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SUMMARY

An investigation was made in Langley tank no. 1 to determine the
effects of increasing the angle of dead rise on various hydrodynamic
qualities of a flying-boat hull having a length-beam ratio of 15.

An increase in angle of dead rise from 20° to 40° increased the
range of stable trim between the upper and lower trim limits of stability,
increased the range of center-of-gravity position available for satis-
factory take-off stability, and substantially improved the spray charac-
teristics. The water resistance was increased appreciably in the planing
range so that the take-off time and distance were increased approximately
25 percent and 30 percent, respectively. The over-all rough-water landing
behavior was improved. The maximum vertical and angular accelerations
were reduced approximately 55 and 30 percent, respectively.

INTRODUCTION

The development of high-speed water-based aircraft with the accom-
panying high wing loadings and stalling speeds has made the problem of
hydrodynamic impact loads of increasing importance. Tank investigations
of powered dynamic models have shown that appreciable reductions in accel-
erations are possible by increasing the hull length-beam ratio. An
increase in hull length-beam ratio from 6 to 15 reduced the maximum
vertical accelerations in waves approximately 25 percent without detri-
ment to the other hydrodynamic qualities (references 1 and 2). These
accelerations were further reduced by warping the forebody, by extending
the afterbody, and by a combination of these hull modifications (refeg—
ences 3, 4, and 5, respectively).
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Impact theory (reference 6), supported by experimental data (refer-
ence 7) on a prismatic float with no chine immersion, indicates an appre-
ciable reduction in the hydrodynamic impact loads with increase in the
angle of dead rise. The tank investigations on the hydrodynamic charac=-
teristics of hulls having a high length-beam ratio, therefore, were
extended to include the effect of an increase in the angle of dead rise,
not only on the rough-water accelerations and motions but also .on the
over-all hydrodynamic characteristics of a hull having a length-beam
rablorot (5.

The model was the same as that used for the investigations
described in references 1 and 2 with the exception of the basic angle
of dead rise which was increased from 20° to 40°. The model was

assumed to be a i% -size powered dynamic model of a twin-engine,

propeller-driven flying boat having a gross weight of 75,000 pounds,

a gross-load coefficient of 5.88, a wing loading of U4l.1 pounds per
square foot, and a power loading for take-off of 11.5 pounds per brake
horsepower. The hydrodynamic qualities determined in the investigation
were longitudinal stability during take-off and landing, spray charac-
teristics, take-off performance in smooth water, and the landing
behavior in waves.

SYMBOLS
Ca, gross-load coefficient (A,/wb3)
AV gross load, pounds
b maximum beam of hull, feet
g acceleration due to gravity (32.2), feet per second?
Ty vertical acceleration, g units
a angular acceleration, radians per second®
W specific weight of water (63.2 for these tests, usually taken
as 64.0 for sea water), pounds per cubic foot
Vv carriage speed (approx. 95 percent of airspeed), feet per second
Wy sinking speed, feet per second

0 flight-path angle, degrees
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Be elevator deflection, degrees

i3 trim (angle between forebody keel at step and horizontal),
degrees

I landing trim (trim at contact), degrees

It excess thrust (thrust available for acceleration), pounds

a longitudinal acceleration, feet per second?

DESCRIPTION OF MODEL AND APPARATUS

The model (Langley tank model 266) used for this investigation
was a modified version of Langley tank model 224 (reference 2), the
modification being an increase in the basic angle of dead rise from
20° to 40° on both forebody and afterbody. Photographs and hull
lines of the model are shown in figures 1 and 2. The general
arrangement of the flying boat is shown in figure 3, and the offsets
for the hull are presented in table I.

In deriving the hull having the 40° angle of dead rise, the plan
form and profile (except for the chine line) were maintained identical
to those of the basic hull with the 20° angle of dead rise. A constant
angle of dead rise of 40° was maintained from the step (station 12)
forward to station 7. From station 7 forward to the forward perpendic-
ular, the angle of dead rise was uniformly increased so that at the
forward perpendicular the angle of dead rise was the same as that of
the basic forebody. (See fig. 4.) At each station between 2 and 12,
the ratio of the flared chine height above the base line to that of
the unflared chine height was the same as that of the basic forebody.
The ratio varied slightly from station 2 to the forward perpendicular
to give smooth fairing.

The investigation was conducted in Langley tank no. 1, which is
described in reference 8. The apparatus used for the towing of dynamic
models is described in reference 9. The setup of the model on the
towing carriage is shown in figure 5. The model was free to trim about
the pivot, which was located at the center of gravity and was free to
move vertically but was restrained laterally and in roll and yaw. For
the self-propelled-model tests in waves, the model had approximately
3 feet of fore-and-aft freedom with respect to the towing carriage in
order to absorb the horizontal accelerations introduced by impacts.

The longitudinal forces on the model were measured by use of a resistance
dynamometer connected to the towing gear.
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A strain-gage-type accelerometer mounted on the towing staff of
the model measured the vertical accelerations. Two accelerometers of
this type were used to measure the angular accelerations. These
accelerometers, mounted 1 foot apart, were located within the model
in such a manner that their centers of gravity were in line with the
center of gravity of the model. In the static condition, all acceler-
ometers read zero. The natural frequencies of the strain-gage acceler-
ometers and the recording galvanometers used with the strain-gage
accelerometers were about 180 and L0 cycles per second, respectively.
The accelerometers were damped to approximately 0.7 of their critical
values and the recording galvanometers to approximately 0.65 of their
critical values. The frequency-response curve of the strain-gage-
accelerometer and recording-galvanometer system was flat within
t5 percent between O and 21 cycles per second.

Slide-wire pickups were used to measure the trim, rise, and fore-
and-aft position of the model. An electrically actuated trim brake
attached to the towing staff fixed the trim of the model in the air
during the landing approach. The trim brake was automatically
released when the hull came in contact with the water. Electrical
contacts were located at the sternpost, step, and at a point approxi-
mately 40 percent of the forebody length aft of the forward perpen-
dicular in order to indicate when these parts of the model contacted
the water. Wave struts, located forward and aft of the model and
dicplaced laterally from the center line of the tank, were used to
record the wave profiles and wave length. The apparatus for gener-
ating waves is described in reference 1.

PROCEDURE

A detailed description of the procedure followed in obtaining the
hydrodynamic qualities covered in this investigation is presented in
references 1 and 2. The hydrodynamic qualities determined include:
trim limits of stability, the range of center-of-gravity position for
satisfactory take-off stability, smooth-water landing stability, take-
off performance, bow spray characteristics during take-off, tail spray
characteristics during landings, and impact accelerations and landing
behavior in rough water.

The hydrodynamic qualities were determined at a design gross load
corresponding to 75,000 pounds, except for the spray investigation in
which gross loads from 65,000 pounds to 95,000 pounds were included.
The flaps were deflected 20° for all the hydrodynamic tests. Full
thrust was used in determining the hydrodynamic qualities in all tests
with the exception of the landing tests. The landings in smooth water
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were made with approximately half thrust; whereas those in rough water
were made with the thrust so adjusted that the model was self-propelled
during most of the landing run. Landing and spray tests were made with
the center of gravity at 32 percent mean aerodynamic chord. All data
are presented as full-size values with the exception of the data in
table II which are model values.

RESULTS AND DISCUSSION

Longitudinal Stability

Trim limits of stability.-~ The trim limits of stability for the
hull having the LOC angle of dead rise are presented in figure 6
together with those for the basic hull having a 20° angle of dead rise.
The lowsr limit for the hull with the LQ° angle of dead rise was first
encountered at a higher speed and lower trim than that for the hull
with the 20° angle of dead rise. At planing speeds, the lower limit
remained substantially the same. This behavior is not in agreement
with the results reported in reference 10, which states that the lower
trim limit should be raised by an increase in angle of dead rise. In
the investigation described in reference 10, however, simple planing
surfaces having dead-rise angles up to 30° and no chine flare, were
used. Since unpublished data indicate that chine flare tends to lower
the lower trim limit, the trend noted in figure 6 may be due to the
greater effectiveness of the chine flare on the hull with the 40° angle
of dead ‘rise.

The upper trim limits (both upper and lower branches) were raised
by the increase in angle of dead rise. This increase conforms to the
trend reported in a previous investigation (reference 11) of the effect
of angle of dead rise on high-angle porpoising characteristics of two
simple planing surfaces in tandem. At trims and speeds corresponding
to the upper trim limit, the wetted length on the forebody is small
and the influence of possible differences in the effect of chine flare
on this limit probably would be small. Agreement with results from
tests of simple planing surfaces, therefore, might be expected.

Center-of-gravity limits of stability.- Typical trim tracks for
the hull with LO° angle of dead rise covering a range of elevator
deflection and center-of-gravity position are presented in figure Tia).
Comparable plots for the hull with the 20° angle of dead rise are
shown in figure 7(b). The maximum amplitudes of porpoising during
take-off were obtained from such data and have been plotted against
center-of-gravity position in figure 8. The maximum amplitude of
porpoising is defined as the difference between the maximum and
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minimum trims during the greatest porpoising cycle that occurred during
a take-off. Figure 8 shows only the forward limit since the maximum
amplitude of upper-limit porpoising (after limit) never exceeded 143

The practical center-of-gravity limit for a given elevator deflec-
tion is usually defined as that position of the center of gravity at
which the amplitude of porpoising becomes 2°. Such a limit has been
determined from figure 8 and is shown as figure 9 together with the
practical center-of-gravity limit for the hull with the 20° angle of
dead rise. Increasing the angle of dead rise shifted the forward
center-of-gravity limit forward over the entire range of elevator
deflection and since there was no practical aft limit over the range
of center-of-gravity position investigated, the stable range was sub-
stantially increased.

Landing stability.- Several typical time histories of smooth-water
landings for the model with the L40° angle of dead rise are presented in
figure 10(a). Comparable records for the basic hull with the 20° angle
of dead rise are presented in figure 10(b). From such records the
maximum and minimum values of trim and rise at the greatest cycle of
oscillation were obtained and these data are plotted against trim at
first contact in figure 11. The amplitude of oscillation in trim and
rise was approximately the same for both hulls. No skipping tendency
was obtained for the hull with the 40° angle of dead rise over a range
of landing trim from 4° to 1205 therefore, it was concluded that the
depth of step (16.5 percent beam) provided adequate ventilation.

Comparison of the records for both models indicates that the
number of cycles necessary for the recovery from porpoising was less
for the hull with 40° angle of dead rise. This reduction in number of
cycles might be attributed to the . .increased damping effect caused by
the deeper penetration of this hull.

Spray Characteristics

The spray characteristics of the hull with an angle of dead rise
of 40° are presented in figures 12 to 15, along with comparatlve plots
and photographs for the hull with an angle of dead rise of 2074
design gross load, the hull with the LOC angle of dead rise had no
heavy spray on the flaps and the speed range over which heavy propeller
spray occurred was reduced. (See figs. 12, 13, and 14.) Photographs
of the spray striking the horizontal-tail surfaces during a landing
run are presented in figure 15. The forebody spray from both hulls
struck the horizontal-tail surfaces at high speeds but the spray
appeared to be less severe for the hull with the high dead-rise angle.
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The increase in angle of dead rise resulted in a very definite
over-all improvement in the spray characteristics. These improvements
would be expected on the basis of results of a previous investigation
of the effect of increase in angle of dead rise on a conventional hull
(reference 12).

Take-0Off Performance

The excess thrust and trim during take-off with full thrust for
the hull with an angle of dead rise of U40° are shown in figure 16
together with a comparative plot for the hull with an angle of dead
rise of 20°. The curves represent the excess thrust and trim for
minimum total resistance except in the speed range where porpoising
was encountered. Over this speed range the trim was increased above
that for minimum resistance to avoid the lower trim limit of stability.
Because of a change in the instrumentation for measuring horizontal
forces, the excess thrust presented for the basic hull differs slightly
from that recorded in reference 2.

Comparison of the excess thrust for both hulls indicates that the
increase in angle of dead rise raised the water resistance over the
entire take-off run. In the planing region, the excess thrust was
reduced approximately 30 percent. The trim for minimum resistance
remained approximately the same for both hulls throughout the take-off
run with a maximum variation of less than 1° occurring at hump speed.

The longitudinal acceleration during take-off is plotted against
speed in figure 17. The acceleration was derived from the excess-
thrust curve in figure 16 by use of the relationship

o
Ao

The take-off time was determined from the area under the curve
of 1/a plotted against speed, and the take-off distance from the
area under the curve of V/a plotted against speed. Increasing the
angle of dead rise from 20° to 40° increased the take-off time and
distance from 20 seconds and 1400 feet to 25 seconds and 1850 feet,
or approximately 25 and 30 percent, respectively.

Rough-Water Landing Characteristics
Data obtained from records made during landings in waves are

presented in table II. Information regarding the initial impact and
the subsequent impacts which produced the maximum vertical and angular
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accelerations with the corresponding trims at contact, sinking speeds,

and flight-path angles is included in this table. The maximum accelera-
tions are plotted against wave length in figures 18 and 19 together with
the envelopes of similar data for the hull with an angle of dead rise of

20° (reference 1). The maximum accelerations usually occurred between
the third and sixth impact.

The increase in angle of dead rise from 20° to L40° reduced the
peak maximum vertical accelerations approximately 55 percent. In
smooth water, the hydrodynamic impact loads for a prismatic float
having an angle of dead rise of 40° (fig. 8 of reference T) were
approximately 50 percent lower than those for a hull having an angle
of dead rise of 200, and the experimental values were in good agree-
ment with those predicted on the basis of impact theory (reference 6).
In rough water, the hydrodynamic impact loads for prismatic floats
also were in good agreement with the loads predicted on the basis of
impact theory (reference 13). The effect of increase in angle of dead
rise of the high-length-beam-ratio hull, therefore, was in good agree-
ment with the effect expected on the basis of Langley impact basin
experimental results and on the basis of impact theory. The effect of
wave length on the vertical accelerations was not so pronounced with
the hull having the high angle of dead rise as with the hull having
the 20° angle of dead rise.

The maximum positive angular acceleration (bow rotated upward) of
8.7 radians per second per second, encountered by the hull with the
40° angle of dead rise, was approximately 30 percent less than the
maximum positive angular acceleration encountered by the hull with the
20° angle of dead rise. Increase in the angle of dead rise had little
effect on the maximum negative angular accelerations.

The maximum and minimum values of the trim and rise at the greatest

cycle of oscillation during each landing in waves are plotted against
wave length in figure 20. The increase in angle of dead rise had rela-

tively little effect on the amplitude of trim oscillation at the greatest

cycle. The maximum rise for the hull with a 40° angle of dead rise was
reduced as compared with that for the hull with the 20° angle of dead
rise. The minimum rise was increased slightly.

Summary Chart

A summary of the hydrodynamic qualities of a hull having a high
angle of dead rise, as determined by the powered-dynamic-model tests,
is presented in figure 21. This chart gives an over-all picture in
terms of full-scale operational parameters and is therefore useful for
comparisons with similar data regarding other seaplanes for which
operating experience is available.
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CONCLUSIONS

A comparison of the hydrodynamic qualities of a high-length-beam-
ratio hull having an angle of dead rise of 4o° with those for a similar
hull having a 20° angle of dead rise indicates that the increase in
angle of dead rise gave the following results:

1. The stable range of trim between the upper and lower trim
limits of stability was increased over the entire speed range to
take-off.

2. The forward center-of-gravity limit was moved forward and
since there was no aft center-of-gravity limit, the stable range was
substantially increased.

3. The smooth-water landing stability was approximately the same
for both hulls. No skipping tendency was noted over the range of
landing trim investigated.

k. The spray characteristics were substantially improved. At
design gross load there was no heavy spray on the flaps and the speed
range for heavy propeller spray was slightly reduced. The spray on
the tail surfaces was slightly improved.

5. The water resistance was increased appreciably in the planing
range so that the take-off time and distance were increased approxi-
mately 25 and 30 percent, respectively.

6. The rough-water landing characteristics were greatly improved.
The maximum vertical and angular accelerations were reduced approximately
oonandSS08percent ;. respectively.

Langley Aeronautical Laboratory
National Advisory Committee for Aeronautics
Langley Air Force Base, Va., November 9, 1950
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OFFSETS FOR LANGLEY TANK MODEL 266

[All dimensions are in Inches]

Forebody
Distance | Keel Chine | Half- A2§1a Forebody bottom, height above base line
station | o | 350" | bese | av. | ghine Buttocks
Linefinisling ol chine Tl Niaeg). |l0s 38110, 71k [z kel 378t oAy [ 2e [ 2,85 | 3.20
FoP. 0 10.30 | 10.30 | 0

1/2 2.52 5.49 | 8.09 | 1.6 10 | 6436 | 7.21 | 7.85 | 8.10

1 5404 3.76 6.75 | 2.18 10 449 | 5423 | 596 | 6.52 | 6.73 | 6.76

2 10.08 183} 5,05 |'2.75 10 | 2.45 | 3.07 | 3.67 | .28 | 4.81 | 5.01 | 5.07

3 15.12 .80 | 3.96 | 3.07 10 [1.31|1.85(2.36(2.88| 3.40 [ 3.78 | 3.95 | 3.99

" 20.15 A Tl LT B 10 «73 (1418 | 1,63 2,09 [ 2,55 [ 2492 | 3.16 | 3.26 | 3.25
5 25.19 .04 2.78 | 3.41 10 43| 82 (1420 1.60 [ 1499 | 2436 [ 2463 | 2,77 | 2.82
6 30.23 0 2.46 | 3.48 5 033 o64 | .97|1.29] 1.62 | 1.94% | 2.22 | 2.39 | 2.47
7 35.27 0 2.30 | 3.50 0 230 | 60| +89]1.19) 1.49 | 1.77 | 2.01 | 2,18 | 2.28
8 40.31 0 2.30 | 3.505 0 .30| 60| .89]1.19(1.49 1,77 |2.01 2,18 | 2.28
9 45,34 0 2.30 | 3.505 0 «30| .60 | .89|1.19( 1.49 |1.77 | 2.01 [ 2.18 | 2.28
10 50.38 0 2.30 | 3.505 0 230 | <60 | +89|1.19( 1.49 |1.77 | 2.01 [ 2.18 | 2.28
11 55,42 0 2.30 | 3.505 o .30| .60| .89|1.19|1.49 |1.77 | 2.01 | 2.18 | 2.28
12F 60.51 0 2.30 | 3.505 0 «30| .60 | .89]1.19| 1.49 |1.77 | 2.01 | 2.18 | 2.28

Afterbody
line chine | (deg)

124 60.51 1.16 | 3.505 40 ///"
13 65.50 1.63 | 3.45 40
1k 70.5% it el 40

45 75.58 2.58 3.10 Lo

16 80.61 3.06 2.85 40 Angle of

17 85.65 3054 2.148 4o chine flare

18 90.69 4.01 2.0 40 : 5

19 95.73 ko9 | 1.46 ko Halt -boan o Chine above [

20 100.77 4.97 .75 ko DS = = f

21 |105.13 |53 |o %0 | T ) B

NACA
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Figure l.- Front and side views of Langley tank model 266.
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