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SUMMARY

A rapidly convergent successive approximation process is des-
cribed that simultaneously determines both composition and tempera- ~
ture resulting from a chemical reaction. This methcxiis suitable
for use wtth any set of reaotants over the oomplete range of mixture
ratios as long as the prcducts of reaction are ideal gases. An
approximate treabnent of limited amounts of liquids and solids is .
also included. This methcd is particularly suited.to problems having
a large nwiber of praiucts of r&ction and to problems that require
determination of suoh properties as specifio heat or velocity of
sound of a d~t3sociatingmixture.

The method presented is app.lioableto a wide variety of problems
that include (1) combustion at constant pressure or volume; and (2)
isentropic expansion to an assigned pressure, temperature; or Mach
number.

INTRODUCTION

The theoretical performance of propulsion systems having high
combustion temperatures can be calculated on the assumption that
chemical equilibrium exists among the prcducts of reaction. The
equilibri~ ~~po8iti~ - the te~e=ture for a 6y8tem of Np pro-
ducts of reaction are determined by the sWtaneous solution of at
least Np+l equations involving dissociation, mass balance, and
ener~ or”entro~ balance. This calculation‘becmes increasin@y
diffioult as Np increases.

The usual method for solving these equations provides a
successive approximation or trial-and+rror ~ocess for determining
the composition at an assumed temperature and pressure. Examples of
these methcilsare found in references 1 to 4. When it is desired to
find the tem~rature of a system in equilibrium, with a parameter

---. —-----. .—- - ..--—--- ------ .. —-— .. —.-. . . ..—.—z



2 I?ACATN 2113

suoh as entropy or enthalpy assigned, the composition is usually
computed at a sequence of temperatures that either converge to the
oorrect temperature or are sp9ced to pezmit interpolation to obtain
the correct tempemture.

A =pidlly convergent suaoessive approximation process tkt
determines composition at an assigned temperature or that simltane- “
ously detemines both composition and te~rature for assigned values
of another parameter, such as enthalpy or entropy, was develo@ at
the NACA Imds laboratory during 1948 and.is ~sented herein. This
~ocess also permits computation of the partial derivatives required.
to compute such thermodynamic properties as specific heat and
velocity of sound corresponding to chemical equilibrium. The equa-
tions are derived that are required for solution of the following
cases: (1) combustion at constant pressure or volume; and (2) isen-
tropic expansion to an assigned pressure, temperature, or Mach number. ‘
Examples are given for (1) constant-~ ssure adiabatic combustion;
(2) isentropic expansion to an assigned pressure; and (3) isentropio
e~nsion to an assigned Mach nuniber.

This methcd is particularly suitable for problems having a
large nuaber of products of reactiun and for problems that require
determination of partial derivatives. Although.it is possible, at
least in s~cial cases, to devise a procedure that involves less
numerical computation, the methcd ~sented is
variety of cases and its numerical application
&iLwayssimple and essentially the same for &El.

GENERAL METHOD

applicable in a wide
to a given process is
reactions.

The thermodynamic state follmring a specific ~ocess, such as
combustion at constant pressureYcan be determined frcm an appropriate
ccmibinationof the following equatids: (a) dissociative equilibrium;
(b) conservation of mass; (o) conservation of energy; (d.)pressure;
and (e) entropy. Equatiuns (a) and (b) are used to spscify chemicaJ-
equilibrium and, when used with any two of the remaining equations,
define a process.

The successive appraimation proced~ presented herein for
finding the simultaneous solution of a specific combination of the
aforementioned equaticms consists of the following steps:

(a) Estktes of composition and temperature are made and used
in simple equations to compute the values of error parameters, which

~ i@icate inconsistency among the estimates of composition and

“’
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.
tehperqture. (These estimates need not be based on
enoe but for rapid oonvergenoe it is desirable that

g the final values.)

3

previous experi-
they be

5
c1

(b) A set of linear simultaneous &xrrection equations
that determine a new composition and a new temperature.

(c) The new composition is used to compute new values
error parameters and step (b) is repeated until the desired
is obtained.

close to

are given

of the
accumcy

In order to aid in computation, general inslz%ctions are.given
that petit instruction of the correction equations in matrix form.
The numerical values of the error parameters are obtained directly
from the elements of the matrix of coefficients of the unhowns and
the solution of the matrix equation provides the correction factors
necessary for determination of the new composition and tempsmhzre.

Equations for Dissociation, WSS, ~essure, and VOIW
..

the

The substances entering a reaction
N$sanjm and can be represented by

Zaoyboxco.

where the subsori@s ao, bo, and co

process will be designated
the equivalent formula

. .

are proportional to the
total tier of at- of the elements Z, Y, and X, respectively,
contained in a quantity of the entertig subslxmce at the initial con-
ditions. (A complete 13st of symbols is included in appendix A.) For
example, the reacbnts
bf anmmnia (I?H3) fo+

an oxidant are

for a rocket combustion process using 3 moles
fuel and 2 moles of nitric acid (HN03) for

3NH3 + ZHI?03

and the equivalent forrmla would be

Hu N5 06

where z, Y, and X are the atoms
respectively; and ao, bo, and co

hydrogen, nitrogen, and oxygen,
are H, 5, and 6, respectively.

/
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The reaction under consideration

NACA TN 2113

can be written

A (Zaoyboxao)‘nl(zalyb~xc~) + % (za~y@02) + “

. . . ~ (Zaiybixoi) (1)

where ni is the nuniberof mobs of the ith moleoule or atom. The
subscripts ai, bi, . and Ci, whioh oan We on only integral values

or zero, denote the number of 2$ Yj and X atoms in the ifi mole-,
cul.e. For example, if Z, Y, and X a~in represent hydrogeny
nitrogen> and o~gen, respectively, the values of ai, hi~ and Ci

for a water molecule H20 would be 2, 0, and 1, respectivdy.
Assumptions are =de that the produots of re~tim are contained by—. —
a volume T numerically equal to the @s constant R times the
absolute temperature T so that for ideal gases

pi=%

During the solution of the problem, determination of the number of
formula weights of the reactants A t~t are required to balance
the reaction given by equation (1) is neoessary. Prcduots of reao-
“tion in the gas phase are .assume&to be ideal gases that form ideal&
mixtures and each condensed phase is assumed to have a ?~_&.
pressgze of zero, even when finely divided ani susp=nded in the gas.
For SOlidE - li~UidS thel?5fOre

p4=o
–A

As an ap~oximationz the following assumptions are also made:’ Each
condensed prcduct is insoluble in all others, the fugacity of each
condensed p@e is equal to 1; the total volume oooupied by the
liquids and solidE is negligible with respect to the volume oocupied
by the gases; and the liquid and solid partioles have the same
temperature and flow velocity as the gases.

Dislocation equations. - The equation for the dissociative
.equilibriunlamong gaseous atoms and moleoules aan be written as

aiz + biY + cix = Zaiybixci (2)

-.



E
a)
c.)

NACA TN
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gaseous
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corresponding
moieties is

5

equation for the equilibrium constant Ki of

For liquid or solid molecules, assuming the fugacity of eaoh
condensed phase is equalto 1;

.

K~ . 1

~a,i#i#i
.-

(3)

(4)

where q, q, and ~ m the partial pressures of the -Z, Y,

and X at,ms in equation (1), respectively. The equilibrium con-
stants can also
changes (AF~)i
equation (2) or

be expressed in terms of
across the dissociation

(-A&]

Beoause the assumed composition may
chemiml. equilibrium, variables ~ are
that for *seoue molecules

and for liquid or

the free-ener~
reactions represented by

(5)

not correspond to that at
conveniently aef*a so

()-m;
%-ci-dx-~

(6),

The value of each

problem is found.

~ must approach 1 as the solution to the

Applying equation (6) or (7) to each molecule
results in Nd equations, where Na denotes the number of different

t~s of molecule c-iaered.

For simplicity of nomenclature and presentation,
for dissociation - expressed in temns of the atcmic

0

the equations
gas, which

-. . . . . . .. . . .. . ..— —.. ...= -— -.. .------ —— -—..—. .. . . ._. -
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leads -toa stifle computational procedure when the atomic gases of
most elements are @esent in significant quantities. If the atcmio
gas of an element is not to be considered as one of the waiucts of
reaction> however, a molecule containing the element my be sub-
stituted.in equation (2) in @Laoe of the atomic gas. For example,
carbon monoxble oan be used in place of oarbon gas and would then
be treated as an atom.

Mass-balance equations. - A mass-balanoe equation stating the
conservation of attic type oan be written for each chemioal element
present. Because a compositimi is initielly assumed, it is con-
venient to define pmameters a} b~ C,.*. as representing the
sumation over the products of reaction of each atomic t~e per
equivalent formula.

(8)

(9)

As the solution to the problem is found by successive adjustments of
the initial assumptions, the values of a, b, and c approaoh the
values of ao, bog and co, respectively. The mass-balance equa-

tions result in Ne equations, where Ne dmotes the number of

chemiosl elements.

TottiL-I&ssure equation. - The total ~SSU3R 2 iS the sum “Of
the partial pressures

For a process with an
apprcach the assi~d
founa●

P= ’z/pi (n)
i .

assigned mssuz=, the value of P nmst
value PO” as the-solution of the problem is

.

conf3tantVolum ● - Fcm prooesses that ooour at mnstant volume,
the density of the m&ture is constant. The density p is defined
as

P= WP. J%
v m—

(u)

.

.
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where q is the molecular weight of the equivalent fozmula. For

a reaction process with an assigned density, the value of P must
approach the assigned value .P. as the solution of the Poblem is
fOund.

Cc@ustion at Constant Pre13sum

For given initial conditions, the temperature and the composition
follcncbg a codnzstion process exe to be found. When chemical energy
is included h the enthalpy of each substance, the enthalpy of the
prcducts of reaction following an adiabatic comlnistionmust be equal
to the enthalpy of the reactants at the initial conditions. An
arbitrary base may be adopted for assigning absolute values to the
enthslpy of various substances because only dlfferenoes are measur-
able. One such base (reference 4) assigned a chemical energy of zero
to the oxidized fozm of the elements at 100° F. For calculations
with the elements boron, hydrogen, fluorine, oxygen, nitrogen, and
carbon, assigning a chemical ener~ of zero to water, cmygen, hydc~en
fluoride, boron tifiluoride, nitrogen, and carh~ dioxide at the
alwolute tempera- of 0° K was found to be more convenient. By
using this base, the chemical energies of d-l other molecular typs
entering a combustion process containing these elements are positive,
thus avoiding a possible source of difficulty that might ocu in
the recommended methcd of adjustment when a logarithm of a negative
number (or zero) might be required.

lihlthd.~ of fuel and.oxidant. - The enthelpy at initial conM-
tions of the p,mountof fuel and oxidant corresponding to the equivalent
fo- Zaoyb ~ is denoted by ho and is given by the expression

00

(13)

where ~ and ng - the nuder of moles of fuel and Oxidant$

respectively, corresponding to the equivalent fozmmla zaoybo&o and’

wf. ~ (E& are the molar enthalpies of the fuel and the

oxidant, respectively, at the initial conditions. The molar enthal~

% is defined by the equation

_.. ..— —_ ...- ....-. ——— . . . . ——— —.. —--- —- :——. — _.__— .— . .



8 NACA TN 2113

where co is the molar specific heat at oonstant pm&ure, and 1$

is the oL cal energy of the substance at an absolute temperati
of 0° K.

Ekltbslpyof prcdncts of reaotion. - The enthal.pyof the products
of reaction per equivalent formla can be conveniently represented by
a variable h tk-t is given by the equation

w (l@~4h= Ai

as long as ths kinetic ener~ ~s negligible.
assigned, the value of h approaches ho as

problem is found by fi=ssive adjustments of
If heat were lost, the value of ~ would be

(14)

When enthalpy is
the solution of the

the estiu&ed quantities.
accordingly reduced.

Equations for constant-pressure otibustian. - The equations
defining the Uonstant-pressureCdbustion are:

T= Number of equations

Dissociative equilibrium “ %

Conservation of mass me

constant Qressure 1
Conservation of energy 1

,.

.

These equations are to be solved simultaneously. Values for ~, A,
and T cen be estimted and the values of the parameters ~~ a> b>

C,. ..JP) and h can be computed from equations (6) to (lJ.)and
(14). Corrections are then required for ni, A, and T.

Correction equations. - The adjustments to ~, A, and T are

made by means of a set of NP+2 c~ction eq~tions deri~a fr~

equations (6) to”(l-l)and (14) that adjust the esttites by the IVewton-
Raphson meth~ for solving simultaneous equations (reference 5). This
methciioan be i.lltirated by a sinqle @xem@e. If Q~ti Q2 are

functiom of q and r,

Q1 = fl (qlr)

~ ~ f2 (q,r)

“

— —..— .—— . —-
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By taking estimated valuesy for example q. and ro, each function

may be expanded in a Taylorfs series abti the point (qo,ro) and

when derivatives of higher

AQ1 =

order than the ffrst are neglected.

al
–Aq+%r
h~
.0

%

T
Aq+~ — Ar

The desired changes AQ1 and. A% Canbe computed and if the

partial derivatives can be numerically evaluated, solving for the
apprazimate ohanges in q and r to effect simultaneouslythe
desires changes in both Q, and Q2 is compamtively simple
because the equations are ii~ar.

The equations for loge ki, a, b, CY . . .,

similarity be expanded in a Taylor’s series; for
tion (6) for lo% ki for gases expanded in the

woda he

Alogeki =Alo@yi-ai Aloge ~-3i AlOF&

()~ A loge T’
‘i

The term (~O/K!?)~ appears beoause

where (~”) ~ is determined across

h, and P can

example, equa-
logarithmic form

%
-oi Ale&2x-

(15)

.

the dissociation-reactionequa-

tion (2). E-ing equation (8) gives

1
z E

ai ni
Aa=-

Ai
ai Ani - —AA

i ~2
(16)

--- ——— . . ..._ .—— ._. _ _________ ..-. —..-. -——. _______ ._ ___ . . .



10 NACA TN 2113

Sane of these equations are expressed in terms of A l% Pi -

AEIi> whereas the others are expressed in temns of A%. In order

to convert to a comnon miable A loge ~, the following sub-

stitutions oan be made:

.

A 10& pi = A lo% ni (17)

A Taylorta expansion of the logsrithm of a variable lo% q, by

drop~iug temns of higher order than the first, melds

Aq = q A lo&’q (18)

The expnsion of equations (6) to (lIL)awl (14) oan be written in
logaritlmio variables with the aid of equations (17) and (18), as
fOIJ-OWS:

For gaseous products,

Alog~- ai A log ~ -bi A”logny-ci AlognX -
.

For liquid or solid

-ai A log ~ -bi A

For all products of

(@)l
—Alog T= - log ~
m

products,

(19)

(q~
log n~ - Ci A log nx - RT Alog T=- log Q

(20)

reaction,

~aini A logni -

a
AaAlog A= Aalog$ (21a)

b.
zbini A logni -Ab Alog A= Ablog~ (21b)

i’

.

.

:!

.
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xci~A@ni-AcAlo$A= AcIog~
i

I
P.

piA1-&~=Plo$~
i

h
=Ah log+

(21C)

(22)

(23)

where the desired values of the prameters (loge ~=o, a=ao, ”. . .)

am substituted in the form

A 10~e ki = - loge ki (24)

Aa =
ao

a loge ~ (25)

. . . . . . . .

and logarithms to the base 10 are used for convenience.

Matrix. --The v&hzes of A log ~, A1o$A, and Alog T are

then computed by means of the matrix shown in figure 1(a). These
corrections are ayplied to the initial set of estimates of ~, A,

and T and the prooess is repeated until all the given conditions
are simultaneously satisfied. .This matrix, however, merely provides
a convenient soheme for solving the simultaneous equations but any
of the ti-known methods for solving simultaneous equations may be
used.

In order to permit rapid solution of the matrix. usina the
arrangement of roia and co~umns deScribed in appendi~ B is
desirable. With this arrangement, a single step reduces the
of the matrix by the number of gaseous moleoular tws.

Combustion at Constant Volume

The procedme given for finding the composition and the
perature of a combustion process
to combustion at constant volume

at constant pressure can he
with the follcndng changes:

.

order

tem-
applied

.,

-. .—.-, - ------- —-.-——— --———------ ----- - .___-. —. .-. _____ .——.- ._ . ..._ —-. —
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(a) The correction equation for ~ssure is replaced by a
correction equation for density obtained from equation (12)

P
Alog A -Alog T= log: (26)

(b) The correction equation for conservation of energy mst
be written in t-ems of internal energy F$ and thns becomes

(27)

where e. is the assigned internal energy per equivalent formla

at initial given conditions and C: is the molar specific heat at

constant volume. Substitution of these two equati&ns in the matrix
of figure 1(a) will petit the composition and the tempmture to
be found fcm assigned values of density and internal energy. This
amd.ication of constant-volumecombustion which~ for examplez is
&olved In reciprocating engines and pulse-jet
made at the Lewis laboratory.

Isentropic Expansion to Assigned Pressure

engines, has not been

or Temperature

Assigped pressure. - The calculation of temperature and equili-
‘brium-compositionof the yroduots of reaction foil.uwingisentroplc
ex@nsion to a fixed pressure involves the simultaneous solution of
dissociation, conservation-of-rims, pressure, and entro~-balance
equations.

For the reaction of equation (1), the dissociation, conservation
of mass, and pressure equations ((6) to (1-l))can again be applied.
For the ccmdltions folhwimg an isentropic expansion, the entropy s of
the prtiots of combustion yer equivalent fozmula after expansion
mnst be equal to the entro~ so of
equivalent fommila before erpansion.

‘o =
{[
*Z q(y),

i

the produots of combustion per

1}-~~1% Pi (28)

coDibustion
Conattions

.

.

.- .— .— —...— ——— .—— .–.
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.

c

.

where (~) ~ iS t~ absoIute entroPY Of t~ P@UCt i at sta~-

ard’conditions. This formla is applicable for ideal solids and
liquids, assuming Pi = o) as long as their volume is negligible.

After the expansion takes place, the entropy psr equivalent fozmmla
is given by the expression

.

s=
{[ 1}t?~(%)i -‘i 1% Pi

(29)
exit conditions

Whereas equation (28) is, of course, evaluated at combustion-chamber
temperature and pressure, equation (29) is evaluated for exit teWa-
ture and pressure. As the solution of the problem is found by succes-
sive adjustment of estimated quantities, the value of s approaches
SO*

In the ‘adjustmentof the values of ~, A, ti T, t~

correction equations (19) to (22), which have been derived from
equaticms (6) to (lJ-),can be applied. In addition, the following
correction equation for entropy can be written fram equation (29):

where .

The values of A log ni, Alog Aj and Alog T are then

computed by means of the matrix qf figure 1(b), which is identical
to figure l(a) exoept that equation (30) is substituted in the
last row in pbce of equation (23).

~siwa WW5=ture. - For the competition of data for enthal~-
entropy diagrams and for other practioal computations, it is often
necessarg to find the exit pressure and composition as a function of -
exit tempsratuve. The procedure required is the same as that des-
cribed for isentropic expnsion to an assigned pressure except that
the pressure equation and the temperatu column are dropped from
the nmtrix of figure l(b).

------ —.. . ..— —— . —= -.— .———
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Isentropio ExpnEion to ~ooal Velooity of Suund

The theoretical velooity of sound that includes the effect of
dissociation oan %e computed at any point in a nozzle with a m@ifi-
oation of the nwtrix previously derived to obtain the correction
quantities.

Velocity of sound. - The velooity of sound u oan be defined
as

()*2= al?
Gs

where the subsoript s denotes the condition of confjtant
The tutal differential of pressure dT oan he found frm
tion (n)

~ ‘$d~i

and the total differential of density dp cm be found frcm
equation (12).

(31)

entropy.
equa-

(32)

(33)

Thus, equation (31) oan be written

()

.“
~ dyi

~2 . i

%#.A .&T “
m2. ”

,.

and by dividing the numerator and the denominator by d!l!and
cbmging to logarithmic variables

-.

112=

L ,J

.

a
w

2
.

,(34)

s

This e~ression will prmit evaluation of. U2, provided the values

‘ C:%$s a~&~;] -f-for+
of the derivatives

,

.

.

.

.
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conditions of chemical equilibrium and for an isentropic process.
The conditions of chemical equilibrium and cm’tant entropy are
Introduced by writing the total differentials of equations (6)
to (10) and (29). The total clifferential of,these equations
expressed in logarithmic variables and divided by d loge T
can be written

For gaseous products,

d log pi dlog~ alogpy d 10fj~

ai d log Tm- ‘- bi dlo$T -Ci alog T-

@ai . d w qt RI’ LI1o$T

For liquid ami solid products, “

(35)

alog~
- bi

dlog~

‘i d log T dlo$T

For all prcducts of reaotionj

ziai’

Ifd

a iOg 4

m

a kg ~’ (AEjj)i a M %
-— =

‘Ci dlog T Ill d log T

(36)

AC -,= “AC d log c
alog T “

(37C) ,
d log T

alog4
M *+? (C;)i ‘i

slogs

dlo$T - ‘Asdlog T
(38)

loa s is taken as O. s is a constant; if d log a,, —.
d lo$ b, d 1o$ C, and @ log ~ are taken as O, mass is constant,

atomic tyTes are conserved, and rate of change in composition

- ——. . .- . –—. — .—-- ----.——— -—-—— —— . .—



16 NACA TM 2113

corresponds to constant values of log kq. With these assumptions,

equations (35) to (38) constitute a set & siE@Ltaneous eqmtions
for partial derivatives. The augmented matrix formed frcm these
equations is shown in figure 2 with the sign reversed. The mtrix
is identioal to a portim of the matiix of’figure l(b). When

(=)E W ($*)Sare determined by means of the

mtrtx shown in figure 2, the velocity of sound oan be calculated
frm equation (34). This equation oan be applied to mixtures of
liquid and solid prduots in equilibrium as long as their volume
is negligible o~d with the volume of the gas ldxture and pro-
vided the liquid and solid partioles move in velocity and.tempera-
ture equilibrium with the gas.

SpeoHic heat. - The specific heat at constant pressure of a
mixhzre in equilibrium may be found fhm equation (14) as follows:

c; .#(*),’=& pr$), %(’:%%), ~~(w), +

p/L

J

‘Equation(32) can be written as

z d log ni

ipi dlog T
.3?alog P

dlog T
(40)

If d log P is taken as O, the presmme is constant; therefore,
when equation (40) is substituted in the matrix of figure 2 in plaoe

of equation (38), the values of
C=)p - (w), can

be found. These values fimnthen be substituted in equation (39) to
evaluate Co.

P

Isentropic expansion to assim d Mach nmiber. - The kinetio
ener~ of the gas at any point, by assuming no heat transfer, is

.—— .—— ..— .—-—— —. - _
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.

.

equal to the enthslpy change from the point of negligible kinetio
ener~ to the point in inestion. From this relation, the velocity

(4i)

where the’subscript 2 indicates that the variables are evdnated
at Toint 2 in the nozzle. The Mach nuniber M is

M=i (42)
u

For convetienoe, a pammeter h* is defined as representing the suni
of heat ener~ @us kinetio energy of the products of reaction per
equivalent formula:

[1

~(I@~ni ~ ~

a loge ni

h* =
A

‘M *

(43)

a

As the solution of the problem is found by successive adjustments
of the estimated qumtities, h* approaches ho.

If equation (43) can be expanded in a manner similar to that
used to obtain equation (23) and if the differentials of derivatives
are aasumed to be negligible, the correction equation is

h
~hi’ A log ~ - Ah* Al~A+T~(CO) ’ Alog T= Ah*log~

i
pi

where —

(-h)

.

— —— -—. .——— —.-—— —.——— —.. .—
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Equation (44), together with equations (19) to (21) and (30),
mnstitute the correction equations for the isentropic expansion to
an assignea Mach number. The coefficients of these equations fomn
the matrix shown in figure 3.

In order to osrry.out the nnmerioal omuputations, values of
~, A, and T are estimated f= the assigned renditions; the

of figure 2. The numerical valnes of the elemmts of the last oolumn
and.bottmu roR of the matrix of fi@e 3 are then oaputed and by

.

using the emxiliary ~trix already completed,for figure 2, the matrix “
of figure 3 may be reduaed and the value of the corrections to 4, .

A, and T found. This process oan be repeated until the assigned
aoditions axe satisfied.

!I’bmatalma of supersmic nozzle. - The process of isentroyic

expauiion to a 100al Maoh mmber of 1 is particularly interesting .
in the titermination of the,throat area of a nozzle having greater
thm Critioal pressure ratio. By assuming that the flow is isen-
tropio ati that chemioal equilibrium is maintained throughout the
e-ion prooees, the flow velocity v at the throat mst be
equal to the velooity of sound u at the throat. The values 4,

A; T> and u c-anbe found for.a Mach muniberof 1 by use of
prooedure given.

me thrmt area t oan be oaloulated from the equation
\

tm,Z=q

where m is the mass flou mr second. This eauation oan be

the-

(45)

applied

to mixtures of liquid or s&id phases in equil~brtum provides that
the volume oooupied by the liquid and the solid phases is negligible
c~d with that of the @s @ase and that the prticles of liqtid
and solid are in thermal - velooity equilibrium with the gas y~se.

.

.

——. — ..— . .—.— _ .—. — .
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lRAMFLE OF COMBUSTION OF D3N3BANE WITH FLlJOR13W4OXIDE

The dxhzl@ion of equilibrium temperatun and composition of
the reaotion of 1 mole of diborane (~H6) with 5 moles of fluortie
oxide (F20) is illustrated in this example for prooesses of

(a) condant -pressure adiabatic oumhustion

(b) isentropio expansion to 1 atmosphere

(c) isentropio expansion to the local velocity of sound “
,.

An equivalent
/

andao=?, bd=

The following

formula of these reactants is

Za Yb xc IJd
0000 = ‘2 ‘6 ‘1O 05

6, CO=lO, and ~=5.

gaseous ~ducts will be cowidered as the prtiots
of reaotiom boron trifluoride BF3J boron trioxide ~ ~, boron

fluoride BF, boron hydride BH, boron oxide BO, Mat amio boron
B2, hydrogen ~, water vapor ~0, hydroxyl radical OH, hydro-

gen fluoride HF, oqgen ~, fluorine F2, atomic @dr%en H,

atomic boron B, atamic fluorine F, and atomic oxygen O. No ‘
liquids or solids are ticluaea. If the prcducts are area in the
ofier given, they can be identified in the terminology of equation (1)
as follows:

BF3 = B1 % F3 00

and therefon

Shlilarly,

— .. ---—-—. –..—-. ... ..- -.. .— . . ..— — ~-.— ——. —..,.—..— —.. — A—. . ‘
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All values of ~, bi, of, and ~ for this problem, together

with the thermdynmic properties used, are listed in table 1.
Althcugh these thermodynamic values have since been revised, they
are adequate for the purpose of this example.

The enthalTies of liquid B2~ at 298.16° K and of liquid

F20 at 128.3° K, the assumed initial conditions, were ocauputed
from the heats of fo-tion, the heats of vaporization, and the
heat changes due to temperature changes together with the arbitrary
chemioal.energy assigned to the elements. The value of the heats
of foxmation were taken”as 44 kilooelories psr mole for B2H6

(referenoe 6) and 5.5 kilocalories per mole for F20 (referenoe 7).

(Heat liberated is considered to be negative.) The enthalpy
using the base previously deso??lbedare

.

(H0298.16)liquid B#6 = 570.149 kilocalories per mole

(%28.3) liquid F20 = 67.077 kilocalories per mole

values

\

1%
w
l-l

.

.

The enthal~ of the amount of fuel and czddant at initid conditions
correspondingto the equivalent fommla is, frcm equation (13),

Combustion Prooess

The adiabatic combustion prooess was assumed to ooour at a
constant pressure of 20.4 atmospheres.

First esthate. - I&am previous cmmputation8’or from simple
oaloulationsusing equilibrium constants, estimating reasonable
values for the composition and the temperature iq usually possible.
This prooedure is zecomended inasmch as close estimates reduoe
the number of trials that mst be mde. In order to show that an
arbitrary composition that is not based on probable final values of

—— . —.. -
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4.

.

.

.

the composition can be used, however, the first esttites for this
emmple for ni and A have been ldcen equal to 1 mole and a tem-
perdare of 4000° K. The possibility of divergence is discussed in a
later section. All estimated quantities will be used with three dec-
hd. places to distinguiti them frm numbers &t are always integers.

.

Correction equations. - The total pressure from equation (11)
can be computed because pi = ni, hence

P = ~ pi = 16.000 (47)

The correction equation for pressure (equation (22)) becomes,

I.000 A log~F3 + 1.000 A log ~203 +l.OOOAlog~+. . .+

20.4001.000 A logpo’= 160000 log-
, .

The total amount of boron in the prcxlucts
determined from equation (8)

.

,

of reaction can be

(48) ‘

Aa= Z ai~ +l~+l~H+l~O+ 2%2+=1~F3+2n~03 .
i“

1%3 -= 9.000 (49)

and therefore the number of estimated boron atomk per equivalent
formula is

9.000
a= —= 9.000

1.000

the first estimate.
is equal to the num-

because A has been assumed to be 1.000 for
The coefficient of each termin equation (8)
ber of boron atoms in the molecule; the terms that do not contain
boron atonk are O. Each term of equat@n (49) then becomes the
coefficient for its respective correction term in equation (21a):

1.000 A log~F + 2.000 A bg~ o i-1.000 A 10g ~ +
3. 23

1.000 A lognM + 1.000 A lognBo + 2.000 A logn32 + ‘

1.000 A lognB - 9.000 A“log A = 9.~OOlog &.
(50)

.—— . .—. . . .— . ... —..— ———--—.—..—.— — —— .-—-— ___ .-—
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Sim@rly, the correction equation based on the conservation of
hydrogen atoms is

1.000 A log% + 2.000 A 10g
%

+ 2.000 A log ~20 +

1.000 A log nw + 1.000 A log% + 1.000 A log% - 8.000 A log A

= 8.000 log+
8.000

the conservatism of fluorti atoms is

3.000 A log~3 + 1.000 A log ~F +

2.000 A 10g~2 + 1.000 A log% - 8.000A

. ad the conservation of ~gen atm M

3.000 A log%203 + 1.000 A log~o

1.OQO A log nw + 2.000 A log~2 + 1.000 A

= 9.000 A log+
●

>~1 (51)

1.000A log%+

log A = 8.000 log~
8.000 ~

(52)

+ 1.000”A log nH20 +

log no - 9.000 A log A
,,

(53)

Fa dissociation, the nunmrioal value of log%% oanbe computed

direotlyfmmeqwtion (6) with the data of table I and (by using
logarithms to the base 10 for convenience and by rememberm that
(-~~~)i log e = log Ki) is /

log k= =log~3 - log%- “310g~- 5.695

As the partial pressures of all the constituents have been esti-
mated to be 1.000 atmosph~rey

●

/
.

,

.

— .— —-—— - ————
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The corresponding correction equation from equation (19) is

Alog~F3- Alog~-3 Alog ~ - (-62.075)A log T = 5.695

(54)

In a similar me&er, equation (19) for B203 is

A @3 PB203 - 2A log% - 3A log p. - (-80.593) A log T

,,
= - .Iog ~203 = 5.109

For”~0,

A log P=20 -

equatim,(19) is

2Alog ~ - A log p. - (-29.209)A log T = -log k%o

= - 0.34-7

Correction equations for dissociating sMIEu? to-those given

for ~3Y B203Z and ~0 molecules can be written far eaohmolec-

uler constituent considered in the reaction (a total of 12 in this
example). The sum of the enthalpiqs of the products of reao%ion,
as given h table I and determined by equation (14), is 2734.615
because ni = 1.000. The heat-balance equation, as given by

equation (23), is

(72.172) A log pm3 + (233.435)A log ~203 + . . . +

(79.493) A log p. - (2734,.615)A log A -I-(644;651) A log T
.

= (2734.615)log ##& .
.

(55)

—-–...—. . . . .- .— _, .-. . ..-. —. ---- ..—— -- -—— --
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A matiix (fig. 4) can now be constructed tith the 12 equations
similar to equation (54) and with equations ‘(48),(50) to (53), and
(55). The recommended arrangement and reduction of the mtrix are
given in appendix B. The solutiun to the correction equations is
found to be

A log
%F3

= 0.708

A log n = -1.098
B203

A log no= = 0.490

A log n = 1.378
m

A log ~ = 1.116 = 0.172A log no2

A log n = 1.664
BE

A log n = -2.038
‘2

A log n = o.613 A logn = 1.299
BO H

A log% = -2.138 A log
%=

0.929
2

A log
%

= 0.014 A log
%

= 1.221

A10g%20 = -0”799 A log no = 1.457

A log A = 0.123 A logT = 0.154

These values are tobe applied to the initial estimtes for ~, A,
and T according to the equation

(56)) (@3 ni)secm = (log ni)ftist + A log ni

estimate estimate

For example, the second estimate of %3 would be

Fg~J-. = log 1.000 + 0.708

estimate

()%3 second
= 5.105

estimate

.

0

—.



;
)
)

NACA ,TN

Another
of ‘ni,

matrix.

2113 25

set of correction equations based on the second estimtes
A, and ~ are set up and solved ly means of a second

The process is repeated until the values of equations (48)
and (50) to (55) approach O. For this example, six appro-tions
wehe required to give the following final values of ~, A, and T: ‘

PBF3
= 2.’6593

‘OH
= 0.6785

‘B203 = 0.1235 Pm = 7.1456

Pw = 0.1936 Po = 0.9210
2.

Pm = 0.0001

‘BO = 0.1669

PB =0.
2

‘H2
= 0.1271

‘H20 = 0.0627

~F . = 0.0003

: = 1.7694

~B = 0.0577

PF ‘ 1 ● 3043

PO = 5.1903

A.= 1.6622 T = 4775c50K

Discussion of Convergence. - In order to demonstrate the con-
vergence of the process with large errors in the first estimate,
the example of the combustion of dilmrane and fluorine oxide was
solved by using 1 mole of each product, a value of 1 for A, and
a temperature of 4000° K for the first estimate. Because these
first esti~tes were made wi”thoutregard for the probable final
values, large errors were present in the second appro~tion
and six approximations were required to eliminate the error.
These values of parameters a, b, c, d, l?,h, and 5 are shown
in the fdJmwing table where b Is defined as

.
.,

.

I

— . . .- .-—._. . — -—-- .- —- ..-—— .-. .— .—— _ . . ___ —-— -.— .-
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REu-lm30F APmMImmoE6
1 I I

Perem- First Trialrumba
eta eatlmta

1 I 2 I 3 I 4 I 5

8 36.840
9 23.346
8 51.540
9 29.641
16 125.485

2734.615 12055.01.5
26.892 5.861

7.005
11.605
24.062
11.954

.38.000
2090.090

4.082

6.286 6.079 6.002
2.- 2.325 2.006
I3.104 10.541 10.016
33.660 5.240 5.022
52.434 21.416 20.436

2909.950 965.966 912.36S
2.505 .537 .O11

6

6.OCQ
2.000
10.003
5.cOo
2Q.4CQ
905.594

.002

Deelrea
value

6.000
2.000
10.000
5.000
20.400
905.5s4
o

This method has been used in routine computation for a year
without encountering a divergent case h a practical problem. At
least for special cases when temperature is assigned, the process
will convergp for all values of the first est5mates. Divergence
is lmmwn to occur for certain cases where temperature is used as

a variable when the first estimate of temperature and composition
is sufficiently in error. Although no mathematical analysis has
been made to determine the theoretical limits of convergence, the
process appears to be satisfactoryfor practical computation.

Special trea-twoul.d be required if divergence is encoun- .
tered. Obtaining convergence should be possible by a sufftcientl.y
close new estimate of composition and temperature. This procedure
is recommended when it is f~asible but other procedures are pos-
sible, depending on the individual case.

Isentropic Ezpansicm to Fixed Pressure

The temperature and the composition of the products of reac-
tion foll~ng an isentropic-expansim ratio of 20.4 at chemical
equilibrium were also computed for the prmlucts of reaction of
this example. The value of so is found from equation (28) by

using the final values of each constituent of the adiabatic com-
bustion and the absolute entropy values corresponding to the
final combustion temperature. The calculated value of so was
763.476 calories per Kper mole.

-*

..—- —-— . .
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First estimates. - The nuniberof approximations necessary for
a complete calculation can be mneiderably reduced if the initial
estimte is based on previous experience. The final values of
~ and A determined for

can therefwe be the basis

Because the expansion
stituents can be estimated

.

the combustion process of this emmple

for this first estimate.

ratio

to he

%3 =

%!?=
P= =

Po =

A=

For convenience of presentation,
to be 4000° K so that the values

is 20.4, the four largest can-
1/20.4 of their combustion value.

0.1304

0.3503

0.0867

0.2544

0.0815

the temperature was estimated
of tible I oould he used amxln.

_ The remaini& constituents can be.estimated from the dissoc~ation
equations by setting log ~ = O. For example, pF would be

detemined with the assumed values of ~ aud ~ from
equation (6) and table I

o = 10g 0.3503 - kg 0.0867 - 1% PF - 1.8944

log pF = -0.45556 + 1.06198 - 1.8944

= -1.28798

%’=
0.051.5

Smiled-y, pB can be estimated with the assumed values of
%’3

and yF

O = log 0.1304 - 10g pB - 3 log 0.0515 - 5.6953

log ~ = -0.88472 + 3.86394 - 5.6953

P~ = 0.0019 0

..— — —_—._._ ....— — —. —.-. —.. .— -z - _ .— ._. .—. .._ —___ .—. .,. .—
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If this procedure is followed for all the remaining constituents,
the fo3kw@ list of first est-tes can he mde:

%F3= 0.1304
‘OH

= 0.01.50

‘B203
= 0-.0078 Pm = 0.3503

P= = 0.0043
P02

= 0.0269

0 =0
‘BH = ‘F2

‘BO
= 0.0053’ P~ = 0.0867

pB =0
2

~ =000019 ‘

‘H2
= 0.0029 ~ = 0.051.5

= 0.0009
‘H20

p. =’0.2544

.-
A = 0.0815 T = 4000° K

Correction equations. - When these estimates sre substituted
in equations (e) to W) and (29), the parameters a, b, c, d, P,
and s are calculated to he 1.9325, 5.6393} 9.7828, 4.3288J 0.9383J
and 766.297, respectively. The correction equations (given in
matrix form in fig. 5) are then detemined when these estimates
and paramters are used h equations (19), (21), and (30). The
reminder of this problerais continued h the same manner as the
Conibustioncalculation. The f= solution is obtained in three
-bids .

Isentiopic Expansion to Mach l?uuiberof 1

The temperature and the composition of the products of reac -

ti~ following an isentropic expansion to the local velocity of
‘ sound by assuming chemical equilibrium was computed for the pro- .
ducts of reactim considered in this example. The value of so

.is the same as that found for the isentropic e-ion to 1
atmosphere.

o ~st estimate. - For simplicity, the same first estimates
of 1 mole, 1, and 4000°.K for ~~ A, and T> respectivel-y~
were again ~de.

.—. —— ——.—. -- ._. — —
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Correction equations. - T@ matrix shown in figure 6 was cmn-
s-tructedfrom the application of the data of table I to equations
(19), (u), (30), ana (44). The first sixteen rows are identical
to the correspondingrows of figure 4 because the same equations
are used; the next row is obtained l%om equation-(30). These
seventeen ecmations are then solved to determine the values of

(’=P’(*)SY
whioh are used in equatim (44)

(last row of fig. 6). As in the previous calculations,the
resulting corrections are.then applied to the first estimates of
~, A, and T by using equation (56) and the process is repeated

until the assigned conditicms are satisfied.

Iewis Flight Propulsim Laboratory,
I!13tianalAdVisory.Comnittee for

Cleveland, Ohio, Septeniber
Aeronautics,
7, 1949.

.. —.-. .— — — ——.— —--- ——-— —~. ——— ————— .. -—- —-. _..—
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APPIHDIX A

,
SYMBou?*

A number of equivalent fonnulas

a, b, sumatim of each atomic type over produots of reaction

c, . . . pm equivalent formula; with subscript, nuder of

atoms of each element withh ohemioalformula

%
molar speoific heat at constant pressure and standard

Oula.itions

cY specifio heat coefficient for matrix

%’” molar ‘specific heat at constant volume and standard
Oonaitia?ls

.

4 molar internal. eqergy at standerd cmditions

e internal energy per equivalent formula

% molar free energy at standard conditicnM

% molar enthalpy at 0° K and standard conditions

%
molar enthalpy at S=- conditions

h enthal.pyper equivzdent formula

h’ enthalpy coefficient for matrix

h* sum of heat and tietic energies per equivalent formula

K, equilibrium constant

k ratio of equilibrium constant based on partial pressm
to equilibrium constant based on free-energy change

.

–.— .



NACA TN 2113 31

M

m

‘d

lTe

n

P

P

Q

q,r

R

s

s’

Mach number

molecular

mass fluw

number of

nuniber of

nwiber of

,: ,
‘-;‘number of

weight of equivalent formula

per seoond

dissociation equations

chemical elements involved in reaction

products of reaction

moles

total preesure

partial pressure

any funotion

,any variables

gas constant

molar entropy at standaml conditions

entropy per equivalent ibrmnla

entropy Coefficient for matrix

temperatuzw

throat area

Unit matrix

velocity of sound

volume

velocity of flow

.. . —-———-- -. . ..— — — .. . .. .- -.—.—— -—–—— -. —.———.
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., ., x, Y, z

x

u

P

Subscripts:

f

s

T

. . ., X.JY, Z

1, 2,
3,. ... i

elements within representative

matiix veriable .

Submatrix

total-enor parame ter -

density

MCA TN 2113

chemical formula

number of atoms witixlnchemical formula

fUel

oxidant

~ ??Otitin nozzle

nuuiberof t~es of @seoue molecule

ini”tialgiven condition

constant ~essure

constant entropy

temperature,‘%

yroduct index numbers (i) that designate atomic
gases

product index number

.

—
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APPENDIX B

.

,.

.

.

MMRIX C019STRU~IONAND REDUCTION

A coefficientmatrix is a scheme of detached coefficients of
a set of ltiear equaticms that me to be solved simultxmeously.
Anau@nted matrix is identical.to a coefficientmatrix except
that the constants are ticluded. Equations (19) to (23) con-
stitute such a set of equations for the simultaneous determi-
nationof the variables A log ~, A log A, and A log T.

C(nlstruction.- Because of the Wge number of zeros occur-
ring in the matrix, a c“msiderable saving in effort can be made
by proper arrangement of the order of +he rows and the columus.

The following arrangem+t provides apartly symmetrical uatrix

that has been found to be emcmg the easiest to evaluate as long

as the products of reacticm are principally gaseous and the
dissociation constmrbs are expressed fi terms of the atomic
species:

1. The order of the columns should be

(a) A log ~ of gaseous molecules

(b) A log ~ of atoms

(c) A log ~ of liquid and solid products

(d) A log A

(e) A log T

(f) Constant terms of equations

2. The order of the rows is

(a) Dissociation equations in
molecules in columns

(b) Mass-balance equations h

.-

same order as gaseous

brder of atoms in columus

——— ————— — —— —-... . .. .
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.

(o) Dissociation equations for solid and liquid pro-
ducts in sme order as solid and liquid in
columns

(d) Total-pressure equation

(e) Heat-balance equation in mugtion calculatim;
entropy-balance equaticm in calculation of
isentropic expansion to fixed pressure

In the calculation of isentropic e~ansionto unassigned

Mach number, the order of the ooltmms is not changed but the

rows =e modified as follows: (1) The entropy-balance equation

is substituted for the total-~eseure equatian; and (2) the
heat-balance equation is chsmged to ihclude the ldnetio energy
In accordance with equaticm (44).

puted by means of the %+1 order matrix and =e then substituted

in equatimas (45) aud (46) to yield the (%+2)nd row of the com-

pIete matrix.

solution. - One of the best methods of solrlng simultaneous

lineer equations is given by &out (reference 8). With this
methd, an auxiliary matrix is constructed from an original aug-
mented matrix by a s3mple routine. This auxiliary matrix is of
the cinderequal to the wighal matrix. The solutim for the set
of equations can be obtained by a prooess of back substitution“in
the auxiliary matiix.

For convenience,the order of the matrix is reduced before
the &out methcd is applied. A matrix arrmged as recommended
can be partitioned so that a unit matrix ~~] of the order (m,m)

appears in the upper left corner, where m is equal to the number
of types of gmeous molecule. The original a-ted nmtiix can
then be written

.

[1TJ&:q---- -
a ‘a
213
I

(Bl)

.._ —. - ——— ——— .—— _. —.—
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When the Crout method is applied to the original ~ted matrix/
the Crout audliary matrix cm be expressed as

[ .1Um: “~
-’--1- -- (B2)

‘2 ; a4

where [Um]> [~]$ and [~1 are identical to the corresponding

submatrices’of the original natrix. By observing the operatiaus

involved in the construction of the Crout a~~ary ~tiix, [a4]

is shown to be identical.to the auxiliary ~trix of the augmented

matrix r%] defined by

For computation, equation (B3) is written

(B3)

(B4)

where Uk is a unit matiix of order equal to the number of coJ-

umns of ~]. The numerical solution is then obtained by csrrybg

out the matrix multiplication indicated fn equation (B4) to find

[~~ . The Crout auxiliary matrix ca~ is ccmstructed from rf~ .

The values of the variable x(m+l), . . ., x(I!lp+2)are found

J

from [aA “ by the process of ~ck substitutim @ven by Crout. The

values o the remaining variables are found by the matrix equation

●

✎1=-[%-J
< 1

-%+1
●

.

;P+2

:1 ,

.,

. —..- ————-- —-.. . ---- _ —. —.- _ . ..- .. ——– — –———.—- —.—-. .—-—– –-———.—— –- —
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For ilhstration, the submatiices
[q~p~~ ~’p~

were taken from figure 4 and used to construct figure 7. The last

six rows of figure 4 correspond to the matrix
[1
a2!a3 and are

shown in figure 7(a). The matiix
[1

-%

%
is sh~ in figure 7(b)

where, for convenience of computation, the columns have be& tib-
ulated as rows with the first row at the to~. The o~erations

required by equation (B4) to evaluate .[%1areindicated in fig-

ure 8(a) and the resylts for the exsmple given in fQure 7 are shown

in figure 8(b). The opeiation ~ (Q o.) is illustrated in detail
as follows:

Oxo+oxo +oxo’+lxl.ooo +OXO+OXO+2X2:OOO+

2X-2.000 +lX1.OOO+l X1.000 +OXO+(3XO+ .

lX1.000+OXO+OXO+O XO =12.000 ,

Practical Oomp utation. - In practical computations, writing

the complete original nmtiti, as shown in figure 4, is unnecessary;
instead, the matrices shown in figure 7(a) and 7(b) me written out

;“-{. .

so that fQure 8(b) may be obtained. Except for the last two rows, ?+

figure 7(b) is always the same for a given grouy of chemical elements. .:’~ ~
~,

d
The prooess of obtaiuing figure 7 is as folJ-ows: I

-!

1. values of ~ are entered in row E.

2. Values of the elements of rows @$ @J o) ‘d @ ‘or
columns 1 through N are obtained by multiplying the elements of

row ~ by the elemsnts of row ~, ~, ~, and ~, res-
pectively. .

03. Values of the elements of row F for colums 1 through N

are ob~ined by multiplying the elements of row ~ by the values

of (%)1 found from a table of the thermodynamicpro~ertles for
the substances.

.

.
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4. Column A log A is found by smmuing the elements in each
row and writing the negative of the total in column A log A
except for row ~ where the value is O.

5. The elements of the A log T and constant columns are
evaluated by means of the exp~essicms shown in figure 1.

6.

a table

7.

log kt,

Row @ is obtilned by entering the values of (~O)i/!RT from

of thermcd-c properties.

Elements of row @ are obtained frm the equations defining

by taking log,% fram a table of thermodynamic properties.

“FEFERENm

1. -Brinkley,Stuart R., Jr.: Calculation of the Equilibrium Com-
position of Systems of’Mmy Ccmstituents. Jour. Chem. Phys.,
vol. 15, no. 2, Feb. 1947, pp. 1075110.

2. KYieger, F. J., &d White, W. B.: A Simplified Method fti Com-
puting the Equilibrium Composition of Gaseous Systems. Jour.
Chem. Phys.j vol. 16,no. 4, April 1948, pp. 358-360.

3. Huff, Vearl N., and Calvert, Cl@e S.: Charts for the Ccmputa-
. tion ofiEquiIibrium Composition of chemical Reactions in the

Carbon-Hydrogen-Oxygen-NitrogenSystem at Temperatures
from 20000 to 50000 K. NACA TN 1653, 1948.

4. McCann, W. J., rev. by L. R. Turner, and l%noryA. Bauer: Ther-
modpamic Charts for hternal-Combustion-Engine Fluids.
NACA TN 1883, 1949.

5. Scarborough, James B.: Numerical MathematicsA Analysis. Johns
Hopkins Press (Baltimore),1930, pp. 187-190.

6. Roth, W. A., und B&ger, Erikn: Zur Thermochemie des Bors.

Berichte d. D. Chemischen Gesellschsft, Jahrg. 70, W. 2, “
Jan. 6, 1937. S. 48-54.

--.—— . . . . ___ —.- -.-— ———- . _ _ _____ .=-- . .. . ——-—



38 NACA TM 2113

7. Anon.: Tables of Seleoted V&lues of Chemical Thermodynamic
Properties. Hat. Bhr. Standards, Ikm. 31, 1947.

8. Crout, I?rescottD.: A Shofi Methd for Evaluating Determin-
ants and Sol- Systems of Linear Equations with Real or
Complex Variables. _ =. (Sllppl.), VO1. 60, 1941,
pp. 1235-1241.

.

.

-,

..

m
E
l-l

.

.—z —— — -. —.—



NA,CA TN 2113 39

TABLE I - VALUIS OF CONSTANTS FOR REACTION OF DIBORANE WITH FLUORINE
OXIDE (B#6 + 5F20)

Fixed Determined at estimated temperature
of 4000° K

(H~)i (A~RT) ~ (s;)~ (C:)f log Kim ,-
‘. “;

vI, L

r

72.1721 -62. 0753]105.9511 19.738 I 5.6953

I B203 1212101013 233.435] -80.59321116.760125.6601 5.1094

.
?62 .961 -17:2884 73.904 8.905 1.6342

556.994 -8.3004 61.41.2 8.826 -2.6110M ?52.739 -18.1834 69.620 9.065 1.0327

R--w-H+ 572.0531 -7.98921 70.5801 8.9231-2.7625

99.5931 -13.9385] 51.0541 9.1511-0.4061

57.706 I I-29.2092 72.458 13.300 -0.3470I H20 1810121011

I OH I 91011J 011 76.560 -ti.6031 63.989 9.165 -0.1668

Ixw Ilololllllo 32.016] -19.67361 61.054] 9.0451 1.8944

i Fn 11210101210

1131”0111 010

I B 141000 317*77El 49*549 4.968

82.601 51.230 4.974

1 0 ]1610]010]1 79.493 I I 51.479 5.091

=s=

.
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b log nl A log n2 d log n3 A log n4 ... A log nz A log ny A log Ilx .*. A log Ill b log :
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-% -b3 -Os

1 -a 4 -b4
44

... ... ..* .,.

alnl %% %% a4n4 ● ’” %% %% *. ● “” aini -Aa
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1 i
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.,. ... ...

-a 1 -b i -0 i

PI P~ P~ P4 ● .. % % Px
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Alog Tl

E
AIq

--m - log kl

A%
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Wi
-TT

- log k3

()

o

-% ~
- log k4

3+
... ●**

Aa log ;

Ab log +

Ao log :

. . . I ... I

!2El
A%

--w - log ki

P log +

(a) Adiabatia cembunti=.

(b) bentrvio exwmlfm to fhed Prmswe (substitute fi p~e of heat-bakuoe ewatia in fig. l(a))●
>

Figure 1. - General matrix for ~oluticm or oorreotion equatlmnrw ndlabat~ocombustion CUM Ieentroploemmsbm tiosss~ed =
--l

preaourc.Equat~a6:(l~j,dtasoolatim ef gaeeoua moleod.es; (21), mass balanoej (20), dissooiatlcm’ or solids or
liquids; (22), pressure; (2S), heat balanae; (30), entropy balanoe. All blank spaoos denote seroB.

N

-w=-~

[

I

t < .
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I

FiKIIIW 2. - Q4neral matrix rm determlratid d dorivatiwn used for cd.oulatiing the 100al vel@Jitu of sound.
~uatlarbg z (35), diescmiation af gaeeorn ~lwul.aa; (37), IEana balanOeJ (36), dl.asoaiabion of SoUd or

liquid roleodas J (58), entm~ bd.mae. Lil blank EWOW denote zerce.
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Equa-
timl

(19)

(!21)

(20)

[30)

[44)

1 -a1 -bl -01

1 -%2 -b2 -o~

Gaaeoun moleoules At- SolidOr
liquld

A log A 10g A log A log .** b log A log A log ... A 10g A log

%

A log

%2 % n4 % * % % A T

(’l
%0

-m
- 10E kl

I \ ---/*l

1 -%3 -% -“3

1 ‘ -a4 -b4 -04

()AE~
--m - log k3

t I o~-log k4
4

... .*O ... .** ..* ...

%% %% a3% a4n4 ‘i”“ %% eY”Y %“X ““” %% -Ae’ “’ Aa log ~

olnl b~ b3n3 b4n4 ● ** bznz ~ %?X..*bfq -Ab Ab ~0~~

Figure3.- Generalmatrixforsolitlmd oorreotlonequatlcmsl?ortieprooessorIaentroplo
expanalonto-signedMachnumber.~uatlcms:(19),dlasooiat~on&

~fi)~%~&%%&e~’O~b .Iank.p.ce.denote.e.o..
dlssooiation of solid or llquld moleoules; f%?~’%=%%%noe;

I
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F@re 4. - 14atrix for aoltiicm of oorreotion equations far adiebatio ocmbtmtiion cd?aitiu ard flumtm
d.de @fter flint mtlmate d n~ A, d T. E@.ti0U3 I (19), disaooiation of &9E001L9 W100t&!S;
(21), mws baleme; (22), prrnawm; (23) heat balarmo. AU blink .svoea dcawti ZWtX1.
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(b) Satmatrix

[12
trempxed (-~~ taken from fig’. 4).

Figure 7. - Breakdcmn of om@ete uwtwix of examplm b faoilitati aaloulatian. All blink BWB &note zerw.
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I

(a) Method of calculation of reduced matrix.

12,000 1.000 1.000 3.000 -8.000 ‘ -327.873 1.391

1.000 13.000 4.000 7.000 -9.000 -283.010 -16.322

1.000 4.000 16.000 0 -8.000 -240.597 -13.564

3.000 7.000 0 17.000 -9.000 -333.400 -17.383

8.000 9.000 ‘ 8.000 9.000 0 -294.871 -3.866

885.360 2873.620 786.118 1241.423 -2734.615 -45475.661 -766.321

(b) Numerical value of reduced matrix. -

Figure 8. - Method of reduction of order of example matrix.

NACA-Lan@ey -6-16-5J3-llEJI

- .. —..——— —-.- — .——-. —.. . ._._—— —.—.— ——-. . ..—.— .—.- .—.— .. ..— .—


