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SUMMARY 

Theoretical approximations to the nondimensional lift and pitching 
moment produced by constant vertical acceleration, the Cj	 and C 
derivatives, respectively, are derived for a series of thin sweptback 
tapered wings with streamwise tips. The analysis is essentially the 
application of a recently published solution of the linearized time-
dependent wave equation for wings in accelerated motion. The results 
are independent of camber and thickness and are applicable for a range 
of supersonic speed for which the wing is wholly contained between the 
Mach cones springing from the wing apex and.from the trailing edge of 
the root section (subsonic leading edge and supersonic trailing edge). 

Design curves are presented which permit rapid estimation of the 
derivatives Cj and C	 for given values of aspect ratio, taper 
ratio, Mach number, and leading-edge sweep. 

INTRODUCTION 

The formulations of linearized supersonic aerodynamics have allowed 
the theoretical derivation of many of the important longitudinal- and 
lateral-stability derivatives of various wing configurations. Recently, 
attention has been focused on the sweptback tapered wing with wing' tips 
parallel to the wing plane of symmetry (hereinafter referred to as the 
' t sweptback tapered wing"). Available stability derivatives for this 
wing for a wide range of Mach number now include the lift-curve slope Cj, 
references 1 to 3; the damping-in-roll derivative Civ , references 2 to 1i-; 
the lateral-force and yawing-moment derivatives CY and Cnp,
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respectively, references 5 and 6; and the longitudinal derivatives C 

(pitching moment due to angle of attack), CLq (lift due to pitching), 

and Cmq (damping in pitch), reference 7. 

The present paper is an extension of the previous investigations 
dealing with the sweptback tapered wing traveling at supersonic speeds 
and is concerned with the lift and the pitching moment resulting from 
constant vertical acceleration, the Cj4 and C 	 derivatives, respec-

tively. Theoretical expressions are derived herein which approximate 
with practical accuracy these -two acceleration derivatives. 

• Basically, the analysis depends upon, the solution of the linearized 
time-dependent wave equation for wings in aOcelerated motion reported by 
Gardner and by Watkins in references 8 and 9, respectively, and the appli-
cation thereof to triangular wings in reference 10. The analyses of refer-
ences 8 and 9 have in effect demonstrated that for a wing the time-
dependent potential for constant vertical acceleration may be compounded 
of two time-free or steady-state potentials, one for angle of attack and 
the other for steady-state pitching. In terms of forces andmoments, 
the analysis of reference 10 shows that such a decomposition of the time-
dependent potential allows the derivatives CL& and C	 to be 

expressed in terms of the steady-state-pitching and angle-of-attack 
derivatives (CLq, C, and C) plus additional terms dependent 

upon the surface velocity potential and corresponding pressure function 
for constant angle of attack. The results of reference 10 and the 
present results for the CL& and	 derivatives are restricted to 

relatively slow rates of acceleration suOh as arise in the study of air-
plane stability. Approximate expressions for the derivatives C, Cma, 

CLq and. Cmq for use in the evaluation of the derivatives of sweptback 
wings contained in this paper have previously been determined in refer-
ences 3 and 7. Approximate expressions for the terms dependent upon the 
surface velocity potential and corresponding pressure distribution are 
derived herein. 

The results of the analysis are applicable for a range of Mach 
number which allows the leading edge to be subsonic and the trailing 
edge to be supersonic with the additional trivial limitation that the 
Mach lines from the leading edge of the wing tip cannot intersect on 
the wing or intersect the opposite wing edges. Design curves arepre-
sented which permit rapid estimations of the derivatives CL& and Cj 

for given values of aspect ratio, taper ratio, Mach number, and leading-
edge sweep.



NACA TN 2317
	

3


SYMBOLS 

x,y,z	 Cartesian coOrdinates of an arbitrary point 

u1 ,v,w1 induced flow velocities along x, y, and z body axes, respec-
tively (see fig. 2(a)) 

u,v,w	 incremental flight velocities along x, y, and z stability 
axes, respectively (see fig.. 2(b)) 

X,Y,Z	 forces parallel to x-, y-, z-axes, respectively 

V
	

flight speed 

a	 angle of attack (w/V) 

a	 rate of change of a with time (da/dt) 

q	 pitching velocity about y-axis 

M
	

stream Mach number (V/Speed of sound) 

Mach angle 

cotangent of Mach angle (M2 - 1) 

angle between leading edge and axis of wing symmetry (see 
fig. 1(a)) 

taper ratio of wing

0 leading-edge sweep (90 - 

B 

€ 

x 

A

= tan. c

angle between trailing edge and axis of symmetry (dee fig. 1(a)) 

tan €
=eB tan

(2crOo	 11-60	 __________ 
w	 geometric parameter of wing 	

b = A(1 + ) = AB(l + 

tan€ 
= tan 8 = 1 - (1 - 

y

x60
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wing span 

x	 x-component of center-of-gravity position 

Cr	 wing root chord 

over-all length 

(2b/2
2 c mean aerodynamic chord	 (Local chord) dy = 

2crL3U)23U)(ln)+(ln)21 

2(l+ x) 

1 distance of leading edge of local wing chord behind apex of 
wing 

S wing area 

A	 - aspect ratio of wing 

steady-state potential corresponding to a unit pitching 
velocity about y-axis - 

X steady-state potential corresponding to unit angle of attack 

0 perturbation velocity potential on upper surface of wing 

t time

a	 speed of sound 

p	 density of air 

local pressure difference between' lower and upper surfaces of 
airfoil, positive in sense of lift 

lift distribution for unit pitching velocity 

lift distribution for unit angle of atiack 

Cp	 pressure coefficient 
( 1 2 \pV 

pitching moment
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/ .M' Cm	 p.itching-moxnent coefficient çv2s) 

PL	 lift coefficient (Lift 
S 

(m\ C

fCL 
CL =
q -

\ 2V q-40 

/Crn 
Cmq =

\2v0 

= CLq + 2C 

(c )2 =	 'ing V dS 

CL . =	 =	 CL.) - 
2V/.0 

(C) = Cmq +
	 ff• x2(2) 

(C)	
ffwingX dS 

	

= ()	

=	 -

2V 

k =	 - in2
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E'(m)	 complete. elliptic integral of the second kind with modulus k 

(10	 Ji - k2sin2z dz) 

E"(ni) = Etm) (see fig. 3) 

When x, y, and t are used as subscripts, the respective partial 
derivative is indicated. For example, 

øx , =	
.	 xt=xt 

Primed symbols Xt , LP', and 0' refer to the wing-tip region shown 
in figure 1.

ANALYS IS


Scope 

The sweptback wings considered in this paper are sketched in fig-
ure 1. In the following analysis, the plan form with sweptback trailing 
edge (fig. 1(a)) is generally considered to be the typical wing, but the 
results of the analysis are equally valid for the wing plan form with 
the sweptforward trailing edge (fig. 1(b)). The orientation of the wing 
with respect to a body system of coordinate axes used in the analysis is 
indicated in figure 2(a). The surface velocity potential, the basic 
pressure distribution, and the stability derivatives are derived with 
respect to this system. Figure 2(b) shows the wing orientated with 
respect to the stability axes system with the origin of the system at 
the arbitrary location (5, 0, 0) rearward of the apex of the wing. The 
transformation formulas that allow the determination of the derivatives 
with respect to the stability system once they are evaluated with 
respect to the body axes system are presented in table I. 

The analysis is limited to wings having small thickness and camber 
and that are not yawed with respect to the free-stream direction. The 
derivatives are valid only for a range of supersonic speed which allows 
the leading edge to be subsonic and the trailing edge to be supersonic. 
The terms "subsonic leading edge" and "supersonic trailing edge" refer 
to the conditions that the Mach number of the stream component normal to 
the leading edge is less than 1 and that the Mach number of the stream 
component normal to the trailing edge is greater than 1, respectively. 
An additional trivial restriction is that the Mach lines emanating from
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the wing tips cannot intersect on the wing. These conditions, expressed 
mathematically as restrictions for B cot A, are as follows: For 
BA(l+A.)=2

BA(l'+ x) 
BA(l + x) +	 - x) ^B cot A ^l 

and for BA(l + X) <2 

BA(1+X)	 BA(1+X) 
+ x) +	 - x) = B cot	

- BA(l + x) 

Basic Considerations 

The derivation of the derivatives CL and C	 basically depends 

upon the solution of the linearized potential equation for time-
dependent motion

B2ØJQ - 0yy	 0xt	 0	 (1) 

required to fulfill the boundary condition on the wing (approximately 
in the z = 0 plane)

= _&vt 

It was reported in the section of the analysis of reference 10 
dealing with the acceleration derivatives of triangular wings that 
Gardner has, in effect, shown that a proper solution of equation (1) is 

=iV'+ (t_.x	 (2) a	 B2 '	 \\	 v2j 
where 'V is the steady-state potential corresponding to a unit pitching, 
velocity about the y-axis and X is the steady-state potential corre-
ponding to a unit angle of attack. Thus, the solution by Gardner and 
an essentially equivalent solution by Watkins (reference 9) allow the 
time-dependent potential for an angle of attack &t to be expressed in 
terms of two time-independent or steady-state potentials, one for a 
constant angle of attack and the other for steady pitching. The appli-
cation of the solution expressed in equation (2) permits with relative 
ease the evaluation of the pressure distribution for vertical motion 
with constant acceleration. The corresponding derivatives CL& and
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may thenbe derived rather simply in terms of integral expressions of 
the surface velocity potential and surface pressure distribution for 
constant unit angle of attack together with terms involving the non-
dimensional forces and moments associated with angle of attack and 
steady pitching. The general formal levelopment of the derivatives 

and C based upon the velocity potential expression of equation (2) 
has been carried out in reference 10. Adhering to the analysis in that 
paper, the lifting-pressure distribution at time t = 0 for the angle 
of attack cit is obtained from the surface velocity potential by 

LP = 2p (Vøx + ø) 

./M2	 M2Xx 
-	 = 2pVa— x -	

x - 

= [M2()q=1 -	 l - 2pX	 (3) 

where (AP)ql is the lift distribution for unit pitching velocity 

about the y-axis and ( LP )a....1 is the lift distribution for unit angle of 

attack. The choice of time t = 0 eliminates the lift due to angle of 
attack and leaves only the increment due to time rate of change of angle 
of attack. 

Integration of equation (3) to obtain the lift and moment and 
reduction to coefficient forms yields 	 - 

2M2 
-

2 rr2/\ 
Cmci =	 Cmq + B2S2uj 

X 
(1v2) 
2

B2S611V ds
	 (!.) 

dS+ 
8 

ffxdS	 (5) 
B2S2 

where the integrations are performed over the wing plan form. For 
convenience, the following symbols will be used: 

a)1 = CLq + 2C
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8 rrdS CLà)2 = Jj V 

so that	

M2	 \	
. CL = _CI)1 -	 Laj2 

and, similarly,

II 2 LP \ = Cxnq + 2	 1 2	 dS 

(c)=--ffxs 

so that

M2f	 \	 1/ C	 =	 - 

Satisfactory approximate expressions for the derivatives C, CLq 

and. Cmq that occur in equations ().i-) and (5) for Cj 	 and C, 

respectively, have previously been determined and presented in refer-
ence 7 for the wing plan forms and Mach number range considered.in this 
paper. The double integral terms remain to be evaluated for a complete 
estimation of C	 and Crn&. These integrals and the approximate 

expressions therein for the potential X and the pressure (tP)al are 

considered in the following sections. 

Expressions for the integrals ff dS and ffx dS. - An approxi-
mation tothe steady-state surface velocity potential of a sweptback wing 
at a unit angle of attack has been derived in reference 3. The entire 
approximation occurs in the expression for the surface velocity potential 
for the region of the wing internal to the Mach cones from the leading 
edge of the wing tips. For the region of the wing external to the wing-
tip Mach cones, the velocity potential distribution is exact and is the 
same as the linearized potential distribution for the corresponding part 
of a triangular wing for the same leading-edge sweep and Mach number.
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The surface velocity potential for the triangular wing may be derived 
from the analysis of reference 11 and is expressed as follows for the 
upper surface of the wing for unit angle of attack: 

x = = vJeo2x2 - 
E'(m) 

or

V60x\l - 

=	 E'(m)	 (6) 

where V is a conical coordinate y/90x proportional to the slope of 
a ray from the apex of the wing and E'(m) is the complete elliptic 

integral of the second kind dependent upon m = tan € The variation 
1	 tani 

of	 with m is presented in figure 3. From reference 3, the 
corresponding approximate expression for the potential of the wing-tip 
region is given by

	

x t =	
= 2V/2(mx + By)(b - 2y) 

a.	 B(l+m) 

The approximate surface velocity potential for the entire wing for a 
unit angle of attack is then the sum of the expressions (6) and (7). 
The integral terms of equations (1i) and (5) containing x may now be 
expressed in the following form (see fig. i-i- for regions): 

____	 l69	 rr	 -	 dS + 
B2SEffwing 	 = B2SE'(m)JJRegion 

oegh 

32

+ m) "Region	
+ By)(b - 2y) dS	 (8) 

efg
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8 

ff• x dS 
=	 16e	 rr	 2i - V2 	 + 

B2S 2 Wing	 B2S2E'(m) Region 
oegh 

32J 

B2Së2 (1 + th)'e	
xmx ^ By)(b - 2y) dS 

gion 
efg

(9) 

The quasi-conical nature of the integrands (that is, of the form x'1f(v) 
of the first integrals of the right-hand side of equations (8) and (9) 
allows these integrals to be easily evaluated by use of the "triangular" 
integration procedure considered in reference 12. When this procedure 

is used, the integrand x/l -. V2 dS may be written as 

Region ohgo	 Region ogeo 

	

-	 1 (i + m) 3b 3 \/l - V2 

	

dV	
e2	 (1 + mv)3 dv 

° 
(1 - n)3 

	

and, similarly, tI.e integran	 2Ji - V2 dS becomes 

Region ohgo 

1	 ______ 
cr 90 (i - n)1 dv

Region ogeo 

(1 + m)b	 - 

0	 (l+mv) 6)4.
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Expressior for the integral ffx22 	 dS.- The evaluation of 

the integral rr2(2	 dS necessitates a owledge;of the lifting 
JJ	 !pV J. \2 Ia=i 

pressure for the wing at an angle of attack. For the region of the wing 
external to the wing-tip Mach cones, the pressure distribution is merely 
the exact lineaHzed pressure distribution for the corresponding part of 
the triangular wing for the same value of leading-edge sweep and Mach 
number. From reference 11, the following expression may be obtained for 
the lifting-pressure coefficient for a unit angle of attack 

___ -	 ________ 
( 1 21 
\VJ 1 - El(m)JOo2x2 - y2 

or, in terms of the conical coordinate v =
00x 

f.p 
(1 2	 - 
2	 a=l Et(m)\Jl -2

(l11) 

The corresponding expression for the approximate lifting-pressure distri-
bution for the region of the wing internal to the wing-tip Mach cones has 
been derived in reference 3; From therein, the lifting-pressure coeffi-
cient for unit angle of attack is as follows: 

______ lb 

	

___	 8! o	 1-y 

	

(1 2 I	 =	 L + Be Il	 (15) 
\PV//ctl 

Substitution of the sum of the component pressures expressed by equa-

tions (l 1 ) and (15) for (l2\	 of the integral to be evaluated yields 
t—pVJ 2	 a=l
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RESULTS AND DISCUSSION 

The preceding section involved the evaluation of the acceleration 
derivatives Ci	 and C j, as functions of the steady-state pitching 

derivatives (CLq C, Cmq) determined in reference 7 and the several. 
integral terms determined herein which are functions of the surface 
velocity potential and the corresponding pressure distribution for con-
stant unit angle of attack. The evaluation of thee derivatives areS 
approximate in that the contribution of the wing-tip region was obtained 
by use of an approximate surface velocity potential derived in refer-
ences 3 and 7 by use of the point-source method of Evvard. 

An indication of ibhe lifting-pressure distribution over a typical 
wing (sketched in fig. 7) for three Mach line configurations can be 
obtained from figure 6. Figure 6(a) shows the pressure distribution for 
the case of a subsonic leadin:g edge and a supersonic trailing edge; 
figure 6(b), for a subsonic leading edge and a sonic trailing edge; and 
figure 6(.c), for a sonic leading edge and a supersonic trailing edge. 
As expected, a pronounced finite drop in the resultant lifting pressure 
occurs across the inboard Mach line from the wing tip. The resultant 
pressure distribution is generally negative for the wing plan form con-
sidered. For the Mach line configuration for which the leading edge is 
sonic and thetrailing edge is supersonic (fig. 6(c)), the pressure along' 
section a-a becomes slightly positive in the wing-tip region, in particu-
lar in the vicinity of the trailing edge. Results of additional computa-
tions for the variation of pressure loadings with aspect ratio indicate 
that, as the aspect ratio is decreased, the resultant pressures tend to 
become positive and eventually give rise to a positive (lifting) force 
(Cj) and a stable nose-down pitching moment (cn); whereas, for the 

wing considered for figure 6, it is obvious that the integrated pres-
sures will produce a negative C 	 and an unstable C. 

The exact linearized solution for the lifting pressure in the wing-
tip region induced by constant vertical acceleration is not available at 
present although extremely accurate approximations to the exact linearized 
solution that require laborious calculations may be obtained by the 
methods of reference 13. The present approximate method should be ade-
quate for determining the integrated lift and pitching moment, especially 
since the pressures are relatively very small in the tip region where 
the approximations of the method apply. For a practical evaluation of 
the derivatives C	 and	 it i,s believed that the wing-tip regions 

may be completely neglected. . 

A series of. generalized curves that allow rapid estimation of the 

derivatives CL and C	 is presented in figures 7' and 8, respectively.
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For specified values of aspect ratio, taper ratio, Mach number, and 

leading-edge sweep, the derivative C	 =	 (cL.)_	 () is esti-

mated from figure 7 and the derivative Cm• =	 (C) - _L (Cm) is 
estimated from figure 8. In figures 7 and 8, the segmental dashed parts 
of the design curves to the left of the boundary lines labeled 
"Sonic T.E." should be disregarded for estimations; they correspond tQ 
conditions not treated in this paper, for which the trailing edge is 
subsonic (Mach lines ahead of trailing edge) and hence allows trailing-
edge disturbances to affect the part of the wing bounded by the Mach 
lines from the trailing-edge apex and trailing edge itself. These 
dashed parts have been presented, however, to indicate the trend of the 
variations and to act as an upper limit below which the true values of 
the derivatives would lie for configurations for which the trailing edge 
is subsonic. The boundary lines labeled "Sonic L.E." indicate the 
other limit of validity for which the Mach lines coincide with the 
leading edge. 

It should be noted that the derivatives determined from the design 
curves of figures 7 and 8 are with respect to a set of axes located at 
the apex of the wing. The derivatives with respect to an arbitrary 
center-of-gravity location (x = , y = 0, z = 0) in the stability axes 
system may be easily obtained by transformation formulas presented in 
table I. 

Specific variations of the derivatives Cj 	 and C (in the sta-
bility axes system) with each of the parameters - aspect ratio, taper 
ratio, Mach number, and leading-edge sweep - are presented in figures 9 
and 10, respectively. The variation of C	 with. aspect ratio plotted 

in figure 10 shows the interesting point, mentioned previously in the 
discussion of the pressure distributions of figure 6, that the pitching 
moment which is generally unstable at the higher aspect ratios becomes 
stable as the aspect ratio is decreased (below aspect ratio of approx. 2.25 
for the illustrative case shown). Similar results have been noted for 
the rectangular wing (reference l4-), the triangular wing (reference 10), 
and the sweptback wing of zero taper ratio (reference 12). 

CONCLUDING REMPRKS 

Theoretical approximations to the nondirnensional lift and pitching 
moment produced by constant vertical acceleration, the C 	 and Cm 

derivatives, respectively, have been derived for a series of thin'
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sweptback tapered wings with streainwise tips. Results are applicable 
for a range of supersonic speed for which the wing is wholly contained 
between the Mach cones springing from the wing apex and from the trailing 
edge of the root section. 

The results presented herein for the derivatives CL and C 	 are 

applicable within the limitations of the linearized theory since the 
approximation to the exact linearized solution in the wing-tip region 
is satisfactory and this region has a minor effect on the values of the 
derivatives for the entire wing. 

Langley Aeronautical Laboratory 
National Advisory Committee for Aeronautics 

Langley Field, Va., December 22, 1950
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(a) Notation and body axes used in analysis.
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(b) Stability axes. Velocity, force, and moment arrangement in principal 
body axes system is the same as that of stability axes system. 
(Principal body axes dashed in for comparison.) 

Figure 2.- System of axes and associated data.
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Equation of eg: x = B( -	 + 

6	 Y+Crtaflô

Equation of hf: x =

tan 5 

Intersection of eg and hf: 

(BbO - 2Cr6o + btan 5 

2e0(Btano+1) 

h
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•	 ,	 ..' 
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X	 Wn-f,p re9'o?7 

Figure 4-. - Sketch of right panel of wing and associated data defining

limits of integration for the evaluation of forces and moments.



NACA TN 2315	 27 

/

11; 
/	 U 

__	
ii, 

I-	 -	 II

I H 
II 
LA	 II\	 I 

I7\?c\	 I 
ii°. 	

Cl)

Ord 
c-i 

I	 (I) 

/ 
I	 I	 0 

a) 

• _ 

______ ___	
•



28	 NACA TN 2315 

60

I - 

20

L_ - 1 Lv(c) 
Sechor a-a 

0.. 

-20 

-

______ V	 - 

L. Resi/ta,itpresswre
V -. -. . -	 V 

L	 4(r) 
-40

_._l
MV 

/ 
/

• -. 

H	 V. 

Section b-b 
cL 

L)
zconstant	 - 

Pesiiirarn' I	
- pressure • . -4- t 

- Ix(cp) 
-Co c(-/ 

.	 .L	 .3	 4	 .5 .6	 .7	 .8	 .	 /o• 

• y 
b/2 

(a) Subsonic leading edge, supersonic trailing edge. 

Figure 6.- Chordwise and spanwise pressure distributions along sectional 
planes through the wing-tip region.
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Figure 6.- Continued.
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Figure 6. - Concluded.
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Figure 7. - Continued. 
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(c.) Concluded. X = 0.75. 

Figure 7. - Concluded.. 
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(c) X = 0.75. 

Figure 8.- Continued.
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Figure 8. - Concluded. 
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