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VELOCITY IN TURBOMACHINES OF ARBITRARY RUB AND CASING SHAPES 

By Chung-Hua Wu 

SUMMARY 

A general steady through-flow f;heory of nonviscous f l u i d  i n  turbo- 
machineq'of a rb i t r a ry  hub- and cashg-wall  shapes with subsonic or 
supersonic velocity i s  presented. The theory i s  applicable t o  both 
direct  and inverse problems and i s  derived primarily f o r  use i n  turbo- 
machines having t h i n  blades of high so l id i ty  with a simple approximate 
correction fac tor  f o r  blade-thickness effect .  Through the use of the  
stream function, t he  continuity equation apd the  equation of motion i n  
the rad ia l  direction are  combined t o  form a principal equation fo r  the  
present problem. The principal equation contains some terms tha t  a r e  
e i ther  prescribed or t o  be determined by other equations defining the  
problem. Two forms of the princzpal equation a r e  obtained f o r  the two 
main groups of current compressor and turbine design i n  which the vari-  
a t ion of tangential  velocity and the  variation of the r a t i o  of tangen- 

e t i a l  t o  ax ia l  veloci ty  throughout the  blade region a re  given. When the 
tangential  velocity i s  given, the principal equation i s  e l l i p t i c  or 
hyperbolic, depending on whether the  meridional velocity i s  subsonic or 
supersonic, respectively. When a re la t ion  between the  tangential  and 
the ax ia l  velocity i s  given, however, the  principal equation becomes 
hyperbolic when the  re la t ive  velocity is  supersonic. A general method 
of solution for  both the e l l i p t i c  and the  hyperbolic case i s  outlined. 
Specific applications of the  theory t o  several common types of com- 
pressor and turbine employing free-vortex, symmetrical-velocity-diagram, 
solid-rotation-type, nontwisted-blade, and radial-blade-element designs 
a re  discussed. 

INTRODUCTION 

dith the  increasing use of velocity diagrams other than free-  
vortex type, low i n l e t  hub-tip-radius ra t ios ,  and high veloci ty  of flow, 
the  problem of three-dimensional flow i n  axial-flow turbomachines 
becomes more and more importan-c. This problem i s  t reated by Traupel, 

4 Meyer, and Marble (references 1 t o  3) f o r  incompressible f lu id .  
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Compressible flow is  t rea ted  Tn reference 4, i n  which methods fo r  >.G 

l imiting solutions of zero and infinite-blade aspect r a t i o  a r e  obtained 
and a step-by-step method, a s  well as  a simpler method based on an 
approximate knowledge of the  shape of streamlines, i s  given f o r  f i n i t e -  t- 

blade aspect r a t io .  In  reference 5, Reisner gives a method of blade LO 
0 

design for  compressible flow with the  shape of neither hub nor casing N 

wall specified i n  advance. The problem of supersonic flow i n  impellers 
of a given casing and blade shape is  currently being investigated by 
Arthur W. Goldstein of the  NACA Lewis laboratory. 

The analysis made a t  the  NACA Lewis laboratory and presented 
herein proposes a unified theory tha t  is applicable t o  both direct, and 
inverse problems fo r  both subsonic and supersonic flows i n  compressors 
and turbines of a rb i t ra ry  hub- and casing-wall shapes. 

Equations of motion and energy fo r  unsteal'ly three-dimensional flow 
of a nonviscous compressible f l u i d  a re  expressed i n  terms of some con- 
venient quantit ies f o r  analyzing flow i n  turbomachines. Entropy changes 
due t o  heat t ransfer  i n  a cooled turbine and due t o  shock wave i n  
supersonic flow can eas i ly  be accommodated. The condition under which 
irrotational-flow analysis i s  correct is  also discussed. 

The general equations a re  then simplified f o r  steady through-flow 
i n  turbomachines having t h i n  blades of high sol idi ty .  It is  shown 
tha t ,  i n  the direct  problem, just  enough equations exis t  t o  determine 
a l l  the  variables; whereas i n  the inverse problem, a f t e r  t he  inclusion 
of the  in tegrabi l i ty  condition f o r  the  blade surface, e i ther  one vari-  
able or a re la t ion  between several variables can be specified by the  
designer. 

I n  the solution of the problem, the  continuity equation and the  
equation of motion i n  the rad ia l  direction a r e  combined in to  a principal 
equation through the use of the  stream function. This equation 
involves some terms tha t  a re  ei ther  given or  t o  be determined by other 
equations defining the  present problem. Two forms of the  principal 
equation a re  obtained f o r  two main groups of' designs i n  which the  vari-  
a t ion of tangential  velocity and the  variation of the  r a t i o  of tangen- 
t i a l  and ax ia l  veloci t ies  a re  prescribed by the designer. The c r i t e -  
rions of whether the  principal equation i s  e l l i p t i c  -or hyperbolic a r e  
obtained f o r  both groups. 

A general method of solving the  se t  of equations f o r  both the  
direct  and the  inverse problems i s  then described f o r  turbomachines of 
a rb i t ra ry  hub- and casing-wall shapes and fo r  e i ther  an e l l i p t i c  or 
hyperbolic principal equation. 



The dimensionless forms of the principal and other equations f o r  
some typica l  designs a re  given. A simple approximate correction f o r  
blade thickness is  a l so  given. 

SYMBOLS 

The following symbols a r e  used i n  t h i s  report: 

a velocity of sound 

m i different iat ion coefficients i n  equation (70) used t o  m u l t i -  
nB j ply function value a t  point xj t o  give mth derivative 

a t  x i  using polynomial of nth degree 

b,f,J,K, functions of r and z 
L,M,N 

C constant 

Cp 9 Cv specific heat of gas a t  constant pressure and volume, 
respectively 

t? 

D - different iat ion with respect t o  time following motion of 
D t  f l u i d  pa r t i c l e  

Dmq mth derivative of q 

F blade force per uni t  mass of f l u i d  

G Green' s function 

R 
v2 

t o t a l  enthalpy per uni t  mass of f lu id ,  h + - 2 

h enthalpy per uni t  mass of f l u i d  

k thermal conductivity 

Z character is t ic  curve 

.4 m order of derivative 

.W 
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degree of polynomial 

pressure 

heat added t o  f lu id  pa r t i c l e  along path of motion per uni t  
mass per uni t  time 

dependent variable 

gas constant 

remainder term of mth derivative a t  point X i  obtained by 
using polynomial of nth degree 

cylindrical coordinates re la t ive  t o  s t a t  or 

cylindrical coordinates re la t ive  t o  rotor 

entropy per uni t  mass 

temperature 

time 

velocity of blade a t  radius r 

internal  energy per uni t  mass with 0' absolute a s  base 
temperature 

absolute f l u i d  velocity 

re la t ive  f l u i d  velocity 

independent variable 

wu 
arc  t an  - w z 

gr id spacing i n  r- and z-directions, respectively 

r a t i o  of specific heats 

average value of r 
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7, c independent variables 

h dr 
slope of character is t ic  curve, - dz 

wu 
P = t an  @ = - w z 

P value of x between xo and xn 

P mass density 

'#- stream function 

cu angular velocity of blade 

Subscripts: 

b t r a i l i n g  edge of guide vane 

c leading edge of rotor  
1 

d t r a i l i n g  edge of rotor  

e leading edge of s t a to r  

h hub . 

i in le t  

j any s ta t ion  

m meridional 

o re fers  t o  posit ion where blade element i s  r ad ia l  or Fr = 0 

~ J U ,  Z radial ,  circumferential, and ax ia l  components 

T t o t a l  s t a t e  " 

t at  t i p  or casing 

Superscripts : 

a,b, gr id  points 
i , j ,k ,z  

* dimensionless values 
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GENERCII; BASIC EQUATIONS 

The three-dimensional compressible flow of a nonviscous gas 
through a turbomachine i s  governed by the following se t  of basic l a w s  
of aerothermodynamics: From the  principle of conservation of matter, 
the equation of continuity i s  

For a blade rotat ing at  a constant angular speed z, Newton's second 
law of motion gives 

The f i r s t  law of thermodynamics may be written as 
&?a 

where u is  related t o  the  gas temperature T by 

and Q is  given by the  following equation i f  only conduction is  con- 
s idered : 

For the  range of gas temperature and pressure encountered i n  ordinary 
turbomachines, p, p, and T a re  accurately related by the following 
equation of s t a t e  
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Although the  flow of gas through the turbomachine is  completely 
defined by the  preceding equations together with the  known variations 
of c, and k with temperature and the  given boundary and i n i t i a l  
conditions, i n  reference 4 it i s  found more convenient t o  express the  
s t a t e  of the  gas i n  terms of entropy, t o t a l  enthalpy, or a quantity I 
of the gas, i n  addition t o  i t s  velocity components. These quantit ies 
a re  defined a s  follows: 

where 

- 1 
h = u + p p  (10) 

When equations (41, (6),  (7) ,  ( lo ) ,  and the relation, 

R = cp - cv = (y-l)cv 

which follows from equations (4),  (6) ,  and ( l o ) ,  a re  used, there a r e  
obtained 

and the equation of continuity can be written as  



From equations (9)  and (11) , 

. With t h i s  equation and the re la t ion  

the equation of motion ( 2 )  can be written as  

BXQXG) + Z;;XG = -m + Tos at- (14) 

An a l te rna te  form of equation (14) tha t  involves the vor t i c i ty  of the  
absolute motion i s  obtained as follows: Using the  cylindrical coor- 
dinate system with the  z-axis pa ra l l e l  t o  E; yields 

but 

vx (ZXF) = ( r -v )~  - ( E ; . v ) ~  + z(v.r) - r(~.cu) = 6 

Hence, 

This re la t ion  can also be seen from the  following expressions of rela- 
t i v e  and absolute vor t ic i ty  expressed i n  terms of cylindrical coor- 
dinates r,Cp,z and r,8,z, which refer  t o  the rotor and s ta tor ,  
respectively : 
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and the  re la t ion  

When equation (15a) i s  used, the a l te rna te  form of equation (14) is  

Gx(7xT) = -or + T'Js at- 

The use of equations (2) , (9) ,  and (11) yields 

- - - - DU 
= r + 'p + i - ( u %  - ZWXW) - u . ~  

D t  p a t  

Hence, energy equation (3) can be written as 

The preceding equations lead t o  several important general considerations. 

If the blade rows a re  not placed too close together, the  pressure 
of gas a t  a fixed point re la t ive  t o  the blade can be taken as  constant 
with respect t o  time. Consequently, according t o  equation (20), the  
entropy and the  quantity I of the  gas s tay constant along i t s  re la-  
t i v e  streamlines f o r  adiabatic flow. The constancy of I means tha t  

4 the r a t e  of change of t o t a l  enthalpy along the streamline i s  equal t o  



the angular speed of the  blade multiplied by the  r a t e  of change of &* 

angular momentum about the  machine axis of the  gas pa r t i c l e  along i t s  t- 
streamline, which is  the well-known Euler turbine equation usually LO o 
derived under l e s s  general conditions. In a cooled turbine where the  cu 

heat t ransfer  may be large, the r a t e  of change of s and I along 
the streamline can be obtained by using equation (20). Again, f o r  
steady re l a t ive  flow, equation (14a) shows t h a t  the vanishing of abso- 
l u t e  vo r t i c i ty  requires both gradient I and gradient s t o  vanish 
or the  difference between OI and TVs t o  vanish. When both gradient 
I and gradient s a re  zero upstream of the blade row and the  flow 
i s  adiabatic, s i s  uniform i n  passing through the blade row; p i s  
then a fmct ion  only of p (according t o  equation (12)), and conse- 
quently, according t o  Kelvin's circulation theorem, the  absolute vor- 
t i c i t y  w i l l  remain zero i n  passing through the  blade row and the  flow 
can then be t rea ted  on the basis of i r ro ta t iona l  absolute flow. 

For flow through a stationary blade row, equation (14a) becomes 

which agrees with similar relat ions previously obtained by Vazsonyi 
(reference 6) , and Hicks, Guenther, and Wasserman (reference 7 )  . It 
is  interest ing t o  see tha t ,  fo r  re la t ive  flow i n  a rotat ing blade row, - - VX(OXT) becomes W X ( V ~ )  and H becomes I. 

When it i s  assumed tha t  the f l u i d  enters the  machine with uniform 
H and s and zero vort ic i ty ,  the  adiabatic flow through the  in l e t  
guide vanes can be t reated on the  basis  of i r ro ta t iona l  flow. When 
the guide vanes impart a rad ia l  variation of the  tangential  velocity 
of the  f l u i d  downstream of the vanes similar t o  tha t  i n  a potent ial  
vortex, the circulation i s  constant along the blade span and the f l u i d  
maintains a uniform H and s and a zero vor t ic i ty  going into the  
following rotor  blade row. I f  the rotor blade row is  s i tuated f a r  
away from the  in l e t  guide vanes, the  f l u i d  enters the rotor with a 
uniform I i n  the  circumferential direction as  well a s  in the  rad ia l  
direction, and the  flow through t h e  rotor  blades can again be t reated 
on the  basis of zero absolute vort ic i ty .  I f  the rotor i s  close t o  the 
guide vanes, the f l u i d  entering the  rotor blades is  circumferentially 
nonuniform, which condition i s  balanced by the unsteady term of the  r e l -  
a t ive  velocity, and the flow through the rotor  blades should theoreti-  
ca l ly  be t reated on the  basis  of unsteady flow with zero absolute 
vor t ic i ty .  When the  guide vanes impart a rad ia l  variation of tangen- 
t i a l  velocity of the  f l u i d  downstream of the vanes different  from tha t  
i n  a f r ee  vortex, however, the  circulation varies along the  span of 
the guide vanes, thereby shedding vortices f romthe  t r a i l i n g  edge t o  
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A the  f luids  downstream, and the f l u i d  enters the  following rotor  blades 
with a uniform s and H, a nonuniform I, and a nonzero value of 
absolute vor t ic i ty .  Consequently, the  flow through the  rotor  blade . 

3 
) 

row cannot be t rea ted  on the  basis  of zero absolute vor t ic i ty .  
rl 
J 

From the  preceding discussion, the  choice of H or I and s as  
the basic thermodynamic variables of the  gas is  apparent. Compressor 
and turbine rotors  a re  usually designed t o  add or subtract the  same 
amount of energy r a d i a l l y t o  or f romthe  gas; hence, H i s  usually 
rad ia l ly  constant throughout the machine. When the circumferential 
velocity of gas upstream of the blade row is  zero or varies inversely 
with radius, I is  then rad ia l ly  constant throughout the machine when 
the  heat t ransfer  i s  zero or i s  uniform radial ly .  These f a c t s  w i l l  be 
u t i l i zed  i n  the following developments. 

The continuity equation (13) can a lso  be put into a form - contain- 
ing H or I by use of a constant value of. r, tha t  i s ,  r f o r  the  
range of temperatures involved i n  the process. By using 7, equation 
(12a) can be written as  

Integrating from the  in l e t  t o t a l  s t a t e  yields 

where As* = s'-sWT, i. The continuity equation then takes the  following 
f om: 



L. 

The solution of the three-dimensional-flow problem thus consists 
of the  simultaneous solution of equations (1) or (23), (14), and (20) . 

GEMBAL THROUGH-FLOW THEORY u r 
c 
C 

Because of the  enormous mathematical d i f f i cu l ty  i n  solving the  
preceding se t  of general equations, the essent ial  feature of the three- 
dimensional flow i n  turbomachines w i l l  be investigated with the follow- 
ing two simplifying conditions: (1) The blade rows w i l l  be assumed t o  
be placed so f a r  apart  t ha t  the  re la t ive  flow through any blade row is  
steady. Under t h i s  condition, the  equations of continuity, motion, 
and energy i n  the  scalar  forms are:  

Continuity equation, from equation (I), 

or, from equation ( 2 3 ) ,  

The three equations of motion, from equations (14), 

and the  energy equation, from equation (zo), 
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(2) The blade i s  so th in  and the number of blades is  so large or 
the pitch i s  so small compared with the  blade chord tha t  t he  terms con- 
ta ining the  circumferential variation of the velocity components i n  
equations (24) t o  (28) a r e  much smaller than other terms i n  the  same 
equations and can therefore be neglected. The circumferential vari-  
a t ion of presswe or enthalpy is, however, - preserved i n  equation (26) 
by the  introduction of a blade force F, which may be considered 8s 
e i ther  due t o  the  pressure exerted by the  blade surface on the c i r -  
cumferentially t h i n  gas stream or a s  a circumferentially averaged blade 
force on the  gas stream between two blades. This simplification i s  
f i r s t  introduced by Lorenz (reference 8) i n  order t o  follow the flow 
along a given surface. The physical concept involved is  c l a r i f i ed  by 
Stodola (reference 9) . Ruden (reference 10) fur ther  proves, f o r  incom- 
pressible flow, tha t  the solution so obtained w i l l  give an average 
value in  the  circumferential direction f o r  a f i n i t e  number of blades, 
provided tha t  the departure from the  average value is  small. For turbo- 
machines having re la t ive ly  th in  blades of moderately high so l id i ty ,  
t h i s  solution can indeed be taken a s  tha t  f o r  a re la t ive  stream sur- 
face, which i s  about midway (based on mass flow) between two blades. 
Because the  circumferential variation of pressure and density i s  con- 
sidered in  equation (26), it i s  be t t e r  t o  re fer  t o  the  present theory 
as a "through-flow" theory (following ~ u d e n ) ,  or "large-number-of-thin- 
blades" theory, instead of "axial ly  symmetric" or " inf inite-number-of - 
blades" theory. ( ~ i f f e r e n t i a t i n g  velocity components obtained i n  t h i s  
theory and combining them according t o  equation (16) does not give the  
t rue  vor t ic i ty .  ) 

With t h i s  second condition, equations (24) t o  (28) become 



and 

or 
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(31) 

The circumferential enthalpy or pressure gradient i n  equation (31) 
is  replaced by the  term FU. The corresponding effects  i n  the other two 
directions a re  represented by Fr and FZ i n  equations (30) and (32), - 
respectively. The vector F i s  perpendicular t o  W or re la ted  t o  the  
shape of the blade or flow surface by the  following equations: 

Only s i x  independent equations ex is t  i n  the  preceding.equations: one 
continuity relat ion,  three equations - of motion, one energy equation, and 
one orthogonality re la t ion  between F and q .  For example, equation 
(33a) can be derived from the  equations of motion, equation of energy 
(33), and equation (34) . (see reference 4. ) 

DIRECT AND IlYVERSE PROBLEMS 

I n  a direct  problem, the  blade surface or flow surface i s  considered 
t o  be given by the  equation 
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- and two relat ions among the  force components a re  obtained by re la t ing  
them t o  the  p a r t i a l  derivatives of the  function S: 

Equations (29) t o  (34) and (36) therefore provide eight independent re la -  
t ions tha t  completely define the direct  problem involving the  eight p r i ~  
mary variables Wr, Wu, W,, Fr; Fu, Fz, s, and I or  H.  h he 
heat t ransfer  Q between the gas and the  blade i s  only important i n  
the case of cooled turbine blades and is  considered t o  be given by cool- 
ing considerations. ) 

I n  the  inverse problem, the blade surface i s  t o  be determined, 
which means tha t  the  two relat ions among the force components as  given 

5 by equations (36) a re  not available. This unavailabili ty does not mean, 
however, t ha t  the designer has freedom t o  prescribwthe variat ion of 
two variables or two conditions among the,variables throughout the  blade - 
region because, i n  order tha t  the  d i f fe rent ia l  equation (34a) w i l l  lead 
t o  an integral  blade or flow' surface of the  f o m  of equation (35), the 
following necessary (and suff ic ient  ) condition of in tegrabi l i ty  must 
be sa t i s f i ed  (reference '11) : 

- 
F.VXF = o 

which, f o r  the  present case, reduces t o  

This condition of in tegrabi l i ty  w a s  f i r s t  pointed out by Bauersfeld as 
ear ly as  1905 (reference 12) ,  but i s  neglected i n  many recent investi-  
gations. I n  effect ,  it gives a r e s t r i c t ion  t o  the veloci-ty var iat ian 
tha t  a designer can specify through the  force terms i n  the motion 
equations (30) t o  (32). 

Whereas i n  the direct  problems two conditions a re  obtainable from 
the given surface, i n  the  inverse problem one condition on the  surface 
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must be sa t i s f ied .  Hence, the  designer can specify, in the inverse 
problem, only one re la t ion  throughout the blade region, which can be a 
var iat ion of one thermodynamic quantity of gas (vU, VZ, p, or h ) ,  one 
re la t ion  on the  blade surface (untwisted or  r ad ia l  blade element), or 
one re la t ion  among the  gas properties (constant Mach number), and so 
for th.  The variation prescribed should, of course, be reasonable so 
tha t  t he  solution exis ts .  

After t h i s  one re la t ion  is  prescribed by the  designer, the  solu- 
t i on  of the inverse problem is quite similar t o  the  direct  problem. 
Among a l l  the equations t o  be sa t i s f ied ,  equations (29) t o  (34) a re  
common t o  both problems. In  addition t o  these s i x  equations, equa- 
t ions (36) a re  available i n  the  d i rec t  problem and equation (37a) and 
the one re la t ion  prescribed by the  designer t o  be sa t i s f i ed  a r e  avail-  
able i n  inverse problem. I f ,  i n  the  design, a condition on t h e  blade 
surface is  specified such as  the  blade design i n  which a l l  blade ele- 
ments a re  radial ,  Fr is prescribed as zero by the  designer, and the  
in tegrabi l i ty  condition equation (37a) leads t o  a simple re la t ion  be- 
tween FU and F,. These same two relat ions a re  also d i rec t ly  given 
by equations (36a) and (36b), respectively, i n  the  direct  problem, and 
consequently the  solution f o r  the  two problems i s  exactly the  same. 
In  other cases, however, the solution of the  two problems i s  a l i t t l e  
&if f  e r  ent . 

PRINCrPAL EQUATION FOR TWO MAIN GROUPS OF DESIGN 

I n  t h i s  and the following sections, a general method of solution 
f o r  both the direct  and the inverse problems w i l l  be described. From 
the preceding equations the through-flow considered herein is  essen- 
t i a l l y  described by the  equation of continuity (29) and the equation 
of motion ei ther  i n  the  rad ia l  direction (equation (39)),  or in the 
ax ia l  direction (equation (32)) .  Except i n  the case of low-speed 
centrifugal impellers, it i s  always advantageous t o  use equation (30), 
because Fr is  e i ther  zero i n  high-speed centrifugal or mixed-flow 
impellers or re la t ive ly  small i n  axial-flow bladings. Also, e i ther  
a ~ f i r  or a1/ar i s  usually equal t o  zero, and a(vUr)/ar is  often 
given. This choice is  used hereinafter.  I f  it i s  desirable t o  use 
equation (32), equations can be developed i n  a similar manner. . 

The combination of equations (29) and (30) i s  carried out by the  
use of a stream function, which is  defined as  follows and sa t i s f i e s  the 
continuity equation (29) : 
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From equation (37), 

The succeeding development i s  a l i t t l e  different  fo r  the  two main 
groups of designs t o  be considered. In the  f i r s t  group, the  variation 
of the  angular momentum of the  gas about the axis  of rotat ion i s  pre- 
scribed by the  designer; t ha t  is, 

.. 
is  given. Among t h i s  group a re  the free-vortex type i n  which f l  is  
just  a function of z, the  more general solid-body-rotation type, the 
symmetrical-velocity-diagram type, and others. I n  the second group of 
designs, the  following re la t ion  between tangential  and ax ia l  velocity 
is  prescribed by the designer: 

wu 
IJ. = t an  p, = - = f2( r ,z )  

w z 

Among t h i s  group a re  the common blade design f o r  high-speed centrifugal- 
and mixed-flow impellers in  which a l l  blade elements a re  r ad ia l  with 
IJ. = r f3 (z ) ,  the l e s s  general design with IJ. = t an  P = f 4 ( z ) ,  which 
gives a prac t ica l ly  untwisted blade and is  most suitable f o r  cooled tur-  
bine rotor,  and others. The principal equation w i l l  now be obtained i n  
a form most convenient fo r  these two main groups of designs. 
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Group of Designs in which Equation (40) i s  Specified 

From equations (9) and (38), 

Differentiating with respect t o  r and z yields 

Substituting equation (43) into equation (39) and adding yield 

Substituting equation (44) into equation (30) and dividing by a2 yield 
the  following principal equation: 
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I 
1 
I 

where 

With the variation of VU or WU prescribed by the designer, the 
meridional velocity components a re  determined by the pr incipal  equa- 
t i o n  (45). The other equations a re  used t o  determine various terms 
involved i n  the  coefficients L1 and N1. From the coefficients of 
the second derivatives , the  principal equation (45) is  hyperbolic when 

> 
the meridional velocity Wm = 4- i s  g r e a t e r t h a n t h e  speed of 
sound, and e l l i p t i c  when the  meridional velocity i s  l e s s  than the speed 

- of sound. For the hyperbolic case, the method of character is t ics  can 
be used and w i l l  be discussed l a t e r .  For the  e l l i p t i c  case, it i s  con- 
venient t o  put the  principal equation i n  a s l igh t ly  different  form, a s  
follows: From equation ( 3 8 ) ,  

Substituting equation (46) into equation (30) resu l t s  i n  
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In  t h i s  form, a l l  terms except the  f i r s t  three a re  taken a s  constant 
during the successive improvement of Jr values throughout the  whole 
region i n  the numerical solution so tha t  the coefficients in  the  differ-  
ence equations of Jrts w i l l  not vary during successive cycles. 

Equation (45) or (47) is  then the principal equation f o r  t h i s  group 
of designs t o  be used fo r  a meridional velocity greater or l e s s  than 
the  velocity of sound, respectively. The process involved i n  solving 
t h i s  principal equation, together with other equatibns i n  the  inverse 
and direct- problems, i s  a s  follows: 

I n  the inverse problem, Vu o r  Wu i s  given by equation (40). 
Equation (31) is  f i r s t  used t o  compute Fu. The energy equation (33) 
i s  then used t o  determine the variation of s along the  streamline. 
The variation of I along the  streamline i s  obtained from equa- 
t ion  (33a). Equation (32) is  used t o  compute FZ and F, i s  then 
obtained by integrating equation (36a) along a constant r l ine :  

where Fr = 0 a t  z = zo. The solution i s  then carried downstream by 
equation (45) i n  the hyperbolic case, whereas successive s e t s  of 

.. 

improved values of Jr a re  obtained throughout the  region i n  the  e l l ip -  
t i c  case. The quantit ies Wr and WZ a r e  then computed from equa- 
t i on  (38).  

I n  the direct  problem, equations (36a) and (36b) a re  given. It is  
most convenient t o  obtain WU from equation (34) as  follows: 

The quantity FU i s  then computed from equation (31) and F, and Fr 
a re  obtained from equations (36). Equation (33) is  used t o  determine 
the variation of s along the streamline and equation (32) t o  deter- 
mine the  variation of I or H. Equation (30) i s  then used t o  solve 
f o r  Jr a s  before. 
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Group of Designs in  which Equation (41) is  Specified 

For t h i s  group of designs, it i s  necessary t o  combine WU into 
Wz according t o  equation (41) as follows: Substituting equation (41) 
into equation (30) yields 

Instead of equation (42), 

Differentiating with respect t o  r and z,  combining with equa- 
t i on  (39)) and subst i tut ing into equation (50) give the  following form 
of the  principal equation : 

where 

Equation (52) becomes hyperbolic when the  re la t ive  velocity i s  super- 
sonic, and e l l i p t i c  when the  r e l a t ive  velocity i s  subsonic. For sub- 
sonic velocity, a more convenient form of t h i s  equation f o r  computation 
i s  obtained by subst i tut ing equation (46) into (49): 



The process involved i n  solving the  principal equation simultane- 
ously with other equations i n  the d i rec t  and inverse problems is essen- 
t i a l l y  the  same as  tha t  given fo r  the  previous group of designs. The 
only difference i s  t ha t  Wu is now computed from equation (41) and, i n  
the  e l l i p t i c  case, i s  t o  be reevaluated a f t e r  successive improvements 
of Jr. In  the  design where rad ia l  blade elements a re  employed, the com- 
putation i s  considerably shortened with Fr equal t o  zero, which shows 
the  advantage of using the  cylindrical coordinate system f o r  t h i s  prob- 
l e m .  (1n the  customary method employing a coordinate system along the  
streamline and normal t o  it, the blade force along the normal i s  n.ot 
zero.) In t h i s  design, the  process f o r  the  d i rec t  and the  inverse 
problem i s  exactly the  same. 

The use of p = fg(z)  i n  the design w i l l  lead t o  a blade close t o  
the  untwisted type i f  the  hub-tip-radius r a t i o  i s  not too small. I n  
the  d i rec t  problem with such a blade given, t h i s  re la t ion  may be used 
or the flow may be more accurately obtained by using the  equations 
given f o r  the  f i r s t  group. 

The different  character of the  principal equation f o r  the two 
groups of designs considered i s  interesting. The character of the  prin- 
c ipal  equation depends on the, variation prescribed i n  the  design or - 

considered a s  given in the direct  problem. This f ac t  may be u t i l i zed  
t o  solve some flow problems i n  which the  flow i n  some region i s  s l ight-  
l y  supersonic. When a tangential-veloc i t y  .variation is  given, the 
equation f o r  the  whole region may be e l l i p t i c .  

GENERAL METHOD OF SOLVIRG PRINCIPAL EQUATION 

El l ip t i c  Case . 
For convenience of discussion, t he  fundamental equation (47) or  

(53) of the  two groups of designs can be written i n  the  following gen- 
e r a l  fc-: 
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The equation i s  nonlinear even f o r  incompressible flow. The equa- 
t i on  may be more conveniently rewritten i n  a l inear  f o m  a s  

where 

and is  evaluated from an approximate solution a t  t he  s t a r t  of the  cal- 
culation and from the  and p values obtained i n  the previous cycle 
during the  calculation. For simple boundary shapes and simple func- 
t ions of J and K, it may be possible t o  f ind  a Green's function 
~ ( y ,  z , ~ ,  f j )  with i ts  proper properties so tha t  t he  solution of the  prob- 
lem can be written i n  the following form: 

( 5 7 )  

For example, f o r  flow with the  design i n  which the  tangential  velocity 
i s  prescribed, the  principal equation takes the  form 

I f  the  boundary walls a re  cylindrical surfaces, the  total-enthalpy and 
entropy are  uniform, and the  tangential  and the  r ad ia l  veloci ty  both 
vanish a t  the  in l e t  and the  ex i t ,  the  r ad ia l  var iat ion of a t  the  
in l e t  and the  ex i t  a r e  the  same and can be subtracted from , which 
r e su l t s  i n  
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which can be written as  
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r;"i) 
The quantity - i s  zero on the  boundary and the corresponding 

Green's function is' available from a similar equation i n  reference 3. 
When the  Green's function of reference 3 i s  used, the solution fo r  $ 
i s  

I f  G is  tabulated a t  several values of r, @-qi can be conveniently 
obtained by a numerical double integration process on a punch-card 
machine. For curved boundary walls i n  the meridional plane, it i s  
necessary, i n  t h i s  method, t o  use t h e  technique of conformal trans- 
formation t o  render the  given boundary shape into a rectangular one. 
Inasmuch a s  t h i s  process involves a numerical solution of the Laplace 
equation with the  given boundary shape, it i s  found be t te r  t o  solve 
d i rec t ly  the  given equation (55) with the given shape by the  numerical 
method. Furthermore, t h i s  solution w i l l  be the only choice in the 
general case where J and K a re  not equal t o  1 or the  boundary con- 
di t ion i s  more general, which makes the  task  of obtaining the  proper 
Green's function a very d i f f i cu l t  one, i f  not impossible. 

In  order t o  solve d i rec t ly  the  given equation (55 ) ,  a general 
numerical different iat ion formula f o r  f i r s t  and second derivatives with 
function value given a t  unequally spaced grid points using second- and 
higher-order polynomial representation is  required t o  give conveniently 
and accurately the  f ini te-difference expressions a t  the gr id point near 
the curved boundary, which i s  done as follows: When the value of any 
quantity q is  known corresponding t o  a number of unequally spaced 
values of the independent variable x, denoted by xg, x, . . . xn, 
the variation of q with respect t o  x is  most conveniently expressed 

, by a Lagrangian polynomial of the  nth degree: 

\"I - X-X: II-Ll 
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m where 

and 

where V l i e s  between xg and Xn. The successive derivatives of q 
with respect t o  x a t  any point x can be expressed as (reference 13) 

n n + 1  (XI n 
D~~ = z !  C j=o [& x-xj k=o (67 

P 

and so for th,  with 

=h.+l(x) q(n+l) c V )  + mn+l (XI ( n+2 
n lR = ~m vq (v) % + .  . . (68) 

2 q + l ( x )  q(n+l) (v )  + =A+l(x) (n+2) 
nR = -(n+l)!, mq (v) g + .. . .. (69) 

The summation operation i s  very eas i ly  performed when x i s  a grid 
point, because most of the  products vanish. A t  these points, it i s  
convenient t o  write 

The different iat ion coefficients B and the  coefficients of the  deriv- 
a t ive  i n  the  f i r s t  or second remainder term have been expl ic i t ly  

* expressed i n  reference 13  i n  terms of the spacings between the  succes- 
sive gr id points fo r  general nonuniform spacing throughout and fo r  the  
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special  case near a tapered-or curved boundary where only the  f i r s t  
or l a s t  spacing i s  different  from the  others, using polynomials of 
second, th i rd ,  and fourth order. For the special  case, these coef- 
f i c i en t s  have a lso  been computed f o r  difference ra t ios  from 0.1 t o  
1.29 i n  intervals  of 0.01 of the distance between the boundary and 
the nearest point and the other spacings and a r e  given i n  refer-  
ence 13. For spacing lying between tabulated intervals,  the  inter-  
polation coefficients given i n  reference 14 can be used t o  obtain 
the  required values of B. 

I n  the  present fluid-flow problems, it i s  necessary t o  cover a 
large region i n  order t o  reach the boundary condition tha t  is  always 
given a t  s ta t ions f a r  upstream and downstream of the blade row. In  
order t o  reduce the  labor of computation, it is  desirable t o  determine 
i f  the number of gr id points required f o r  a given accuracy can be 
reduced by using an order of polynomial higher than the customary 
second order. A study of the  remainder terms (reference 13) and actual  
experience i n  the present problems show tha t ,  in most cases, the  use 
of fourth-order polynomial w i l l  reduce the  necessary number of grid 
points t o  l e s s  than one-quarter of tha t  required by the second-order 
polynomial. I n  se t t ing  up the  gr id  pattern,  it i s  always desirable 
t o  map the  flow region i n  such a manner tha t  the  distance between the  
boundary and a point next t o  it i s  not too small compared with the 
other distances, because the  different iat ion coefficient becomes very 
sensi t ive t o  the  small r a t io .  I f  the  small r a t i o  cannot be avoided, 
it is best not t o  include these points i n  the calculation. 

When the  grid pattern and the  order of polynomial representation 
have been selected, t he  coefficients B a t  each point can be obtained 
from the  tab le  given i n  reference 13. Then the  d!fferential equa- 
t i o n  (55) a t  any gr id point whose Jr value is  Jrl ( f ig .  l) i s  replaced 
by the  following algebraic equation: 

where Jrj and -$ denote the values of Jr along constant z and 
constant r l ines ,  respectively. 

The values of Jr along the hub and the  casing walls can be arbi-  
t r a r i l y  chosen, with the difference proportional t o  the mass flow 
between them. A t  the  f i r s t  s ta t ion  on the l e f t  1-1 and a t  the  l a s t  
s ta t ion  2-2 on the r ight  ( f ig .  2), however, the  Jr values a r e  unknawn. 
The boundary condition a t  s ta t ions 1-1 and 2-2 is, usually, t ha t  the  
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flow i s  pa ra l l e l  t o  the bounding walls. When the  hub and casing walls 
a re  horizontal a t  t he  in l e t  and exi t  of the  machine and the  s tat ions 
chosen a re  f a r  enough out, the value qb required at  a point 6 ,  
distance away from the  $a point i s  a l so  equal t o  . Whether or not 
the  in l e t  and the  ex i t  s ta t ions a re  chosen f a r  enough out wil1;be 
indicated by the variation of $'s along these s tat ions obtained i n  
the  solution. 

After equation (71) i s  obtained a t  every in ter ior  gr id  point, a 
number of methods can be used t o  solve the  s e t  of simultaneous alge- 
braic  equations. For hand computation, the relaxation method developed 
by Southwell has proved t o  be superior t o  others f o r  t h i s  type of 
equation (references 1 2  and 15 t o  18) .  I f  the  fourth-order polynomial 
representation i s  decided, the calculation can be carried out i n  two 
steps by using only the f ive  main coefficients i n  ear ly stages and 
then the  residuals a r e  recomputed and relaxed by a l l  nine coefficients 
(reference 13) . 

I f  a high-speed, large-scale, d i g i t a l  computing machine is  avail-  
able, the se t  of equations can be solved e i ther  by an indirect or 
direct  method. In  the  indirect method, the  s t raight  i t e ra t ive  method of 
Liebmann i s  used, wherein qi i s  solved a t  each point from i ts  sur- 
rounding values according t o  equation (71) and the process i s  repeated 
u n t i l  the change a t  any point i s  no longer significant.  This method 
is  simplest t o  s e t  up, but is  slowest. A be t t e r  method is  t o  se t  the 
machine t o  perform a simple relaxation process by computing the resid- 
ual  a t  each point and relaxing according t o  a fixed re la t ion  with 
respect t o  the  amount of residual just  found. 

A much quicker machine method, especially when a number of solu- 
, t ions  with, f o r  example, different  i n l e t  Mach numbers a r e  t o  be found 

with a given geometrical shape of the problem, i s  the d i rec t  method 
tha t  solves the  se t  of simultaneous equations by a matrix process. 
The de ta i l s  of a matrix method, which f u l l y  u t i l i z e s  the great number 
of zero elements of the  or iginal  coefficient matrix, is given i n  refer- 
ence 13. 

Hyperbolic Case 

In  the  hyperbolic case, the  problem consists i n  solving $ from 
the following principal equation, writ ten i n  a general form fo r  the  
two groups of designs: 
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with the  i n i t i a l  condition tha t  and i t s  normal derivative a re  given 
on a curve tha t  i s  not a character is t ic  l i n e .  

From equation (72), the  equation of the character is t ic  l i n e  i s  

The slopes of the character is t ic  l i nes  i n  the r,z-plane a r e  

When the  point on the r,z-plane moves along the character is t ic  
curve 1, corresponding t o  a small change dz i n  z, the  change i n  
r is  dr = X1 dz. Because of these two small changes, the change of 
any quantity q i s  

Hence, along Z1, 
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From equatio . ) and (78), 

Substituting equations (79) and (80) in to  equation (72) yields 

By v i r tue  of equations (74a) and (74b), equation (81) becomes 

Similarly, along the  second character is t ic  l i n e  22, 

Star t ing from two points a and b a short distance apart  on the  curve 
where the i n i t i a l  condition i s  given, equations (74a) and (74b) give 
the tangent t o  the  character is t ic  curves a t  these two points and equa- 
t ions (82) and (83) give the  new value of a$/%z and a$/& a t  t he  
point of intersection c of the two tangent l i nes .  The auxi l iary 
equations corresponding t o  the par t icu lar  problem a r e  then used t o  
determine other  pertinent quantit ies a t  the point c. This process i s  
t o  be carried s tep by step downstream. The method is  the same as  f o r  
ordinary two-dimensional rotat ional  flow.  or deta i l s  of calculation, 
see reference 19. ) 

APPLICATION TO TYPICAL DESIGNS 

The following sections include a br ie f  discussion of the  manner 
i n  which the fundamental and auxi l iary equations reduce t o  par t icular  
forms for  several typical  designs. I n  actual  computations, it i s  
always desirable t o  render a l l  quant i t ies  dimensionless. A convenient 
system is  t o  divide r or z ,  W or  V, p, T, s, H, or I, 
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2 
> $ and by rt, Ut, P T , i >  ~ t ~ / k ,  R, Ut 9 ut2/rtt' rt2ut, 
and ut/rt, respectively. These dimensionless values a re  used i n  
the  following equations. 

Free-Vortex Design 

I n  the free-vortex design, the  variation of Vur  i s  prescribed as  
a function of z only. With a free-vortex flow, the t o t a l  enthalpy a t  
any point z i s  simply related t o  the in l e t  value by 

where (vcr') i s  a constant. I f  Hi i s  uniform with respect t o  r 
and 8 ~ 1 %  is  zero, a H / a r  w i l l  be zero everywhere; but aH/az is not 
equal t o  zero i n  the  rotor,  whereas a1/az i s  zero and it i s  there- 
fore  convenient t o  use the system of equations involving I. The 
principal  equation i s  then 

The auxi l iary equations a re  

ap a(vtr') * *= - , -  
Fur r*p* ar* ar* 
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The computation can be s t a r t e d  with an assumed value of $ con- 
forming t o  t h e  boundary shapes. I n  t h e  e a r l y  stage, it i s  advantageous 
t o  omit equations (87) and (88) and t o  use t h e  following approximate 
formula of Fr, which i s  obtained by solving t h e  two equations by 
assuming constant and neglecting small terms: ' 

Density can be  obtained from t h e  $ der ivat ives  a s  follows: F i r s t ,  
2 
- r-1 

equation (89) is  wr i t t en  a s  u = [l - q/a] , where 

Second, e i t he r  cp i s  computed f o r  a number of values of a and a curve 
i s  p lot ted,  o r  u i s  obtained f o r  a number of values of cp through 
i t e r a t i o n  of t h e  preceding equation and a t a b l e  obtained f o r  equal 
in te rva l s  i n  Cp. I n  e i t he r  case, a f t e r  t he  $ der ivat ives  a r e  obtain- 
ed, cp i s  computed and a or  p i s  then obtained from e i t he r  t h e  
curve or  t h e  t ab l e .  

Design Based on Symmetrical Velocity D i a g r a m  a t  A l l  Radii 

Generalized f o r  compressible flow, t h e  symmetrical ve loc i ty  dia-  
gram at  a l l  r a d i i  i s  defined a s  follows (reference 4) : (see  f i g .  2 f o r  
s t a t  ion nota t  ion. ) 
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If it i s  desirable t o  maintain a constant t o t a l  s t a t e  along the  radius, 
the  variat ion of VUr with z is  such t ha t  the same mount of work is  
done along a l l  streamlines: 

Hence, 

Combining equations (91) and (93) yields 

Hence, 

I n  t h i s  design, the  quantity a1Pr i s  not zero i n  the  rotor,  
but with constant work input, a ~ b r  i s  zero. Using the  system of 
equations involving H is  therefore convenient: 
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With only the additional complication tha t  the value of Vu i n  each 
cycle i s  determined from a knowledge of the  streamline i n  the  previous 
cycle, the solution of t h i s  problem i s  obtained i n  the  same manner a s  
i n  the  previous case. For a multistage compressor, it is  important t o  - account f o r  t h e  effect  of loss  on density r i s e  by including the  e-&* 

factor  i n  equation (102). The increase of entropy can be estimated by 
a knowledge of the  polytropic efficiency (reference 4) . 

A nonvortex-,type velocity diagram quite similar t o  the pre- 
ceding one is  the  solid-body rotat ion design t h a t  has a tangential  
velocity varying l inear ly  with radius in front  of the rotor; t ha t  i s ,  

I f  t o t a l  enthalpy i s  t o  be constant along the radius through the rotor ,  
equations (92) and (93) also apply. Hence, 
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0 Comparison of these equations with those i n  the previous design i s  cu 

interesting. In  the  previous design the  change of whirl through the 
rotor i s  distributed evenly i n  the  whirl i n  f ront  of and behind the 
rotor,  whereas i n  the  present design it i s  completely put in to  the 
whirl behind the rotor .  Except for  t h i s  difference, the  calculation is 
quite similar t o  tha t  given i n  the  previous design. 

Designs Involving Untwisted Rotor Blades 

Untwisted rotor blades a r e  desirable because of simplicity i n  manu- 
facturing, and seem t o  be the  most pract ical  design f o r  cooled-turbine 
rotor blades. They can be ef f ic ien t ly  used i f  the  s t a to r  blades a re  
designed t o  f i t  them. I f  t he  blade is  not too long, it can be designed 
on the  basis  tha t  p = w,/w, is  a function of z only. The principal 
equation then takes the following form: 

Radial- and Mixed-Flow Lmpeller with A l l  Radial Blade Elements 

The speed of rotat ion of the rotor  can be increased by having a l l  
blade elements rad ia l .  With Fr = 0, the  integrabi l i ty  equation (37a) 
gives the  resu l t  t ha t  FZ/~,r i s  a function of z only. Thus, when 

equation (41) becomes 



NACA TN 2302 

The principal , ion i s  then 

With Fr = 0, use of the  three auxiliary equations t o  compute I?, i s  

unnecessary. 

Equation (110) i s  fur ther  simplified with equal t o  zero i f  
the i n l e t  flow i s  of the  free-vortex type or has no whirl. 

Simple Approximate Correction f o r  Blade Thickness 

I f  the  blade i s  not quite thin,  it i s  desirable t o  add a simple 
approximate correction factor  b i n  the definit ion of stream functions 
of equation (38) as  follows: 

( u l a  

( l l l b  ) 

A good conception of t h i s  thickness correction factor  can be 
obtained by analyzing the effect  of blade thickness on the specific mass 
flow along the  mean streamline (based on mass flow) i n  two-dimensional 
cascades. Yet unpublished calculations made f o r  a typical  subsonic tur -  
bine cascade and two supersonic compressor cascades show tha t  the 
specific mass flow pWZ on the mean streamline i s  about 4 and 10 per- 
cent higher than tha t  given by one-dimensional calculakions correspond- 
ing t o  the same reduction i n  channel area fo r  the  subsonic and super- 
sonic cascades, respectively. The influence of the  blade thickness 
a l so  extends a short distance upstream and downstream of the  blades. 
The shape of the mean streamline i s  a l so  seen t o  follow approximately 
the mean channel l i ne ,  (but with lower curvature). When t h i s  correc- 
t i on  factor  b i s  used in  equations (ill), a l l  the equations previously 
obtained should be modified by replacing p by p/b. 
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Equations of motion and energy fo r  unsteady, three-dimensional flow 
of a nonviscous f l u i d  a re  expressed i n  terms of gas quantit ies most con- 
venient f o r  analyzing flow in turbomachines. Entropy change due t o  
heat t ransfer  i n  a cooled turbine and due t o  strong shock wave i n  super- 
sonic flow can be taken into calculation. 

The general equations a r e  simplified according t o  the  standard 
assumption f o r  steady through-flow calculation i n  turbomachines having 
th in  blades of high sol idi ty .  The problem i s  completely defined i n  
the d i rec t  problem with blade shape given; whereas in  the  inverse or 
design problem, with the  inclusion of the  in tegrabi l i ty  condition f o r  
the  blade surface, e i ther  one flow variable or one re la t ion  among sever- 
a l  variables can be prescribed by the  designer. 

Through the  use of the  stream function, t he  continuity equation 
and the  equation of motion i n  the r ad ia l  direction a re  combined t o  form 
a principal equation f o r  the  present problem. The principal equation 
contains some terms tha t  a r e  e i ther  prescribed or t o  be determined by 
other equations defining the  problem. Two forms of the principal equa- 
t ion  a re  obtained f o r  the  two main groups of current compressor and 
turbine designs i n  which e i ther  t h e  variation of tangential  velocity 
or the  variation of the  r a t i o  of tangential  t o  ax ia l  velocity through- 
out the  blade region are  given. When the  tangential  velocity i s  given, 
the principal equation i s  e l l i p t i c  or hyperbolic depending on whether 
the meridional velocity i s  subsonic or supersonic. When a re la t ion  
between the  tangential  and axia l  velocity i s  given, the  principal 
equation becomes hyperbolic when the  re la t ive  velocity i s  supersonic. 

A general method of solution f o r  both the  e l l i p t i c  and the  hyper- 
bol ic  cases is  outlined. Specific applications of the theory t o  
several common types of compressor and turbine employing free-vortex, 
symmetrical-velocity-diagram, solid-rotation, nontwisted-blade, and 
radial-blade-element designs a re  discussed. A simple correction fac tor  
f o r  blade-thickness effect  i s  a lso suggested. 

Lewis Flight Propulsion Laboratory, 
National Advisory Committee f o r  Aeronautics, 

Cleveland, Ohio, October 25, 1950. 
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Figure 1. - Grid pattern. 
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Figure 2. - Boundary conditions and s t a t i on  notation. 

Figure 3. - Characterist ic curves, 




