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SUMMARY

A rapldly convergent succegsive approximstion process is des-
cribed that simmltaneously determines both composition and tempera--
ture resulting from a chemical reaction. This method is suitable
for use with any set of reactants over the complete range of mixture
ratios as long a8 the producte of reaction are ldeal geses. An
approximate treatment of limited amounts of liguids and sollds is-
also Included. This method is particulerly suited to problems having
a large number of products of reaction and to problems that require
determination of such properties as speciflic heat or velocity of
sound of a diesociating mixture.

The method presented is appllicable to a wide variety of problems
that include (1) combustion at constant pressure or volume; and (2)
isentropic expansion to an assigned pressure, temperature, or Mach
number. ) *

INTRODUCTION

The theoretical performance of propulsion systems having high
combustion temperatures can be calculated on the assumption that
chemical equilibrium exlsts among the products of reaction. The
equilibrium ocomposition and the temperature for a system of Np pro-
ducts of reaction are determined by the simmltaneous solution of at
least Np+l equations involving dissoclation, mass balance, and
energy or entropy balance. This calculation becomes increasingly
difficult as N? increases.

The usual method for solving these equations provides a
successlve approximation or trial-and-error process for determining
the composition at an assumed temperature and pressure. Examples of
these methods are found In references 1 to 4. When it is deslired to
find the temperature of a system in equilibrlum, with a parameter
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2 NACA TN 2113

such a8 entropy or enthalpy assigned, the composition 1s usually
camputed at a sequence of temperatures that either converge to the
correct temperature or are spaced to permit interpolation to obtain
the correct temperature.

A rapidly convergent successlve approximation process that
determines compositicn at an assigned temperature or that simmltene- -
ously determines both composition and temperature for assigned values
of another parameter, such as enthalpy or entropy, was developed at
the NACA lewls laboratory during 1948 and is presented herein. This
process also permits computation of the partial derivatives required
to compute such thermodynemic properties as specific heat and
velocity of sound corresponding to chemical equilibrium. The equa-
tions are derived that are required for solutlon of the following
cases: (1) combustion at constant pressure or volume; and (2) isen-
troplc expansion to an assigned pressure, temperature, or Mach number.
Examples are given for (1) constant-pressure adisbatic combustion;
(2) isentropic expansion to an assigned pressure; and (3) isentropic
expansion to an assigned Mach number.

This method is particularly suiteble for problems having a
large mmmber of products of reaction and for problems that require
determination of partiel derivatives. Although.it is possible, ab
least in special cases, to devise a procedure that involves less
mumerical computation, the method presented is applicable in a wide
variety of cases and its numerical application to a given process is
alweys simple and essentially the same for all reactions.

GENERAL METHOD

The thermodynemic state followlng a specific process, such as
combustion at constent pressure, can be determined from an appropriate
cambination of the following equetions: (a) dissociative equilibrium;
(b) conservation of mass; (c) conservation of energy; (d) pressure;
and (e) entropy. Equations (a) and (b) are used to specify chemical
equilibrium and, when used with any two of the remaining equations,
defline a process.

The successive approximation procedure presented herein for
finding the simxltanecus solution of a specific combination of the
aforementioned equations consists of the fo}lowing steps:

(a) Estimates of composition and temperature are made and used

in simple equations to compute the values of error parameters, which
Indicate Inconsistency among the estimates of composition and
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temperature. (These estimates need not be based on previocus experi-
ence but for rapld convergence it is desirable that they be close to
the final values.)

(b) A set of linear simmltaneous Gorrection equations are given
that determine a new composition and a new temperature.

(c) The new composition 1s used to compute new values of the
error parameters and step (b) is repeated until the desired accuracy
18 obtained. .

In order to aid in computetion, general instructions are given
that permit construction of the correctlon equations in matrix form.
The numerical values of the error parameters are obtained directly
from the elements of the matrix of coefficients of the unknowns and
the solutlon of the matrix equation provides the correction factors
necegsary for determination of the new composition and temperature.

Equations for Dissoclation, Mass » Pressure, and Volume

The substances entering a reaction .process will be designated
the reactents and can be represented by the equivalent fornmla

Zaaybaxco. .

where the subscripts a,, by, and ¢, are proportional to the

total number of atoms of the elements Z, Y, and X, respectively,
contained in a quantlty of the entering substance at the initial con-
ditions. (A complete list of symbols is included in appendix A.) For
example, the reactants for a rocket combustion process using 3 moles
of emmonia (NHz) for fuel and 2 moles of nltric acid (HNOz) for

en oxldant are
3NHz + 2HNOz

and the equivalent formulsa would be
H4 Wg 0.5

where Z, Y, and X are the atoms hydrogen, nitrogen, and oxygen,

respectively, and a,, b,, and co are 11, 5, and 6, respectively.

o =7 v e e 4 o e ea i ml ¢ e e o 8 e r e e —_



4 | NACA TN 2113
The reaction under consideration can be written
A (zao’rbox%) in(Zalel]-(c]_) + nz(zaszzxcz) +
.+ 0y (ZagToyToy) (1)

where ny 1s the number of moles of the ith molecule or atom. The
subscripts aj, bi, and c4, which can teke on only integral values
or zero, denote the number of Z, Y, and X atoms in the 1th mole-,
cule. For example, if Z, Y, and X agaln represent hydrogen,
nitrogen, and oxygen, respectively, the values of &4, by, and cy
for a water molecule Hp0 would be 2, O, and 1, respectively.
Assumptions are made that the products of reaction are contained by

e volume V numerically equal to the gas comstant R times the
ebsolute temperature T so that for ldeal gases

Py =104

During the solution of the problem, determination of the number of
formmla welghts of the reactants A +that are required to balance
the reaction given by equation (1) is necessary. Products of reac-
“tion in the gas phase are assumed to be ideal gases that form ideal
mixtures and each condensed phese is sssumed to have a partlel
pressure of zero, even when finely divided and suspended in the gas.
For solids and liquids therefore

P1=0

As an approximation,the following assumptions are also mede: Each
condensed product is insoluble in 211 others, the fugaclity of each
condensed phase 1s equal to 1; the total volume occupied by the
liquids and solids 1s negligible with respect to the volume occupled
by the gases; and the liquid and solld particles have the seme
temperature and flow velocity as the gases.

Dissocatlion egquations. ~- Thehequation for the dissociative
equllibrium among gaseous atoms and molecules can be written as

R —a "
242 + bsY + 05X € Zg Ty Xy (2)

1268
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and the corresponding equation for the equilibrium constant Kj of
gaseous molectiles is ‘ ’
P
_ 1
K = o bipx°1 (3)
Pz Py

For liquid or solid molecules, assuming the fugacity of each
condensed phase is equal to 1,

Ky = (4)

1
PZé;beichi

where py, Dy, and py are the partlal pressures of the  Z, ¥,

and X atoms in equation (1), respectively. The equilibrium con-
stants can also be expressed in terms of the free-energy
changes (AF%)i across the dissociation reactions represented by

equation (2) or ,
log, K QA}'@) (5)
%8 K1 = \ 77 A

Because the assumed composition may not correspond to that at
chemioal equilibrium, variables ky are convenlently defined so
that for gaseous molecules

-AF°®
T
1ogek1=logepi-&11°8epz-bilOgepY-ciloger-<RT>‘

(6),
and for liguid or solid molecules

. -AFS
log, ky = -ag 1oge D, = by log, Py - ¢4 loge Dy~ 'ﬁég (7)

The value of each k; must approach 1 as the solution to the

problem is found. Applying equation (8) or (7) to each molecule
results in Ny equations, where Ny denotes the mumber of different

types of molecule considered.

For simpliclty of nomenclature and presentation, the equations
for dissociation are expressed in terms of the atomic gas, which

o

e ek ¢ ey e i e ™ e e %+ A - —————e
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leade to a simple computational procedure when the atomic gases of
most elements are present in significant quantities. If the atomlc
gas of an element 18 not to be consldered as one of the products of
reaction, however, & molecule containing the element may be sub~-
stituted in equation (2) in place of the atomic gas. For example,
carbon monoxide can be used in place of carbon gas and wonld then
be treated as an atam.

Mags-balance equations. - A mass-halance equation steting the
conservation of atcmic type can bhe written for each chemical element
presént. Because & composition is initially assumed, it is con-
venient to define parameters a, b, ¢, . . . as representing the
sumation over the products of reaction of each atomic type per

equivalent formmisa.

&= % %a’in‘l (8)

b= %‘ Zbini (9)
i

c=3 Sogm (20)

As the solution to the problem ls found by successive adjustments of
the initial assumptions, the values of a, b, and c¢ approach the
values of &a,, by, and c,, respectively. The mass-balance equa-

tions result in N, equations, where N, denotes the number of
chemical elements. .

Total -pressure equation. - The total pressure P 1is the sum of
the partial pressures

P =-?p1 (11)

For a process with an assigned pressure, the value of P must
approach the agsigned value P, as the solution of the problem 1s
found.

Constant volume. - For processes that occur at constant volume,
the density of the mixbure is constant. The density p 18 defined

as
p=%=%{£ (12)

1268
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where M, 1s the molecular welght of the equlvalent formmla. For

a reaction process with an asslgned density, the value of p must
approach the assigned value .p, as the solution of the problem is
found.

Combustlon at Constant Pressure

For given initial conditions, the temperature and the composition
following & combustion process are to be found. When chemical energy
is included in the enthalpy of each substance, the enthalpy of the
products of reaction following an adisbatic combustion must be egual
to the enthalpy of the reactants at the initial conditions. An
arbitrary base may be adopted for assigning absolute values to the
enthalpy of various substances because only differences are measur-
able. One such base (reference 4) assigned a chemical energy of zero
to the oxidized form of the elements at 100° F. For calculations
with the elements boron, hydrogen, fluorine, oxygen, nitrogen, and
carbon, assigning a chemical energy of zero to water, oxygen, hydrogen
fluoride, boron triflucride, nitrogen, and carbon dioxide at the
absolute temperature of 0° K was found to be more convenient. By
using this base, the chemical energies of all other molecular types
entering a combustion process containing these elements are positive,
thus avoiding a possible source of difficulty that might occun in
the recommended method of adjustment when & logaritlm of a negative
number (or zero) might be required.

Enthalpy of fuel and oxidant. - The enthalpy at initial corndi-
tions of the amount of fuel and oxldant corresponding to the equivalent
formile Z, Yy X, 1s denoted by b, and 1s given by the expression

o Yo Yo

Bo = np (B + ng (8Q), (23)

where n, and ng are the number of moles of fuel and oxidant,
respectively, corresponding to the equivalent formule ZaonoXco and’
(BR)p. and (82)g &re the moler enthalpies of the fuel and the
oxidant, respectively, at the initlal conditions. The molar enthelpy
Hp 1is defined by the equation

T o '
nglch‘ﬂ'*ﬁg

-




8 - NACA TN 2113

where CC is the molar specific heat at oconstent pressure, and Hg

is tge c cal energy of the substance at an absolute temperature
of 0% K.

Enthelpy of products of reaction. - The enthalpy of the products
of reaction per equivalent formle can be convenlently represented by
e varieble h +that 1s given by the equation

b = 7 2 (Ep)my (14)

as long as the kinetic energy 1s negligible. When enthaelpy is
assigned, the value of h approaches h, as the solution of the

problem 1s found by successive adjustments of the estimated quantities.
If heat were lost, the value of h, would be accordingly reduced.

Bquations for constant-pressure combustion. -~ The equatlions
defining the constant-pressure combustion are:

Type Number of equatlons

Dissoclative equililbrium
Conservation of mass

Constant pressure
Conservation of energy

r—'n—'map‘z

These equations are to be solved simultaneocusly. Values for ny, A,
and T can be estimated and the values of the parameters ky, &, b,

C, « « «3 P, and h can be computed from equations (6) to (11) and
(14). Corrections are then required for nj, A, and T.

Correction equations. - The adjustments to =ny, A, and T are
made by means of a set of Np+2 correction equations derived from
equations (6) to (11) and (14) that adjust the estimates by the Newbon-
Raphson method for solving simltaneous equations (reference 5). This
method can be illustrated by & simple example. If Q; and Qp are
functions of q and v,

Q =1 (q,r)

QQ. = £, (g,7)
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By taking estimated values, for example g, and Ty, each function
may be expanded in a Taylor's series about the point (qo,ro) and
when derivatives of higher order than the first are neglected

AQl=a_QiAq+?Q_1Ar
S or

A%:i%—Aq+iaQ—z-Ar

dq or

The desired changes AQ; and AQQ can be computed and if the
partial derivetives can be numerically evaluated, solving for the
approximate changes In q and r +to effect simmultaneously the
desired changes in both Q; and Qp 1is comparatively simple
because the equations are linear.

The equations for logg kg, &8, b, ¢y ¢ « ., h, and P can
gimilarily be expanded in a Taylor's series; for example, egua-
tion (8) for log, k; for gases expanded in the logarithmic fo
would be .

A loge ki = A log, p; -~ a4 A loge Py ~ by A log, Dy ~c3 A loge Px -
BEE) aa
( RT)i A log, T (15)

The term (AH'.?/RT)i appears because

Y 8)

RT 1 <AE%>
0 loge T RT /4

where (AHS)i is determined across the dissociation-reaction equa-

tion (2). Expanding equation (8) gives

1 a4 ng
- = E - E:.____ 1
As & a, An,i a > AR (16)

e e e e — s



10 i NACA TN 2113

Some of these equatlons are expressed in terms of A logy p; and
Apy, whereas the others are expressed in terms of Any. In order
to convert to a common variable A log, niy, the following sub-

gtitutions can be made:

For gases, 1Dy = D4 therefore'

A logy Py = & logy ny : (17)

A Taylor's expansion of the logarithm of a variable 1logg 4, by
dropping terms of higher order than the first, ylelds

g = g A log,'q (18)
The expansion of equations (6) to (11) and (14) can be written in
logaritimic variables with the aid of equations (17) and (18), as

follows:

For gaseous products,
Alogny -2a3 b log ny - by A log ny - ¢y A log ny -

(AHD),

RT

A log T = - log ky (19)

For liquid or solid products,

(aB2)
. i
-a4 & logny - by A log ny - ¢y A log ny - —Rr A log T = - log ky

(20)

For all products of reactlon,
a

o]
- = — 21a
E;:aini A log ng Aa A log A = Aa log = ( )

) b
o
E;:bini A log ny - Ab A log A = Ab log - (21b)
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%cini A log ngy - Ac? A log A = Ac log %’- (21c)
. ‘ P
%:piAlogni=Plog—§- (22)

}:i{(lar;)ini A log ny - Ah A log A + r.c:Zi(c;)ini A log T

h
= Ab log _g. (23)

where the desired values of the parameters (loge ky = 0, & =2, L)
are substituted in the form

8 log, k; = - log, k; (24)
: &
da = 2 log, EO- (25)

and logarithms to the base 10 are used for convenience.

Metrix. ~ The values of A logny, A log A, and A logT are

then computed by means of the matrix showm in figure 1(a). These
corrections are applied to the Initisl set of estimates of ny, A4,
and T and the process ls repeated until all the given conditions
are simltaneously satisfied. .This matrix, however, merely provides
a convenient scheme for solving the simmltaneocus equations but any
of the well-known methods for solving simultaneocus equations mey be
used. |

Tn order to permit rapid solution of the matrix, using the
arrangement of rows and colurmsa described in appendix B is ’
desirable. With this arrangement, & single step reduces the order
of the matrix by the number of gaseous molecular types.

Combustion at Constant Volume

The procedure given for finding the compositlon and the tem-
perature of a combustion process at constant pressure can be applied
to combustion at constant volume with the following changes:
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(a) The correction equation for pressure is replaced by a
correction equation for density obtained from equation (12)

o ,
AlogA-AlogT:logB?- (26)

(b) The correction equation for conservation of energy mst
be written in terms of internal energy Eg and thms becomes

‘?'(Eg)ini A logny - fe A 1<?gA+T Zi\,(cg)ini A log T

e
= Ae log ..3. (27)

where e, 1s the assigned internal energy per equivalent formula
at Initial given conditions and Cg is the molar specific heat at

constent volume. Substitution of these two equations in the matrix
of figure 1(a) will permit the composition and the temperature to
be found for assigned values of demslity and internal energy. This
application of constant-volume combustion, which, for example, is

involved in reciprocating engines and pulse-jet engines, has not been
made at the Lewls laboratory.

Isentropic Expansion to Assigned Pressure or Temperature

Assligned pressure. - The calculation of temperature and equili-
brium composition of the products of reaction following isentropic
expansion to a fixed pressure involves the simmltaneocus solution of
dissociation, conservation-~of-mass, pressure, and entropy-balance
equations. '

For the reaction of equation (1), the dissociation, comservation
of mass, and pressure eguations ((6) to (11)) cen again be applied.
For the conditions following en isentropic expansion, the entropy s of
the products of combustion per equivalent formmla after expansion
mst be equal to the entropy s, of the products of combusilion per

equivalent formule before expansion.

8o = %;‘Eﬁ(s;)i - Rp; loge p;, (28)
cambustion
conditions

1268
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where (Sg)i is the absolute entropy of the product i at stand-

ard conditions. This formula is applicable for idesl solids and
liquids, assuming p; = O, as long as their volume is negligible.

After the expansion takes place, the entropy per equivalent formula
is glven by the expression

1 oy _
5= 5'%; Py (Sp)y - By log Ié] exit conditions (29)

Whereas equation (28) is, of course, evaluated at combustion-chamber
temperature and pressure, equation (29) is evaluated for exit tempera-
ture and pressure. As the soclution of the problem is found by succes-
sive adjustment of estimated quantities, the value of s approaches
Boo .

In the adjustment of the values of n;, A, and T, the
correction equations (19) to (22), which have been derived from
equations (6) to (11), can be applied. In addition, the following
correction equation for entropy can be written from equeation (29):

8
(o]

Esi' Alogny -As A lo_g A +§(C§)1n1.“ log T = As log - (30)

where

t

8;' = (Sg 404 - Rpy 1+ log, Py)
The values of A log n,, Alog A, andi A log T are then

computed by means of the matrix qf figure 1(b), which is identical
to figure 1(a) except that equation (30) is substituted in the
last row in place of equation (23).

Assigned temperature. - For the computation of data for enthalpy-

entropy diagrams and for other practical computations, it is often

necessary to find the exit pressure and composition as a function of"
exit temperature. The procedure required is the same as that des-
cribed for isentroplc expansion to an assigned pressure except that
the pressure equation and the temperature column are dropped from
the matrix of figure 1(b).
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Tsentropic Expension to Local Velocity of Sound

The theoretical velocity of sound that includes the effect of
dissociatlion can be computed at any point in a nozzle with a modifi-
catlion of the matrix previously derived to obtain the correction
quantities.,

. Veloclty of sound. - The velocity of sound u can be defined
as

wl = (98 ' (31)
de /g

where the subscript s denotes the conditlon of constant entropy.
The total differential of pressure 4P can be found from equa~
tion (11) ‘

ap =Zi:d.pi '(sz)

and the total differential of density dp cead be found from
equation (12).

dp:M_I.‘.a.A-_&_ar_r (33)
C R -

Thns, equation (31) can be written

>3 dp
2 _ .
M_r. dA - -AE- ar
RT RT s
and by dividing the numerator and the denominator by 4T and
changing to logarithmic variables

w

d log, Pi_
P1 T 1oz T |

22 =] 1 d loge T , (34)

B (4 Tog, A 1> o

RT dloge‘l'-

8

e

This expression will permit evaluation of. u? 5 ‘provid.ed. the values

- d log, 1y d log, A
of the derivatives (m-)s and. <m are found for

1268



NACA TN 2113 15

conditions of chemical equilibrium and for an isentropic process.
The conditions of chemical equilibrium and constant entropy are
introduced by writing the total differentials of equations (6)
to (10) and (29). The total differential of these equations
expressed in logarithmic variables and divided by 4 log, T

can be written

For gaseous products,

d log py d log py, d log py d log py
dlog T ™M d\logT-bi dlog®T "% FTiog?T -

(AH,:c[).)i d log ky
TR T 1T (35)
For liguid and solld products,
. d log py, - d.long-_c dlogpx'_(AES)i_dlogki
17T "I TigT L TiogT T d Tog T
| (36)
For all products of reaction,
Dam, 2182 . dlogh_gp,dlogs (572)
1 d log T d log T d log T
d log ny d log A d log b
= _(37b
?bini d log T Ab d log T Ab d log T (37)
d log. ’
Pogng o2 _podlog A o dlogo . (37c)
1 d log T d log T d log T }

d log s
2 1 _._..._I.].i._ - @_}2&_& +; (Co)i ni = Ag d.'__l_%_% (38)

If 4 logs is teaken as O, & is a constant; if d log a,
d logb, dlogc, and 4 log k; are teken as O, mass is constant,

atomic types are conserved, and rate of change in composition
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corresponds to constant values of - 108 k » With these assumptions,

equations (35) to (38) constitute a set of simltanecus equations
for partial derivatives. The aungmented matrix formed from these’
equations is shown in figure 2 with the sign reversed. The matrix
is identical to a portion of the matrix of figure 1(b). Vhen

d log ny a1
———— g log A
<d. Tog T )ei and <d. Tog T /g are determined by means of the

matrix shown in figure 2, the velocity of sound can be calculated
fram equation (34). This equation can be applied to mixtures of
liguid and solld products in equilibrium as long as thelr volume
is negligible compared with the volume of the gas mixture and pro-
vided the liquid and solid particles move in velooclity and tempera-
ture equilibrium with the gas.

Speclfic heat. - The specific heat at constant pressure of a
mixture in equilibrium may be found from equation (14) as follows:

o A <11°8n-1 d log A
Cp:f — I:Z(Er))ini d.logT> - An dlogT>

o 39
Equation (32) can be written as

D dlogni.:Pd.lqu (20)
171 @logT d log T \

If 4 log P 1is teken as O, the pressure is constant; therefore,
when equation (40) is substituted in the matrix of figure 2 111 place

log nyq '
can
of equation (38), the values of (d log T > ( d log T

be found. These values can then be substituted in equation (39) to

evaluate Cg .

Taentroplc expansion to assigned Mech number. - The kinetic
energy of the gas at any point, by assuming no heat transfer, is
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equal to the 'enthalpy change from the polint of negliglible kinetic
energy to the point in duestion. From this relation, the velocity
squared at any point 1 1s :

> (89)
2ozl _1__fglffi (41)
. MT M 1

where the subscript 1 indicates that the variables are evaluated
at polnt 1 1in the nozzle. The Mach mumber M 1s

M= (42)

Fd.

For convenience, & parameter b* 1s defined as representing the sum
of heat energy plus kinetic energy of the products of reactlion per
equivalent formila:

dlog n
e 1
* %Hg)ini 2 RT§P1 3 Tog T

b= St M 3 1oz &
on (2208 2
d log, T

(43)

—18

As the solution of the problem is found by successive adjustments
of the estimated quantities, h* approaches hp.

If equation (43) can be expanded in a manner similar to that
used to obtain equation (23) and if the differentials of derivatives
are assumed to be negligible, the correction equation is

h
t * o} * (o]
Ei:hi A log ny - Ah AlogA+T§i',(Cp)i'AlogT=Ah log —

(44)

where — —
d. log n“l

bt = ni(Hg\)i + M%p; dTogT l°g S

(d log T
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Mo rp, L 108 B4
1T Tog T

z(d. log A -l)

(5);" =y (€9 +
d log T

Equation (44), together with equations (19) to (21) and (30),
constitute the correction equations for the isentropic expansion to
en assigned Mach number. The coefficients of these equnations form
the matrix shown in figure 3,

In crder to carry out the mumerical computations, values of
ny, A, and T are estimated for the assigned conditioms; the

» (& log ng )
d log A
value of <d-—-—-——-l° 7 >s and Ql Tog T ) g are obtained from the matrix.

of figure 2. The mumerical values of the elements of the last column
and bottam row of the matrix of figure 3 are then computed and by
using the auxiliary matrix already completed for figure 2, the matrix -
of figure 3 may be reduced and the velue of the corrections to n4,
A, and T found. This process can be repeated until the assigned
conditions are gatisfled.

Throat area of superscnlic nozzle. - The process of isentropic
expansion to a local Mach mumber of 1 is particularly interesting
in the determination of the throat area of a nozzle having greater
than critical pressure ratio. By assuming that the flow is lsen-~
tropic and that chemical equillibrium is maintained throughout the
expansion process, the flow velocity v at the throat mst be
equal to the veloclty of sound u at the throat., The values ny4,
A, T, and u can be found for a Mach mumber of 1 by use of the
procedure given. ’

The throat area + can be calculated from the equation
t _ _RT ‘

.m - Mau (45)
where m 1is the mass flow per second. This equetion can be applied
to mixtures of ligquid or solid phases in equilibrium provided that
the volume occupied by the liquid and the solid phases is negligible
compared with that of the gas phase and that the particles of liquid
and solld are In thermel and velocity equilibrium with the ges phase.



892T

NACA TN 2113 19

EXAMPIE OF COMBUSTION OF DIBORANE WITH FLUORINE OXIDE

The caléulation of equillbrium temperature and composition of
the reactlion of 1 mole of diborane (BZHS) with S moles of fluorine
oxide (F50) dis illustrated in this example for processes of

(&) constant-pressure adisbatic combustion '

(b) isentropic expansion to 1 atmosphere

(¢) isentropic expansion to the local velocity of sound

An equivalent formmula of these reactants 1s

Za To e Ma, = B2 B F10 Os

and a4y =2, by =6, c, =10, and 4, = 5.

The following gaseous products will be considered as the products
of reaction: boron trifluoride BFz, boron trioxide Bp0z, boron
fluoride BF, boron hydride BH, boron oxide BO, diatomic boron
By, hydrogen H,, water vapor H,0, hydroxyl radical OH, hydro-
gen fluoride HF, oxygen Op, fluorine Fp, atomic hydrogen H,
etomic boron B, satomic fluorine F, and atomic oxygen 0. No

liquids or solids are included. If the products are mumbered in the
order given, they can be identified in the terminology of equation (1)
ags follows:

BFz = By Hp F3 O0
and therefore

a.l=l,'bl=0,cl=3,an.d.d.l=0

Similarly,

Bp03 = Bp Hy Fg 03

az=2,bé=0,cz=0,anddzn3
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A1l velues of ay, by, ¢y, end d; for this problem, together

with the thermodynemic properties used, are listed in table I.
Although these thermodynamic values have since been revised, they
are adequate for the purpose of this example.

The enthalples of liquid ByHg at 298.16° K and of liquid

F,0 at 128.3° K, the assumed initial conditlons, were computed
from the heats of formation, the heats of vaporlzation, and the
heat changes due to temperature changes together with the arbitrary
chemicel energy assigned to the elements. The value of the heats
of formation were taken as -44 kilocalories per mole for BpHg

(reference 6) and 5.5 kilocalories per mole for Fp0 (reference 7).

(Heat liberated is considered to be negative.) '‘The enthalpy velues
using the base previously described are

0 -—
(F298.16) 11quid B S 570.149 kilocalories per mole

(B®105.3) 1iquid Fp0 = 67.077 kilocalories per mole

The enthalpy of the amount of fuel and oxldant at Initial conditions
corresponding to the equivalent formmla is, from eguetion (13),

_ kilocalories 46
hy = 570.149 + 5 (67.077) = 905.534 cqulvalent Formala (46)

The values of a4y, bj, ©3, dy, and h, are constant for all
perts of this example. -

Corbustion Process

The adiabatic combustion process was agsumed to occur at a
constent pressure of 20.4 atmospheres.

First estimate, - From previous computations or from simple
calculations using equilibrium constants, estimating reasonsble
values for the composition and the temperature is usually possible.
This procedure is recommended inesmch as close estimates reduce
the munber of trials that must be made. In order to show that an
arbitrary composition that is not based on probable final values of

1268
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the composition can be used, however, the first estimates for this
example for n; and A have been taken equel to 1 mole and a tem-
perature of 4000° K. The possibllity of divergence is discussed in a
later section. All estimated quantities will be used with three dec-
imal places to distinguish them from numbers thet are always integers.

Correction equations. - The total pressure from equation (11)
can be computed because Py =10y, hence

P = I py = 16.000 (47)
1

The correction equation for pressure (equation (22)) becomes

1.000 A log pBF3 + 1.000 A log szos + 1.000 A log pgp + » - « +

l.OOO A 108 po = lS.OOO 108 m

The total amount of boron in the products of reaction can be
determined from equation (8)

As = E aini = l.nBF3 + 2 nBzo3 + 1 nBE + 1 Dy + 1 np, + 2 nBz +

1 np = 9.000 (49)

and therefore the number of estimated boron atoms per equivalent
formula is

[Je]

.000

000 = 9.000

a =

.}
o

becangse A has been assumed to be 1.000 for the first estimate.
The coefficient of each term in equation (8) 1s equal to the num-
ber of boron atoms in the molecule; the terms that do not contain
boron atoms are 0. Each term of equation (49) then becomes the
coefficient for its respective correction term in equation (21sa):

1.000 A log + 2.000 A log + 1.000 A log +
BF , B,04 "BF

1.000 A log ngg + 1.000 A log npgy + 2.000 A log nBZ + .

L 2
. - 9, = 9. . —_— 0
1.000 & log ng - 9.000 A log A = 9.000-10g 5=~ (50)

e e i = & m + .y e e o = e et ot e - s T TT e T e ¢ e seem e -
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Similarly, the correction equation based on the conservatlon of
hydrogen atoms is

1.000 A log Doy + 2.000 A log nHZ + 2.000 A log anO +

1.000 A logn._ + 1.000 A log D + 1.000 A log ng - 8.000 A’ log A

V34

6
= 8.000 1o 78
€ 8000 (51)

the conservation of fluorine atoms is

3.000 A log +1.000 A log n_, + 1.000 A log n_, +
PpF, ;1 i1

2,000 A log +1.000 A log n, - 8.000 A log A = 8.000 log —x2
g, Ip

(52)

~and the conservation of oxygen atoms is

3.000 A log II.BZOS + 1.000 A log Dpg + 1.000 A log nHZO +

1.000 A logn__ + 2,000 A log noz + 1,000 A log n. - 9.000 A log A

OH 0

= 9.000 A log —2 53
€ 57000 (53)

For dissociatlon, the numerical value of log kBFs can be computed

directly from equation (6) with the data of table I and (by using
logarithms to the base 10 for convenience_ and by remembering that

(-AFQ/RT)4 log e = log K;) 1is
log kgp. = 1o - 1o - 3 1o - 5.895
€ “BF3 € PpFy € Py € Pp

As the partial pressures of all the éonstituents have been esti-
mated to be 1.000 atmosphers, ’

log kpp, = ~5-695

8.000 .

1268
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The corresponding correction equation from equation (19) is

A log PRY, - 4 log pg - 3 A log py - (~62.075) A log T = 5.695

(54)

In a simllar manner, equation (19) for B,0; is

A log P - 24 log g - 38 log py - (-80.593) A log T

B,05
= - .log | = 5.109
khzos

For.Héo, equation. (19) is

A log PHZO - 24 log pg ~ A log p, - (-29.209) A log T = -log kHéO

= - 0,347

Correction equations for dissociation similar to-those glven
for BF3: B50z, and H;O molecules can be written for each molec~
ular constituent considered in the reaction (a total of 12 in this
example). The sum of the enthalpies of the products of reaction,
as given in table I and determined by equation (14), 1s 2734.615

because ny = 1.000. The heat-balance equation, as given by
equation (23), is

(72.172) A‘log pBFs + (233.435) A log 33203 + e o o+

(79.493) A log p, - (2734.615) A log A + (644.651) A log T
G ' v . 7 -

905,534
( 615) log smiies (55)

e« tmar e —————————— e e i b e e
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A matrix (fig. 4) can now be constructed with the 12 equations
similer to equation (54) and with equations (48), (50) to (53), and
(55). The recommended arrangement and reduction of the matrix are
given in appendix B. The solution to the correction equations is

found to be

A S'I.Og nBF3 = 0.708 A log Dog = 0.490
A log nB 0. = -1.098 A log nBF = 1.378
2v3
A log Dop = l.116 A log noz = 0.172
Alogn = 1.664 Alogn = -2.038
Al > 0.61 2
(o} n = . 3 l = .
g 50 A log nH 1.289
A log nBz = -2,138 A log Dy = 0.929
A log = 0.014 A log = 1.221
"m, op
A log nHZO = -0.799 A log n, = 1.457
-A Jog A = 0.123 A log T = 0.154

These values are to be applied to the initial estimates for ny, A,
and T according to the sguation

* (log ni)second = (log ni)first. + A log ng (56)
estimate estimate

For example, the second estimate of o would be
3

log = log 1.000 + 0.708
< DBFIS second ‘
estimate -

= 5.105
(DBFS) second -

estimate
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Another set of correction equations based on the second estimates

of 'n,, A, and T are set up and solved by means of a second
matrix. The process 1s repeated until the values of egquations (48)
and (50) to (55) approach O. For this example, six approximations
were required to give the following final values of ny, A, and T:

P, = 2.6593 Do = 0-6785
Pp05 = 0.1235 Ppp = 7-1456
Ppp = 0.1936 p02 = 0.9210
Ppy = 0.0001 Ty, 0.0003
Ppy = 0.1669 Py = 1.7694
Pg, = 0. Py = 0.0577
Py, = 0.1271 Py = 1.3043
PHZO = 0.0627 Py = 5.1803
A = 1.6622 T = 4775.5°K

Discussion of Convergence. - In order to demonstrate the con-
vergence of the process with large errors in the first estimate,
the example of the combustion of dlborane and fluorine oxide was
solved by using 1 mole of each product, a value of 1 for A, and
a temperature of 4000° K for the first estimate. Because these
first estimates were made without regard for the probable final
velues, large errors were present in the second approximation
and six approximations were required to eliminate the error.
These values of parameters a, b, ¢, d, P, h, and 8 are shown
in the following table where 8 1s defined as

5= 'l°8 iy 1 208 22| +| 108 b—l 1°8 2|+|208 5 T 22|06 5 P 1 Jace i l

e e et o e+ e < o e e

v ————————— e
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RESULTS OF APPROXIMATIONS

Paran- | First Trial nmber Desired
eter estimte valus
1 2 3 4 S 6
a 8 36.840 7.005 6.286 6.079 6.002 6.000 6.000
b 9 23.346.] 11.605 2.653 2.325 2.008 2.000 2.000
c 8 51.540 24,082 13,104 | 10.541 | 10.016 | 10.000 | 10.000
d 9 29.641 11.954 33.660 5.240 5.022 5.000 5.000
P 16 125.485 | -38.000 S52.434 | 21.416 | 20.436 | 20.400 | 20.400
h 2734.615 |12055.015 {2090.090 |2909.950 |965.968 |912.368 |905.594 [905.534
<] 26.892 5.861 4.0892 2.505 537 011 .002 0

This method has been used in routine computation for a year
without encountering a divergent case in a practical problem. -At
least for special cases when temperature is assigned, the process
will convergs for all valuea of the flrst estimates. Divergence
is known to occur for certain cases where temperature is used as
a varieble when the Pirst estimate of temperature and composition
is sufficiently in error. Although no mathematical analysis has
been made to determine the theoretical limits of convergence, the
process appears to be satisfactory for practical computation.

Special treatment would be required if divergence 1s encoun- -
tered. Obtaining convergence should be possible by a sufficlently
close new estimate of composition and temperature. This procedure
is recommended when 1t is feasible but other procedures are pos-
8ible, depending on the Individual case.

Isentroplc Expanslion to Fixed Pressure

The temperature and the composition of the products of reac-
tion following an isentropic-expansion ratlio of 20.4 at chemical
equllibrium were also computed for the products of reaction of
this example. The value of s, 1s found from equation (28) by
using the final values of each constituwent of the adlabatic com-
bustion and the absolute entropy values corresponding to the
final combustion temperature. The calculated value of s, was

763.476 calories per °x per mole.
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First estimates. - The number of approximations necessary for
a complete calculatlon can be conslderably reduced Iif the initial
estimate is based on previous experlence. The final values of
ny and A determined for the combustion process of this example

can therefore be the basis for this firs? estimate.

Because the expansion ratio is 20.4, the four largest con-
stituents can be estimated to be 1/20.4 of thelr combustion valus.

:

Py 0.3503
Py

f

0.0867

n

A = 0.0815

For convenience of presentation, the temperature was estimated
to be 4000° K so that the values of table I could be used again.

~ The remaining constituents can be estimated from the dlssociation

equations by setting log ky = 0. For example, pp would Dbe

determined with the assumed valuss of Pgp and Py from
equation (6) and table I

0 = log 0.3503 - log 0.0867 - log pp - 1.8944

log Pp = -0.45556 + 1.06198 - 1.8944

= -1.28798
Similerly, Py can be estimated wlth the assumsd vaelues of Pap
and P 3
F

0 = log 0.1304 - log pB - 3 log 0.0515 - 5.6953
log Py = -0.88472 + 3.86394 - 5.6953

Pp = 0.0019
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If this procedure is. followed for all the remalning constituents,
the following list of first estimates can be made:

PBFS = 0.1304 Py = 0-0150
Pp,05 = 0.0078 Pyp = 03503
Ppp = 0-0043 p02 = 0.0269
pBH =0 sz =0
Ppy = 0-0053 py = 0.0867
sz =0 pB = 0.0019
pHZ = 0.0029 Pp = 0.0515
pHZO = 0.0009 r, = 0.2544
A =0.0815 T = 4000° K

Correction squations. - When these estimates are substituted
in equations (8) to (il) and (29), the parameters a, b, ¢, 4, P,
and 8 are calculated to be 1.9325, 5.8393, 9.7828, 4.3288, 0.9383,
and 766.297, respectively. The correction equations (given in
matrix form in fig. 5) are then determined when these estimates
and paremetsrs ere used in egquations (19), (21), and (30). The
remainder of this problem 1s continued in the same manner as the
combustion calculation. The final solution is obtained In three
trlals. )

Isentropic Expansion to Mach Number of 1

The temperature and the composition of the products of reac-
ticn following an isentropic expansion to the local velocity of
sound by assuming chemlical equilibrium was computed for the pro-
ducte of reactlon considered in this example. The value of 8o
. 1s the same as that found for the isentropic expansion to 1
atmosphere.

First estimate. - For simpliclity, the same filrst estlmates
of 1 mole, 1, and 4000 K for ny, A, and T, respectively,
were again made.

1268
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Correction equations. - The matrix shown in figure 6 was con-
structed from the application of the data of table I to equations
(19), (21), (30), and (44). The first sixteen rows are identical
to the corresponding rows of figure 4 because the same equations
are used; the next row is obtained from equation (30). These
seventeen equatlions are then solved to determine the values of

al
-8 M) ang (8 logh , which are used in equation (44)
d log T d log T
8 8 L /s

(last row of fig. 6). As in the previous calculations, the
resulting corrections are then applied to the first estimates of
n;j, A, and T by using equation (56) and the process is repeated

wtil the asslgned condltlons are satisfied.

Lewls Flight Propulsion Laboratory,
National Advisory. Committee for Aercnautics,
Cleveland, Ohlo, September 7, 1949.

S o — ———
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APPERDIX A

SIMBOLS
number of equivalent formulas
sumatlon of each atomic type over products of reaction

per equivalent formula; with subscript, number of
atoms of each element within chemical formmla

molar speclific heat at constant pressure and standard
canditions

specific heat coefficlent for matrix

molar specific heat at constant volume and standard
conditions

molar Internsl. energy at standard conditions

internal energy per eguivalent formula

molar free energy at .standard conditlons

molar enthalpy at 0° XK and standard conditioms

molar enthalpy at standard conditions

enthalpy per equivalent formmla

enthalpy coeffic.;ment for matrix _

gum of heat and kine‘bié energles per equivalent formula
equillbrium constant -

ratio o:E' equilibrium constant based on partial pressures
to equilibrium constant based on free-energy change

1268
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M Mach number

Mr molecular weight of equivalent formula
m mass flow per second

Nd mmber of dlssociation equa"cions

U number of chemical elements invelved in reaction
Np number of products -of reaction

n *number of moles

P total pressure

P partial pressure

Q any function

q,r any variables

R gas canstant

S; molar entropy at standard conditioms

B entropy per _equimlent formnla

s' entropy coefficient for matrix

T témpera.ture

t throat area

o) unit matrix

n velocity of sound

v volume

v veloclty of flow

31
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P
Subscripts:
ay, by Cy, « « o«
big

g

NACA TN 2113

elements wlthin representative chemical formula
matrix variable

submatrix

totel-error psrameter

denslty

number of atoms within chemicel formuls
fuel

oxidant

any point in nozzle

number of types of gaseous molecule
initial given condition

constant pressure

constant entropy

temperature,‘oK

product index numbers (i) that designate atomic
gases

product index number
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APPENDIX B

MATRIX CONSTRUCTION AND REDUCTION

A coefficient matrix is & scheme of detached coefflcients of
a set of llnear equations that are to be solved simmltaneously.
An augmented matrix l1g identical to a coefficient matrix except
that the constants are included. Equations (19) to (23) con-
stitute such a set of equations for the simultaneocus determin-
ation of the variables 4 log ny, A log A, and A log T. )

Construction. - Because of the large number of zeros occur-
ring in the matrix, a considerable saving in effort can be made
by proper errangement of the order of the rows and the columms.
The following arrangement provides a partly symmetrical matrix
that has been found to be among the easlest to evaluate as long
a8 the products of reactlon are princlpally gassomns and the
dissociation constants are expressed 1n terms of the atomic
gpecles:

1. The order of the columns should be
(a) A log n; of gaseous molecules
(b) A log ny of atoms
(¢) A log n; of liquid and solid products
(d) A log A
(e) A logT
(f) Constant terms of equations
2. The order of the rows is

(a) Dissociation equations in same order as gaseous
molecules in columms

(b) Mass-balance equations in order of atoms in columms

T e e L v e e e —— et e e = e e — —————
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(e) Dissocia‘bion equations for solid and liquid pro-
ducts In same order as solid and liquid in
columns

(d) Total-pressure equation

(e) Heat~balance equation in combustion calculation;
entropy-balance equation in calculation of
isentropic expansion to fixed pressure

In the calculation of isentropic expansion to an assigned
Mech number, the.order of the columns is not changed but the
rows are modified as follows: (1) The entropy-balance eguetion
is substituted for the total-pressure equation; and (2) the
heat-balance equation is changed to include the kinetic energy
in accordance with equation (44).

The values of ( d log nj a.nd ( -i_l_QE_A> are first com-
d log T d log T/

puted by means of the NP+1 order matrix and are then substituted
in equations (45) and (46) to yleld the (NP+2)nd row of the com-
plete matrix,

Solution. -~ One of the best methods of solving simultaneous
linear equations is given by Crout (reference 8). With this
method, an auxiliary metrix is constructed from ean original aug-
mented matrix by a simple routine. This auxliliery matrix is of
the order equal to the original matrix. The solution for the set
of equations can be obtalined by a process of back substitution in
the auxiliary matrix.

For convenlence, the order of the matrix is reduced before
the Crout method is applied. A matrix arranged as recommended
can be partitloned so that & unit matrix [Un;l of the order (m,m)

appears in the upper left corner, where m 1is equal to the number
of types of gaseous molecule. The original augmented metrix can
then be written

mra @B1)
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When the Crout method 1s applied to the original sugmented matrix,
the Crout auxdliary matrix can be 6xpressed as

U ~
-2 E ?l- - (B2)
0,2 .7(1

where [ ] [al] and [0.21 ere ldentical to the corresponding
submatrices of the original matrix. By observing the operations
involved in the comstruction of the Crout auxiliary matrix, [a.{l

1s shown to be identicel to the auxiliary matrix of the augmanted
matrix ['asj defined by

M Fd-F R 69

For computation, equation (B3) is written

= [eef o ] o)

where Uy 1is & unlt matrix of order equal to the number of col-
wms of [“'3] . The numerical solution i1s then obtalned by carrying
out the matrix multiplication indicated in equation (B4) to find
[“5] « The Crout auxiliary matrix EG"Q is constructed from [a.ﬂ._
The values of the variable x(m+l), « « ., x(N +2) are found

from ]:G'%]' by the process of back su’bsti‘bution glven by Crout. The

values of the remaining veriables are found by the matrix equation
S| =
T W2
-1

e e E e v e = e ey e A o et T = s e - i e B g o o = e e e
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'

For illustration, the submatrices [u,il s [0:,2] , and I:cx,s—_l
were teken from figure 4 and used to construct figure 7. The last
six rows of figure 4 correspond to the matrix [E:Lz'}ccs and are

- 1
shown in figure 7(a). The matrix :;% is shown in figure 7(b)

vhere, for convenlence of computation, the columms have been tab-
ulated as rows with the first row at the top. The operations
required by eguation (B4) to evaluate [a.sj are indicated in fig-
ure 8(a) and the results for the example given in figure 7 are shown

in Tigure 8(b). The operation (@ ®.) is illustrated in detail
as follows:

OXO0O+0XO0+0X0+1X1.000+0X0+0XO+ 2X 2.000 +
2 % 2.000 +1 X 1.000 +1 X 1.000 + 0X 0 + 0 X O +
1X1.000+0X0+0XO0+0XO =12.000

Practical computation. - In practical computations, writing
the complete originel matrix, as shown in figure 4, is unnecessary;
instead, the matrices shown in figure 7(a) and 7(b) are written out
so that figure 8(b) may be obtained. Except for the last two rows,
figure 7(b) is always the same for a given group of chemical elements.

The process of obtalning figure 7 is as follows:
1. Values of n, eare entered in row E. -

2. Values of the elements of rows @), B), (C), and (D) for
columns 1 through N arse obtalned by multiplyling the elements of

rov (E) by the elements of rov (@), @), &), and (@), res-

pectively.

3. Values of the elements of row for columms 1 through N
are obtained by multiplying the elements of row (E) by the values
of (Hp); found from a tsble of the thermodynsmic properties for
the substances.

1268
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4, Column A log A 1s found by summing the elements in each
row and writing the negative of the total in column A log A
except for row @ where the value is O.

S. The elements of the A log T and constant columns are
evaluated by means of the expressions shown in figure 1.

6. Row (B) 1s obtained by entering the values of (AED),/RT from

a table of thermodynamic properties.

7. Elements of row @ are obtalned from the equations defining
log ki, by taking log Ky from a table of thermodynamic properties.
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TABLE I - VALUES OF CONSTANTS FOR REACTION OF DIBORANE WITH FLUORINE
OXIDE (BgHg + 5Fg0)

Flxed Determined at estlmated temperature
of 4000° K
Product N
1| &y byley | dy| (HR)y |(AHQ/RT)4} (SR)y | (Cp)4| log Ky o
Equivalent

formula ol 216 (10 5

BFy 1l 1o | 3]0 | 72.172| -62.0753 |105.951| 19.738| 5.6953] |51
BoOgz 2/ 2|0 ) o3 |233,435| ~-80.5932 [116.760|25.660| 5.1094
BF 3l 1]o0) 1|0 [262.961] -17.2884( 73.904] 8.905| 1.6342
BH 4|l 11| o]0 [356.994] -8.3004| 61,412| 8.826|-2.6110
BO 5| 1|o| o|1 |252.739] -18.1834| 69.620| 9.065| 1.0327
By 6| 2|o| oflo0 |572.,053| -7.9892( 70,580 8.923|-2,7625
Hg 7| 0|2 ] o]0 | 99.503( -13.9385| 51,054 9.151(-0.4061
Hg0 glol2g| o|l1| 57.708| -29.2092| 72,458| 13,300|-0.3470
OH 9l oj1 | o|1| 76.560| -13.6031| 63,989 9.165|-0.1668
HF 10| 01| 1|0 | 32.016| ~19.6736 | 61.054| 9.045| 1.8944,
0g 11| ofo | o|2 | 37.310] -15.3125( 70.783| 9.932|-0.3804
Fg 12(o]o| 2]0 | 96.012( =-8.7047| 70,813 9.451|-3.1373
H 13| 0|1 ol o |105.102 .| 20,308 4.968

B 14{ 1 {0 | 0] 0 |317.778 49,549| 4.968

F 1s| oo ]| 1|0 | s2.601 51.230| 4.974

0 16/ 0 |o| o] 1| 79.493 51.479| 5.091
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Egua— Gagoous moleoules Atous Solid or liquid
tion
4 log ny|d log ng|d log nx|d log ng| eee A log nz|s log nylA log nx| ... A log ng[ A log Ala log T
ARR
1 “ny =bq =09 = Hi - log I
i . fomg\ [
1 ' =g -bg =0g K—RTJ& = log kp
(19) 1 ~By -bg -0y E%)s = log kg
; . : /aEey |
L H.4 "04 “04 \—m)* - log K4
LE X ] LN ] -0 LR J LR N ] *+e e
: )
0
&yny 8gfg | &gty | &gny | e %Rz | Py | x| eee &40y | A8 Aa log
(21) | vyny bong | bgny | bgmg | ... bang .| byny | byng | .es ‘byny | =Ab &b log ko
cqnq tohp Oallz SNy tee Sony Cyhy oxlly ces o4ny -fo Ao log %F
(20} AEJ
-fq ~by 04 L A - log ky
P
(2) | »py Po Py Py vos Py Py Py P log
(23 (£ Cn) 0 Cn ) ces °n ) Te e = ‘-!‘C‘ ) o
(B3)) (Bp)y | (Bm)p | (Bp)y | {Hp), (Bgn)g | (Bply | (Ezn)y (Bgn), | AR |T4iCpn),| 8 dog ¢
. (r) Adisbatic combusticn,
(80) | &y sp! sg! sgt ves szt sy! ay? vee s4°t -AB %Bogh)i As log %f

(v) Isentropiloc expansion to fixed presaure (substitute In place of heat~balance aquation in rig. 1(a)).

Flgure 1. - General matrix for zolution of correction aquations for adiabatle coambustion and isentroplo expansion to essaligned

presasure. Equations: (19), disscciatian of gaseous molecules; (21), mass balance} (20), disgociation of sollds ar
All blank spaces denota zeros.

liquids; (22), pressure; (25}, heat balance; (30), entropy balance.
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Gaasous nolesules

Atons
4 log n d log np' 4 log oy 4 log ng ven Q log = _dlog _d.log _d.logn A
along) (dwr .(’Tiﬁ'g"!", TIeg ¥ /s o8 LIW;‘!)‘J<WJ (rsrﬁ)lerﬁ), '
't et ("n}
: ~ | - )
. ) N (AT
- ~a3 3 \ k!/‘,
1 ~ | = )
“ptg aly e i 4 Ryny i
bapa banx beng bzns byoy
Opip S5%3 %Ry Oznz s i 4
-y =by (‘%’.
= £t ! 2t taa [T B! T{d&n)q
2 ] 4 2 H gL

Figure 2. - Geéneral matrix for dotermina.ticﬂ of derivatives used for calswlabing the local weloolty of sound.

Equationa:

(35), dissociation of gaseous moleonlas; (37), maes balance; (36), disscciabion of wolid or

liquid molecules; (38}, entropy balance,

All blank spaces dencte reros.
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42 NACA TN 2113

Equa- Gaseous molecules Atoms Solid or
tion liquid
4 log|a log|A log{A log| eee | A log|s log|A log] ... |A log|d logl A log
ny| Bp| By | Dy 7z | Py| & oy | A T
o
1 -2y | =by | -cq (-A-I%TT - log kl
1 -8p | -bg | -ep . Q;‘;% A - log ko
(19)
AH.
1 -3.3 -b3 -03 g—ﬁg - log ka
. AHD
1 “8y | by | =04 T ) - log ¥,
LA R LA X *0e L XX} LE X *o
. a
ajny |agng |agng lagn, vee |8gDy |aylly |ayDy ees {ayny -Aa : Aa log —aTo'
: bo
(21) [|byny |bono |bang |byny | eee |bgng byny byay | «es |bgny | -2D Ab log 4
cyny |CoNp [exna joyn, css |Cpny |ocyny {ogny ees |C4qny =Ac Ac log -Z—o
(20) Aﬂg
-ai -bi -ci -—M A - 103 ki
o, 50
(30) | 81" | 52" | B3 | 84" | eee | S5zt | 5yt | 5x?' | ees | 847 | -As §(Cpn)1 As log —=
(44) hqt A hat 1 1 ] ] ] Ah..' iy co o - 1 ho
1 by 5 hy see | hy by hy ees | hy - ;( p)iAh %8 Bs

Figure 3. = General matrix for solution of correction equations for the process of isentropic
expansion to assigned Mach number. Equations: (19), dissociation of sous moleoules;
221;, mass balance; (Qo)ild.issooiation of solid or liquid molecules; %gg), entropy balance;

» energy balance, All blank spaces denote zeros,




——— -

@ ® ® ® ® @ @
m.. Gasesous zmoleculan Atons
Alsy A 1og | & log A logl Alog] A lox| Adeg| Aleg| A leg| 4 log| A log|A log| A leg | A lag A log | A Llog A lag 4 log
TEFy | PBp0y | T K| Teo | TBp | Ay | o | ®am | WP | Top | Twp ™ o oy g A T

m 1 -1 -3 82,078 B.508

g L]
~ 1 - -5 80,563 8,109
E 1 - -l -1 17,200 L.654
?1 1 -1 -1 8.300| -e.802
B 1 -l -1 18,163 L0335
m - _ o PR
5 (19) 1 - Te000 -2.783

o
2 1 -3 18,639 -0.408
p 1 -= 19,800  ~0.047
1 -1 18,803 -0.167
1 -l -1 10,674 L.094
1 -2 .58  -0.380
1 - 8,706 -B.10Y
& 1,000 2.000| 8,000 1.000| 1.000 1,000 -8,000 =0.589
& 1.000) 2,000, 1.000) 1.000] 1,000 8,000 1.000 -9, 000 -8.878
(e} .
@ 3,000 1,000 1,000 2,000) 1,000 8,000 0,778
@ 3,000 1,000 1.000| l.000 2,000 1.000{ =9.000 N
® |(ea)| 1i000] 1.000] 1.000] 1.006f 2.000] 1,000 1,000| 1.000| L.000| 1.000| 1.000] 1.000] 1.000| 3.000| 1.000] 1.000] l.ees
.® |(s)|ve.1mm|ees.400 | 200,961 | 558,994 222,700 078,063 | §9.208 | 567.706] 70.060| 22.008] 57.510| 94,028|108,198|317.970 | 62,601 | TP, -a-melj 644,650| ~1813. 598
.

Maures 4. -~ Matrix for scluticn of correction squations for adlabatio ocubwation of diborane and fluorine
(19), dissocimtion of gaseous moleoules;

oxide mi'ter firat eatimate of nj,
(21), mass balanoe; (22), pressure; (23) heat balance,

A,

and T.

Equations ;
A1l blank spaces denote zerca.
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&:. gasaous molecules Avocy \
A&leg| Aleg| A log| A log| Alog| Alog| Alog] & log| Alog| A doxg| Alog| Adlog| A log| A log| A lag| & log] A log A log
"sFy | "Bgly Pea g | Mol Tom | " g iy 8y A %
1 =2 83.075] 0
1 -] -3 80.55| 0
3 -1 -1 ’ 17,3200 0
R < A [ a.3000
1 2 -1 18.183(0
(1%) 1 -2 T.088| 0
1 . -‘l— . 18,93%| 0
1 -2 29,308|0
1 -1 -1 13.603| 0
1 - -1 10.874|0
1 -3 18,313| 0
1 -2 8.968) 0
0.00t8 | 0,0010 | 0.o080| 0.6003 0.0867 ~0,4358 o.o1e3h)
0.1304 | 0.0088 0,0043 0,0088 0.0019 -0.1B78 0,008385
o 0.2918 0,0043 0.3B03 o,0818) -0,7078 04007801
0,0224 0,0053 04,0009 | 0.0180 0.0558 . ‘| o.2844] -0,88%0 o.azn.aai
(22) | 0.1504| 0.0078] 0.0048 0.0053 0,0080 | 0,0000 | 0,0180| 0.3805| 0.028 0.0807[.0,0019| 0,0B1E| 0.2544 0.0286
(50) 4.0848 | 0.9704{ 0,306 0,4137 0.1781 | 0,0760 | 21,0353 £1,4318 | £,0438 3.7435) 0,2140 2.8395|13,2627( ~82,4400 | 8.464| 0,094
Figurs 5, - Matrix for solution of corrsoticn equatioms for isentropic expansion to 1 atmosphere for the
reaction of diborans with fluorine cxlde. Eguations; (19), dissociatlon of gasecus moleowlea; (21),
mase balance; (22), fressure; (30), entropy balence. All blank speces denote zercs, W
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Bqua- dageous polesules Ators -
tion
Alog| & 1log| Alog| £ 1log| Alog| Alog| Alog| Aleg| Alog|alog| s log| Aldog|alog| A& log| & deg| & Zog | A lox A log
Bxry | Pmp0s beq | %o | Pmp | %Ey | Tme0| Rom | Pmr | Pop 2| %8 Py % A *
1 i . -1 -3 83.078| 8.685
N 1 -2 -5 B0, 883 8,108
1 «1 -1 19.2688  1.8M
1 - -1 =1 8,800 =8,611
1 -1 -1 18,168 1,082
1 ] Y.989| -E.763
(19) 1 1B.839 —D.08
1 S 29,808 0,347
1 =1 -1 13,603] =0.267
1 -1 -l lﬁ.eft‘ 1,004
1 -8 18,313 ~0.B80
1 -3 8,708 -5,.18¢
1,000 8.000 | 24000 | 1,000 | 1,000 1.000 =0.000 -0.999
@) 1.000 | 2,000 | 1,000 | 1,000 | 1.000 | 2,000 1,000 —£.000 V-a.a?o
3,000 1,000 1,600 B.000 1.000 8,000 0773
34000 1,000 1,000 | 1,000 2,000 1,000 |  =34000 -2.297
(30) |103.564(124,775| 71.017| 60,425| €7.633| 60.593 | 40,007 | 70,471 03.608 ER.087 | 00,796 | 08.220] T0.Bi9| 47.068| 40.243 | 49.450] ~1000.044( 181,168(-163,254
(¢4) | o.780( 2.564| 2,673 S.6e3| 2.860| 8.778( 1,035 0.004| 0.818| O.BAT| 0,437 1,026/ 1,060| B.315| 0,000 0.839 8,035 T 13| -13.760
Flgure 6, - Mabrix for aolution of oorrecrbic;n oquations for lsentroplo expansion to looal velooity of sound for -

reaction of diborene and flnorine oxide after first eatimete of nj,

soolation of geseous moleonles;

spaces denots zerca.

A, and T.

Equations:

(21), masm balance; (50), entropy balunca; {4¢), enargy balance,

(19}, dis-

All blank
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duseows molvoules

iy AP
Alog| Alog| s log | adog| Adog| alog| alog| ATog | Alog | aleg| Adog| Alog| A log| & 2og | & 1og| & 1log | Alog | & log
Dy Bp.n_ R Py 1) on_ oy, Oy Ran gy B, - Da A
=& e} = b = e & f = = hed °R = = s
@ 1,000 2,000 | 2,000 | 1,000 | 1.000 1,000 0,000 0,000
® 1,000 | 2,000 | 1,000 | 1.000 | 1,000 | 2,000 1,000 =54 000 3,670
(a)
@ 8,000 1,000 1,000 8,000 1,000 ~0.000 0,775/
® 6,000 1,000 1,000 | 1,000 2,000 1,000 [ -9,000 -2, 907
® | (23} | 1,000 | 2.000 | 1,000 | 1,000 | 1,000 | 2,000 | 1,000 | 1,000 | 1,000 | 1.000 | 1,000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 1,806
® | (23 va.mﬁ O8N, 430 260,061 | 388,054 £AR, T30 | 872,088 99,808 Ov.708| 76.830 B2.016) 87V.510 9a.om| 108,192|317,978| £2.001 99.403] ~27B4. 610|644, 851 | 1019, 508

(2) Submatrix [u,di%] taken from lower portion of figure 4. Equations: (21), masa balance; (22), jressure; (23), heat balance.

- A ley]
Py

4 log
Dy

A dog
r

A log
ng

& log
A

a
T

-0, 0T

-850, 593

=17.858

-9,500

=14,188

=969

=13.939 | -80.209

=15, 803

=15.074

=-18.013

=0, 106

gl ®e|le|® @|®|€

=0.6A0

-8.109

2.611

=1.003

R63

0. 406| 0347

0,107

=L.604

0.00¢

3.157

Flgure 7. - Breakdosm of complets mabtrix of exmmple to facilitate celoulstiom.

(b) Sutmatrix |-f1-_l trenaposed (-[al:l taken from i‘ig.. 4).

— %-—l

o

892T

Al blank spaces dencte zeros.
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47
A log ny|A log nglA log np|lA log ng| 4 log A 4 log T

OO (@@ (E®)|:(@®)]| (D) 2(E@®)|:(@D)
2O®) @) :@®)|:(@®)] :(E®)] :E®)|:(@®)
(OO (@) (@) |2(@®)] :(EO)| :EO)[:(@DO)
2O 2(@D) (D) :@D)| :(ED)| 2ED)|2(@D)
(OO |2(E@®)|2(EE):@®)| :(O®)] EE)2(D®)
2(O@) (A |(EA®)(@®)| (@) 2E®)|(@®)

(a) Method of calculation of reduced matrix,

12,000 1,000/ 1,000, 3.000| =-8.000] =-127.873 1.391
1,000 13,000 4.000| 7.000 -9.000| -283,010| -16.322
1.000|  4.000( 16,000 O -8.000| -240,597| -13.564
3,000 7,000 O 17.000{ =9.000| =-333.400| -17.383
8,000/ 9.000|" 8.000] 9.000 o -204,871| ~-3.866

885,360| 2873.620| 786.118|1241,423|-2734.615| -45475.661] ~766.321
(b) Numerical value of reduced mafrix.
Figure 8, - Method of reductlon of order of example matrix,
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