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SUMMARY

A general steady through-flow theory of nonviscous fluid in turbo-
machines’ of arbitrary hub- and casing-wall shapes with subsonic or
supersonic veloclty is presented. The theory is applicable to both
direct and inverse problems and is derived primarily for use in turbo-
machines having thin blades of high solidity with a simple approximate
correction factor for blade-thickness effect. Through the use of the
stream function, the continuity equation and the equation of motion in
the radial direction are combined to form a principal equation for the
present problem. The principal equation contains some terms that are
either prescribed or to be determined by other equations defining the
problem. Two forms of the principal equation are obtained for the two
main groups of current compressor and turbine design in which the vari-
ation of tangential velocity and the variation of the ratio of tangen-
tial to axial velocity throughout the blade region are given. When the
tangential velocity is given, the principal equation is elliptic or
hyperbolic, depending on whether the meridional velocity is subsonic or
supersonic, respectively. When a relation between the tangential and
the axial velocity is given, however, the principal equation becomes
hyperbolic when the relative velocity is supersonic. A general method

© of solution for both the elliptic and the hyperbolic case is outlined.

Specific applications of the theory to several common types of com-
pressor and turbine employing free-vortex, symmetrical-velocity-diagram,
solid-rotation-type, nontwisted-blade, and radial-blade-element designs
are discussed. ‘ '

INTRODUCTION

Nith the increasing use of velocity diagrams other than free-
vortex type, low inlet hub-tip-radius ratios, and high velocity of flow,
the problem of three-dimensional flow in axial-flow turbomachines
becomes more and more important. This problem is treated by Traupel,
Meyer, and Marble (references 1 to 3) for incompressible fluid.
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Compressible flow is treated in reference 4, in which methods for
limiting solutions of zero and infinite-blade aspect ratio are obtained
and a step-by-step method, as well as a simpler method based on an
approximate knowledge of the shape of streamlines, is given for finite-~
blade aspect ratio. In reference 5, Reisner gives a method of blade
design for compressible flow with the shape of neither hub nor casing
wall specified in advance. The problem of supersonic flow in impellers
of a given casing and blade shape is currently being investigated by
Arthur W. Goldstein of the NACA Lewis laboratory.
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The analysis made at the NACA Lewis laboratory and presented
herein proposes a unified theory that is applicable to both direct and
inverse problems for both subsonic and supersonic flows in compressors
and turbines of arbitrary hub- and casing-wall shapes.

Equations of motion and energy for unsteady three-dimensional flow
of a nonviscous compressible fluid are expressed in terms of some con-
venient quantities for analyzing flow in turbomachines. Entropy changes
due to heat transfer in a cooled turbine and due to shock wave in
supersonic flow can easily be accommodated. The condition under which
irrotational-flow analysis is correct is also discussed.

The general equations are then simplified for steady through-flow
in turbomachines having thin blades of high solidity. It is shown
that, in the direct problem, Jjust enough equations exist to determine
all the variables; whereas in the inverse problem, after the inclusion .
of the integrability condition for the blade surface, either one vari-
able or a relation between several variables can be specified by the

designer.

i
ey

In the solution of the problem, the continuity equation and the
equation of motion in the radial direction are combined into a principal
equation through the use of the stream function. This equation
involves some terms that are either given or to be determined by other
equations defining the present problem. Two forms of the principal
equation are obtained for two main groups of designs in which the vari-
ation of tangential velocity and the variation of the ratio of tangen-
tial and axial velocities are prescribed by the designer. The crite-
rions of whether the principal equation is elliptic -or hyperbollc are
obtained for both groups.

A general method of solving the set of equations for both the
direct and the inverse problems is then described for turbomachines of
arbitrary hub- and casing-wall shapes and for elther an elliptic or
hyperbolic principal equation.
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The dimensionless forms of the principal and other equations for
some typical designs are given. A simple approximate correction for
blade thickness is also gilven.

SYMBOLS

The following symbols are used in this report:

a velocity of sound
mBi differentiation coefficients in equation (70) used to multi-
n=j ply function value at point Xj to give mt? derivative

at» x; using polynomial of nth degree

b,f,d,K, functions of r and z
L,M,N
C constant
cp,cv specific heat of gas at constant pressure and volume,
respectively
D differentiation with respect to time following motion of
Dt fluid particle
Diig mbh derivative of q
F blade force per unit mass of fluid
G Green's function
VZ
H total enthalpy per unit mass of fluid, h + -
h enthalpy per unit mass of fluid
Wwe u2 -
I = h+—§-—2-—H—w(Vur)
k thermal conductivity

1 characteristic curve

m order of derivative
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r,0,z

r,P,z
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degree of polynomial
pressure

heat added to fluid particle along péth of motion per unit
mass per unit time

dependent variable
gas constant

remainder term of mth derivative at point x4 obtained by
using polynomial of nth degree ‘

cylindrical coordinates relative to stator
cylindrical coordinates relative to rotor

entropy per unit mass

" temperature

time
velocity of blade at radius r

internal energy per unit mass with 0° absolute as base
temperature ‘ :

absolute fluid velocity
relative fluid velocity
independent variable

Wy
arc tan ﬁ;

grid spacing in r- and z-directions, respectively

ratio of specific heaﬁs

average value of 71

2057
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n;g independent variables

A slope of characteristic curve, %E
Wy

v = tan B = W;

v value of x Dbetween X, and x,

o) mass density

¥ o stream function

w angular velocity of.blade

Subscripts:

b trailing edge of guide vane

c © leading edge of rotor

a trailing edge of rotor

e leading edge of stator

h hub

i inlet

J any station

m meridional

o) refers to position where blade element is radial or ¥, =0

r,U,% radial, circumferential, and axial components

T tgtal state

t at tip or casing

Superscripts:

a,b, grid points

i,3,k,1

* dimensionless values



6 NACA TN 2302

GENERAT: BASIC EQUATIONS

The three-dimensional compressible flow of a nonviscous gas
through a turbomachine is governed by the following set of basic laws
of aerothermodynamics: From the principle of comnservation of matter,
the equation of continuity is

%% + y+(oW) =0 (1)
or
. D(loge o) _ <1a)

Dt

For a blade rotating at a constant angular speed 5, Newton's second
law of motion gives

——-wr+2wXW=—-—=-%—Vp (2)

The first law of thermodynamics may be written as

Du+p91-p———ll=Q | | - (3)

Dt Dt

where u 1is related to the gas temperature T by

Du DT
B = °v Bt ()

and Q 1is given by the following equation if only conduction is con-
sidered:
-1
Q=p 7(kyT) (5)

For the range of gas temperature and pressure encountered in ordinary
turbomachines, p, p, and T are accurately related by the following

equation of state

p = ReT | (6)

2057
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Although the flow of gas through the turbomachine is completely
defined by the preceding equations together with the known variations
of cy and k with temperature and the given boundary and initial
conditions, in reference 4 it is found more convenient to express the
state of the gas in terms of entropy, total enthalpy, or a quantity I
of the gas, in addition to its veloclty components. These quantities
are defined as follows:

Tds =du + p d(p’l) (7)
2
Vv
2 2
W U
I-h+—2——-—2—-H-u>(Vur) (9)
where
h=u+pp T (10)

When equations (4), (6), (7), (10), and the relation,
R=cp - cy = (r-1)ey

which follows from equations (4), (6), and (10), are used, there are
obtained

T ds = - %?’ (11)
T ds = - d(E) - & (11a)
-1 \p p '
s 1 g '
d(ﬁ) = 77 d(loge P) - 7& d(loge p) (12)
s 1
a(z) = +7 d(loge T) - d(loge o) - (12a)

and the equation of continuity can be written as

1 D(loge T) D

" vVt~ " e (®) O (13)
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From equations (9) and (11),
%vp Jr—]zivwz - wPr = VI - TVs
With this equation and the relation
DW _ BW ¢ @O)T =N 4 L@ - TxwxT)
Dt 3t T2

the equation of)motlon (2) can be written as

g-fg - WXEXT) + 200 = -VI + TVs

(14)

An alternate form of equation (14) that involves the vorticity of the

absolute motion is obtained as follows: Using the cylindrical
dinate system with the z-axis parallel to w yields

V=W+ox
UXV = UXW + VX (wxr)
but
vx (oxr) = (r-Vo - (o V)r + w(V r) - (V- w)
Hence,

VXV =VUXW + 20

cQor-

(15)

(15a)

This relation can also be seen from the following expressions of rela-
tive and absolute vorticity expressed in terms of cylindrical coor-
dinates r,®%z and 1r,0,z, which refer to the rotor and stator,

respectively: |
(VXT) . = %g@— ?ﬁi ]
Gy - o S

X7, = % a(ggr) ) % Wy

(16)

2057

s

]



(S

Lavo

N

NACA TN 2302 ‘ 9

_ 3V,  dv
0D, =t 5 " W
(OF).. = oV, oV,
Wh=35 & ¢ (17)

!: B(Vur) 1 BVI.
r

(UxV), = ST

and the relation

o(Vyr)  o(Wyr)

+ 2wr (18)
or or

When equation (15a) is used, the alternate form of equation (14) is

g%v - WX(UXV) = -VI + TVs (14a)

The use of equations (2), (9), and (11) yields

DI Ds  1dp , 1,= = DW = DU
E—TE—+B§E+E(W'V):{)+WE—U'-D-€
_mDs  10p = = DU
_Tﬁ-+p5€+w(mr-2wxw) - Ut
_mDs , 1op
"TDt+p5'E (19)
Hence, energy equation (5) can be written as
‘Ds _ DI 109p (20)

The preceding equations lead to several important general considerations.

If the blade rows are not placed too close together, the pressure
of gas at a fixed point relative to the blade cah be taken as constant
with respect to time. Consequently, according to equation (20), the
entropy and the quantity I of the gas stay constant along its rela-
tive streamlines for adiabatic flow. The constancy of I means that
the rate of change of total enthalpy along the streamline is equal to
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the angular speed of the blade multiplied by the rate of change of
angular momentum about the machine axis of the gas particle along its
streamline, which is the well-known Euler turbine equation usually
derived under less general conditions. 1In a cooled turbine where the
heat transfer may be large, the rate of change of s and I along
the streamline can be obtained by using equation (20). Again, for
steady relative flow, equation (14a) shows that the vanishing of abso-
lute vorticity requires both gradient I and gradient s to vanish
or the difference between VI and TVs +to vanish. When both gradient
I and gradient s are zero upstream of the blade row and the flow
is adiabatic, s is uniform in passing through the blade row; p is
then a function only of p (according to equation (12)), and conse-
quently, according to Kelvin's circulation theorem, the absolute vor-
ticity will remain zero in passing through the blade row and the flow
can then be treated on the basis of irrotational absolute flow.

For flow through a stationary blade row, equation (l4a) becomes

SV _ Fx(pd) = 7 + 198 (14p)

which agrees with similar relations previously obtained by Vazsonyl
(reference 6), and Hicks, Guenther, and Wasserman (reference 7). It
is interesting to see that, for relative flow in a rotating blade row,
- VX(VXV) Dvecomes WX(VXV) and H becomes I.

When it i1s assumed that the fluid enters the machine with uniform
H and s and zero vorticity, the adiabatic flow through the inlet
guide vanes can be treated on the basis of irrotational flow. When
the guide vanes impart a radial variation of the tangential velocity
of the fluid downstream of the vanes similar to that in a potential
vortex, the circulation is constant along the blade span and the fluid
maintains a uniform H and s and a zero vorticity going into the
following rotor blade row. If the rotor blade row is situated far
away from the inlet guide vanes, the fluild enters the rotor with a
uniform I in the circumferential direction as well as in the radial
direction, and the flow through the rotor blades can again be treated
on the basis of zero absolute vorticity. If the rotor is close to the
guide vanes, the fluid entering the rotor blades is circumferentially
nonuniform, which condition is balanced by the unsteady term of the rel-
ative velocity, and the flow through the rotor blades should theoreti-
cally be treated on the basis of unsteady flow with zero absolute
vorticity. When the guide vanes impart a radial variation of tangen-
tial velocity of the fluid downstream of the vanes different from that
in a free vortex, however, the circulation varies along the span of
the guide vanes, thereby shedding vortices from the trailing edge to

2057
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i the fluids downstream, and the fluld enters the following rotor blades
with a uniform s and H, a nonuniform I, and a nonzero value of
absolute vorticity. Conseguently, the flow through the rotor blade -
row cannot be treated on the basis of zero absolute vorticity.

From the preceding discussion, the choice of H or I and s as
the basic thermodynamic variables of the gas is apparent. Compressor
and turbine rotors are usually designed to add or subtract the same
amount of energy radially to or from the gas; hence, H is usually
radially constant throughout the machine. When the circumferential
velocity of gas upstream of the blade row is zero or varies inversely
with radius, I is then radially constant throughout the machine when
the heat transfer is zero or is uniform radially. These facts will be
utilized in the following developments.

The continuity equation (lS)\can also be put into a form contain-
ing H or I Dy use of a constant value of y, that is, 71 for the

range of temperatures involved in the process. By using Vv, equation
(12a) can be written as

d(log, p) = d[loge (‘I‘ﬁ e- ﬁ)j] (21)

Integrating from the inlet total state ylelds

L 2+
* p p \7L oas® w7 ASK
p = - T e = h e
Pp, 4 T,i
1 1
¥-1 -1
2 2 2 2
v W wr
H -5 Ak I-5+—3 AsF
I .- e = e " (22)
H; Hy

% _‘* : Ak
%h e8] Lo\ e W =0 (23)
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The solution of the three-dimensional-flow problem thus consists
of the simultaneous solution of equations (1) or (23), (14), and (20).

GENERAT. THROUGH-FLOW THEORY

Because of the enormous mathematical difficulty in solving the
preceding set of general equations, the essential feature of the three-
dimensional flow in turbomachines will be investigated with the follow-
ing two simplifying conditions: (1) The blade rows will be assumed to
be placed so far apart that the relative flow through any blade row is
steady. Under this condition, the equations of continuity, motion,
and energy in the scalar forms are:

Continuity equation, from equation (1),

1 3eWyr) g BeWy) BAeH,)

r Or r oY oz (24)
or, from equation (23),
3 e r) L 3T Ly ) 3T e )
= r’ .3 LA Z_-0 (24a)
T or T o oz i
The fhree equations of motion, from equations (14),
W, | d(Vyr) oW (aw oW ) 3T 3
u u T T Z s
°?[ R 'NP}J’WZE'F:’E}'J'TB? (25)
Wp [3(Vyr) oWy <£ W, awu) 13, T (26)
T 3r 39 | "2\r3® "3z /7 "rdp T
oW, BWZ> (l oW, BWu> Bi Js .
'Wr<§“3r+wu T® %/ %"'m (27)
and the energy equation, from equation (20),
ds Wy ds Js dr Wy a1 oI )
Q=T(Wr§£+?5?p+wzﬁ)=wr§;+?5?p+wzgz (28)

anea
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(2) The blade is so thin and the number of blades is so large or
the pitch is so small compared with the blade chord that the terms con-
taining the circumferential variation of the velocity components in
equations (24) to (28) are much smaller than other terms in the same
equations and can therefore be neglected. The circumferential vari-
ation of pressure or enthalpy is, however, preserved in equation (26)
by the introduction of a blade force F which may be considered &8s
either due to the pressure exerted by'the blade surface on the cir-
cumferentially thin gas stream or as a circumferentially averaged blade
force on the gas stream between two blades. This simplification is
first introduced by Lorenz (reference 8) in order to follow the flow
along a given surface. The physical concept involved is clarified by
Stodola (reference 9). Ruden (reference 10) further proves, for incom-
pressible flow, that the solution so obtained will glve an average
value in the circumferential direction for a finite number of blades,
provided that the departure from the average value is small. For turbo-
machines having relatively thin blades of moderately high solidity,
this solution can indeed be taken as that for a relative stream sur-
face, which is about midway (based on mass flow) between two blades.
Because the circumferential variation of pressure and density is con-
sidered in equation (26), it is better to refer.to the present theory
as a "through-flow" theory (following Ruden), or "large-number-of-thin-
blades" theory, instead of "axially symmetric" or "infinite-number-of-
blades" theory. (Differentiating velocity components obtained in this
theory and combining them according to equation (16) does not give the
true vorticity.) ,

With this second condition, equations (24) to (28) become

1 o(pW,r) B(DW ) _

r or oz (29)
or
IS I
% é% p*T-le-08 Wper) + é% ¥ 7108 Wy, /=0 (29a)
W, awz> At Wy 3(Vyr) o 3
2\sz xRt e tIdthr
vy o(Vy,

RN e, o
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D(V r) oV, r) o(V. r)
Dltl = W, 81:; + Wy, a: = Fr (31)

(aw awz) dT Wy 3(vyr) 3s
S o) sty s T 3z * ¥z

3E , Vu O(Vur) 3

=—§Z— T—+TF+F (32)

and
Q:Tgt—s= (WI'B__+WZ%§> (33)

or
Q=_g%=wr%1+wzg§= (333),

The circumferential enthalpy or pressure gradient in equation (31)
is replaced by the term F,. The corresponding effects in the other two
directions are represented by Fp and F, .in equations (30) and (32),
respectively. The vector F is perpendicular to W or related to the
shape of the blade or flow surface by the following equations:

FrWp + FyWy + Foly = 0 (34)

or
Fp dr + Fur dp+ Fy dz = O (342)

Only six independent equations exist in the preceding equations: one
continuity relation, three equations of motion, one energy equation, and
one orthogonality relation between F and W. For example, equation
(33a) can be derived from the equations of motion, equation of energy
(33), and equation (34). (See reference 4.)

DIRECT AND INVERSE PROBLEMS

In a direct problem, the blade surface or flow surface is considered

to be given by the equation

s(r,0,z) = C , (35)

2057
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and two relations among the force components are obtained by relating
them to the partial derivatives of the function S:

r _ r
f—u_ls (36a)
r o0
zZ _ Z
F, IS8 (36b)
r 06

Equations (29) to (34) and (36) therefore provide eight independent rela-
tions that completely define the direct problem involving the eight pri-
mary variables Wy, Wy, Wy, Fp; Fy, Fy, s, and I or H. (The
heat transfer Q %between the gas and the blade is only important in

the case of cooled turbine blades and is considered to be given by cool-
ing considerations.)

In the inverse problem, the blade surface is to be determined,
which means that the two relations among the force components as given
by equations (36) are not available. This unavailability does not mean,
however, that the designer has freedom to prescribe the variation of
two variables or two conditions among the, variables throughout the blade
region because, in order that the differential equation (34a) will lead
to an integral blade or flow surface of the form of equation (35), the
following necessary (and sufficient) condition of integrability must
be satisfied (reference 11):

FYXF = 0 | (37)

which, for the present case, reduces to
o (Fgz 3 [Fr _ ,
3t (F——— =5 \Far (57a)

This condition of integrability was first pointed out by Bauersfeld as
early as 1905 (reference 12), but is neglected in many recent investi-
gations. 1In effect, it gives a restriction to the velocity variation
that a designer can specify through the force terms in the motion
equations (30) to (32).

Whereas in the direct problems two conditions are obtainable from
the given surface, in the inverse problem one condition on the surfaqe
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must be satisfied. Hence, the designer can specify, in the inverse
problem, only one relatlion throughout the blade region, which can be a
variation of one thermodynamic quantity of gas (Vy, Vz, p, or h), one
relation on the blade surface (untwisted or radial blade element), or
one relation among the gas properties (comstant Mach number), and so
forth. The variation prescribed should, of course, be reasonable so
that the solution exists.

2057

After this one relation is prescribed by the designer, the solu-
tion of the inverse problem is quite similar to the direct problem.
Among all the equations to be satisfied, equatioms (29) to (34) are
common to both problems. In addition to these six equations, equa-
tions (36) are available in the direct problem and equation (37a) and
the one relation prescribed by the designer to be satisfied are avail-
able in inverse problem. If, in.the design, a condition on the Dblade
surface is specified such as the blade design in which all blade ele-
ments are radial, F, is prescribed as zero by the designer, and the
integrability condition equation (37a) leads to a simple relation be-
tween F,, and F,. These same two relations are also directly given
by equations (36a) and (36b), respectively, in the direct problem, and
consequently the solution for the two problems is exactly the same.

In other cases, however, the solution of the two problems is a little

different.

¢

PRINCIPAL EQUATION FOR TWO MAIN GROUPS OF DESIGN

In this and the following sections, a general method of solution
for both the direct and the inverse problems will be described. From
the preceding equations the through-flow considered herein is essen-
tially described by the equation of continuity (29) and the equation
of motion either in the radial direction (equation (30)), or in the
axial direction (equation (32)). Except in the case of low-speed
centrifugal impellers, it is always advantageous to use equation (30),
because Fy 1is either zero in high-speed centrifugal or mixed-flow
impellers or relatively small in axial-flow bladings. Also, either
dH/dr or JIfdr is usually equal to zero, and O(Vyr)/dr is often
given. This choice is used hereinafter. If it is desirable to use
equation (32), equations can be developed in a similar manner..

The combination of equations (29) and (30) is carried out by the
use of a stream function, which is defined as follows and satisfies the

continuity equation (29):
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. 1
3 7-1_-As*
5% = rp*Wy = rh¥ ' TTe™ W, (38a)
1
9 ¥-I, -As*
R S AL Wy (38v)

1
T Tgmas® Mg _ oy (: 1
r

Y&

1 ah ds*
- 5.2 > T 57
> (39)

X* 3 1 dh . os” \ oy
ThtT e '85“3;"+<'a26‘ 5“)5‘

The succeeding development is a little different for the two main
groups of designs to be considered. In the first group, the variation
of the angular momentum of the gas about the axis of rotation is pre-
scribed by the designer; that is,

Vyr = £1(r,2) (40)

is given. Among this group are the free-vortex type in which f; is

Just a function of 2z, +the more general solid-body-rotation type, the
symmetrical-velocity-diagram type, and others. In the second group of
designs, the following relation between tangential and axial ve1001ty

.is prescribed by the designer:

M= tan B = = folr,2) 4 (41)

b4

S

Among this group are the common blade design for high-speed centrifugal-
and mixed-flow impellers in which all blade elements are radial with

B =r fz(2z), the less general design with p = tan B = f4(z), which
gives a practically untwisted blade and is most suitable for cooled tur-
bine rotor, and others. The principal equation will now be obtained in
a form most convenient for these two main groups of designs.



18 NACA TN 2302

Group of Designs in which Equation (40) is Specified

From equations (9) and (38),

| 2 2 2 2
: W 2.4 = *
T T [(gg} - (gf.) ] (42)

Differentiating with respect to r and 2z yields

oh a2 oI oWy, 2 2 AN
§;=;§j@§[§*"ua‘r+“'wm (°;+5r—>'
__L Ak 5 >
-Lx 7-1 %y _ 0%y
= o (ﬁ dr? Ve or 52}}
0 (43)
dh _ _ a? oL _ BW W 2 dg*
3z ey 2|oz uy " dz
-1*?%'1;&* 3y 3%y
rh (ﬁz St oz - "r Bzz>

~/
Sybstituting equation (43) into equation (39) and adding yield

1
=T _Ag¥/OW, OW 32
(az—sz)rh*Y e s (552 - Er. = (aZ—Wrz) 8;—‘% - ZWI'WZ m +

2 2 OW. *\ y
(a2-W,2) %;% + <L %; %— + Wy 5—3 - or + & g§7> 3%'+
dz
=0 (44)

Substituting equation (44) into equation (30) and dividing by a2 yield
the following principal equation:

H

2057
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2\ .2 2 : W2\ \2
( B} H£—>A§-i il 5%—%2 + (1 - —E->'§-ﬂi+ L g% £ N g% =0 (45)

a2 / dr a2 aZ / dz2
where
oW *
L1=-%+;1§[_§% TR
2_yW.2 o(V..r) )
a”-Wp 31 Wy u s
W2 (‘E ?T*FNT:}‘]
1 oI aW‘u_ zbs*
M =.;‘a'.<-§+wuaz—+ 2 32)

' With the variation of Vy, or W, prescribed by the designer, the
meridional velocity components are determined by the principal equa-
tion (45). The other equations are used to determine various terms
involved in the coefficients Ly and Ny. From the coefficients of
the second derivatives, the principal equation (45) is hyperbolic when

the meridional velocity Wy =4,Wr2 + WZ2 is greater than the speed of

sound, and elliptic when the meridional velocity is less than the speed
of sound. For the hyperbolic case, the method of characteristics can
be used and will be discussed later. For the elliptic case, it is con-
venient to put the principal equation in a slightly different form, as
follows: From equation (38),

oW az | B(lo o] ) OW. 2 o(1o p"‘ ’

(46)

Substituting equation (46) into equation (30) results in

2%y 13y . 3% |dy O(loge p*) 3y d(loge o*)
EratyiTla e + S|

(rp*)Z'[Hg o(Vyr) - 31 ds . F%} Z 0 (47)

g& r or > 7 T o F
- _
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In this form, all terms except the first three are taken as constant
during the successive improvement of V values throughout the whole
region in the numerical solution so that the coefficients in the differ-
ence equations of VY's will not vary during successive cycles.

2057

Equation (45) or (47) is then the principal equation for this group
of designs to be used for a meridional velocity greater or less than
the velocity of sound, respectively. The process involved in solving
this principal equation, together with other equatidns in the inverse
and direct problems, is as follows:

In the inverse problem, V, or W, is given by equation (40).
Equation (31) is first used to compute F,. The energy equation (33)
is then used to determine the variation of s along the streamline.
The variation of I along the streamline is obtained from equa-
tion (33a). Equation (32) is used to compute F, and F, 1is then

obtained by integrating equation (36a) along a constant r line:

b4

/F
Fp = Fyr g%(§§;> at (48)
I

vhere F,. =0 at =z = z,. The solution is then carried downstream by
equation (45) in the hyperbolic case, whereas successive sets of
improved values of V¥ are obtained throughout the region in the ellip-
tic case. The quantities Wy and Wz are then computed from equa-

tion (38).

In the direct problem, equations (36a) and (36b) are given. It is
most convenient to obtain W, from equation (34) as follows:

F F
Wy = - <§§ Wp + Fﬁ w?> (49)

The quantity F, is then computed from equation (31) and F, and F.
are obtained from equations (36). Equation (33) is used to determine
the variation of s along the streamline and equation (32) to deter-~
mine the variation of I or H. Equation (30) is then used to solve

for V¥ as before.
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Group of Designs in which Equation (41) is Specified

For this group of designs, it is necessary to combine W,; into
W, according to equation (41) as follows: Substituting equation (41)
into equation (30) yields

OW, oW
(l+u2) Z'azr+“(r g“>WZ+2a)u+ﬁl—(—§%+Tg—i+F ) 0 (50)
Z

Instead of equation (42),

2o Pafun@f @f] e

Differentiating with respect to r and z, combining with equa-
tion (39), and substituting into equation (50) give the following form
of the principal equation:

W,.2\52
(1+p )(]_ - _E_>§__‘_V. - 2(1+u 2) WeWz 3 \]rz +(l- Wu Wy, )3211,

a? /dre az ad dz?

h=1IH+

L2%+Nzg-i-f-=0 (52)

where

2 2 2 2
8’ -W u<ﬁ-+ %%) 4 8 W (- %% + T gﬁ + Fp + 20W )

g L3k 131 du
2=3z " 2oz 2 " Sz

Equation (52) becomes hyperbolic¢ when the relative velocity is super-
sonic, and elliptic when the relative velocity is subsonic. For sub-
sonie velocity, a more convenient form of this equation for computation
is obtained by substituting equation (46) into (49):
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2.0y (1 du\ov | %y 1 2.0¢ dp . O Bp]
(lﬂ{)'-a'(;- 55)6?*5;'3[(1’““)5;5;*3232*
| rzo*z oI Js R | %
Zpua)r;:?'e + —&l}— (— e + T - + Fr.):O (53) N
or ‘ ‘

The process involved in solving the principal equation simultane-
ously with other equations in the direct and inverse problems is essen-
tially the same as that given for the previous group of designs. The
only difference is that W; 1is now computed from equation (41) and, in
the elliptic case, is to be reevaluated after successive improvements
of VY. 1In the design where radial blade elements are employed, the com-
putation is considerably shortened with F, equal to zero, which shows
the advantage of using the cylindrical coordinate system for this prob-
lem. (In the customary method employing & coordinate system along the
streamline and normal to it, the blade force along the normal is not
zero.) In this design, the process for the direct and the inverse
problem is exactly the same. ‘ '

The use of W = f£z(z) in the design will lead to a blade close to
the untwisted type if the hub-tip-radius ratio is not too small. 1In
the direct problem with such a blade given, this relation may be used
or the flow may be more accurately obtained by using the equations
given for the first group.

The different character of the principal equation for the two
groups of designs considered is interesting.. The character of the prin-
cipal equation depends on the variation prescribed in the design or
considered as given in the direct problem. This fact may be utilized
to solve some flow problems in which the flow in some region is slight-
ly supersonic. When a tangential-velocity variation is given, the
equation for the whole region may be elliptic. .

GENERAL METHOD OF SOLVING PRINCIPAL EQUATION

Elliptic Case

For convenience of discussion, the fundamental equation (47) or
(53) of the two groups of designs can be written in the following gen-
eral fcrm: ' ‘
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R R -3 B P BT

The equation is nonlinear even for incompressible flow. The equa-
tion may be more conveniently rewritten in a linear form as

Py Koy . %y _ |
J S rstyiT N ‘ (55)
where
1/ d¥dp . ) rlp¥?
et R )t (56)

5?

and is evaluated from an approximate solution at the start of the cal-
culation and from the ¢ and p values obtained in the previous cycle
during the calculation. For simple boundary shapes and simple func~
tions of J and K, it may be possible to find a Green's function
G(y,2z,n,¢) with its proper properties so that the solution of the prob-
lem can be written in the following form:

¥(r,z) = / G(r,z,n,8) N(n,t) dn at (57)

For example, for flow with the design in which the tangential velocity
is prescribed, the principal equation takes the form

>2 dy . d2
or * oz

or

=3

|
|

€
HiF

=N (58)

[xM]
[AV]

If the boundary walls are cylindrical surfaces, the total-enthalpy and
entropy are uniform, and the tangential and the radial velocity both
vanish at the inlet and the exit, the radial variation of ¥ at the
inlet and the exit are the same and can be subtracted from V, which
results in

(59)

B(¥-¥3) 1 d(v-vy)  P(¥-¥y)
[EOS NI o - + =
drl r -or dz2
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which can be written as

32 (v—wi 3 /¥¥5\ a2 (V1) § -
oz r_>+$( ‘2)+azz<r)=? (60)

r

Y-¥4 ;
The quantity (—;rl is zero on the boundary and the corresponding
Green's function is available from a similar equation in reference 3.
When the Green's function of reference 3 is used, the solution for

is
v = ‘l’j_ + r f/é(r;ZﬂbE) % (T]:g) dn af ' '(61)

If G is tabulated at several values of r, V¥-y; can be convenlently
cbtained by a numerical double integration process on a punch-card
machine. For curved boundary walls in the meridional plane, it is
necessary, in this method, to use the technique of conformal trans-
formation to render the given boundary shape into a rectangular one.
Inasmuch as this process involves a numerical solution of the Laplace
equation with the given boundary shape, it is found better to solve
directly the given equation (55) with the given shape by the numerical
method. Furthermore, this solution will be the only choice in the
general case where J and K are not equal to 1 or the boundary con-
dition is more general, which mskes the task of obtaining the proper
Green's function a very difficult one, if not impossible.

In order to solve directly the given equation (55), a general
numerical differentiation formula for first and second derivatives with
function value given at unequally spaced grid points using second- and
higher-order polynomial representation is required to give conveniently
and accurately the finite-difference expressions at the grid point near
‘the curved boundary, which is done as follows: When the value of any
quantity q is known corresponding to a number of unequally spaced
values of the independent variable x, denoted by Xys X5 o« - - XEp,
the variation of q with respect to x is most conveniently expressed
by a Lagrangian polynomial of the nth degree:

n I (x)  gJ 0

q(x) = gé;; %% II£+1(X57 + R (62)

2057
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where
Ty (x) = (k%) (x-xp) . .+ (x-xy) (63)
Laa(xs) = (uymxo) (xg=x0) - o (xymxgip) (xgmxgyg) - - (x5oxy)  (64)
and
O - TIns+1(x) o(5+1) ()  (e5)

n 3n+l§l

where Vv lies between x5 and =x,. The successive derivatives of q
with respect to x at any point x can be expressed as (reference 13)

n i n
) J IT X

qu = E II'q =) n+l§ ) e + %R (68)
3=0 | LNy XXy g ¥ %k

kA
n J T .q(x) =B - _n
2 : q n+l 1 1 2
D°q = 2! - - + 7R (87)
,j—zo: TIheilxs) %y g;c; X‘szz:‘k—;i X .

k] 143

and so forth, with

iR = %{%—ﬁ a(m+1) () + %}%(if—)— o(1+2) (v) %XB . (e8)
1213 = %'—:%‘}?- q(n+l)(v) + 2 %—%‘_%—) q(n+2)(v) %‘; T . (69)

The summation operation is very easily performed when x 1is a grid
point, because most of the products vanish. At these points, it is
convenient to write '

(PPa)smy = 3 085 of 4 T (70)
J=0

The differentiation coefficients B and the coefficients of the deriv-
ative in the first or second remainder term have been explicitly

expressed in reference 13 in terms of the spacings between the succes-
sive grid points for general nonuniform spacing throughout and for the
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special case near a tapered-or curved boundary where only the first
or last spacing is different from the others, using polynomials of
second, third, and fourth order. For the special case, these coef-
ficients have also been computed for difference ratios from 0.1 to
1.29 in intervals of 0.01 of the distance between the boundary and
the nearest point and the other spacings and are given in refer-
ence 13. For spacing lying between tabulated intervals, the inter-
polation coefficients given in reference 14 can be used to obtain
the required values of B.

In the present f£luid-flow problems, it is necessary to cover a
large region in order to reach the boundary condition that is always
given at stations far upstream and downstream of the blade row. In
order to reduce the labor of computation, it is desirable to determine
if the number of grid points. required for a given accuracy can be
reduced by using an order of polynomial higher than the customary
second order. A study of the remainder terms (reference 13) and actual
experience in the present problems show that, in most cases, the use
of fourth-order polynomial will reduce the necessary number of grid
points to less than one-quarter of that required by the second-order
polynomial. In setting up the grid pattern, it is always desirable
to map the flow region in such a manner that the distance between the
boundary and a point next to it is not too smell compared with the
other distances, because the differentiation coefficient becomes very
sensitive to the small ratio. If the small ratio cannot be avoided,
it is best not to include these points in the calculation.

When the grid pattern and the order of polynomial representation
have been selected, the coefficients B at each point can be obtained
- from the table given in reference 13. Then the differential equa-
tion (55) at any grid point whose V¥ value is 1 (fig 1) is replaced
by the following algebraic equation:

Z(Jl 2 1 K lBl)ﬂrJ +§: ZBk‘lf i 0 , (71)

where Wj and wk denote the values of . ¥ along constant z and
constant r lines, respectively.

The values of V¥ along the hub and the casing walls can be arbi-
trarily chosen, with the difference proportional to the mass flow
between them. At the first station on the left 1-1 and at the last
station 2-2 on the right (fig. 2), however, the V¥ values are unknown.
The boundary condition at stations 1-1 and 2-2 is, usually, that the

cn?.
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flow is parallel to the bounding walls. When the hub and casing walls
are horizontal at the inlet and exit of the machine and the stations
chosen are far enough out, the value VP required at a point By
distance away from the V& point is also equal to V&. Whether or not
the inlet and the exlit stations are chosen far enough out will -be
indicated by the variation of +V¥'s along these stations obtained in
the solution.

After equation (71) is obtained at every interior grid point, a
number of methods can be used to solve the set of simultaneous alge-
braic equations. For hand computation, the relaxation method developed
by Southwell has proved to be superior to others for this type of
equation (references 12 and 15 to 18). If the fourth-order polynomial
representation is decided, the calculation can be carried out in two
steps by using only the five main coefficients in early stages and
then the residuals are recomputed and relaxed by all nine coefficients
(reference 13).

If a high-speed, large-scale, digital computing machine is avail-
able, the set of equations can be solved either by an indirect or
direct method. In the indirect method, the straight iterative method of
Liebmann is used, wherein V1 is solved at each point from its sur-
rounding values according to equation (71) and the process is repeated
until the change at any point is no longer significant. This method
is simplest to set up, but is slowest. A better method is to set the
machine to perform a simple relaxation process by computing the resid-
ual at each point and relaxing according to a fixed relation with
respect to the amount of residual Jjust found.

A much quicker machine method, especially when a number of solu-
tions with, for example, different inlet Mach numbers are to be found
with a given geometrical shape of the problem, is the direct method
that solves the set of simultaneous equations by a matrix process.

The details of a matrix method; which fully utilizes the great number
of zero elements of the original coefficient matrix, is given in refer-
ence 13. )

Hyperbolic Case
In the hyperbolic case, the problem consists in solving V¥ from

the following principal equation, written in a general form for the
two groups of designs:
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d%y d%y S8y dy O
J—---2-+2Ka ar+Lar2+Ma-é-+1\15;=o (72)

oz

with the initial condition that ¢ and its normal derlvatlve are given
on a curve that is not a characteristic line.

From equation (72), the equation of the characteristic line is

J (%)Z - 2K (%) +L=0 (73)

The slopes of the characteristic lines in the r,z-plane are

}\] = <—"d ) = —J - '—J K*-JL - ( 4:8.)
dr K 1 2_

When the point on the r,z-plane moves along the characteristic
curve 1, corresponding to a small change dz in =z, the change in
r is dr = kl dz. Because of these two small changes, the change of

any quantity aq 1is

dq=%%dz=g%dz+%37\ldz (75)
or
da _ 9g dq
@ mtMa (76)
Hence, along I2F
a (av) D (3¢ 3 f[ov) _ d%y 3%y
EE@zL)“é'z‘(é'z‘)”lE(&)‘a‘;é‘”m v (77)
a (v _ d (d d (v | %y d2y
?ﬁ(é_r>_§i(§r')+>\l§f<gf>_az ot M5z (78)

1ren?
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From equatio ) and (78),‘
oy _ a (v 3%y
w-a(&)'ﬁg;z (79)
By 4 (v a (¥ 2 3%y '
g;i-a'z'(ai)-ﬁa;(r)”l ] - (80)

Substituting equations (79) and (80) into equation (72) yields
I 37 (gi") + (2K-0N) o= (%) + (N -2K>\1+L)5—I-% +M S+ NS =0 (81)

By virtue of equations (74a) and (74b), equation (81) becomes

d (oY d (oY) MOy K Noy _
a;<52>+7\2'a—£(6}->+3$+36—£—0 (82)

Similarly, along the second characteristic line 1y,
a a\y) d (g\g) Moy XN oy _
dz (52 TME W) TR TIEC0 (83)

Starting from two points a and b a short distance apart on the curve
where the initial condition is given, equations (74a) and (74b) give

the tangent to the characteristic curves at these two points and equa-
tions (82) and (83) give the new value of OV/dz and OY/dr at the
point of intersection c¢ of the two tangent lines. The auxiliary
equations corresponding to the particular problem are then used to
determine other pertinent quantities at the point c¢. This process is
to be carried step by step downstream. The method is the same as for
ordinary two-dimensional rotational flow. (For details of calculation,
see reference 19.) )

APPLICATION TO TYPICAI DESIGNS

The following sections include a brief discussion of the manner
in which the fundamental and auxiliary equations reduce to particular
forms for several typical designs. In actual computations, it is
always desirable to render all quantities dimensionless. A convenient
system is to divide r or z, W or V, p, T, s, H, or I,
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v 2 T2 2 2
F, ¥, and o by ry, Ui, pT,i’ Ug /R, R, Uy, Ug /rt, Ty Ut’
and Ut/ft, respectively. These dimensionless values are used in
the following equations.

Free-Vortex Design

In the free-vortex design, the variation of V,r is prescribed as

a function of 2z only. With a free-vortex flow, the total enthalpy at
any point 2z 1s simply related to the inlet value by

ty
x ok J _Q *
H’j—Hi = f; E_;Z— dt + [(Vﬁr*)j—(v’ar*):;l (84:)

where (Vtr*)i is a constant. If Hi is uniform with respect to r

and dQ/dr is zero, OH/Or will be zero everywhere; but OH/dz is not
equal to zero in the rotor, whereas BI/BZ is zero and it is there-
fore convenient to use the system of equations involving I. The
principal eduation is then

AR o NSl Vol Gl Wi il & S - U
T 5 T 5% ¥ (5% 5F T 2% a;*) T = A
The auxiliary equatlions are
* B(V*rgk
Firt = a‘l‘* u | (86)
I‘*p* or dr*
oW AN a1 o
o = - r* dz* ¥ pHERE ¥
or*2  r¥ar¥ 372 o \lar* or*  az* 3t :
7* ¥ :
* S % bo) 2
F¥ = F 2 (2 )4
P fz*s e (7 - (ee)
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2
e (35
2 _| I¥ (0¥ Wy \or¥ Bz* -2ns® (89)
S I T *2 %2 ©
i i i ar H

The computation can be started with an assumed value of ¥ con-
forming to the boundary shapes. In the early stage, it 1s advantageous
to omit equations (87) and (88) and to use the following approximate
formula of Fy, which is obtained by solving the two equations by

assuming BW/Br constant and neglecting small terms: °

7%

| (Vi)
Fy = ris -—S-Z—;-— é* Vi at (90)
0

Density can be obtained from the V¥ derivatives as follows: First,
2

T-1
equation (89) is written as 0o = [l - m/d] , where

.22
T-1
%2
%2 2As I* m*Zr*Z Wu
o= p ‘e H*’+ — S
1 i 1
_rl
5 w2\ 71
dr¥ dz i T* 2H§ Zﬂf

Second, either ¢ is computed for a number of values of ¢ and a curve
is plotted, or ¢ 1is obtained for a number of values of @ through
iteration of the preceding equation and a table obtained for equal
intervals in ®. In either case, after the  derivatives are obtain-
ed, ® 1is computed and o0 or p 1is then obtained from either the
curve or the table.

Design Based on Symmetrical Velocity Diagram at All Radii
Generalized for compressible flow, the symmetrical velocity dia-

gram at all radii is defined as follows (reference 4): (See fig. 2 for
station notation.)
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Ca(VE* )y . a(VEe¥) ok

ar: (91)
* * b
dry dryp

If it is desirable to maintain a constant total state along the radius,
the variation of V,r with 2z is such that the same amount of work 1is

done along all streamlines:

* % * ¥ * '
(Vur )j - (Vg )y = f(zj) (92)
Hence,
* K *
3(VA*); (V¥ (63)
orf Br§
Combining equations (91) and (93) yields
*_ %
olvur™)y _ _x (94)
o °
5
Hence,
%2 * ¥ * K
* % Ty (Vur )e,t‘(vﬁr )b,t
(Vur )b = Ta T 2 | (95)
*2 * k- * *
* ¥ b (Vyr )e,t'(vﬁ? )b,t .
(Vor g = — + . (96)
2 2 :
* % * % % % * %
(V') 5 = (Vyr' )y + l:(Vur it - (T )b,t] (97)
In this design, the quantity OI/Or is not zero in the rotor,
but with constant work input, BH/Br is zero. Using the system of
equations involving H is therefore convenient:
*
M N L@ﬁ@ﬁ‘_ﬁ_ﬁ@e_) .
dr¥e X op dz¥2 p*‘ dar* arf  dz* oF
* * ¥
P T AT ) ok ok --—yas* =0 (98)
dp*  [x* or* r AT
or ,
. [_ oy* 2%) o Aur) (99)
u r*p¥ dz*  dr* or*  az¥
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¥
oy
g AV, k¥
FEo _E (V r* - T*-aé* - m*'az* o(Vyr”) _ i BW*
- * az 5;; é}lﬁ ar* r-x-zp*z aZ*
dr¥
A L. W (oo
lar*e  r*ar*  37*2 o \orf ar* ozt o
Z * |
* * ¥ 0 F
po [EGHe
2
2]5-1
Coanr @028
k2 o 1B V)™ & oz, o-208" (102)
Hi  or'om) 21'*20*23’;

* With only the additional complication that the value of V, 1in each

cycle is determined from a knowledge of the streamline in the previous
cycle, the solution of this problem is obtained in the same manner as
in the previous case. For a multistage compressor, it is important to
account for the effect of loss on density rise by including the e~
factor in equation (102). The increase of entropy can be estimated by
a knowledge of the polytropic efficiency (reference 4).

A nonvortex-type veloclty diagram quite similar to the pre-
ceding one is the solid-body rotation design that has a tangential
velocity varying linearly with radius in front of the rotor; that is,

*_ % %2

(Var )y = Cry, | (103)
?g__.)_b 2Cr~: (104)
org

If total enthalpy is to be constant along the radius through the rotor,
equations (92) and (93) also apply. Hence,

* % * * % * % ‘
(Var ) g = Crpl + [(Vur )it - (W )b,t:] (105)
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and
VA = on?? [(Vak ¥ (vRX
uf Je = Uy t u¥ )e,t = Ayt )b,t (106)

Comparison of these equations with those in the previous design is
interesting. In the previous design the change of whirl through the
rotor is distributed evenly in the whirl in front of and behind the
rotor, whereas in the present design it is completely put into the
whirl behind the rotor. Except for this difference, the calculation is
quite similar to that given in the previous design.

Designs Involving Untwisted Rotor Blades

Untwisted rotor blades are desirable because of simplicity in manu-
facturing, and seem to be the most practical design for cooled-turbine
rotor blades. They can be efficlently used 1f the stator blades are
designed to fit them. If the blade is not too long, it can be designed
on the basis that p = Wu/wz is a function of 2z only. The principal

equation then takes the following form:

* 2. ¥ ¥ , %
, % _;L_[(l+u2)a¢* 3t , ov* ¥ ] )

2. 0% 1 dy
1 A, AU 4 A -
(1eu )Bf*z ar* dg*e  of ar* o dz* aF
‘ *2 _*2 * *
2uo*r¥ o + rawi (Ff - Zi* 7 -gi;) =0 (107)
¥ :

Radial- and Mixed-Flow Tmpeller with All Radial Blade Elements

. The speed of rotation of the rotor can be.increased by having all
blade elements radial. With F, = O, the integrability equation (372)

gives the result that Fz/Fur is a function of z only. Thus, when

*

F .

2 = r* £5(2¥) ‘ (108)
*

equation (41) becomes
* X .
W. ¥ .
L=ton = —2 = - —= = - * fs(z*) (109)
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The principal ion is then

2 1+(r* £2)2 2 %
[l+(r* :t‘?))Z]a i - + 5)” 3¢ 4 OV
dr¥e r¥ oaF ¥

1 |gane o 2020 38t | ¥ ap"j J O (@_Ij'i o _a__s_"i) ;
*‘El+r I3 )Br* or* * dz* 3z 2uTxTp éﬂt dr¥ k) 0
or* '

pe]

(110)

With F,. = 0, use of the three auxiliary equations to compute F,. is

unnecessary.

Equation (110) is further simplified with OI/dr equal to zero if
the inlet flow is of the free-vortex type or has no whirl.

Simple Approximate Correction for Blade Thickness
If the blade is not quite thiﬁ, it is desirable to add a simple

approximate correction factor b 1in the definition of stream functions
of equation (38) as follows:

1 .
N _ % ¥7-1_-As*
b5:=7r10 W, =rh e W, (111a)
S ST ot
Vo Hrr %xT-1_-As
b= = - rpfWp = - T TTRe™ W, (111p)

A good conception of this thickness correction factor can be
obtained by analyzing the effect of blade thickness on the specific mass
flow along the mean streamline (based on mass flow) in two-dimensional
cascades. Yet unpublished calculations made for a typical subsonic tur-
bine cascade and two supersonic compressor cascades show that the
specific mass flow pW, on the mean streamline is about 4 and 10 per-
cent higher than that given by one-dimensional calculations correspond-
ing to the same reduction in channel area for the subsonic and super-
gonic cascades, respectively. The influence of the blade thickness
also extends & short distance upstream and downstream of the blades.

The shape of the mean streamline is also seen to follow approximately
the mean channel line, (but with lower curvature). When this correc-
tion factor b is used in equations (111), all the equations previously
obtained should be modified by replacing p by p/b.
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CONCLUDING REMARKS

Equations of motion and energy for unsteady, three-dimensional flow
of a nonviscous fluid are expressed in terms of gas quantities most con-
venient for analyzing flow in turbomachines. Entropy change due to
heat transfer in a cooled turbine and due to strong shock wave in super-
sonic flow can be taken into calculation.

The general equations are simplified according to the standard
assumption for steady through-flow calculation in turbomachines having
thin blades of high solidity. The problem is completely defined in
the direct problem with blade shape given; whereas in the inverse or
design problem, with the inclusion of the integrability condition for
the blade surface, either one flow variable or one relation among sever-
al variables can be prescribed by the designer.

Through the use of the stream function, the continuity equation
and the equation of motion in the radial direction are combined to form
a principal equation for the present problem. The principal equation
contains some terms that are either prescribed or to be determined by
other equations defining the problem. Two forms of the principal equa-
tion are obtained for the two main groups of current compressor and
turbine designs in which either the variation of tangential velocity
or the variation of the ratio of tangential to axial velocity through-
out the blade region are given. When the tangential velocity is given,
the principal equation is elliptic or hyperbolic depending on whether
the meridional velocity is subsonic or supersonic. When a relation
between the tangential and axial velocity is given, the principal
equation becomes hyperbolic when the relative velocity is supersonic.

A general method of golution for both the elliptic and the hyper-
bolic cases is outlined. Specific applications of the theory to
several common types of compressor and turbine employing free-vortex,
symmetrical-velocity-diagram, solid-rotation, nontwisted-blade, and
radial-blade-element designs are discussed. A simple correction factor
for blade-thickness effect is also suggested.

Lewis Flight Propulsion Laboratory,
National Advisory Committee for Aeronautics,
Cleveland, Ohio, October 25, 1950.
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Figure 2. - Boundary conditions and station notation.

Figure 3. - Characteristic curves.
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