —> o .
(See reference 9.) In other words finite discontinuities such as those
appearing in the foregoing problem do not invalldate the operatiomal
approach.

The lLaplace transform of the nth derivative of a continuous
function with continuous derivatives, for which the function and all 1its
derivatives are of exponential order, can be obtained directly fram
equation (A13) as

L{fn(x)} - 62F(s) - % L1p(0) - 872£'(0) - + .+ . - £8°1(0) (A1k)

The Iaplace transform is linear in the same sense as differentiation
or Integration. That is, 1f a1 and by are constants

L{an‘fn(x) + an_lfn'l(x) + oo ot f(x) Fbpfx) 4 .. .t boe(x)}
- anL{fn(x)} bl @) ¢ kg ()}
+me{6m(x)} + o v o+ DL e(x)}‘ (A15)

Thus the Iaplace trensform of a linear differential equation with constant
coefficlents is generally a sum of expressions similar to equation (Alk).
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Tn equation (Ald) the quantities £(0), £'(0), + « » , £ 1(0)
are the boundary conditions at the origin of the dependent varisble
(wing root) that corresponds to constants of integration. When these
guantities are given they are put directly into the transformed equation.
When the quantities are not glven they correspond to what has been
called undetermined parsmeters in the preceding paragraphs and must
later be determined in terms of other boundary conditions.

Finlte discontinuities in a function or any of its derivatives
are teken into account by proper attention to the limiting wvalues that
the functlon or its derlvatives have on the two sldes of the disconti-
nulty. In particular, if a functlon and 1te first n derlvatlives are
of exponentlal order, if the first (n - 2) derivatives are continuous,
if the (n - 1)®% derivative has a finite discontinuity at x, and if
the nth derivative 1is contlnuous except for a singular point at xg,
(see sketch)

()
£2(x)
and i
21(x) '
# 1)
T, N

the Laplace transform of the nth derlvative has the form
L{fn(x)} = g%F(s) - ™ 1r(0) -
- sf12(0) - e'sxo[%n'l(xo +0) - £ (g, - oi] (K16)

where f(x, + 0) is the value of f(x) as x approaches xo from the
right and f(xo - 0) 1s the value of f(x) as x approaches x, from
the left. In other words the terms 1n the brackets express the magnitude

of the discontlnulty in °71(x) at X, In the (n - 1)8%  derivative
at xo.
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An exemination of the boundary-value Problem, equation (A12) » Shows
that the transform will be given by a sum of expressions precisely of
the form of equation (A16).

In order to interpret the transformed function f(s) in terms of
the original function f(x) s use may be made of the inversion integral
discussed in text books on operational calculus y or one may refer
directly to tables of transform.

As a simple example the operational method is applied to a canti-
lever beam carrying an arbitrarily placed weight and assumed to be
vibrating in a vacuum in bending only.

The boundary-value problem for this case can be written

L
H%i=m%' (A17)

~

(a) y(0)=y'(0) =0

(v) ') =31 =0 f (a18)
, .

(c) EIbE”'(zl- 0) - y'"""(11+ o;‘]=-w%y(21)J

where the symbols have the same meaning as in equation (Al12).

If the root conditlons (a) and the boundary condition (c) are used,
the transformed problem solved for F(s) gives

. 2
BY2 + Y3 +WW‘D y(ll) e_szl
Logh o o4 7 gELy ot - ot

- a

¥(s) = n (A19)

N

where, for brevity, Y, = y''(0), T3 = y'''(0), and ot = T,

U‘H
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The inverse transform of equation (A1l9) is (see pair nos. 31
and 32, p. 296, and relation 12, p. 294, of reference 9)

\
y(x) = o? cosh ax - cos orx>+ —3- ginh ox - sin orx/l

W. .
y(11) |sinh afx - 17) - sin ofx - 17) (220)

+
203gETy,

or
y(x) = (cosh ax - cos ax) + —3- sinh ox - sin orx)

2
W |
+ = (cosh aly - cos aZ]_)

gEIb 20.

+ —% ginh aly - sin azl:, [inh alx - 17)
2a;

- sin a(x - Z]_{\ (A21)

where the last bracket is zero when x - 13 £ O.

Imposing boundary conditlons (b) gives two homogeneous equations
in Yp and Y3. Each value of a that will cause the determinant of
the coefficients of Yo and ¥3 to venish corresponds to a mode of
vibration.

This result has been applied to the wing and weight discussed in
the text of this paper with the welght located 17 Inches from the root.
The deflection and shear curves due to the first uncoupled modes in
bending only have been computed and are plotted in figure 6. Corre-
sponding results have been computed by a 20-station process of iteration
discussed in reference 12 and plotted 1in the same figure.
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4. Representation of the Inverse Tramsform of the Boundary-
Value Problem, Equation (Al12), by a Power Series

The trensform of both y(x) end 6(x) of equation (Al12) are of the
form

Pl(s) PQ(S) -
R O R O N (r2e)

where Pj(s) and Pp(s) are polynomials both of lower degree than q(s).
Neither Py(s) or Po(s) have common factors with q(s) where q(s) 1is
of the specific form

q(s) = 60 + aol + beR + ¢ = (52 - R]_)(B2 - Q)(sz - R3> (A23)

where the coefficients a, b, and ¢ and the roots squared R, Ry,
and R3 are complex. The inverse functlion associated with such a
transform gives f(x) in terms of circular and hyperbolic functions

of xRy, but with the results in this form the process of solving the
flutter determinant becames very cumbersome.

By making use of the properties of symmetric functions, Goland and
Luke (reference 4) outlined a simple method of obtalning series expansions
for the transforms of equations (Al2) that does not involve the
meticulous task of finding the roots of q(s)« The inversions of these
expansions give y(x) and 6(x) in the form of convergent series.

For the dsvelopment of these serles 1t 1s flrst necessary to con-
sider q(s) as a cubic in s°; namely,

o - @ - m) - S B o

By meking use of the binomial theorem, 1/g(s) can be written as

3 R R R3
1 1 R . Ry
mgzk%é+_se+;r+sg +..'> (425)



NACA TN No. 1848 29

Equation (A25) is independent of any interchange of the parameters Ri, Rp,
and R3 and thus satisfies the description of a symmetric function in
these parameters. (For a discussion of symmetric functlons see refer-

ence 10 or any text on higher algebra or theory of equations.) If the
indicated multiplication in equation (A25) 1s carried out, the results

can be written

1 1 Ty  To Tn
;(-S-Y—;-G<TO+2+;E+..'+SQH+... (A26)

)

where the general term T, represents the sum of all possible symmetric
polynomials in Ry, Rp, and Ry which are of degree n and with all
coefficlents unity. By meking use of Newton's identity relative to
symmetric polynamials, that is

Ty = -aTp.3 - dThp - cTp-3 (A27)

where the value of any T,_ is to be disregarded when n - J <O,
every Tn can be written 1h terms of the coefficlents a, b, and c¢ of
equation (A23); for exemple,

Tp =1 -

Tl = =g

T, = &% - b (A28)

T3 =-a3+28b - ¢ ‘
e e e e ]

With the ald of equation (A26) and equations (9) and (10) of the
text the inverse transform of equation (A22) or of y(s) and 6(s) can
therefore be written as a sum of terms of the type glven 1In equations (9)
and (10) where the T,'s enter as coefficients in the numerator and are
easily evaluated in terms of the coefficients of a known cubic equation.
In the application to flutter analysis only the first few Tn's are
usually necessary because the resulting series is generally found to be
highly convergent.
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APPENDIX B

DERIVATION OF THE FLUTTER DETERMINANT AND SAMPLE CALCULATIONS

Introduction

In this section the flutter determinant is formally derived and
the method described in the text for solving the determinant is
11lustrated with sample calculations for a specific example. Also finsal
expresslons for the deflectlon curves are glven from which amplitude and
phase angle curves of deflection, shear, and torque are calculated for
a8 specific case. The calculated amplitudes are caompared with corre-
sponding curves camputed fram the fundamental uncoupled modes in bending
and torsion.

Derivation of the Flutter Determinant

In equations (11) and (12) of the text 1t is first necessary to
evaluate the expresslons

[y'”(ll -0) -y (1 + Oﬂ
and
E'(zl -0) -8"(11 + oil

In terms of Yo, and 61. Since terms involving (x - 1y} drop out
of both equation (El) and equation (12) for x = 13, the values of y(i3)
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and 6(1 ) can be obtained directly from these equations. The values
of y(ll} and 6(17) substituted into conditions (c) and (d) of the text
glve the desired relations; namely,

I

y'||(1l - O) - y|||(21 + O)

EI 8E( 7’1) + 929(11)]

T z 2n+)+

Eﬁg[%e [5 - 927)Zm

ZTnZ:LQn*Q T 17205
* 2n + 2 +Y3’:(6-827) E Tn + 5)7
n=0 .

. (2] Tn212n+3
Z an + 35 1
n=0
n+5

v e ) Bl

2 3.2n+l
+ n ‘1
%2/ Ten+ D1 (B1)
n=0
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and

6'(11 - 0) -6'(11+0) =
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V.
-G% Eey(ll) + Keee(llﬂ

Efz[eaﬁ - Ko )Z%

-] Tl 12n+2

T ez § (2n + 2) ¢
n=0

2 _ 7 1.2nt5
+ 13 Eeeﬁ - K27) g (2,11_+5y;
n=0

+ = Tn112n+3
3225:: 2n + 3).
n=0
2n+5

o flos - Keg“’g (R

+ 2 = Thzlen+l
K? 12n+l$-
n

(B)

Substituting equations (Bl) and (B2) into equations (11) and (12)

glves

v(x) = by (x)Y, + he(X)Y3 + h3(x)6y

6(x) = g1(x)¥s + g(x)Y3 + g3(x)6q

(B3)

(BL)



NACA TN No. 1848

where
Tnx2n+2 Tnx?n+,-l- w km’B Tn112n+1+
M) =) e t?) mermrt ) )
n=

Tnllgn*/e n\* ~ 21>2n+5 n(x - Zl>2n+3]
Ton + 2)7 ; (2n + 5). ; (on + 3)1

) (I - zl)En 5
+ ep ng‘(_y;n ) ;ll ; (gn + 5)1
x2n5 :x'.2n 3 me2 =— T 1
hg(x = 52121’1 + 55,' Z(Qn + 3). + Ef[-ng8 - 627); Zgn + 55 T
D | g TR il R e
2n+3 Z) (2n+5)‘ ; (on + 3)!

’2n5

Kp27) Z rgn—+5r!
n=0

S zTn e - 2y
+ 6o Ton + 3)7 (2n + 5)!

n=0
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2n+5
T, X275 T, 1
p30d = Z o+ 5 " e L_Um
T, 1,201 n<x - 21 2n+5 }“-Tn(x - 77)20*3
TR L Ten + 1T (en + 5)7 " Ly (en* 3)!

2nt5
R fe - w0 S B

2n+5.

1,201 (x - zl>2n+5
* X Zlen+15' (Zn + 5)1
x2n+1+ W f_ 2n+h
Sl(x) = ‘75‘ (2n T )7 + GJg LGES - kK ) 2n T 4
5— 1 2n+2 7 x - Z 2n+5 % Tn(x - zl)2n+1]
+ % 2n+2 2 (2n+5)' -1;6 (o + 1)1

T Z 2n+’+ 7, ont2 X - 1. )21’1“'5
EIg e27)ZZen+E5' Z2n+25 Z (2n+5)r

2n+5

X5y
89(")='7Z(g§+5)' wuﬁ 925'K27)Zrn—+5)'r

2 p_7,20+3 o(x - )25 & (x - 1p)2ntl
+62222nl+ 3;:[' LZ %En+15.)! -; (2n + 1)+ :}

w n+5 T,1 2n+3 gx -1 >2n+5
E_Ib—g—[5 " 627)Z (2n r5 1t Z (2nl+ 3)2 Z (2n + 5) -
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_E_ Tnxznﬂ_ ) Tx2n+5 w‘l’z{: . Tnly 2n+5
600 =) Tmentot)l Tt %B'Kw)g [EEN

N 2>—‘°° Tn7'12n+l Q. Tn(x - 21)2n+5 i Tn(x - 11)2n+l
K2 on + 1)1 | 2 o + 5)1 Eii. (2n + 1)1
n=0 - n=

n=0

2nt+5

WPy Tyl
" EDyeg [kﬁ " %) 2—- z2nl+ 5)1
n=0

1 on+l i n(x -1 )2n+5
+ e2 2n T 1 (en + 5) 1

n=0

By imposing conditions (b) of the text

7' =3 = 0'() =0

upon equations (B3) and (B4), three equations are obtained (written in the
text as equation (13)):

AiYp + ByY3 + €467 =

where 1 =1, 2, and 3 and

Ay =hy''(2) By = h''(1) C; = h3''(7)
AQ—-hl'”(l) 32=h2”'(1) 02=h3|1|(1)
Aj = g1 ' (1) B3 = g ' (1) C3 = 83'(1)
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Impoging the condition that the equations (13) have a solution
other than the trivial solutlon Yp = Y3 =61 = O results in the flutter

determinant

A (B5)

il
5
N

il

Semple Calculation of Flutter Speed
and Deflection Curves

A method of solving the flutter determinant glven 1In the text 1s
1llustrated here by the solution of the determinant for the wing-weight

comblnatlon discussed 1n the text when the spanwlse location of the

v .4
welght 1s 17 inches from the roct. The values of -k that are

chosen are in the neighborhood of the experimental value and have
available tabulated values of Theodorsen's function C(k) = F + iG.

Table I shows the actual coamputations required to evaluate the
coefficients Ay, By, and C; for g’—w = 7.1429 (k = 0.14) and two

@w _ — —
values of 5 = f(f=25cps and f =28 cps). From colums @ , ,
and @ the determinant for f =25 cps is ,

(14.9200 - 2.85741) (12.8320 - 2.03151) -(7.3286 - 0.600211)
A = | (11.8000 - 3.66951) (10.2970 - 2.85661) -(5.4711 - 0.932331)
(0.17030 - -0.6613l+1) -(0.09077 + 0.593411) -(0.41138 - 0.288641)

or

A = 1.0326 - 0.60481
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Similarly, for f = 28 cps,

(18.6380 - 3.81151) (15.0860 - 2.63991) -(9.1238 - 0.854331)
A= (15.5930 - 5.09351) (13.0080 - 3.79461) -(7.1158 - 1.39881)
-(0.04177 + 0.870981) -(0.23526 + 0.759481) -(0.51403 - 0.370171)
or
A = -0.4029 - 0.03121

The determinant was evaluated in this manner for the sams value
of v/bw and several other values of f. The process was then repeated

v
for = 6.25 and several values of f and for —— = 5.00 and several

values of f. The real and imaginary parts of the evaluated determinant
for each value of v/hn and the corresponding values of f are separately
plotted 1n figure 7. The ordinates of the Intersections of the different
palrs of curves of real and Imaginary parts were scaled in figure 7 and
plotted as A, against both v/bw and f in figure 8. The zero
ordinates of these curves give the value of v/bw ﬁ% = 6.9%) and the

values of f(f = 28.04 cps) for which the determinant vanishes. From
these values the flutter speed 1s readily calculated to be

v = (0)(6.93) = (2xd£)(6.93) = (2")(2850’*) (693 _ 107 rpe
As pointed out in appendix A the deflectlon curves at any specified
time are given by equations (A1l0)

0

Y(x,t) = y(x)e¥®t = y(x)(cos wt + 1 sin wt)

8(x,t) = 6(x)e®t = 6(x)(cos wt + 1 sin wt)

where final forms of y(x) and 6(x) are given by equations (B3) and (Bl)
and where, at least, the relative values of the undetermined coeffi-
clents Yo, Y3, and 67 in equations (B3) and (B4) must be kmown. If
the set of values of v/bw and o that satisfy the flutter determinant
1s used to determine the coefficients A4, B, and Ci 1n equations (13),
there 1s obtained a system of three homogeneous equations in the three
unknowns Yp, Y3, and 67 that have solutions other than the trivial

solutions Yé = Y3 = 91 = 0. If these equations are each divided
through by any one of the unknowns, say Yo, there 1s obtained a
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consistent system of three equations in the two ratios Y;/¥p and 61/Y>.

Any two of the three equations can therefore be solved for these ratlos.
Consequently, equations (B3) and (B4) can be written with one undetermined
paremeter that appears as a factor in each equation. Furthermore, since
the coefficlents Ay, By, and Cj are complex numbers the ratios Yj /Yo

and 671/Yo are complex numbers and equations (B3) and (B4) contain
camplex coefficlents. The real snd imaginary parts of these equatlons
can be separated and the equations wriltiten

To[31(x) + 3o (x)]
Yp[6p(x) + 105(x)]

If these relations are substituted into equations (AlO),

y(x)
(B6)

6(x)

Y(x,t)

-
Yé{;l(x)cos wt - yo(x)sin wt + i[ig(x)cos wt + yy(x)sin wE;f
¢ (BT)

elx,t) = Yé{%e(x)cos wt - 63(x)sin wt + i[§3(x)cos wt + 6,(x)sin w%i}
)

or

Y(x,t) = Yo \3}l(¥j : + [}g(xﬂe [%os(wt + 1) + 1 sin(wt + ¢lﬂ\
, (B8)

olx,t) = YEQ [02(0)]2 + [63(x)|2 [os(et + @) + 1 sin(ot + @2)1

where
a1 %)
Py = Ezzzy
and
= tan~1 63(x)
P = 921x5
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and where @1 - ®o represents the difference in phase angle between
bending motion end torsion motions at x.

The real parts of equations (B8) are interpreted to mean the motions
in bending and torsion taken 1n a posltlve sense. The ilmeginary parts
can then be interpreted as representing these same motions with a phase
shift of =/2 radians.
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Figure 1l.— Comparison of calculated and experimsntal flutter speeds for
a particular wing—weight system.
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referred to unit amplitude at tip in bending).
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Figure 3.— Plot of amplitude and phase angle of torsional displacement
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referred to unit emplitude at tip in bending).
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Figure L.— Plots of amplitudes in bending displacement and torque and
the corresponding curves computed for the flrst uncoupled normal mode
in bending for 13 = 17 inches (amplitude and shear referred to unlt

amplitude at the tip in bending).
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in torsion for 17 = 17 Inches (emplitude and torque referred to

unit amplitude at tip in bending).
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