A L et

3?«» K5 e
3 NS ¢a3al

ANLAN LY A AN WD A

GOVT. DOC.

NATIONAL ADVISORY COMMITTEE
FOR AERONAUTICS

TECHNICAL NOTE 2321

ANALYSIS OF TEMPERATURE DISTRIBUTION IN LIQUID-COOLED

TURBINE BLADES
By John N. B. Livingood and W. Byron Brown

Lewis Flight Propulsion Laboratory
Cleveland, Ohio

Washington
April 1951

BUSINESS, SCIENCE

ANiN. 4 i
L I N Y B e oy
D355 Sl IR TRy

APR 20 1951

2 TECHNOLOGY DEF'T.



NATTONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 2321

ANALYSIS OF TEMPERATURE DISTRIBUTION IN LIQUID-COOLED TURBINE BLADES

By John N. B. Livingood and W. Byron Brown

SUMMARY

" The temperature distribution in liquid-cooled turbine blades
determines the amount of cooling required to reduce the blade tempera-
ture to permissible values at. specified locations. " This report pre-
sents analytical methods for computing temperature distributions in
liquid-cooled turbine blades, or in simplified shapes used to approx1-
mate sections of the blades.

The individual analyses are first presented in terms of their
mathematical development. By means of numerical examples, comparisons
are made between simplified and more complete solutions and the effects
of several variables are examined. Nondimensional charts to simplify
some temperature-distribution calculations are also given.

It was found that for blade materials having low thermal conduc-
tivities (corresponding to blade materials in current use) a one-
dimensional spanwise temperature-distribution equation is applicable
near a coolant passage. The cooled part of the blade, irrespective of
blade length, was found to remain at a determinable uniform temperature,
called the prevalent blade temperature. The prevalent blade tempera-
ture increased about 150° F for-an increase in the difference between
the effective gas temperature and the coolant temperature of 1000° F
for a range of effective gas temperature from 2000° to 5000° F

In cases where rim cooling is insignificant, it was found that a
one-dimensional chordwise temperature-distribution equation was suf-
ficiently near the relaxation solutlon for the actual blade shape for
a first-order approximation.

INTRODUCTION

A limitation on design aﬁd performance of aircraft gas-turbine
power plants is the strength of the turbine materials, which decreases
as temperature increases. This limitation may be greatly alleviated, -
even when nonstrategic materials are used, by the application of tur-
' bine cooling. An extensive study of both liquid and air cooling of
turbine blades has been carried out at the NACA Lewis laboratory
since 1945. X
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The temperature distribution in a turbine blade determines the
-amount of cooling required to reduce the blade temperature to permis- -
sible values at specified locations. Analytical studies have been con-
ducted to predict temperature distributions in cooled turbine blades.

A summary of the analytical methods developed for calculating spanwise
temperature distributions for three types of air-cooled turbine blade is
presented in reference 1. The present report summsrizes the analytical
methods developed for calculating temperature distributions in liquid- °
cooled turbine blades. Parts of these analyses are presented in refer-
ences 2 and 3.

Because the calculation of a generalized three-dimensional temper-
ature distribution through a liquid-cooled turbine blade is too tedious
to be of practical value and because some knowledge of the distribution
in a radial direction is necessary, the first investigation presented
herein is limited to a one-dimensional spanwise distribution. This
distribution, however, is only valid in the immediate viecinity of the
coolant passages. In order to study more accurately the temperature
distribution in the trailing section of the blade, a three-dimensional
solution is determined for a rectangular parallelepiped used to approx-
imate a blade trailing section. This solution serves to determine the
importance of blade thermal conductivity and of distance from the coolant
passage. Because numerical calculations for a rectangular parallele-
piped produce a constant spanwlse temperature in the region of the blade
beyond the influence 6f rim cooling (that is, in the region of the blade
unaffected by conduction to the rim), one-dimensional chordwise tempera-
ture distributions are then calculated for shapes approximating various
parts of a blade cross section; these investigations are valid for the
part of the blade beyond the. influence of rim cooling. Finally, a two-
dimensional temperature distribution through the cross sectién of an
actual blade shape is obtained in order to determine the accuracy of
the previously determined approximate solutions and to study the effect
on temperature distribution of a peripheral variation of gas-to-blade
heat -transfer coefficient.

Numerical examples based on coefficients available from unclassi- '
fied sources are included.

METHODS OF ANALYSIS

. One-dimensional spanwise, three-dimensiénal, one-dimensional
chordwise, and two-dimensional chordwise temperature-distribution equa-
tions for liquid-cooled turbine blades or for simplified shapes used to
approximate sections ef liquid-cooled turbine blades are presented.
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For simplicity in presentation, the individual analyses are first formu-
lated in terms of the mathematical methods. The comparative applica-
bilities of  the methods of analysis are established in later sections

of the report. : .

For all the analyses presented, the following conditions are
assumed:

() The coolant temperature is constant at the average temperature
of the coolant or the coolant forms a constant-temperature reservoir.,
This assumptlon is valid when the change in coolant temperature is small
in comparison with the temperature difference between the gas and the
coolant

(2) The blade-to-coolant heat-transfer coefficient is constant.
(3) The thermal conductivity of the blade is constant.

- (4) The effective gas temperature at all parts of the blade is the
same.

. (5) Radiation effects are considered to be included in the heat-
transfer coefficients. The following individual analyses are presented:

One-dimensional spanwise temperature distribution. - A one-..
dimensional spanwise calculation gives a radial temperature distribution
valid in a part of ‘the blade near a coolant passage. In this particular
case, the radial temperature distribution is carried through the blade
and through the turbine rotor. Heat transfer between the turbine rotor
and the fluid on the outside of the rotor is assumed to take place and -
a constant value of gas-to-blade heat-transfer coefficient is assumed.
For simplicity; a blade of constant cross-sectional area and perimeter
is considered.

For blades with little taper, the method is applicable if average
cross-sectional area and perimeter are considered. In general, however, -
a numerical solution is necessary for tapered blades.

Three-dimensional temperature distribution through simplified
trailing section. - A three-dimensional temperature distribution for the
Trailing section of the blade is obtained by considering this part of
the blade as a rectangular parallelepiped. The blade-root temperature
_ is considered constant, the gas-to-blade heat-transfer coefficient is
constant, and it is assumed that no heat flows across the medlan plane
of the simplified blade section.
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An approximate solution for tapered blades is obtainable by-this
method if the blade is considered in small sections, average values of
cross-sectional area and perimeter are considered for each section, and
appropriate compatability relations are satisfied.

One-dimensional chordwlse temperature distributions through simpli-
fied shapes. - Rectangular and trapez01dal sections, concentric circle
annuli, and sections between parallel plates are considered as the sim-
plified shapes used to approximate parts of a turbine-blade cross sec-
tion. The gas-to-blade heat-transfer coefficient is considered constant.
For comparison purposes, the rectangular and trapezoidal .sections are
constructed so that lengths and areas are identical.

Two-dimensional chordwise temperature distribution. - Numerical
two-dimensional temperature distributions through the cross section of
an actual blade shape are determined. Constant and variable gas-to-
blade heat-transfer coefficients are considered.

One-Dimensional Spanwise Temperature Distribution

The spanwise temperature-distributlon equations for a liquid-
cooled turbine, a section of which is shown in figure 1, are derived in
reference 2 and are reproduced in appendix B. In this spanwise case,
the investigation was extended from blade tip to rotor hub.

For convenience, the turbine was divided into four sections
(fig. 1), and the temperature-distribution equations were obtained from
heat balances for differential elements in each section. Inasmuch as
chordwise conduction was neglected, the following equations, valid only
in the neighborhood of the coolant passages, were obtained. For the
uncooled section of the blade (fig. 1, section 1), it was found that

Tg,1 = Tg,e - C1 cosh #(xy + Cp) (1)

where Cy andr C, are Integration constants and

1

Z
hol, )
kBABl
(A1l symbols are defined in appendix A. ) The value of Cp 1is deter-

mined by use of the boundary condition at the blade tip (where heat
enters by convection only).
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or

For the cooled section of the blade (fig. 1, section 2), it was

Cam
B .
-kpAp 1 (a;z)T = hohy 1 (Tg e-Tp,1)

oof -

h, hoA
: _ o _ [T0o"B,1l
tanh #C, = de_ KZ kB)

found that -
sz 'gXZ
TB,Z = TB,P - Cse - C4e
where Cz and C, are integration constants,

and

The prevalent blade temperature' TB,p is the temperature the blade
would assume if no heat flows¢in or cut of the blade ends. '

.area,

where

1 holoTg,e + By 214,27
PP T T gl ¥ By ol o

1
2

&= (?olo + hi,zzi,?>
\  kphp 2

For the rim section (fig. 1, section 3), with assumed constant

. 8%z -6Xz
Trim = 4+ Cse + Cse

Cs and Cg are integration constants,

ItrS,thaTa + (hi 3’1, S)av 1

4nr3 h + (h

i, 3 i, S)av

“(2)

(2a)
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1
2

P‘“r:’) avhs + (By 311,3)awil
L Krim Arim

and T5; is the fluid temperature on the outsidg of the rotor and
(hi 321 3) gy 18 the average of the values of h1 zli )3 found for the

blade coolant passages, the rim circumferential passages » and the radial
passages through the rotor (fig. 1). ~

For the rotor section (fig. 1, section 4), with assumed constant

strength,

TR = F+ C, cosh i, (4)

where C; 1is an integration constant, and where

§ = 4nry avlgTe + (hi,4zi,4)avT
4nry avbg + (hi,4li?4)av

~and

i
2

# = Eﬂrtl,avha + (hi’éii’LL)ail
kphp

Values of the six integration constants Cq, Czy C4q, Cg, Cg,
and C7 are found by solving simultaneously the six equations resulting
from equating temperatures and heat flows at the various junction points
of the four sections of the turbine. (Subscripts o and B used after
numerical subscripts designate the end nearest the blade tip and the end
nearest the rotor hub of the sections to which the numerical subscrlpts
refer, respectively ) At the junctions of sections 1 and 2,

2% o “BXp
Tg,e - Cl COShﬂ(Xl B + C2) = TB sD - C3e - C‘i-e ? (5)

BX; & B o
kBAB,l’BCldSlnh d(xl,ﬁ + CZ) =.C£kBAB,2,a’ (038 4 - C4e ’ +

: #x, -
2,0 2,0 .
by 1(A5,1,8 - 88,2,0) (TB,p - Cze. ®7% - Cyge ™07 - Tz> (8)
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Equation (6) equates the heat leaving section 1 to the sum of the heat
entering the metal of section 2 and the heat entering the coolant at
that part of the blade where the inlet and outlet passages are con-
nected. An approximation in the procedure has been introduced at this
point because -a separate blade section for the part of the blade con-
taining the connecting passage between inlet and outlet passages is not
introduced. A numerical calculation showed that use of such a section
would slightly decrease the temperature at the blade tip.

At the Jjunction of sections 2 and 3,

7’3 ‘ -% : ex -&x
| TB,P_" 03e XZ:B _ C4e Xz)ﬁ = @+ C5e 3,a + 06e 3,0 (7) .
#x2,p ~#%2,p
, ey, P)
k—BAB.,Z‘qg Cne - C e - ) +
Arim_ZAB;zlh A T ;-T -i:C egxzyﬁ +C -gxzyﬂ
ZAB,Z 0"B,2 g, " B,p 3 4®
Apim [ - &% gx
= ngAB’z ZAB 2 @68 3’(!' - Cse 3’“ . (8)
)

Equation (8) equates the sum of the heat léaving section 2 and that
entering section 3 directly from the hot gases to the total heat entering

section 3.

At the junctions of sections 3 and 4,

' §x -8x% : :
9+cee P rce P o gac, cosn pr - (9)
gXS;B | - ng:B AR
kp 8(; Cse + Cge > = " kp#C; sinhs#ry " (10)
im .

Three-Dimensional Temperature Distribution through
Simplified Trailing Section

The spanwise temperature-distribution equations p?eviously pre-~
sented are valid only in the neighborhood of the coolant passages. Most
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currently used turbine blades are so shaped that coolant passages can-
not be located near the trailing edge. Because of the impossibility of
placing reasonably large coolant passages near the trailing edges of
conventional turbine blades and because the trailing sections seem most
likely to be the hottest parts of the blade, other detailed studies were
made of temperature distributions. The first study was devoted to
approximating the trailing section by a rectangular parallelepiped and
to determining the three-dimensional temperature distribution through
this parallelepiped (fig. 2).

The median plane of the rectangular paralleleplped was chosen as

“the plane z = 0, and symmetry was assumed about this plane (no heat

flow was assumed to cross this plane, as previously stated). Boundary
conditions at the blade traillng edge and blade tip were simplified by
assuming the blade width and blade length to be extended by a distance
equal to one-half the blade thickness. In figure 3, the edge MN at
temperature T gained some heat from the gas stream. The extended
surfaces NO and MP were at nearly the same temperature T and no
heat entered the edge OP; these surfaces therefore gained practically
the same amount of heat as the actual exposed edge. The validity of
this approximation is discussed in reference 4 (pp. 216 and 217). Dis-
tances increased by T/2 are denoted by primes.

.The derivation of the three-dimensional temperature distribution,
originally derived in reference 3, is reproduced in appendix C. The
differential equation, in final form, for the temperature distribution

~ is found to be

2 2 2
ae+ae+ae='o )

e dyr? 328

ﬁhere x' and y' denote x and Yy increased by T/Z respectively.

A solution of equation (11) satisfying the boundary condltions at

=y'=2=0 1is
(o] (= ‘ . ) ¢v
6 = 2{: >, (A p cos £x' coshdy y' cos Az +
- m=1l n=1 4 2 N ‘
@m,n cosh ?m’nx' cos 2.y' cos Nz ) (12)

vhere X, ¥, 4, N, 0, # and 2 are constants. Relations among
the constants are
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and hOT
' ~h 2kn :
T _ o) _ B
ten My 7= o - ot (18)
2

It is at once obvious that from equation (16) many values of .Zh

result. Because of the periodicity of the tangent function, equa-
tions (17) and (18) likewise have many solutions.

Values for all the constants in equation (12) can thus be found
and the temperature can now be computed at any point in the rectangular
parallelepiped. 1In reference 3, appendix B, it is shown that suffi-
ciently accurate results can be obtained by using m = 1 only.

One-Dimensional Chordwise Temperature Distributions
through Simplified Shapes

Because the spanwise temperature distributions are valid only in
the neighborhood of the coolant passages and because the three-
dimensional approximate solution resulted in a constant spanwise blade
temperature in the part of the blade beyond the influence of rim cool-
ing, one-dimensional chordwise temperature distributions were deter-
mined for sections of a liquid-cooled turbine blade that can be approx-
imated by simple shapes (fig. 4). Rectangular and trapezoidal approx-
imations for blade tralling sections were considered. Trapezoidal
sections may also be used to approximate the leading section in some
blades. In addition, analyses were made for leading sections approx-
imated by concentric circle annuli and for the sections of blades with
very little metal between blade outer surface and coolant passages
approximated as regions between parallel plates. The temperature dis-

“tributions through these simplified shapes, derived in appendix D and

valid in regions beyond the influence of rim cooling, follow.

Rectangular trailing section of blade removed from influence of
rim cooling. - For a blade trailing section approximated by a rectangle
(fig. 4(a)) the temperature-distribution equation is

hi :
g (Tg,e'Tl) cosh (@y')
’ h

@ sinh ®j' + "El cosh ®@j!
B

6 = (19)
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‘Where
6 = Tg,e-Ts
and _'
1
2
_ 2hO
M=

Trapezoidal trailing section of blade removed from influence of
rim cooling. - For a trapezoidal approximation to the blade trailing

section (fig. 4(b)), the temperature distribution is

h.¢
L (Tg, o-Ty) [Hl(icl)Jo(iC) + iJl(in)iHO(igz

6 ; ) o C (20)
[iJl(iCl)Hl(igzi} - [ﬁl(iﬁl)iJl(iééﬂ + zxgkz r
: B
where ) 1
[ 7 (1 - tan 9]
C = 2K ¥ + gy
1
[Tl(l - tan W{}z
=2 | "2ty
.
2

[ Tl(l - tan \y):]
Sp= |3+ 5% ¥

1

‘ ho . \2
K= (kB sin 11!

¥y = tan " 73

I = Hy(387)d,(48o) + 1J9(18;) 1H (4E5)
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and J,, 1iJy, Hy, and - iH; are Bessel functions. For a wédge-

shaped section the temperature-distribution equation (20) reduces to

b6,
21, (T o-T3) I (i8)

°= hyCo - | (21)
2, I (185) - 13,(46,)

Concentric-circle-annulus approximation for blade leading section. -
The equations expressing the blade-metal temperature at the coolant
passage wall TB,i’ at the leading edge of the blade TB,O" and at any

point in the annulus Ty are found to be (fig. 4(c)).

. B 2k ] .
T,y =Ty + 5\ ¢ (TB,0-TB,1) (22)
o .
Dihi lOge -I-);
oy - -
T8,0 = Tg,e - Do 4(TB,0‘TB,1) . (23)
' DOhO lOge<B-i—)
and
D
log_ =
T = T b N1/ 01 (Tn o-Tn 1) (24)
B = Tp,i D\ | BsOTB,i :
loge (’ﬁf) ’
i
where
Te,e ™1 . (25)
TB,0-TB,1 = EB ) 5 5 ' .
. +
T Dy (Doho Dihi>
loge By

Section of blade approx1ﬁated by parailel plates. - The equations
expressing the blade-metal temperatures at the coolant—passage wall
(fig. 4(d)) Tg,1i and at the blade outer edge Tp , are
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T, + (“hohi> (hT g, e+hiT7,)

Tp,i = o (28)
1+ (Phoh1> (ho+hi)
aﬂa ’
. -
) Tg,e * (h h. > (B Ty e*0yTy)
TB,O = k ' (27)
1+ (ah Bhi> (ho+hy) »

where ¢ 1s the distance between the parallel plates.

‘

TwoLDimensional‘Chdrdwise Temperature Distribution

The temperature at any point on the blade cross section may be
found by solving the Laplace dlfferential equation given in terms of the
temperature difference 6

— et = O. ’ ‘ : (28)

where X and Y are the Cartesian coordinates in the blade cross sec-
tion. The boundary conditions, expressed in terms of the partial deriv-
ative. of 6 .in the.direction normal to the boundary are

3 b :
ag = ES 6 : S (29)
at the outer boundary and
3 by S |
55 Tge® | (30)

at the coolant-passage boundary.

A closed solution to equation (28) cannot be obtained because of
the impossibility of applying the given boundary conditions along the
odd-shaped boundary of a turbine blade (fig. 5). A numerical solution
" is available, however, by application of the relaxation method (refer--
ence 5). A sketch of the blade cross section is covered by a network
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o

of points (a square network was chosen). Large net spacings are recom-
mended at first, and the insertion of additional net points may be made
at any time during the solution, thus permitting the use of a final
network of any desired size. Temperature estimates for the net points
can be obtained from the solutions of the chordwise blade-temperature-
distribution equations for approximate shapes previously presented and
from application of the boundary conditions given by equations (29) and
(30). Residuals, which may be considered as interior heat sinks, can
then be calculated at each net point whose immediately neighboring
points remain within the boundary from the relation

where the subscript zero denotes a point in the blade cross section and
subscripts 1, 2, 3, and 4 denote the points in the square surrounding
the point with zero subscript.

The object of the relaxation is to reduce the values of § to
zero, or as close to zero as possible. When the relaxation equa-
tion (31) is_employed, the following procedure is used. A change in
6y alters Ql, Qz, QS’ Qq DYy the same change and QO by minus

four times this change, all other values of & remaining fixed.

Equation (31) is the finite-difference equation corresponding to
the partial differential equation (28).  "For net points some of whose
immediately neighboring points lie outside the boundary, equation (31)
must be modified. For example, if point 1 lies outside the boundary
and point 5 is the boundary point between 0 and 1, the following equa-
tion applies:

Q = 0,+6,+0 +—6§ 3+56 -(32)
0 47 da " a/ o

where d 1is the ratlo of the distance between points O and 5 to the
net spacing.

Corresponding changes in the values of Q result from the use of
equation (32). No harm is done by overestimating the final values of
6, as successive calculations will establish them again. Continued
relaxation eventually reduces all the residuals as desired and the blade
temperatures can finally be obtained from the definition of 8,

6 = Tg,e'TB



NACA TN 2321 15

APPLICATION OF ANALYSIS

Typical numerical examples for a sample blade are presented to
illustrate temperature trends and to determine the effects of various
factors on the temperature distributions in a liquid-cooled turbine -
blade. A turbine blade whose external shape is similar to that of the
rotor-root section of a conventional gas-turbine design was selected
as the sample blade.. Two 0.25-inch-diameter coolant passages were
assumed in the blade (fig. 5), connected near the blade tip by a cross-
over passage, and the cooling was assumed to occur through forced con-
vection. No allowance was made in these calculations for the effects
of free-convection currents that might be present. A gas. flow of
55 pounds per second (equivalent to a mass velocity of about 58 lb/
(sec)(sq ft)) and a coolant flow of 7 pounds per minute per blade
were assumed (to insure turbulent flow and to remove the dependence of
-the blade-to-coolant heat-transfer coefficient on the lengtheto-
diameter ratio of the coolant passage).

For the one-dimensional spanwise case, in which the cooling was
carried to the rotor hub, two 0.25-inch-diameter coolant passages
running circumferentially through the rim and ten 0.50-inch-diameter
coolant passages running radially through the rotor were assumed ,
(fig. 1). For this case, water, ethylene glycol, and kerosene were all
considered as possible coolants. Other calculations were made only for
water as the coolant because of its superlorlty over the other coolants.

con51dered

Blade-~to-coolant average heat-transfer coefficients were calculated
by use of formulas presented in reference 6, page 168 for turbulent flow.
and page 190 for laminar flow (for ethylene glycol only). Gas-to-blade
average heat-transfer coefficients were calculated by use of formulas
given on page 236 of reference 6. The following coefficients were used
in the analysis:

Outside heat-transfer coefficient, hg

Btu/(hr)(sg TE)(OF) v v ot e e e e e e e e e e e e e e e e e 222
Btu/(sec) (sq £t)(°F) . e e e e e e e b e e e e e .. 0.08167
Inside heat-transfer coefflcient hi,z

Water, Btu/(hr)(sq £t)(°F) . C e e e e e e e e e e e .. 2370
Btu/(sec)(sq ££)(°F) . . . . . v 4 e 4 v 4 o . .. . 0.6583
Ethylene glycol, Btu/(hr)(sq f£)(%F) « « v ¢« v ¢ ¢ v v v o . . 649
Btu/(sec)(sq ft)(°F) . . . . . . . ... .. 0.1803

Kerosene, Btu/(hr)(sq ££)(°F) . « « v v v v v v v v v o .. 510

Btu/(sec) (sq £t)(°F) . O o 5
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Other numerical values used in the calculations were (figs. 1 and
4):

. Effective gas temperature, Tg,e, °F v v v s v v v« . .. 2000 - 5000

' Average coolant temperature, Tj, G d e e e e e e ee e e . . . 200
Number Oof DladesS, Z « o o o o o o o o o o o o 5 o o s o o o s « o. 955
Area of blade cross section 1, Aj, sqft . . . . .. . .. 0.00198
Area of blade cross section 2, Ao, sq ft . . . . . . . .4 0.0013

Area of cross section 3, Az, sqgft . o« ¢« ¢ ¢ ¢ ¢ ¢ o o o oo o 0.312
Area of cross section 4, Ay, sgft . . . ¢ . o ¢ . 0,236
Blade outside perimeter, 15, ft e e e s e 4 e 4 e e e o« 0.2042
Blade inside perimeter, = 1lj 2, ft .. ... ... ... ... 0,131
Average radial distance, section 3, T3 av ft . o o 0 0o o oo 0.4917

Average radial distance, section 4, Ty, av ft . ..¢ .. .. +0.,3333

Length of chordwise trailing section, Jj, ft .. . . . . . « . 0.050
Length of spanwise trailing section, b, ft e e e e e e e 0.3333
Thickness of trapezoid at coolant passage, To, ft . . . . . . 0.021
Thickness of trapezoid at trailing edge, T, ft . . . . . . . 0.003
Thickness of rectangle, T, ft ot B R I 0.010
Temperature at blade root, Tp, F . . & o ¢ ¢ ¢« o o0 ¢ o o & 330
Thermal conductivity, kg - :

Btu/(hr)(£t)(PF) + ¢ v v v v v i e e e e e e e e e e e .. 154210

Btu/(sec)(Ft)(CF) « «v « o o ¢ ¢ « v e s v o+ o o . 0.00417 - 0.0583
Cooling-air (in contact with rotor) temperature, Tg, °F . . ... . O
Heat-transfer coefficient between cooling air and rotor, hg

Btu/(hr) (sq £E)(OF) v v v v i e v e v e e e e e e e e e e e . 30

Btu/(sec)(sq ££)(OF) « v v v v v it i e e e e e e e 0.00874
Average value in section 3 of 11,3hi,3 ‘ .

Water, Btu/(hr) (££)(OF) + « v ¢ v & ¢ v v v e v v o . o . . . 30,360
_ Btu/(sec) (F)(OF) v ¢ v v v v v e v ee e e e e 8.433
Ethylene glycol, Btu/(hr)(ft)(®F) . . . . . .. . 8305
‘ Btu/(sec) (F£)(OF) .« « v v v v v v o o o . 2,307
Kerosene, Btu/(hr) (£t)(OF) . v v v v v v v v v v v v v 0 . 6533
o Btu/(sec) (£1)(OF) « v v v v v v v v o v e v e 1.815
Average value in section 4 of 1i;4hi, :
Water, Btu/(hr) (F£t)(OF) « v v v v v v v v v v v e e e e e 6107
Btu/(sec) (f£)(OF) v v v v v v o v v v v v o o s 0 . 1.696
Ethylene glycol, Btu/(hr)(ft)(°F) e e e e e e e 1656°
Btu/(sec) (££)(OF) . « « v v v o v v v v . 0.460

Kerosene, Btu/(hr)(ft)(°F) . . . .. 1318
Btu/(sec) (£t} (°F) . . . . 0.366

>

.
.
.
.
.
.
.
.
.
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One-Dimensional Spanwise Temperature Distribution

The constants of integration were found by solving equations (5)
to (10) for the specific examples stated; a blade thermal conductivity
of 15 Btu/(hr) (£t)(°F) was used. Blade coolant passages extending to
within 1/16 inch of the blade tip were considered in blades with spans

ranging from lf% to 4%5 inches, with water as coolant, and for effective

gas temperature ranging from 2000° to 5000° F in order to study the
effect of blade length on the temperature distribution. The temperature
distributions were determined, by use of the calculated integration
constants, from equations (1) to (4) and are shown in figure 6. The
general trend shown is a nearly constant temperature about equal to the
coolant temperature through the rotor, a sharp temperature increase
through the rim and the base of the blade, a nearly constant tempera-
ture (called the prevalent blade temperature) through the liquid-cooled
part of the blade, and another sharp temperature increase to a value
approaching the effective gas temperature in the uncooled part of the
blade. From figure 6, it can readily be seen that the same prevalent
blade temperature prevails through blades of various lengths cooled to
within 1/16 inch of the blade tip.

In order to study the effect of coolant-passage length on the tem-
perature distribution, other calculations were made, with water as

coolant and for an effective gas temperature of 2000° F, for a 4&% inch

blade span but with blade coolant passages of various lengths. The
calculations, again determined by use of equations (1) to (4), are
plotted in figure 7; for short coolant passages high-temperature gra-
dients exist throughout the blade whereas for long coolant passages
practically no temperature gradient exists throughout most of the
blades. .

~ Calculations were also made for the same blades with 4-inch cool-
ant passages and for an'effective gas temperature of 2000°.F with
water, ethylene glycol, and kerosene considered as possihle coolants.
These results showing the effect of various coolants on temperature
distribution are given in figure 8. For an effective gas temperature
of 2000° F and a coolant flow of 7 pounds per minute per blade, the
. prevalent blade temperature in degrees Fahrenheit is about one fourth,
two fifths, and one half of the effective gas temperature for water,
ethylene glycol, and kerosene coolants, respectively. The consideration
of ‘cooling air on the outside of the rotor accounts for the rotor tem-
perature being less than the coolant temperature. _

Finally, for the spanwise case, figure 9 shows the variation of
coolant flow on prevalent blade temperature. The prevalent blade tem-
perature decreases with increasing coolant flow; the rate of this
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decrease diminishes as the coolant flow increases. It can be seen that
the cooling effectiveness, defined as (Tg,e'TB)/(Tg e-T7), changes -
- R=7/

from 0.68 to 0.91 for water as the coolant flow is increased from 2 to
16 pounds per minute per blade. - The §uperiority of water is apparent.

\

Three-Dimensional Temperature Distribution through
Simplified Trailing Section

A three-dimensional temperature distribution in a turbine-blade
trailing section approximated by a rectangular parallelepiped (fig. 2)
was determined by use of equation (12) (approximated by use of m= 1
only, as previously mentioned). The constants j%? 2,, and N, wvere

obtained from equations (16),V(i7), and (18), respectively, the con-
stants ng,n and 0y , from equations (14) and (15), respectively,

and the constants .4),n and #),n from equations (13). The distribu-
tion was found in two planes representing the maximum and minimum tem-
peratures for the Z-axis; the first plane was located at the side of
the cross section of the rectangular parallelepiped and the second
plane was on the median plane through the rectangular parallelepiped..
The results are shown in figure 10(a) for an effective gas temperature
of 2000° F and a thermal conductivity of 15 Btu/(hr)(ft)(°F) and give
the temperature distribution at various distances from the coolant
passage. The curve labeled "approximation of temperature" in fig-

ure 10(a) is a one-dimensional chordwise distribution through the

approximated rectangular trailing section. Similar results, for ther-
mal conductivities of 120 and 210,Btu/(hr)(ft)(°F) are given in fig-
ures 10(b) and 10(c), respectively. Calculation of cos JViT/Z

(see equation (12)) reveals the temperature variation in the two planes
to be about 3.6 percent of 6 for a blade thermal conductivity of

15 Btu/(hr)(£t) (°F), 0.5 percent for a thermal conductivity of

120 Btu/(hr)(ft)(°F), and 0.3 percent for a thermal conductivity of
210 Btu/(hr)(ft) (°F). For a thermal conductivity of _

15 Btu/(hr) (£t) (°F), figure 10(a) shows a constant temperature for

the last three-quarters of the blade; that is, conduction to the rim
affects about the first quarter of the blade length. Figure 10(a)
also shows that the level of the temperature in the principal portion
of the blade rises rapidly as the distance from the coolant passage

is increased. Near the coolant passage, the distribution is in good.
agreement with the one-dimensional spanwise distribution presented in

“figures . 6 and 8. As the thermal conductivity is increased, as shown

in figures 10(b) and 10(c), the part of the blade affected by rim
conduction increases; for a thermal conductivity of

210 Btu/(hr) (£t) (°F), about two thirds of the blade length shows thi
effect. .
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One-Dimensional-Cho:dwise Temperature Distribution
through Simplified Shapes

Because the three-dimensional distribution resulted in a con-
stant spanwise blade temperature in the region of the blade beyond the
influence of rim cooling and because the critical blade point, as deter-
mined from a temperature-stress relation, may likewise be beyond the
region of rim-cooling influence, one-dimensional chordwise temperature
distributions were obtained. In order to compare the three-dimensional
distribution with a one-dimensional chordwise distribution, a rectan-

. gular trailing section was first considered. Figure 11 shows this com-
parison for an effective gas temperature of 2000° F and a blade thermal
conductivity of 15 Btu/(hr)(ft)(oF); the one-dimensional distribution
was determined by use of equation (19). From figure 11 it can be seen
that the trailing-edge temperature increases from. 1500° to 1850° F as
the distance from the blade root is increased from 0.25 to 1.0 inch for
the three-dimensional case, even for low-conductivity material. On the
other hand, in the region of the blade beyond the influence of rim -,
cooling (when the distance from the blade root is 1 in. or more), the
one-dimensional and three-dimensional results approach identity; for
such a region, a three-dimensional solution is unnecessary when low-
conducpivity materials are considered.

In order to more nearly approximate a blade trailing section, a
trapezoidal approximation was considered. For comparative purposes,
the trapezoidal and rectangular sections were constructed to have equal
‘lengths and areas. In general, however, the trapezoid is constructed
so that the thickness at the coolant passages equals one-half the actual
blade surface exposed to the coolant. This dimension, in turn, fixes
the léng?h of the trapezoid. ‘

[

The' temperature distribution. through a trapezoidal section was

obtained by use of equation (20)." Such a distribution, for an effec-

© tive gas temperature of 2000° F and a blade thermal conductivity of

. 15 Btu/(hr) (£t) (°F), is compared with the distribution through a rec-
tangular section in figure 12. The temperature distribution for the
trapezoidal section has a slightly steeper slope than that for the
rectangular. section at distances remote from the coolant passages and
the temperatures at the trailing edge and.the coolant-passage wall are
lower. Part of this lower temperature for the trapezoidal section is
due to the additional thickness of the cooling surface.

The effect of varying thermal'conductivity from 15 to
210 Btu/(hr) (£t)(°F) on the temperature distributions along the center
line of rectangular and trapezoidal sections is shown in figures 13(a)
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and 13(b), respectively. In each case, as thermal conductivity is
increased, the temperature distributions flatten and approach linearity,
decreasing in the trailing section and increasing near the coolant
passages. Figure 14 shows blade trailing-edge temperatures for various
thermal conductivities obtained by use of the rectangular and trape-

.zoidal approximations. Cooling is substantially greater for the more

representative trapezoidal section. For currently used high-temperature
alloys with thermal conductivities in the neighborhood of

15 Btu/(hr)(ft)(oF), figure 14 shows a trailing-edge temperature dif-
ference for the rectangular and trapezoildal sections of only about

60° F for an effective gas temperature of 2000° F..

Chordwise temperatures were also calculated, by use of equa-
tions (22) to (27), for concentric circle annuli and parallel-plate
approximations. These temperatures are not plotted in this report;
they were only used as initial approximations for the two-dimensional
numerical calculations made for an actual blade shape.

Two-Dimensional Chordwise Temperature Distribution

Two-dimensional temperature distributions were determined for an
actual blade shape by application of the relaxation method. Separate
calculations were made for the cases where an average gas-to-blade
heat-transfer coefficient and where a typical variation in the gas-
to-blade heat-transfer coefficient as shown in figure 15 were consid-
ered. Initial trial solutions were determined by use of equation (20)
for the tralling section, equations (22) to (24) for the leading sec-
tion, and equations (26) and (27) for the thin-wall sections of the
blade near the coolant passages. A comparison of the temperature dis-
tributions for assumed variable and constant gas-to-blade heat-transfer
coefficients, for an effective gas temperature of 2000° F, ‘an average
coolant temperature of 200° F, and a blade thermal conductivity of
15 Btu/(hr) (£t) (°F) is shown in figure 16. The blade temperatures
obtained are nearly the same for both cases except at the leading and
trailing edges. Use of the average coefficient gives a conservative
estimate of the trailing-edge temperature and a temperature that is
somewhat too low near the leading edge.

A calculation has also been made for the average gas—to-blaée
coefficient and for a blade with a thermal conductivity of
100 Btu/(hr)(ft)(oF). A comparison of this solution with.the similar
one for a thermal conductivity of 15 Btu/(hr)(ft)(°F) is shown in fig-
ure 17. The high-conductivity blade has about a 250° and a 600° F
lower temperature than the low-conductivity blade at the leading and
trailing edges, respectively. Little temperature difference is obtained
in the center of the blade, where extremely good cooling prevails.
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The results of the various relaxation solutions are in good agree-
ment with the one-dimensional chordwise approximations that were used
to start the numerical solutions;. that is, good representative tem-
peratures are obtainable by use of one-dimensional chordwise approx-
imations. :

In order to determine the effect of distance from the coolant
passage on the trailing-edge temperature, trailing-edge temperatures
were determined for the liquid-cooled blade with five coolant passages
shown in figure 18. Various length trailing sections were obtained by
successively reducing the length of the trailing section shown in
figure 18. The temperatures were determined by use of equation (20)
and are shown for various thermal conductivities in figure 19. The
trailing-edge temperature is reduced almost linearly as the length of
the trailing section is decreased. The effect of thermal conductivity
also decreases as the trailing-section length is decreased.

NONDIMENSIONAL CHARTS

The availability of several nondimensional charts, to be subse-
quently. discussed, eliminates the necessity for some numerical calcu-
lation. -

The prevalent blade temperature is given by equation (2a) as

' holoT + hi, 21i,2T
/ R (z2).
A 0’0 i,2%1i,2

After division by bi,2li,2, this equation may be written
\ . -

T _ T14-ATg,e
B,p 1+ A
where
_ holg
A = E__ET___
i,2%1,2

Subtraction of Tg e from both members of this equation leads to

Tg,eB,p _ 1
Tg’e-T'Il 1+ A




.Qf the temperature ratio
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' Tg e-TB,p
The plot of ——i——:Ti— against A 1is shown in figure 20. For
: . g el : Tg)e_TB:P
any given blade, A can be evaluated and the value of T g can
‘ g,e™"1

be obtained. Finally, for the desired effective gas and coolant tem-
peratures, a single simple algebraic operation results in the desired
value of the prevalent blade temperature.

Another nondimensional chart, which gives the one-dimensional
chordwise temperature distribution thfough a rectangular section, is
also presented in figure 21. The temperature distribution through a
rectangular section is given by equation (19), \

— - 1
B (Tg,e TZ) cosh @y

T - = 19
® sinh ®©j' + = cosh @j!
B .

For a given turbine and set of turbine operating conditions, values
can be determined for all the quantities in this equation. A semilog
plot with oj' as abscissa and hi/pkB as a parameter results in a

nondimensional cooling ratio

Tg,e_TB

(Tg,e'Ti) cosh @y’

-

The addition of a second quadrant, with cosh @y' as parameter, yields
T -T '
values of the temperature ratio TEQ__TE "at any point in the rectan-
gse 1
gular section. This 'chart is given in figure 21. The chart is used
as follows: A vertical line is constructed through the calculated:
value of the abscissa ®j' and is extended to the calculated value -of

‘the parameter hj/¢kp. From this point, & horizontal line is drawn,

extending into the second gquadrant, and intersecting several lines
representing various values of cosh ®y'. Vertical lines from the
intersection points to the abscissa in the second quadrant give values

Tg,e'TB

g,e'TZ _
gular section. Values of the temperature Tpg are then easily
obtainable. ’

at various positions in the rectan-
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In order to illustrate the use of figure 21, a rectangular section
with dimensions equal to those previously tabulated will be considered.
For a blade thermal conductivity of 15 Btu/(br)(ft)(°F) and outside and
inside heat-transfer coefficients of 222 and 2370 Btu/(hr)(sq f£t)(°F),
respectively, the parameters used in. figure 21 are evaluated as follows:

1 1
: 2 = .
. [2bo\ . 2(222) |° :
PJ = (?§7> J = [;5 501 (0.055) = 3

hy 2370

PEg = (52.4) (1) ~ 27

The point represented by these parameters is given by the symbol O

in the first quadrant of figure 21; the symbol 0O on figure 21 desig-

‘nates the corresponding point for a thermal conductivity of

210 Btu/(hr)(ft)(°F). A horizontal line passing through the

symbol O and intersecting the family of lines in the second quadrant

of figure 21 gives as the abscissa of the second quadrant the values of
. T T .

the temperature ratio __g;TB for various positions in the rectan-

gse 1 '
gular section as. follows:

T, T -
82 B _ 5075 for oyt =0
Tg,e-T1 ' _

= 0,115 for ®y' =1

= 0.285 for Qy' =2

= 0.75 for @y' =3

For Tg,e = 2000° F and Tj = 200° F, it follows that the blade-
temperature calculation results in the following values:

1865 for ®y' = 0 (trailing-edge temperature)

TB =
= 1783 for Qy' =1
= 1487 for Qy' = 2

‘

650 for ®y' = 3 (temperature at coolant passagée)

These results compare favorably with the calculated distribution shown
on figure 12, _ .
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CONCLUDING REMARKS

Analyses have been presented for obtaining spanwise temperature
distributions near a coolant passage, chordwise distributions (for both
approximated and actual shapes) in regions where conduction to the rim
is inappreciable, and three-dimensional distributions for approximated
blade shapes. Numerical examples based on specific blade configurations
and heat-transfer coefficients available from unclassified sources have
been presented. Although the analyses are exact, the numerical values
used in the calculations may not necessarily be the same as those for
cooled turbines. The numerical examples have been presented to indicate
the range of applicability of the various analyses and to present the
general nature of temperature distributions in liquid-cooled turbine
blades. In the following paragraphs the more important results are
reviewed to show their general guidance for design studies.

The three-dimensional temperature distribution includes conduction
to the rim, whereas the two-dimensional and one-dimensional chordwise.
distributions do not. Consequently, the temperatures obtained from a
three-dimensional investigation are less than those otherwise obtained.
As a result, it is advisable to determine the simplified solutions
first; if the temperatures that result are not excessively high, a
three-dimensional investigation is unnecessary; whereas if the resulting
temperatures are large, a three-dimensional investigation can be made.

The two-dimensional solution just referred to is of necessity a
numerical solution (because of the varying boundary condition caused
by the shape of the blade). It has been shown by the calculations pre-

. viously presented that for uniform outside heat-transfer coefficients,
simplified one-dimensional distributions were in excellent agreement
with the two-dimensional relaxation solution. When variable outside
heat-transfer coefficients were considered, the simplified solutions
indicated optimistic results and the two-dimensional relaxation solution
appears essential. Increasing blade thermal conductivity results in
raising the cooling surface temperature and lowering the trailing-edge
temperature and thus is a more uniform blade temperature.

One-dimensional spanwise distributions proved to be valid near the
coolant passages. The temperature of the cooled part of the blade
(prevalent blade temperature) was independent of blade length. If the
inside heat-transfer coefficient is increased, the prevalent blade tem-
perature decreases; it was shown for a particular case that the prev-
alent blade temperature for water as coolant was only about half that
for kerosene as coolant.

Lewis Flight Propulsion Laboratory,
National Advisory Committee for Aeronautics,
Cleveland, Ohio, -October 27, 1950.
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APPENDIX A

SYMBOLS

The following symbols are used in this report:

M,N,0,P

*J

C

11

area of metal, sq ft
blade span, ft

constants of integration

diameter of circle used to approximate leading section
of blade, ft

ratio of distance between net points O and 5 and net
spacing

Hankel functions (special kinds of Bessel function)

heat-transfer coefficient, Btu/(sec)(sq ft)(°F) or
Btu/(br)(sq £t) (OF)

Bessel functions

chordwise distance from blade trailing edge to
coolant passage, ft .

1

h, )2
kp sin ¥
thermal conductivity, Btu/(sec)(ft)(°F) or
Btu/(hr) (£t) (°F)

perimefer, ft
points on figure 3

heat flow, Btu/sec
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r radial distance from hub of turbine, ft A -
T temperature, °F
x ~ distance from blade tip to blade element, ft
y distance from trailing edge to blade element, ft
Z  number of blades
z distance from median plane of section to blade element, ft
r Hl(iél)Jo(iCZ) +'iJl(iCl)iHo(i§2)
"
. 2
. Tp(1-tan ¥)

¢ Ky +. 2 tan ¥
6 Tg,e'TB
A _lolo

hi 2li)2
(o) distance between parallel plates, ft
T thickness of trailing section, ft .

1
2

o 2ho>

kBT

To= T
-1 (2 1

¥y tan ( R )
Subscripts:

air

a

NACA TN 2321

av average

B

e

blade

effective»
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g gas
i inside (inner with D)
1 liquid

m
} summation indices . ) '

n

o) outside (outer with D)
P prevalent

R rotor

r blade root

rim rim

T blade tip

,l ]

2 denote sections in spanwise investigation when used with x;
> 1 and 2 denote trapezoidal thicknesses at trailing edge

3 and coolant passage, respectively, when used with T

4 J
| . denote end near blade tip and end near rotor hub of various

sections : :
B‘f .
Superscript:

prime linear dimension increased by T/2

Functions:

hO-I'O
kphp 1

o] -

27
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ol

] I

1
; 2
P <h07'o + 'hi,211,2>
kphg 2
1
5
o (holng,e + hi,Zli,ZTZ)
kphp 2
1
- 2
: 4nry avha + (By 313 3)ay
| Krimfrim
7 ' 4“r3,avhaTa * -(hi,Sli,3)avT7,
T~ kK. A
L rim rim
9 =4 )2
é
1
- 2
o 4ﬂr4,av a ( i,4 1,4)av
i kphg
5 Anry ayhaTe + (hi,47'i,4)avTZ:I

s

X, %, M4, ), integration constants (See equations (13) to (18).)

- 0,2,2
Z ko A

m,n

. . st
sinh ‘/zm’n J' o+ hi cosh “dm,n J

NACA TN 2321
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4h n-1
. (-1)
f o (TgemTy) 3o

sin an'

g;l 2(Tg,e'TB,r)(- gn‘j'

)

29
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APPENDIX B
ONE-DIMENSIONAL SPANWISE TEMPERATURE DISTRIBUTTON

The heat balance for the uncooled sectlon of the blade (flg 1,
section 1) is given as follows:

dTB 1

Heat entering by radial conductlon = - kBAB l dx

Heat entering si@es by convection = holo(Tg,e’TB,l) dxy

Heat 1 a&i by radial conduction = - k A g dTB’l dx
eat. leaving by =7 %BUB,1 &, 1 !
The heat-balance equation is
dT
kBAB 1 dx + hozo(Tg,e TB l) dxl =
w&lu
%%1dx Tg,1 * &,
or
2
dT , .
'B,1 2 2
2 - TB,l = - Tg,e (B1)
1
where
, 1
h 1l \2
o = (___u)
kpB,1
A solution is
, TB,l = Tg,e‘-_cl cosh J{(Xl-+cz) ‘ (1)

where Cl and C2 are integration constants.
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'For the cooled section of the blade (fig. 1, section 2) the heat
balance is given as follows: .

. dT
Heat entering by radial conduction = - kBAB 2 di’z
’ 2

Heat entering sides by convection = holo(Tg,e'TB,Z) dx,

ary ,

a
- Kphp o d_x'g(TB,z tax, &

Heat leaving by radial conduction

1. (T

hi,2ti,2 B,2°T1) &Xp

Heat leaving by radial comnvection

The heat-balance equation is

aty .

- h - =
kBAB,Z dx2 .+ olo(Tg,e TB,Z) dxz

a 4Tp 5
— ———d
- kafp,2 T (TB,Z t T, e )* by 2%5,2(Tp,2"Ty) dx;
or
2
a“m
BéZ e - . 9P
™ B,2
” .
where
1
Bl + h: ols 5\2
070 i,2%i,2
SRV
Bhp,2
and

] I

(holng,e + hi',zli,sz)

kphp o

3l

)

(B2)
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A solution is

- %Bx
e 2

- C, (2)

where CS and C4 are integration constants and

T =
B,p

o
(EZ) =-holng,e + hi,zzi,ZTl
% Bolo + By 284,2 ,

For the rim section (assumed constant area) of the.rotor (fig. 1,
section 3), curvature was neglected because the rim thickness was small
in comparison with the rim radius. In addition, average values of

h: =zl; and rz were used. The heat-balance equation reduced to -
i,3%1,3 3

2
aT . - Co ’
rim 2 .
dx 2 é Trim = -grz : (B3)

5 . ,

where
22 - 4nrz ayhy + (4 315 3)ay
K imbrin

and -

2 4nr3 aybaly + (hi,3zi,5)ale

7 - KpimPrim

A solution is

é - &
T = @+ Cee 3 *3

rim + Cge

5 (3)

where 05 and Cg are integration constants and where
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For the rotor section (assumed constant strength) (fig. 1,
section 4), average values are used for hi,4zi,4 and for r,, and an

approximate solution (as in section 3) is obtained. Because the rotor
is liquid-cooled, such a solution is adequate. The resulting differ-
ential equation for this section is

2

amT
R 2

’—Z—IZTRz-f (B4)

dr
where

sz'; 4Irr4,avha + (hi,ézi,4)av
and
42 4nTy avhaTy + (hi,4li,4)avT1
KpAg
A solution is
. TR = £ + C7 cosh gfr | (4)

where C; 1is an integration constant and where

S AR

The boundary condition

aT

R
T = O for r=20

has already been applied.
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APPENDIX C
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THREE-DIMENSIONAL TEMPERATURE DISTRIBUTION THROUGH

SIMPLIFIED TRAILING SECTION

A three-dimensional temperature'distribution through a rectangu-
lar parallelepiped, an approximation for the trailing section of a

liquid~cooled turbine blade, is given

Heat entering element from top =

Heat entering elementvfrom right

Heat entering element from front

Heat leaving element at bottom =

Heat leaving element at left end

Heat leaving element at rear = -

The heat-balance equation is

Ty

o JT |
B | ‘B _
—deYdZ-a—deXdZTy—deXdy—E—

oTg azan

‘as follows (fig. 2):

BTB
g B
B‘I‘B N
end = - kB dx dz —3§
BTB'
=k & dy =
.' 2
aTB 3 Ty

-dede T}E'Fazd.x
x .

T BZTB
=-k'Bd.XdZ w“}'ayz dy

.

o, 32
k, ax dy —£+BZBBZ
Z

OT.

oTg BZTB

_dey-dz -&+6x2 dx -lSBdXdZ Ty+ay2 dy -

L
0Ty 0Ty

d

. zZ
ZZ
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or .

2 .
) Ty . a TB
x> 3y’ Bzz

B _ o ()

Simplification in applying boundary conditions results from the use of
the effective gas temperature T instead of the blade temperature

TB as the reference temperature, that is, by use of the substitution
9=Tg)e"'TB
" Equation (Cl) then becomes
2, 2 2 : :
e, % % _, (11)

| Bx'z By'z 3z°

) The erigin of the coordinates chosen is shown in figure 2; the
plane = 0 1is the median plane of the rectangular parallelepiped
and from cons1derat10ns of symmetry no heat flows across this median
"~ plane. The boundary conditions to be applied are ' A

E:BT?' =0 whem x'=0 - (c2)
3%2 =0 when y' =0 | (c3)
3 _ o | S
=0 when z =0 C4 :
% (o8)
6 = Te,e" T, x when x' =Db' (c5)
ky 6_ = hy (T Tl-e) " when 3(" = j _ , (c6)
and
06 '
kg 5, = - B0 when z = T/2 , , . (e7)

. "A solutfion of equatlon (11) satlsfylng the three boundary con-
ditions' (C2), (C3), and (C4) is
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(=] (-]
. 8= 22 (xm,n cos ¥,x' cosh Ay, ny' cOS Nz +
m=1 n=1 . ’
t 1
O n cosh g,m,nx cos 2 y' cos ,,sz) (12)

where X, ¥, 4, N, 0, P, and 2 are constants. Relations
among these constants are-

L 2o 2, 2
A T M T )
(mv:n =1,2,3, - - .) (13)
2 2 2 : .
g’m,n =Wp t 2,

The boundary condition expressed by equation (CS) leads to a
determination of ¥. Substitution of equation (12) into equa-
tion (C5) gives .

(=] (o]
— ’ ' !
| Tg,e_TB,r = Z Z (‘-’{m,n cos .Z’nb cosh "dm,ny cos ¥z +

m=1 n=1l
1 1] .
On')n cosh gﬂm,nb cos 2 y' cos "sz)~ -,(CB)

It can be seen that the first member in the double sUmmatioﬁ in equa-

tion (12) vanishes when cos %,x' = 0; hence, if

= (n - %)%"
from equation (C8) it follows that
(-] (-] :
Ty, e~TB,r =Z Z On,n cosh P, nb' cos 2py' cos N2 (c9)
m=1 n=1 - ) . .

This is a Fourier development along y' and =z.
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. The development of equation (C6) leads to a determination of
'2,. Equation (C6) becomes, with the aid of equation (12) and its
derivative
(-] w® ) . .
' : s -
ZZ kg E{ (cos an ) -/lm,n svlnh ‘/Im,n‘] cos ./1{nz
m=1 n=1
0m;,“‘n (cosh g’m’nx') 2, sin 2,j' cos ./sz:]
(-] o ) )
= Z Z hy (Tg,e“T'L'xm,n cos £,x' cosh Ay 3" cos Nz -
m=1 n=1
@m,n cosh g"m’nx' cos 2,j' cos ./sz) - {c10)

In order to simplify equation (Cl0) at the boundary when y' = j' and
to solve for the constant Qn, the second summation in the left member

is equated to the last summation in the right member term by term. Then

o o

m=] n=1
h; cosh ./lm’n,j') cos v_?nx' cos  NpZ (c11)

and

© ™ ' .
Z:ZKB @mn(cosh g’ x) 2, sin 2 j' cos "sz'

C® i
= E E hy @m,n' cosh Q’m,nx' cos an' cos Jiqnz (c12)
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The sums are equated term by term. Therefore, 2.

n 1s determined as
any solution of

hyj!
h k
sy L L 7B
tan’(gnJ ) - kBQn —'anl (17)

The development of equation (C7) leads to a determination of e

©

kBEm cos .Sfx' cosh ,/t <,V sin _/V )
)

i

¥

)

1 i I
@m n cosh g’m’nx cos gny' (.,Vm sin /Vm ZEI

Lo od x ‘
Z z xm n Cos £px!' cosb Ay, nY' cos A :2[ +
m=1 n=1
\@m,n cosh 9 nx' cos 2py' cos My I) (c13)
or
hoT
h : ZKB
tan .A/ I = o = (18)
m2 Kk
B/m _@
2
The possibility of determining values of X and @m,n to

satisfy equations (C9) and (Cll) has been establlshed in textbooks on
Fourier and other harmonic series (reference 7, pp. 118-121), and it
is only necessary that the values determined define a convergent
series. ‘

Values of X, , @re determined by integrating equation (C11)
2 . ’

between the limits x' =0 to x'=Db' and z=0 to z = T/2 and
substituting the values previously determined for _t{n and ‘/Vm in

equations (16) and (18). The integration is accomplished in two steps
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using the functions 'cos .‘t’s x' dx' and cos./i(j z dz as multipliers,
vhere s and v are integers. For abbreviation,

% = kpdy p sivhdy 3" + by coshdy nj' (c14)
- Then
rx'=p' > '
Z gx cos/z f cos _{nx' ax'
x'=0 '
=b' '
= hi(Tg,e'Tl) / cos ¢ x' ax! - (c15)
X'= ' -

because all thé terms

b R
£ cos an'. cos £ x' dx'

vanish if s 74 n. Integration of equation (C15) and substitution of
limits leads to the result

ad cos./V z sin 2 .‘z?nx' '
Z EX m,n 22, Lx' + —— X
m=1 ' ‘

~

. R~ _
(T, .-T,)
= h.[:——-——g’ ! sin £ x! (cie)
1 -(fn n 0

or

=R [, sin2gp
Z@j{m,n cos Mz |\b' + ra

" . . sin:fnb' :
= 2hi(Tg,e—Tl) — , - (c17)

n
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When equation (16) is used for- ¥,, there results

n-1

e -] . .
_4 (-1) "~ _
Z FAm,n cos MpZ = % hi(Tg,e_Tl) (2n-1) ~ %

m=1

Whenequation (C18) is integrated in terms of 2z, using the
multiplier cos,,dvz dz, it follows that

=I =1
272 =2
: 2 o ;
. cos' ./sz dz = & _ cos _A{nz dz

=0

BN

m,n

because all the terms

g
2
\/;)' cos Mz cos M,z dz

vanish if m # v. Upon integration,

T :
: 2 T
14 sin 2 #,z Sa 3
2%’n<./1/mz + ———2—2-> = = (sin_/i/m'z)z
My o Hu /0
or
I Csd I
-~ I+s1n 2 > -2‘9}1 mn.A{nz
m,n\ 2 2‘,% - Jym
Therefore,
2 Sln-/%n% 1
X = -
m,n 1 . NZ
4 “‘§n21+81n2‘/1/m2

(618) _

(c19)

(c20)

(c21)

(c22)
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' Similarly, from equation (C9) it is found that

siny X ‘
2
s =27 m : LN (c23)
m)n n ‘A/ I Sin‘zﬂ I
m 2
. cosh g)m nb"» 1+ ——-—-——;;—
, —
: ZJV >
where
8in 2..j" , .
n 1
= 2(T. - - 24
Ty = B g€ TB,r) 23" sin 2 2,J" (c2e)
1+ g gnJ'

Finally, substitution of equations (C14) and (C18) in equation (C22) and
substitution of equation (024) in equatlon (023) lead to the follow1ng
values of the coeff1c1ents .)f and @

C T .
(_l)n-l Sln‘/Vm > 8hi(Tg,e Tl)

HXm,n = 7(2o-1)
2 = T . T
My sin 2 4 =
1+ ———?—
l .
- — - )~ (14)
kB"dm,n 81nhﬂm,ng + hy cosh_/lm’nJ )

and

. . 81 I
” sin 23" 4(Tg,e'TB,‘r) sin A
n -_— 21 . ']
m,n QnJ . sin 2 Qna v I
X 1 4 —m——— m 2
223"

1 1 " |
~ - : (15)
sin 2 /m -_ré cosh g’m, nb

T
2_/1/z

1+
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APPENDIX D

ONE-DIMENSIONAL CHORDWISE TEMPERATURE DISTRIBUTION

THROUGH SIMPLIFIED SHAPES

Rectangular trailing section of blade removed from influence of
rim cooling. - The heat balance for an element of the rectangular
section is given as follows (fig. 4(a)):

ae .
Heat entering by conduction (right end) = kT ol

Heat entering by convection (sides) = 2h,6 dy
' | 2

Heat leaving by conductlon (left end) = kT (99 + 4 g dy)
dy
The heat-balance equation is
39 4 2n0ay = kT 5‘1-Q+92—9d§>
Ky dy " ° - dy = gy2
or
2
L2 -9% (p1)
dy
where
1
2h_ 2
= (2
- (5%)
A solution is
6 = Cg cosh P(y + Cg) ‘ .(D2)

vhere Cg and Cy are integration constants. The boundary con-
ditions to be applied in the evaluation of the integration constants are
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de

kgl &7 = hyT(Tp-Ty) = hyT(Tg o-Ty-6) when y '=:] _ (D3)
and
as ,
Xy ol h,8 when y =0 (D4)

\

From equations (D2) and (D4), it follows that
kpCg® sinh (@Cg) = h,Cg cosh (PCgy)

. and therefore

h
-1/"o
tanh ('k““) tanh‘l(%) . . .
Cg = P =TT 9 ~2 . (D5)

when T 1is not too large. Calculations revealed that the difference
between Cg and T/Z varied from 0.4 to 0.5 percent for the values of .

® considered and had no appreciable effect 0.005 foot or more inside-
the trailing edge. X

From equations (D2), (D3), and (D5) it follows that
: 1) = BT ST - ICXL
kTP sinh (@J') hl [Tg,e T,-Cg cosh (GPJ_)]
and -therefore:
hy

ig(Tg,e'TZ) (D6)

Cg = n; .
8, ® sinh (ij ’) +,== posh.(q’j ‘)

i

Substitution of equations (DS) and (D6) in equation (D2) leads to the
final equation

hy

EE(T -Tﬁ coshﬁpy')

g,€

(19)

D
1

; e
@ sinh(Pj') + é cosh (@)
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Trapezoidal trailing section of a blade removed from influence of
rim cooling. - In reference 8, the temperature-distribution equation
along the axis of a trapezoidal section is derived. The solution
obtained is expressed by the relation

6.= C;oJ,(1t) .+ ¢y 3E (1) : (D7) |

where C and Cll are integration constants, JO and iHO _are

10
Bessel functions, and { 1is defined as

. - tan V)
2 2 Tl(l .
= 4K v+ D8
¢ [y 2 tan v (D8)
where
h
2 (o)
K= kp sin ¥ (D9)
and
N _. TorT |
¥ = -tan 1(__2_3_;) - (D10)
The constants Clo and Cll -in equation (D7) may be evaluated by
application of the following boundary conditions:
de _ t _ N - :
A O when y' =0 (p11)
and
k, - n (T 7 -8) when y' = j' | (D12)
B d@y' -~ "i‘'g,e”"1 y = J
or
F =0 when {=(, (D13)

and
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2
—Eé- = hi(Tg,e-T-L-O) when g = CZ ) (Dl4)
o ar : :
It follows from equation (D8) that when y' = 0O,
1
['rl(l - tan ¥)]2
17 &[T T tan v (D15)
‘and when y' =3,
_ 1
Tl(l - tan ¥) 2 _
s 31
Cp = 2K|J' + = v (D16)
Differentiation of equéﬁibn (D8) gives
a _ ¢ as
= - - D17
® "2 TG . (D17)
hence, | .
ae a9

EE = 0 when E§T =0 ‘» | : .

From the properties'of,the Bessel functions,

aJg.' :
o )
Aand
dH,(y)
dy == Hl(y)

Differentiation of equation (D7) therefore gives

%% = - Cy,id;(18) + CllHl(iC)‘ ' ‘ (D18)
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and it follows that

C1oidp(167)
i = TEEG) o | (D19)

whep
= O
—E

From equation (D12), with the use of equations (D7) and (D17), it is
found that . _

kp fo- [ Cotdy(183) + C11H1 152)]
o hi[Tg,e'Tl'CiOJo(igz) - CpyiEy(i82)] ~ (p20)
The values of the integration constants Clo and Cll are now

found by solving simultaneously equations (D19) and (D20). Imsertion
of these values in equation (D7) gives the desired equation for the
temperature distribution through a trapezoidal section

‘h.§
Lz -T,) [H (it )J (1g) + 1J (1; )iH (1;)]
e, B

6 = _ ~ (20)
. [1;1(151).}11(1@2)] [H (iC )iJ (1¢ )] t =3 kB r

where
D' = H (18I (18;) + 1, (1L,)1E (1)

For a wedge, T, % O. Then, from equation (D15) it is seen that

4 = 0, and as a consequence, H,(if,) = » and 1iJ,(if,) = 0.
Equation (20) then simplifies to
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h,
12 (Tg,e-T3) Jo(it)
ZszB ’ -
0= 57 (21)
22 3,(185) -1 (i)
2K.kB

Concentric circle annulus approximation for blade leading edge. -
The derivations of the equations giving blade temperatures at the inner
and outer edges of the annular region are given as follows (fig. 4(c)):

D . . .
. (o
Heat entering from hot gas = 21 — hy(Tg o-Tp o) (D21)
Heat flowing over circle with diameter D = g ——E (p22)
a(2)
Heat leaving to coolant = 21 - hijTB,i-Tz) A (D23)

A solution of equation (D22) is

T, =(E%Eg)l°gé<912 g) | (D24)

where C is an integration constant. Application of the~boundary

12
conditions
TB = TB,o when D = Do
and
TB = TB . When D = D,
,1 i

"to equation (D24) results in the elimination of C12 and an evaluation
of Q, namely, ' ,

O G e g
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or

2y (T o-Tp 1) '
Q= Tg S

(D25)
lbge E ‘
1

From simultaneous solutions of equatlons (D21), (D23), and (D25) it
is found that

' T, -T
TB g,e "1 (25)
0 B1 o 2 .2
1+ Dy <D by Dihi>
loge Di

From a 51multéneous solution of equation (D24) and equation (D24) with
the inner boundary condition applied and use of equation (D25), it is
found that

(T oT5,0) . (28)

From equations (D23)-and.(D25) and from equations (D21) and (D25)
there are obtained ' ‘ .

2kg
D h log
e Dl
and
T80 = Tgre " ' (TB,O B, - (23)
: D h 1oge D

Equations (22) to (25) express the bla@e temperatures in terms of known
quantities. : :
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Section of blade approximhted by parallel plates. - The derivation
of the equations expressing the blade temperatures at the inner and

outér edges of .a blade section approximated by a region between parallel
- plates is given as follows (fig. 4(d)):

Q = heat entering from the hot gas = ho(Tg,e'TB o)

Q = heat leaving to the coolant = hy(Tp 4-Ty)

Q = heat flowing through the section = — (Tg ,-Tp ;)

where o is thé distance between the plates.
results in the following system of equations:

kg

G (TB,O'TB,i) =lho(Tg,e'TB,o) = hi(TB,i-Tz) - “.  (D26)

Equating these heat £lows

A simultaneous solution of equations (D26) gives

v o T, + Th; (hoTg, e+h iT; ) ‘. |
TB,i = "'l-kB . . B . (26)
1+ E’H;E{ (h0+hi)
and
Tg,e +\0h 5 (hng,e+hiTl)

T = o1 (27)

B,0 ‘ kB '
Tt (Bt |

o1

From equations (26) and (27) it follows that

Tg e-Ty

.kB

TB,o'TB,i =

(D27)
1+ ‘

(ho+h1)
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Figure 1. - Arrangement of internal-cooling passages in turbine.
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Figure 2. - Rectahguiar parellelepiped used to épprOXimate
trailing section of 4-inch turbine blade for three-

dimensional analysis.~
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Figure 3. - Correction for heat received by trailing edge.
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. Tg,e dy
Liquida | =
coolant ¢ _= T
-— g€
at T, J; —_— _ ’
Tg: €
(a) Rectangle.
= J - -

1‘ — Tg,e
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coolant T, —— _ 1}1‘w

Tg,e

' at»TZ _L

(b) Trapezoid.

Liquid coolant
V at T.I,

Liquid coolant at Ty

(e) Concentric circles. . (d) Parallel plates.

Figure 4. - Simplified'shapes used in cne-dimensional
chordwlse analysis.
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Figure 5. - Turbine-blade section showing coolant paSsages.
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(a) Thermal conductivity of blade,
15 Btu/(hr)(ft)(°F). :

'Figure 10. - Three-dimensional temperature distribution
in tralling section of turbine blade.
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Figure 10. - Continued. Three-dimensional temperature

distribution in trailing section of turbine blade.
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Temperature, OF
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“(c) Thermal conductivitg of blade,
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Figure 10, - Concluded.  Three-diniensional temperature
distribution in trailing section of turbine blade.
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Figure 11. - Comparison of one-dimensional chordwise
temperature distribution through rectangular trailing
sectlon with three-dimensional temperature distribution
through rectangular parallelepiped. Thermal conduc-
tivity of blade, 15 Btu/(hr)(ft)(°F).
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Figure 16. - Effect of variation of gas-to-blade heat-transfer
coefficient on temperature distribution through cross section
of water-cooled turbine blade. Thermal conductivity of blade,
15 Btu/(hr)(ft)(°F); effective gas temperature, 2000° F; C
average water temperature, 200° F. -
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effective gas temperature, 2000° F; average water temperature,
200° F. ' '
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Flgure 18. - Cross section of water-cooled turbine
blade showing location and size of five coolant
passages used in determination of effect of
varying trailling-section length on trailing-edge
temperature.
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Analytical methods are presented for computing
temperature distributions in liquid-cooled turbine
blades or in simplified shapes used to approximate
sections of liquid-cooled turbine blades. Nondimen-
sional charts are presented for use in the simplifica-
tion of some of the calculations. TIllustrative
examples are also included to demonstrate the use of
the various equations and nondimensional charts and to
show trends of the various temperature distributions.

One-dimensional spanwise temperature distributions
gave satisfactory results near the coolant passages.
One-dimensional chordwise distribution gave a good
first approximation to the actual solution in cases
where rim cooling was insignificant.

Abstract

Analytical methods are presented for computing
temperature distributions in liquid-cooled turbine
blades or in simplified shapes used to approximate
sections of liquid-cooled turbine blades. Nondimen-
sional charts are presented for use in the simplifica-
tion of some of the calculations. Illustrative
examples are also included to demonstrate the use of
the various equations and nondimensional charts and to
show trends of the various temperature distributions.

One-dimensional spanwise temperature distributions
gave satisfactory results near the coolant passages.
One-dimensional chordwise distribution gave a good
first approximation to the actual solution in cases
where rim cooling was insignificant.

Abstract

Analytical methods are presented for computing
temperature distributions in liquid-cooled turbine
blades or in simplified shapes used to approximate
sections of liquid-cooled turbine blades. Nondimen-
sional charts are presented for use in the simplifica-
tion of some of the calculations. TIllustrative
examples are also included to demonstrate the use of
the various equations and nondimensional charts and to
show trends of the various temperature distributions.

One-dimensional spanwise temperature distributions
gave satisfactory results near the coolant passages.
One-dimensional chordwise distribution gave a good
first approximation to the actual solution in cases

-where rim cooling was insignificant.
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