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SUMMARY 

The temperature distribution in liquid-cooled turbine blades 
determines the amount of cooling required to reduce the blade tempera-
ture to permissible values at. specified locations. This report pre-
sents analytical methods for computing temperature distributions in 
liquid-cooled turbine blades, or in simplified shapes used to approxi-
mate sections of the blades. 

The individual analyses are first presented in terms of their 
mathematical development. By means of numerical examples, comparisons 
are made between simplified and more omplete solutions and the effects 
of several variables are examined. Nondimensional charts to simplify 
some temperature-distribution calculations are also given. 

It was found that for blade materials having low thermal conduc-
tivities (corresponding to blade materials in current use) a one-
dimensional spanwise temperature-distribution equation is applicable 
near a coolant passage. The cooled part of the blade, irrespective of 
blade length, was found to remain at a determinable uniorm temperature, 
called the prevalent blade temperature. The prevalent blade tempera-
ture increased about 150 0 F for an increase in the difference between 
the effective gas temperature and the coolant temperature of 10000 F 
f or a range of effective gas temperature from 2000° to 5000 0 F. 

In cases where rim cooling is insignificant, it was found that a 
one-dimensional chordwise temperature-distribution equation was suf-
ficiently near the relaxation solution for the actual blade shape for 
a first-order approximation.

INTRODUCTION 

A limitation on design and performance of aircraft gas-turbine 
power plants is the. strength of the turbine materials, which decreases 
as temperature increases. This limitation may be greatly alleviated, 
even when nonstrategic materials are used, by the application of tur-
bine cooling. An extensive study of both liquid and air cooling of 
turbine blades has been carried out at the NACA Lewis laboratory 
since 1945.
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The temperature distribution in a turbine blade determines the 
amount of cooling required to reduce the blade temperature to permis.-
sible values at specified locations. Analytical studies have been con-
ducted to predict temperature distributions in cooled turbine blades. 
A summary of the analytical methods developed for calculating spanwise 
temperature distributions for three types of air-cooled turbine blade is 
presented in reference 1. The present report summarizes the analytical 
methods developed for calculating temperature distributions in liquid-
cooled turbine blades. Parts of these analyses are presented in refer-
ences 2 and 3. 

Because the calculation of a generalized three-dimensional temper-
ature distribution through a liquid-cooled turbine blade is too tedious 
to be of practical value and because some knowledge of the distribution 
in a radial direction is necessary, the first investigation presented 
herein is limited to a one-dimensional spanwise distribution. This 
distribution, however, is only valid in the immediate vicinity of the 
coolant passages. In order to study more accurately the temperature 
distribution in the trailing section of the blade, a three-dimensional 
solution is determined for a rectangular parallelepiped used to approx-
ijnate a blade trailing section. This solution serves to determine the 
importance of blade thermal conductivity and of distance from the coolant 
passage. Because numerical calculations for a rectangular parallele-
piped produce a constant spanwise temperature in the region of the blade 
beyond the influence Of rim cooling (that is, in the region of the blade 
unaffected by conduction to the rim), one-dimensional chordwise tempera-
ture distributions are then calculated for shapes approximating various 
parts of a blade cross section; these investigations are valid for the 
part of the blade beyond the influence of rim cooling. Finally, a two-
dimensional temperature distribution through the cross sectiOn of an 
actual blade shape is obtained in order to determine the accuracy of 
the previously determined approximate solutions and to study the effect 
on temperature distribution of a peripheral variation of gas-to-blade 
heat -transfer coefficient. 

Numerical examples based on coefficients available from unclassi-
fied sources are included.

METHODS OF ANALYSIS 

One-dimensional spanwise, three-dimensional, one-dimensional 
chordwise, and two-dimensional chordwise temperature-distribution equa-
tions for liquid-cooled turbine blades or for simplified shapes used to 
approximate sections f liquid-cooled turbine blades are presented.
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For simplicity in presentation, the individual analyses are first formu-
lated in terms of the mathematical methods. The comparative applica-
bilities of the methods of analysis are established in later sections 
of the report. 

For all the analyses presented, the following conditions are 
assumed:

(1) The coolant temperature is constant at the average temperature 
of the coolant, or the coolant forms a constant-temperature reservoir. 
This assumption is valid when the change in coolant temperature is small 
in comparison with the temperature difference between the gas and the 
coolant.

(2) The blade-to-coolant heat-transfer coefficient is constant. 

(3) The thermal conductivity of the blade is constant. 

(4) The effective gas temperature at all parts of the blade is the 
seme.

(5) Radiation effects are considered to be included in the heat-
transfer coefficients. The following individual analyses are presented: 

One-dimensional spanwise temperature distribution. - A one-
dimensional spanwise ca1culation gives a radial temperature distribution 
valid in a part of the blade near a coolant passage. In this particular 
case, the radial temperature distribution is carried through the blade 
and through the turbine rotor. Heat transfer between the turbine rotor 
and the fluid on the outside of the rotor is assumed to take place and. 
a constant value of gas-to-blade heat-transfer coefficient is assumed. 
For simplicity, a blade of constant cross-sectional area and perimeter 
is considered. 

For blades with little taper, the method is applicable if average 
cross-sectional area and perimeter are considered. In general, however, 
a nume±ical solution is necessary for tapered blades. 

Three-dimensional temperature distribution through simplified 
trailing section. - A three-dimensional temperature distribution f or the 
trailing section of the blade is obtained. by considering this part of 
the blade as a rectangular parallelepiped. The blade-root temperature 
is considered constant, the gas-to-blade heat-transfer coefficient is 
constant, and it is assumed that no heat flows across the median plane 
Of the simplified blade section. 	

0
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An approximate solution for tapered blades is obtainable by this 
method if the blade is considered in small sections, average values of 
cross-sectional area and perimeter are considered for each section, and 
appropriate compatability relations are satisfied. 

One-dimensional chordwise temperature distributions through simpli-
fied shapes. - Rectangular and trapezoidal sections, concentric circle 
annuli, and sections between parallel plates are considered as the sim-
plified shapes nsed to approximate parts of a turbine-blade cross sec-
tion. The gas-to-blade heat-transfer coefficient is considered constant. 
For comparison purposes, the rectangular and. trapezoidal.sectioris are 
constructed so that lengths and areas are identical. 

Two-dimensional chordwise temperature distribution. - Numerical 
two-dimensional temperature distributions through the cross section of 
an actual blade shape are determined. Constant and variable gas-to-
blade heat-transfer coefficients are considered. 

One-Dimensional Spanwise Temperature Distribution 

The spanwise temperature-distribution equations for a liquid-
cooled turbine, a section of which is shown in figure 1, are derived In 
reference 2 and are reproduced in appendix B. In this spanwise case, 
the investigation was extethed froii blade tip to rotor hub. 

For convenience, the turbine was divided into four sections 
(fig. 1), and the temperature-distribution equations were obtained from 
heat balances for differential elements in each section. Inasmuch as 
cbordwise conduction was neglected, the following equations, valid only 
in the neighborhood of the coolant passages, were obtained. For the 
uncooled section of the blade (fig. 1, section 1), it was found that 

TB,l = Tg,e - C1 cosh d(x1 + C2 )	 (1) 

where C1 and C2 are inte'ation constants and 

1 

d	 00 
- \kBB,l 

(All symbols are defined in appendix A.) The value of C2 is deter-

mined by use of the boundary condition at the blade tip (where heat 
enters by convection only).
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_kBAB, 1 IS\1)T = h yA ,1 ( Tg, eTB,T) 

or

1• 

- h0	 IhoAB,l\2 
tath dC2 -	 - ok) 

For the cooled section of the blade (fig. 1, sectibn 2), it was 
found that -	 - 

ex2	 -x2 
TB,2 = TB,p - C3e	 - C4e	 (2) 

- where C3 and C4 are integration constants, 

	

ho l oTg,e + h,2lj,2T	
(2a) TB,p	 h010 + 

and.
1 

I 
(hI + hi,22j,2) 

/ 
The prevalent blade temperature TB,p is the temperature the blade 

would assume if no heat flowsin or out of the blade ends. 

For the rim section (fig. 1, section 3), with assumed constant 
area,

	

-	 x3	 -x3 
Trim = + C5e	 + C 6e	 (3) 

where C5 and C6 are integration constants, 

rtr	 hT ^(h i. ) Ti -	 - I	 3,av a -a	 - 1,3 i,3 av ? 
4icr	 h ^(h. 1. 

-	 L	 3,av a	 i,3 i,3 av
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1 

g- [4r3avha ^ (hi,32i,3)av2 I 
and. Ta is the fluid temperature on the outside of the rotor and. 
( hi,31 i,3)av is the average of the values of 11,3i,3 found for the 
blade coolant passages, the rim circumferential passages, and the radial 
passages through the rotor (fig. 1). 

For the rotor section (fig. 1, section 4), with assumed constant 
strength,

TR = /+ C 7 cosh)	 (4) 

where C 7 is an integration constant, and where 

. 47cr4,avhaTa + (hi,4ii,4)avT2 
41tr4,avha + (l1i,47i,4)av 

and

1 

I1tr4,avha ^ (hi,4i,4)av 

AR	 I 
Values of the six integration constants C 1, C 3, C4, C5 , C6, 

and C7 are found by solving simultaneously the six equations resulting 
from equating temperatures and heat flows at the various junction points 


	

of the four sections of the turbine. (Subscripts a. and 	 used after

numerical subscripts designate the end nearest the blade tip and the end 
nearest the rotor hub of the sections to which the numerical subscripts 
refer, respectively.) At the junctions of sections 1 and 2, 

Tg,e - C1 coshd(x1, + C2) TB,p -

	

- C4e	 (5) 

I	 3X	 -x	 \ 
kBAB,l, Cld sinhd( xl, + C2 ) =kBAB,2,a. çC3e 

2,a. - C4e 2a.) + 

	

hj,l( AB,l, - AB,2,a) (TB, P - C3e 2,a - C4e 2' - T1)	 (6)
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Equation (6) equates the heat leaving section 1 to the sum of the heat 
entering the metal of section 2 and. the heat entering the coolant at 
that part of the blade where the inlet and outlet passages are con-
nected. An approximation in the procedure has been introduced at this 
point because a separate blade section for the part of the blade con-
taining the connecting passage between inlet and outlet passages is not 
Introduced. A numerical calculation showed that use of such a section 
wouldslightly decrease the temperature at the blade tip. 

At the junction of sections 2 and 3,

- 
TB,p - C3e' - C4e'	 + C5e	 + C6e	 (7) 

2 ( 3e	 - C4e	
- ) + 

imAB,2hA	 (Tg,eTB, +C3e	 +C4e	
2) 

2

Arim / -x	 $x \ =	
B,2	

6e	 - Ce	 3)	 (8) 

Equation (8) equates the sum of the heat leaving section 2 and that 
entering section 3 directly from the hot gases to the total heat entering 
section 3. 

At the junctions of sections 3 and 4, 

gx3	 -x3 
+ C5e	 ' ^ C6e	 ' = + C 7 cosh I'r	 (9) 

	

-X3\	 AR 
kB	 C5e	 + G6e	

) =	
kfc sinhr 1	 (10) 

Three-Dimensional Temperature Distribution through 


Simplified Trailing Section 

The spanwise temperature-distribution equations previously pre-




sented. are valid only in the neighborhood of the cooiaht passages-. Most
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currently used. turbine blades ar so shaped that coolant passages can-
not be located near the trailing edge. Because of the impossibility of 
placing reasonably large coolant passages near the trailing edges of 
conventional turbine blades and because the trailing sections seem most 
likely to be the hottest parts of the blade, other detailed studies were 
made of temperature distributions. The first study was devoted to 
approximating the trailing section by a rectangular parallelepiped and 
to determining the three-dimensional temperature distribution through 
this parallelepiped (fig. 2). 

The median plan of the rectangular parallelepiped was chosen as 
the plane z = 0, and symmetry was assumed about this plane (no heat 
flow was assumed to cross this plane, as prev1ous]y stated). Boundary 
conditions at , the blade trailin edge and blade tip were simplified by 
assuming the blade width and blade length to be extended by a distance 
equal to one-half the blade thickness. In figure 3, the edge MN at 
temperature T gained some heat from. the gas stream. The extended 
surfaces NO and. MP were at nearly the sainetemperatu.re T and no 
heat entered the edge OP; these surfaces therefore gained practically 
the same amount of heat as the actual exposed edge. The validity of 
this approximation is discussed in reference 4 (pp. 216 and 217). Dis-
tances increased by T/2 are denoted by primes. 

The derivation of the tbree-dimensionl temperature distribution, 
originally derived in reference 3, is reproduced in appendix. C. The 
differential equation, in final form, for the temperature distribution 
is found to be

2e	 2 e	 2e (U) 
Xt2	 y'2	 z2 

where x' and y' denote x and y increased by 'r/2, respectively. 
A solution of equation (U) satisfying the boundary conditions at 
x' = y' = z = 0 is 

o =	 ("m,n cos.. nx l cosh4m,ny ' cos.4z + 
ni=l n=l 

m,n cosh m,nx t CO5 riY' coSAZ)	 (12) 

where .%, 2', .4, .At, (, , and	 are constants. Relations among 
the constants are
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0 and	
h0	 ___	

(18) tan 
'ckB.Km =

2 

It is at once obvious that from equation (16) many values of 
result. Because of the periodicity of the tangent function, equa-
tions (17) and (18) likewise have many solutions. 

Values for all the constants in equation (12) can thus be found 
and the temperature can now be computed at any point in the rectangular 
parallelepiped. In reference 3, appendIx B, it is shown that suffi-
ciently accurate results can be obtained by using in = 1 . only. 

One -Dimensional Chordwis e Temperature Distributions


through Simplified Shapes 

Because the spanwise temperature distributions are valid only in 
the neighborhood of the coolant passages and because the three-
dimensional approximate solution resulted in a constant spanwise blade 
temperature in the part of the blade beyond the influence of rim cool-
ing, one-dimensional chordwise temperature distributions were deter-
mined for sections of a liquid-cooled turbine blade that can be approx-
imated by simple shapes (fig. 4). Rectangular and trapezoidal approx-
imations for blade trailing sections were considered. Trapezoidal 
sections may also be used to approximate the leading section in some 
blades. In addition, analyses were made for leading sections approx-
imated by concentric circle annuli and f or the sections of blades with 
very little metal between blade outer surface and coolant passages 
approximated as regions between parallel plates. The temperature dis-
tributions through these simplified shapes, derived in appendix D and 
valid in regions beyond the influence of rim cooling, follow. 

Rectangular trailing section of blade removed from influence of 
rim cooling. - For a blade trailing section apprOximated by a rectangle 
(fig. 4(a)) the temperature-distribution equation is 

hi (Tg,e_T) cosh (cpy') 	
(19) 

h 
sinh	 j' + - cosh cpj' 

kB
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where

0 = Tg,e.PB 

and.
1 
2 

f2h0 

Trapezoidal trailing section of blade removed from influence of 
rim cooling. - For a trapezoidal approximation to the blade trailing 
section (fig. 4(b)), the temperature distribution is 

(Tg, T1 ) [Hi(i i)Jo(i) + iJ1(i1)ill0(i 

[iJ1(i i)H1(i 2)] - [H1(i1)iJ1(i2 
+ h2 r 

2K2kB 

1 where

rT(l-tan)V)1 
=2K[y' ^
	 2tanijc J 

[T1 - tan 

2tan	 J
1 

rT1(l - tan 

2 = 2K Lj t+	 2tan	 J 
1 

h	 2 

-1 T2-T1 
=tan	

2j 

I, = H1(i 1)J0 (i 2 ) + iJ1(i1)ill0(i2)

(20)
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and. J0, iJ1, H0,' and. ' iH are Bessel functions. For a wedge-

shaped section the temperature-distribution equation (20) reduces to 

2K2kB (Tg,eTi.)Jo(i) 

e

	

	 '	 (21) 

2K2kB J
0(i 2 ) - iJ1(i2) 

Concentric-circie-annulus approximation for blade leading section. 
The equations expressing the blade-metal temperature at the coolant 
passage wall TBj, at the leading edge of the blade TB,o,' and at any 

point in the annulus TB are found. to be (fig'. 4(c)) 

TB,j = T1 +	
2	

Do1 (TB,o-TB,j)	 '	 (22) 

LLDIhj lo5e(_)jJ 

TB,o = Tg,e - [r
	

2	
(TB,o_TB,j) -	 (23) 

ILDoho loe_)JJ 
1 

and

fD\ 

TB = TB,i + loge ç) (TB,o-TB,i)	 '	 (24) 

loge (J) 
where

T	 -T	
(25) g,e 7. 

o,i =	
( .2	 ____ 1 +

	 ()	

+ Dh1) 
loge 

Section of blade approximated by parallel plates. - The equations 
expressing the blade-metal temperatures at the coolant-passage wall 
(fig. 4(d)) TB,i and. at the blade outer edge TB,o are



T3. =
1 

+ (aiii) 
(h0^h1) 

T +	 (hoTg,e+hiT) 
hh) 0•1/

(26) 

and.

T	 +(	 \(hT +h.T) 
g,e 	 \clh h./ 0 g,e 1 i 

01	 - (27) - TB, o =
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1 ^	 (h0-i-h) 

where a is the distance between the parallel plates. 

Two-Dimensional Chordwise Temperature Distribution 

The temperature at any point on the blade cross section may be 
found by solving the Laplace differential equation given in terms of the 
temperature difference e

x2	 y2
	 (28) 

where X and. I are the Cartesian coordinates in the blade cross sec-
tion. The boundary conditions, expressed in terms of the partial deriv-
ative of e in the directiOn normal to the, boundary are 

h 

at the outer boundary and

=	 (Tg,_T6)	 (30) 

at the coolant-passage boundary. 

A closed solution to equatidn (28) cannot be obtained because of 
the impossibility Of' applying the given boundary conditions along the 
odd-shaped boundary of a turbine blade (fig. 5). A numerical solution 
is available, however, by application of the relaxation method (refer-• 
ence 5). A sketch of the blade cross section is covered by a network
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of points (a square network was chosen). Large net spacings are recbm-
mended at first, and the insertion of additional net points may be made 
at any time during the solution, thus permitting the use of a final 
network of any desired size. Temperature estimates for the net points 
can be obtained from the solutions of the chordwise blade . temperature-
distribution equations for approximate shapes previously presented and 
from application of the boundary conditions given by equations (29) and 
(30). Residuals, which may be considered as interior heat sinks, can 
then be calculated at each net point whose iimnediately neighboring 
points remain within the boundary from the relation 

	

= Ol+02+03+04_400	 (31) 

where the sibscript zero denotes a point in the blade cross section and 
subscripts 1, 2, 3, and 4 denote the points in the square surrounding 
the point with zero subscript. 

The object of the relaxation is to reduce the values of 	 to 
zero, or as close to zero as possible. When the relaxation equa-
tion (31) is employed, the following procedure is used._ A change in 

alters Q1, Q2, Q3, Q4 by the same change and Q by minus 

four times this change, all other values of 0 remaining fixed. 

Equation (31) is the finite-difference equation corresponding to 
the partial differential equation (28). 'For net points some of whose 
immediately neighboring points lie outside the boundary, equation (31) 
must be modified. For example, if point 1 lies outside the boundary 
and point 5 is the boundary point between 0 and 1, the following equa-
tion applies:

05	 /	 i 
=	

+ -a-- -	 +	
(32) 

where d is the ratio of the distance between points 0 and 5 to the 
net spacing. 

Corresponding changes in the values of Q result from the use of 
equation (32). No harm is done by overestimating the final values of 
0, as successive calculations will establish them again. Continued 
relaxation eventually reduces all the residuals as desired and. the blade 
temperatures can finally be obtained from the definition of 0, 

6 = Tg,e_TB
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APPLICATION OF ANALYSIS 

Typical numerical examples for a sample blade are presented. to 
illustrate temperature trends and to determine the effects of various 
factors on the temperature distributions in a liquid-cooled turbine 
i)lade. A turbine blade whose external shape is similar to that of the 
rotor-root section of a conventional gas-turbine design was selected 
as the sample blade. Two 0.25-inch-diameter coolant passages were 
assumed in the blade (fig. 5), connected near the blade tip by a cross-
over passage, and the cooling was assumed to occur through forced con-
vection. No allowance was made in these calculations for the effects 
of free-convection currents that might be present. A gas. flow of 
55 pounds per second (equivalent' to a mass velocity of about 58 lb/ 
(sec)(sq ft)) and a coolant flow of 7 pounds per minute per blade 
were assumed (to insure turbulent flow and to remove the dependence of 
the blade-to-coolant heat-transfer coefficient on the lengthto-
diameter ratio of the coolant passage). 

For the one-dimensional spanwise case, in which the cooling was 
carried, to the rotor hub, two 0.25-inch-diameter coolant passages 
running circuznferentiafly through the rim and ten 0.50-inch-diameter 
coolant passages running radially through the rotor were assumed 
(fig. 1). For this case, water, ethylene glycol, and kerosene were all 
considered as. possible coolants. Other calculations were made only for 
water as the coolant because of its superiority over the other coolants, 
considered. 

Blade-to-coolant average heat-transfer coefficients were calculated 
by use of formulas presented in reference 6, page 168 for turbulent flow 
and page 190 for laminar flow (for ethylene glycol only). Gas-to-blade 
average heat-transfer coefficients were calculated by use of formulas 
given on page 236 of reference 6. The following coefficients were used 
in the analysis: 

Outside heat-transfer coefficient,	 h0 
Btu/(hr)(sqft)(°F)	 ..................... 222 
Btu/(sec)(sqft)(°F)	 .................... 0.06167 

Inside heat-transfer coefficient, 	 h2 

Water, 'Btu/(hr)(sq f)(°F) 	 .................. 2370 
Btu/(sec)(sqft)(°F)	 ................. 0.6583 

Ethylene glycol, Btu/(hr)(sq ft)(°F) 	 ............. 649 
Btu/(sec)(sq ft)(°F)	 ............. 0.1803 

Kerosene, Btu/(hr)(sqft)(°F) 	 ................
,

510 
Btu/(sec)(sq ft)(°F)	 ................. 0.1417'
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Other numerical values used in the calculations were (figs. 1 and 
4): 

Effective gas temperature,	 Tg,e,	 °F ........... 2000 - 5000 
Average coolant temperature,	 T1 ,	 °F ................. 200 
Nunilberofblades, 	 Z	 ........................ 55 
Area of blade cross section 1, 	 A1,	 sq ft	 ......... 0.00198 
Area of blade cross section 2, 	 A2 ,	 sq ft ........... '.	 0.0013 
Area of cross section 3,	 A3,	 sqft	 ................ 0.312 
Area of cross section 4,	 A4,	 sq ft	 .	 .	 . ............ 0.236 
Blade outside perimeter,	 10,	 ft	 ............. 0.2542 
Blade inside perimeter,	 11,2,	 ft	 .............. 0.131 
Average radial distance, section 3, 	 r3,av,	 ft ........ 0.4917 

Average radial distance, section 4, 	 r4,av,	 ft ......... 0.3333 

Length of chordwise trailing section, 	 j,	 ft	 ......... 0.050 
Length of spanwise trailing section, 	 b,	 ft	 ....... .	 0.3333 
Thickness of trapezoid at coolant passage, 	 2' ft	 ..... . 0.021 
Thickness of trapezoid at trailing edge, 	 T1 ,	 ft ...... . 0.003 
Thickness of rectangle,	 T,	 ft • 0.010 .................
Temperature at blade root,	 Tr,	 F ............... 330 
Thermal conductivity, 	 kB 
Btu/(hr)(ft)(°F) 	 ..................... 15-210 
Btu/(sec)(ft)(°F)................... 0.00417 - 0.0583 

Cooling-air (in contact with rotor) temperature, Ta,	 °F	 ..... . 0 
Heat-transfer	 oefficient between cooling air and rotor,	 ha 
Btu/(hr)(sqft)(°F)	 .......................... 30 
Btu/(sec)(sqft)(°F)	 .................. 0.00874 

Average value in section 3 of	 l	 3h 

Water,	 Btu/(br)(ft)()	 .	 .	 ..	 ............. 30,360 
Btu/(sec)(ft)(°F)	 .................. 8.433 

Ethylene glycol, Btu/(br)(ft)(?F)	 ............... 8305 
Btu/(sec)(ft)(°F)	 ............. 2.307 

Kerosene,	 Btu/(br)(ft)(°F)	 ................. 6533 
Btu/(sec)(ft)(°F) 	 ................... 1.815 

Average value in section 4 of 	 1 . 4h 

Water,	 Btu/(hr)(ft)()	 .	 .	 ..	 ............. 6107 
Btu/(sec)(ft)(°F) 	 .................... 1.696 

Ethylene glycol,	 Btu/(br)(ft)(°F)	 ................ 1656 
Btu/(seQ)(ft)(°F)	 ............. 0.460	 - 

Kerosene,	 Btu/(br)(ft)(°F)	 ................... 1318 
Btu/(sec)(ft)(°F)	 ................... 0.366
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One-Dimensional Spanwise Temperature Distribution 

The constants of integration were found by solving equations (5) 
to (10) for the specific examples stated; a blade thermal conductivity 
of 15 Btu/(br)(ft)(°F) was used. Blade coolant passages extending to 
within 1/16 inch of the blade tip were considered in blades with spans 
ranging from 1-- to 4- inches, with water as coolant, and for effective 
gas temperature ranging from 2000° to 5000° F in order to study the 
effect of blade length on the temperature distribution. The temperature 
distributions were determined, by use of the calculated integration 
constants, from equations (1) to (4) and are shown in figure 6. The 
general trend shown is a nearly constant temperature abdut equal to the 
coolant temperature through the rotor, a sharp temperature increase 
through the rim and the base of the blade, a nearly constant tempera-
ture (called the prevalent blade temperature) through the liquid-co1ed 
part of the blade, and another sharp temperature increase to a value 
approaching the effective gas temperature in the uncooled part of the 
blade. From figure 6, it can readily be seen that the same prevalent 
blade temperature prevails through blades of various lengths cooled to 
within 1/16 inch of the blade tip. 

In order to study the effect of coolant-passage length on the tem-
perature distribution, other calculations were made, with water as 
coolant and for an effective gas temperature of 2000° F, for a 4 inch 
blade span but with blade coolant passages of various lengths. The 
calculations, again determined by use of equations (1) to (4), are 
plotted in figure 7; for short coolant passages high-temperature gra-
dients exist throughout the blade whereas for long , coolant passages 
practically no temperature gradient exists throughout most of the 
blades. 

Calculations were also made for the same blades with 4-inch cool-
ant passages and for an effective gas temperature of 2000°. F with 
water, ethylene glycol, and kerosene considered as possthle coolants. 
These results showing the effect of various coolants on temperature 
distribution are given in figure 8. For an effective gas temperature 
of 2000° F and a coolant flow of 7 pounds per minute per blade, the 
prevalent blade temperature in degrees Fahrenheit is about one fourth, 
two fifths, and one half of the effective gas temperature for water, 
ethylene glycol, and kerosene coolants, respectively. The consideration 
of cooling air on the' outside of the rotor accounts for the rotor tem-
perature being less than the coolant temperature. 	 - 

Finally, for the spanwise case, figure 9 shows the variation of 
coolant flow on prevalent blade temperature. The prevalent blade tem-
perature decreases with increasing coolant flow; the rate of this
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decrease diminishes as the coolant flow increases. It can be seen that 
the cooling effectiveness, defined as (Tg,e_TB)/(Tg,e_T), changes 

from 0.68 to 0.91 for water as the coolant flow is increased from 2 to 
16 pounds per minute per blade. The superiority of water is apparent. 

Three-Dimensional Temperature Distribution through


Simplified Trailing Section 

A three-dimensional temperature distribution in a turbine-blade 
trailing section approximated by a rectangular parallelepiped (fig. 2) 
was determined by use of equation (12) (approximated by use of m = 1 
only, as. previously mentioned). The constants 22n' n' and .jV1 were 

obtained from equations (16), (17), and (18), respectively, the con-
stants 1l,n and l,n from equations (14) and (15), respectively, 

and the constants .J,fl and 1,n from equations (13). The distribu-
tion was found in two planes representing the maximum and minimum tem-
peratures for the Z-axis; the first plane was located at the side of 
the cross section of the rectangular paraflelepiped and the second 
plane was on the median plane through the rectangular parallelepiped.. 
The results are shown in figure 10(a) for an effective gas temperature 
of 2000° F and a thermal conductivity of 15 Btu/(hr)(ft)(°F) and give 
the temperature distribution at various distances from the coolant 
passage. The curve labeled "approximation of temperature" in fig-
ure 10(a) is a one-dimensional chordwise distribution through the 
approximated rectangular trailing section. Similar results, for ther-
mal conductivities of 120 and 2lOBtu/(hr)(ft)(°F) are given in fig-
ures 10(b) and 10(c),. respectively. Calculation of cos 
(see equation (12)) reveals the temperature variation in the two planes 
to be about 3.6 percent of e for a blade thermal conductivity of 
15 Btu/(hr)(ft)(°F), 0.5 percent for a thermal conductivity of 
120 Btu/(hr)(ft)(°F), and 0.3 percent for a thermal conductivity of 
210 Btu/(hr)(ft)(°F). For a thermal conductivity of 
15 Btu/(hr)(ft)(°F), figure 10(a) shows a constant temperature for 
the last three-quarters of the blade; that is, conduction to the rim 
affects about the first quarter of the blade length. Figure 10(a) 
also shows that the level of the temperature in the principal portion 
of the blade rises rapidly as the distance from the coolant passage 
is increased. Near the, coolant passage, the distribution is in good 
agreement with the one-dimensional spanwise distribution presented in 
figures.6 and 8. As the thermal conductivity is increased, as shown 
in figures 10(b) and 10(c), the part of the blade affected by rim 
conduction increases; for a thermal conductivity of 
210 Btu/(hr) (ft) (°F), about two thirds of the blade length shows this 
effect.	 .
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One-Dimensional Chordwise Temperature Distribution


through Simplified Shapes 

Because the three-dimensional distribution resulted in a con-
stant spanwise blade temperature in the region of the blade beyond the 
influence of rim cooling and because the critical blade point, as deter-
mined from a temperature-stress relation, may likewise be beyond the 
region of rim-cooling influence, one-dimensional chordwise temperature 
distributions were obtained. In order to compare the three-dimensional 
distribution with a one-dimensional chordwise distribution, a rectan-
gular trailing section was first considered,. Figure 11 shows this com-
parison for an effective gas temperature of 20000 F and a blade thermal 
conductivity of 15 Btu/(hr)(ft)(F); the one-dimensional distribution 
was determined by use of equation (19). From figure 11 it can be seen 
that the trailing-edge temperature increases from 15009 to 18500 F as 
the distance from the blade root is increased from 0.25 to 1.0 inch for 
the three-dimensional case, even for low-conductivity material. On the 
other hand, in the region of the blade beyond the influence of rim'. 
cooling (when the distance from the blade root is 1 in. or more), the 
one-dimensional and three-dimensional results approach identity; for 
such a region, a three-dimensional solution is unnecessary when low-
conductivity materials are considered. 

In order to more nearly approximate a blade trailing section, a 
trapezoidal approximation was considered. For comparative , purposes, 
the trapezoidal and rectangular sections were constructed to have equal 
lengths and areas. In general, however, the trapezoid is constructed 
so that the thickness at the coolant passages equals one-half the actual 
blade surface exposed to the coolant. This dimension, in turn, fixes 
the length of the trapezoid. 

The' temperature distribution.through a trapezoidal section was 
obtained by use of equation (20) .' Such a distribution, for an effec-
tive gas temperature of 20000 F and a blade thermal conductivity of 
15 Btu/(hr) (ft) (°F), is compared with the distribution through a rec-
tangular section in figure 12. The temperature distribution for the 
trapezoidal sectIon has a slightly steeper slope than that for the 
rectangular. section at distances remote from the coolant passages and 
the temperatures at the trailing edge and,the coolant-passage wall are 
lower. Part of this lower temperature for the trapezoidal section is 
due to the additional thickness 'of the cooling surface. 

The effect of varying thermal conductivity from 15 to 
210 Btu/(hr)(ft)(°F) on the temperature distributions along the center 
line of rectangular and trapezoidal sections is shown in figures 13(a)
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and. 13(b), respectively. In each case, as thermal conductivity is 
increased, the temperature distributions flatten and approach linearity, 
decreasing in the trailing section and increasing near the coolant 
passages. Figure 14 shows blade trailing-edge temperatures for various 
thermal conductivities obtained by use of tie rectangular and. trape-
zoidal approximations. Cooling is substantially greater for the more 
representative trapezoidal section. For currently used high-temperature 
alloys with thermal conductivities in the neighborhood. of 
15 Btu/(br)(ft)(°F), figure 14 shows a trailing-edge temperature dif-
ference for the rectangular and trapezoidal sections of only about 
60° F for an effective gas temperature of 2000° F. 

Chordwise temperatures were also calculated, by use of equa-
tions (22) to (27), for concentric circle annuli and parallel-plate 
approximations. These temperatures are not-plotted in this report; 
they were only used as initial approximations for the two-dimensional 
numerical calculations made for an actual blade shape. 

Two-Dimensional Chordwise Temperature Distribution 

Two-dimensional temperature distributions were determined for an 
actual blade shape by application of the relaxation method. Separate 
calculations were made for the cases where an average gas-to-blade 
heat-transfer coefficient and where a typical variation in the gas-
to-blade heat-transfer coefficient as shown in figure 15 were consid-
ered. Initial trial solutions were determined by use of equation (20) 
for the trailing section, equations (22) to (24) for the leading sec-
tion, and. equations (26) and (27) for the thin-wall sections of the 
blade near the coolant passages. A comparison of the temperature dis-
tributions for assumed variable and constant gas-to-blade heat-transfer 
coefficients, for an effective gas temperature of 20000 F, an average 
coolant temperature of 200° F, and a blade thermal conductivity of 
15 Btu/(hr)(ft)(°F) is shown in figure 16. The blade temperatures 
obtained are nearly the same for both cases except at the leading and 
trailing edges. Use of the average coefficient gives a conservative 
estimate of the trailing-edge temperature and a temperature that is 
somewhat too low near the leadinC edge. 

A calculation has also been made for the average gas-to-blade 
coefficient and for a blade with a thermal conductivity of 
100 Btu/(br)(ft)(°F). A comparison of this solution with the similar 
one for a thermal conductivity of 15 Btu/(br)(ft)(°F) is shown in fig-
ure 17. The high-conductivity blade has about a 250° and a 600° F 
lower temperature than the low-conductivity blade at the leading and 
trailing edges, respectively. Little temperature difference is obtained 
in the center of the blade, where extremely good cooling prevails.
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The results of the various relaxation solutions are in good agree-
ment with the one-dimensional chordwise approximations that were used. 
to start the numerical solutions; that is, good representative tern-
peratures are obtainable by use of one-dimensional chordwise approx-
imations. 

In order to determine the effect of distance from the coolant 
passage on the trailing-edge temperature, trailing-edge temperatures 
were determined for the liquid-cooled blade with five coolant passages 
shown in figure 18. Various length trailing sections were obtained by 
successively reducing the length of the trailing section shown in 
figure 18. The temperatures were determined by use .of equation (20) 
and are shown for various thermal conductivities in figure 19. The 
trailing-edge temperature is reduced almost linearly as the length of 
the trailing section is decreased. The effect of thermal conductivity 
also decreases as the trailing-section length is decreased. 

NONDIMENSIONAL CHARTS 

The availability of several nondimensional charts, to be subse-
quently discussed, eliminates the necessity for some numerical calcu-
lation.	 - 

The prevalent blade temperature is given by equation (2a) as 

- holoTg,e + hi,21i,2Tt 
TB,p_	 h	 +h. 7.. o o	 i,2 1,2

(2a). 

After division by 1I1,21i,2, this equation may be written 

T	
Tl+\Tg,e 

B,p 

where

h07.0 

Subtraction of Tg,e from both members of this equation leads to 

Tg,e_TB,p - 

Tg,e_Ti -



h. 
—i (T	 -T ) coshcpy' 
kB	 g,e 7. 

cpsinhcpj' +-coshjt

T - = 
g,e

(19) 
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Tg,e_TB,p 
The plot of m	 m	 against \ is shown in figure 20. For 

-	 g,e7.	 T	 - 
any given blade, ? can be evaluated and the value of g,e	 can 

Tg,eTi 
be obtained. Finally, for the desired effective gas and coolant tem-
peratures, a single simple algebraic operation results in the desired 
value of the prevalent blade temperature. 

Another nondiinensional chart, which gives the one-dimensional 
chordwise temperature distribution through a rectangular section, is 
also presented in figure 21. The temperature distribution through a 
rectangular section is given by equation (19), 

For a given turbineandset of turbine operating conditions, values 
can be determined for all the quantities in this equation. A semilog 
plot with Cpj' as abscissa and hi/kB as a parameter results in a 

nondimensional cooling ratio

Tg, eTB 

(Tg,e_Ti) coshcpyT 

The addition of a second quadrant, with coshy' as parameter, yields 

T -TB 
values of the temperature ratio 

g,e	 at any point in the rectan-
g,e_T7. 

gular section. This chart is given in figure 21. The chart is used 
as follows: A vertical line is constructed through the calculated' 
value of the abscissa cpj' and is extended to the calculated value of 
the parameter hj/CpkB. From this point, a horizontal line is drawn, 
extending into the second quadrant, and intersecting several lines 
representing various values of coshCy t . Vertical lines from the 
intersection points to the abscissa in the second quadrant give values 

T _TB 
of the temperature ratio g,e m at various positions in the rectan-

gular section. Values of the temperature TB are then easily 
obtainable.
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In order to illustrate the use of figure 21, a rectangular section 
with dimensions equal to those previously tabulated will be considered. 
For a blade thermal conductivity of 15 Btu/(hr)(ft)(°F) and. outside and 
inside heat-transfer coefficients of 222 and 2370 Btu/(hr)(sq ft)(°F), 
respectively, the parameters used in figure 21 are evaluated as follows: 

1 
2	 - 

=	 =	
(0.055) = 3 

h	 2370
= 2.9 •i = (54.4)(ls) 

The point represented by these parameters is given by the symbol 0 
in the first quadrant of figure 2l the symbol 0 on figure 21 desig-
nates the corresponding point for a thermal conductivity of 
210 Btu/(br)(ft)(°F). A horizontal line passing through the 
symbol C) and intersecting the family of lines in the second quadrant 
of figure 21 gives as the abscissa of the second quadrant the values of 

T	 TB 
the temperature ratio g,e	 for various positions in the rectan-

Tg,e_T 
gular section as follows: 

T eTB 
m = 0.075 for CDy t = 0 

/	 = 0.115 for. cpy t = 1 

= 0.285 for cpy' = 2 

= 0.75 for cpy' = 3 

For Tg,e = 2000° F and T7 = 200° F, it follows that the blade-
temperature calculation results in the following values: 

TB 1865 for Cpy' = 0 (trailing-edge temperature) 

= 1793 for cpy 1 = 1 

=1487 for cpyt=2 

/	 = 650 for cpy t = 3 (temperature at coolant passage) 

These results compare favorably with the calculated distribution shown 
on figure 12.
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CONCLUDING REMARKS 

Analyses have been presented for obtaining spanwise temperature 
distributions near a coolant passage, hoxdwise distributions (for both 
approximated and actual shapes) in regions where conduction to the rim 
is inappreciable, and three-dimensional distributions for approximated 
blade shapes. Numerical examples based on specific blade- configurations 
and heat-transfer coefficients available from unclassified sources have 
been presented. Although the analyses are exact, the numerical values 
used in the calculations may not necessarily be the same as those for 
cooled turbines. The numerical examples have been presented to indicate 
the range- of applicability of the various analyses and to present the 
general nature of temperature distributions in liquid-cooled turbine 
blades. In the following paragraphs the more important results are 
reviewed to show their general guidance for design studies. 

The three-dimensional temperature distribution includes conduction 
to the rim, whereas the two-dimensional and one-dimensional chordwise 
distributions do not. Consequently, the temperatures obtained from a 
three-dimensional investigation are less than those otherwise obtained. 
As a result, it is advisable to determine the simplified solutions 
first; if the temperatures that result are not excessively high, a - 
three-dimensional investigation is unnecessary; whereas if the resulting 
temperatures are large, a three-dimensional investigation can be made. 

The two-dimensional solution just referred to is of necessity a 
numerical solution (because of the varying boundary condition caused 
by the shape of the blade). It has been shown by the calculations pre-
viously presented that for uniform outside heat-transfer coefficients, 
simplified one-dimensional distributions were in excellent agreement 
with the two-dimensional relaxation solution. When variable outside 
heat-transfer coefficients were considered, the simplified solutions 
indicated optimistic results and the two-dimensional relaxation solution 
appears essential. Increasing blade thermal conductivity results in 
raising the cooling surface temperature and lowering the trailing-edge 
temperature and thus is a more uniform blade temperature. - 

One-dimensional spanwise distributions proved to be valid near the 
coolant passages. The temperature of the cooled part of the blade 
(prevalent blade temperature) was independent of blade length. If the 
inside heat-transfer coefficient is increased, the prevalent blade tern-
perature decreases; it was shown for a particular case that the prev-
alent blade temperature for water as coolant was only about half that 
for kerosene as coolant.	 - 

Lewis Flight Propulsion Laboratory, 
National Advisory Counnittee for Aeronautics, 


Cleveland, Ohio, -October 27, 1950.
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APPENDIX A


SYMBOLS 

The following symbols are used in this report: 

A	 area of metal, sq ft 

b	 blade span, ft	 V 

C1 ,	 . ., C11 constants of integration	 V 

B	 diameter of circle used to approximate leading section 
of blade, ft 

d	 ratio of distance between net points 0 and 5 and net 
spacing 

Hi 1	 Hankel functions (special kinds of Bessel function) 
iH0j 

h	 heat-transfer coefficient, Btu/(sec)(sq ft)(°F) or 
Btu/(hr)(sq ft) (°F) 

Jo i
V 	 Bessel functions 

iji J 
j	 chordwise distance from blade trailing edge to 

coolant passage, ft V 

1 

(h 

K	 \kBsinfJ	 V 

k	 thermal conductivity, Btu/(sec)(ft)(°F) or 
Btu/(hr)(ft)(°F) 

7.	 perimeter, ft 

M,N,O,P	 points on figure 3	
V 

Q	 heat flow, Btu/sec
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r radial distance from hub of turbine, ft 

T temperature, °F 

x distance from blade tip tO blade element, ft 

y distance from trailing edge to blade element, ft 

Z number of blades 

z distance from median plane of section to blad element, ft 

I' H1 (i 1)J0 (i 2 ) + iJ1(i1)iH0(i2) 

1	 - 
r 
I	 T1(1-tan r) 

2K[ +. 2tan 

e Tg,eTB 

h00 

a distance between parallel plates, ft 

T thickness of trailing section, ft 

1 

f2h0\2 

H
-1 (2_T1


	

iV	 tan	 2j 

Subscripts: 

a air 

av average 

B blade 

e effective
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g	 gas 

j	 inside (inner with D) 

7.	 liquid

- 
summation indices 

nJ 

o	 outside (outer with D) 

p	 prevalent 

R	 rotor 

r	 blade root 

rim rim 

T	 blade tip 

1 

2	 denote sections in spanwise investigation when used with x; 
1 and 2 denote trapezoidal thicknesses at trailing edge 

3	 and coolant passage, respectively, when used with T 

4 

cL

denote end near blade tip and end near rotor hub of various 

I	 sections 

Superscript: 

prime linear dimension increased by T/2 

Functions:

1 

d	 (00 
\kBAB, 1
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1 

h	 +h	 ,	 2 i,2 

(_° kBAB,2 

hT	 +h. 1. T 

kBAB,2	

)2 
(_0 0 g,e	 i,2 i,2 1

1 

[4r3,avha + (hi,311,3)av 2 

krijnArim	 1
1 

hT +(h. 1. ) T 2 
,av a a	 i,3 i,3 av 1] [47tr3

k. A. 
rim rim 

(7)
1 

h +(h. l. )	
2 

,av a	 i,4 i,4 av] [41cr4

1 

[41cr4,a; + (hi,411,4)avTl]2 

YR 
/

integration constants (See equations (13) to (18).) 

14m,n sirth m, i t + h. cosh ' ,n n	 i	 m
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4h	 (1)11_i 
n	 (Tg,e T1) 2n.-1 

(sin nJ t ______________ 

2(Tg,e_TB,r) 
V	 ni'	 (	 2 

2j t }
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PFEI']DIX B 

ONE-DINENSIONAL SPMMISE TEMPERATURE DISTRIBUTION 

The heat balance for the uncooled. section of the blade (fig. 1, 
section i) is given as follows:	 -	 - 

dT 
Heat entering by radial con.uction = - kBA	 d. B,l 

Heat entering sides by convection = h 7. (T _TB ) dx 00 g,e 

Heat leaving by radial conduction = - kBAB,l _	
+ dTB,i dxi) 

The heat-balance equation is 

dTB,l h 
7. (T -T ) dx = - k:BAB1 dx1 + 0 0 g,e B,l	 1 

dT
B,1 dx -	

1	 1 + dxi 11 

or

d2T	 2	 - 

dx2 - 
d2TB1 = - d Tg , e	 (Bi) 

where

1 

hi	 2 

= __ 

A solution is

TB,l = Tg,e'_ •C1 cosh '(x1 +C2 )	 (i) 

where C1 and C2 are integration constants.
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For the cooled section of the blade (fig. 1, section 2) the heat 
balance is given as follows:

dTB,2 
Heat entering by radial conduction = - kBAB,2 dx2 

Heat entering sides by convection = ho l o( Tg,e_TB , 2) dx2

dTB,2 2) 
Heat leaving by radial conduction = - kBAB , 2	 (TB,2 + 

Heat leaving by radial convection = hj,2li,2(TB,2_T) dx2 

The heat-balance equation is

+ h (T S	
- kBAB,2	

2	 0 0 g, e_TB, 2	 2 = 

dTB 2 
- kB,2	

+	 2	
2 ) hj,211,2(TB,2_Tj)	 2 

2 
dTB2	 2	 2 

_T5	 =-	 (B2) 
B,2 

2	 - 

where

.1 

(h0 1 0 + h,2l1,2'2 

BAB,2	 I 

and

1 

(hoioTg,e + hi2i2T)2 

-	 kBAB,2
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A solution is

T	 =T	 -Ce	 -Ce	 (2) 
B,2	 B,p	 3	 4 

where C3 and C4 are integration constants and 

T	
- (\2 - .h0Z0Tg e + hi,211,?Tz 

B,p -	 h01 + h. 2L 2 0	 i	 1 

For the rim section (assumed constant area) of the.rotor (fig. 1, 
section 3), curvature was neglected because the rim thickness was small 
in comparison with the rim radius. In addition, average values of 
h ,3 l ,3 and r3 were used. The heat-balance equation reduced to 

dT . - rim	 2	 2 
2 -	 T=_	 - (B3)


dx3 

where

= 4 3,avha + (hi,3i,3)av 

krimArim 

and

= 4r3,avhaTa + (hi,31i,3)avTl 

krimArim 

A solution is

-

Trim =	 + C5e	 + C6e	 (3) 

where C5 and C6 are integration constants and where 

(Y)2
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For the rotor section (assumed constant strength) (fig. 1, 
section 4), average values are used for h 1,4 Z 1,4 and for r4, and an 

approximate solution (as in section 3) is obtained. Because the rotor 
is liquid-cooled, such a solution is adequate. The resulting differ-
ential equation for this section is 

2 
dTR	 2	 2 

T-f	 (B4) 
dr	 R 

where

,2	 41tr4 , avha + (hi,4•1•i,4)av 

YR 
and

= 41Tr4,avliaTa + (hi,41i,4)avTi 

kRAR 

A solution is

TR = / + C 7 cosh
	

(4) 

where C 7 is an integration constant and where 

/ f)2 

The boundary condition

dTR
for r=O 

has already been applied.
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kPPE1DIX C 

THREE-DIMENSIONAL TEMPERATURE DISTRIBUTION THROUGH


SIMPLIFIED TRAILING SECTION 

A three-dimensional temperature distribution through a rectangu-
lar paraflelepiped, an approximation for the trailing section of a 
liquid-cooled turbine blade, is given as follows (fig. 2): 

TB 
Heat entering element from top = - kB dy dz 

Heat entering element from right end = - 	 dx dz 

TB 
Heat entering element from front = - lcD dx d.y - 

(T	 2T 
Heat leaving element at bottom = - k dy dz I 4 + B 

ux 

	

( TB	 2TB \\ 
Heat leaving element at left end = - 	 dx dz	 + 2 d) 

/ TB	 \ 
Heat leaving element at rear = - lcD dx dy 	 + 2 z) 

\	 J 

The heat-balance equation is

TB 
- k3 dy dz - - ltD dx dz - - lcD dx dy - = 

2T	
\\	

(TB	 2TB

-dydz+ 2 dx)-dxdz+ 2 

\	 x	 J

/TB	 2TB 
kB dx dy	 + 2
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or

2	 2	 2 
TB	 TB	 T 

Simplification in applying boundary conditions results from the use of 
the effective gas temperature Tg,e instead of the blade temperature 

TB as the reference temperature,, that is, by use of the substitution 

e = Tg,eTB 

Equation (ci) then becomes 

-	 2'	 2	 2 

)(t	 y'	 Z 

The origin of the coordinates chosen is shown in figure 2; the 
plane z = 0 is the median plane of the rectangular parallelepiped 
and from considerations of symmetry no heat flows across this median 
plane. The boundary conditions to be applied are 

= 0 when x t = 0	 (C2) 

=0 when y t = 0	 (C3) 

=Owhen z=0	 (C4)' 

0 = Tg,e_TB,r when x t = b'	 (Cs) 

hi(Tg,e_Ti_0) 'when	 =	 '	 ,	 (C6) 

and	 ,

kB	 = - h00 when z = '1/2	 ,	 (c7) 

A solutLon of equation (11) satisfying the three boundary con-
ditioas(C2), (c3), and (C4) is
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e =	 (it'm,n cos	 cosh m,nY' .COS	 + 

m=1 n=1

cosh	 x' cos	 yt cos •jV z)	 (12) m n	 m,n	 n 

where it", !',	 , .JV, (,	 , and. .92 are constants. Relations 
among these constants are' 

2

m,n = 

2

m,n = 

The boundary con 
deterininat ion of £9. 
tion (05) gives

2	 2 

	

Ai'	 +.2

	

n	 - 
(m,n = 1,2,3,	 (13) 

2	 2 

	

•IV'm	 n 

dition expressed by equation (C5) leads to a 

Substitution of equation (12) into equa-

Tg,e_TB,r =	
(it'	 cos £9 b' cosh .4	 cos 1V'mZ + m,n	 n	 m,n 

m=1 n=1 

	

cosh	 cos •92yt cos "m	 (08) 

It can be seen that the first member in the double stunmation In equa-
tion (12) vanishes when cos 2'x' = O;.hence, if 

(	 i = n - j 

from equation (C8) it follows that 

Tg,e TB,r =	 cosh m,nb' cos	 y' cos 4z	 (09) 

	

m=l n1	 - 

This is a Fourier development along y' and z.
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The development of equation (C6) leads to a determination of 
.• Equation (C6) becomes, with the aid. of equation (12) and its 

derivative

'	 (cos .t' x') 4	 sinh 4	 j t cos iV'z - L m,n	 n	 m,n	 m,n	 in 
ni=1 n=l

(cosh	 m,nx')	 sin	 cos "inZjjJ m3 n 

hj(TgeTi(m n cos	 cosh 4m,n' cos mZ - 

m=1 n1

	

cosh m,nX cos	 cos A"inz)	 (do)


In order to simplify equation (do) at the boundary when y' = j' and 
to solve for the constant 	 n' the second summation in the left member 


is equated to the last summation in the right member term by term. Then 

hi( Tg,e Ti) =	 (kB.4m,n sinh 4m,n ' + 
m=1 n=1 

h1 cosh 4m,nj t ) cos	 cos ,Vmz	 (cii) 

and

kB	 (cosh	 x') Q sin .Q j' cos	 z 

	

n	 n	 m m,n	 m,n 
m=1n1 

=	
h. '
	 cosh	 x' cos	 n' cos .Az	 (d12) 1	 m,n
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The sums a:çe equated term by term. Therefore, n is determined as 
any solution of

liii, 

	

h	 k 
tan (jt) =	 =	

(17)

kBflflJ 

The development of equation (C7) leads to a determination of t. 

> - k'	 cos £9 x' cosh 'm,n' 1A sin	 + m2/ Lm,n	 n 

cosh	 x' cos p. y'	 "m m,n	 m,n	 n 

- 110 (Xm,n cos £fx' cosh .Am,nyt CO5 .A"m + 
m=1 n=1

	

cosh m, nx t COS	 nY' cc	 "m )	 (Cl3) 

or

hT 
.0

(18) 

The possibility of determining values of t'	 and	 to 
, 

satisfy equations (c9) and (Cli) has been established in textbooks on 
Fourier and other harmonic series (reference 7, pp. 118-121), and it 
is only necessary that the values determined define a convergent 
series. 

Values of .(	 are determined by integrating equation (dl) 

between the limits x' = 0 to Xt = b' and z = 0 to z = T/2 and 
substituting the values previously determined for £9 and	 in 

equations (16) and (18). The integration is accomplished in two steps
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using the functions cos 	 x' dx' and cos.X,. z dz as multipliers, 

where s and. v are integers. For abbreviation, 

=	 Siflh4m,nj + h1 cosh.JIm,nj '	 (c14) 

Then

fxt=b! 

cos ..çz ]

	

cos2 .çx' dx' 

m=l	 x'=O 

rx ' =b 

= hi(Tg,e_Ti) /
	

cos	 x' • dx'	 (C15) 

Jx'=O 

because all the terms

rb' 

/	 cos .z9x' COS	 dx' 
U0 

vanish if s n. Integration of equation (C15) and. substitution of 
limits leads to the result 

cos .4' z j	 sin 2 2x ' 
2	 Lflx +	 2 

m=l'

—1b' 

= hjI 
g,e	

'nX' I	 (016) 
L_-1-n 

or

(	 sin22'b 

>
cos4z b' +-

m=1	
2	

) 

sinb' 
= 2hi(Tg,e_Ti)	

2lnn	 (017)



or

mn(T sin 2A	 2 9	 2 
.2: 

22,y	
)=

(c21) 

NACA TN 2321 

	

When equation (16) is used for' 	 there results 

cOsz = hi(Tg,e_Ti) (1)n;l = 

When-equation (c18) is integrated in terms of z, using the 
multiplier cos4 z dz, it follows that 

-I	 -T 
r2 

Lt'	
j	

cos2.A"z dz = $ J	 cos.A/zdz m,n z=O
	 z=O	 m 

because all the terms

p-I 
•

	 •	 j
2 cos..4z cos4z dz 

0 

vanish if m v. Upon integration,

a: 
'(i1v	

sin2..k'mz\2 

	

2,jL	 m +	 2	 )	
(sin4z)

(c18) 

(c19) 

(c2o) 

Therefore,

•	 29	 sin4. 

m,n =	 I. /	 sin 2	
T 

m2

(c22)
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Similarly, from equation (c9) it is found that 

sin.,4/ i 
=25	

m2	 1	 (c23) 

	

m,n	
42	 / Sifl24fm 

cosh	 b' (1 + m,n	 I 
\ 

where

sin	 j'	 1	 (c24) -	 = 2(Tg,e_;,r)	 j'	
(	

slii 
l+	 2j' 

Finally, substitution of equations (c14) and (C18) in equation (c22) and 
substitution of equation (C24) in equation (C23) lead. to the following 


	

values of the coefficients jt	 and m,n	 m,n 

(1) fl_l sin4	 8hi(Tg,e_T.) 

	

= (2n-l)	
+ sin 24 

(kB4m,n sinh4 1
	 (14) + h cosh.Z,i' 

and

9	
=	 4(Tg,e_TB,r) 

m,n	 •j'	 (1 
+	 2it) A(m 

1	 1 

/	 sin 2.,V' 
L\ OShm,nb'	

-	 (15) 

-	 11+	
m2	 - 

' 24
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APPEI1DDC D	 -. 

ONE-DIMENSIONAL CHORDWISE EMPERATURE DISTRIBUTION 

THROUGH SIMPLIFIED SHAPES 

Rectangular trailing section of blade removed from influence of 
ooling. - The heat balance for an element of the rectangular 
on is given as follows (fig. 4(a)): 

Heat entering by conduction (right end) kBT 

Heat entering by convection (sides) = 2h0e dy 

Heat leaving by conduction (left e) = T	
+ 

The heat-balance equation is

(de d29 \ 
kBT	 + 21i& dy =	 + ? d.y) 

or

dep2e	 (Dl) 

where

1 
2 

A solution is

e = C8 cosh (y + 09 )	 (D2) 

where C8 and. C9 are integration constants. The boundary con-
ditions to be applied in the evaluation of the integration constants are
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kBT	 = hil (TB_Ti) = hiT ( Tg,e_Tre) when	 '=:i	 (D3). - 

-I.

kB=ho6 when y=0	 (D4) 

From equations (D2) and (D4), it follows that 

kBCSP sinh (pc9 ) = h0C8 cosh (pc9) 

and therefore

tanii_1(	
tanh(I) T
	 I C9=	 =	 p	 ( D5) 

when T is not too large. Calculations revealed that the difference 
between C9 and T/2 varied from 0.4 to 0.5 percent for the values of 

considered and had no appreciable effect 0.005 foot or more inside 
the trailing edge. 

From equations (D2), (D3), and (D5) it follows that 

5Uh (Pi t ) = hj1[Tg,e_Tj _C8 cosh (Pit)] 

and 'theiefore

(Tg,e_Tz)	 (D6) 

p sinh(Pj)	 cosh(Pjt) 

Substitution of equations (D5) and (D6) in equation (D2) leads to the 
final equation

h
(Tg,e_T•i) cosh(cpyt) 

h	 (19) 
cpsjnli (pjt) +	 cosh(Pjt)
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Trapezoidal trailing section of a blade removed from influence of 
rim cooling. - In reference 8, the temperature-distribution equation 
along the axis of a trapezoidal section is derived. The solution 
obtained is expressed by the relation 

e= c10J0 (i) + c11in(i)	 (D7) 

where C10 and C11 are integration constants, J0 and iII are 

Bessel functions, and 	 is defined as 

2	 21	 T1(1 - tan )1 

	

= 4K	
+	 2 tan •4i ]	

( D8) 

where	 - 

2	 h 
K	

kBsinr	
(D9) 

and

	

-	 /T-T\ 
= .tan _ 1)	 (Dlo) 

The constants C10 and C11 in equation (D7) may be evaluated by 

application of the following boundary conditions: 

when y t =O	 (DII) 

and.

kB	 r = hi(Tg,e_T_e) when y t =	 ( Dl2) 

or

= 0 when	 (D13)
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kB2K 
-	 de = hj (Tg,e Tj e)	 when	 =	 2 (D14) 

It follows from equation (D8) that when 	 y ' = 0, 

1 

1T1 (1 - tan 
= 2K[	 2 tan i(	 j (Dl5) 

and when	 y'

1 

[	 T(1 - tan	 )12 
= 2K[jt +
	 2 tan	 ] (D16) 

Differentiation of equatibn (D8) gives 

2K2
(D17 

hence,

when	 —=O 

From the properties of the Bessel functions, 

dJ0(y) 

dy 

and.

dR0(y)
=-111(y) 

Differentiation of equation (D7) therefore gives 

= - c10iJ1(i) + c11K1(i) (DiB)
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and. it follows that

c10iJ1(i1) 
ll = H(i)	 (D19) 

when

de = 0• 

From equation (Dl2), with the use of equations (D7) and. (D17), it is 
found that

kB	 [_b10iJ1(i2) + 

hi[Tg,e_TCioJo( i 2) - c1iiH0(12)]	 (D2o) 

The values of the integration constants C10 and. C11 are now 

found by solving simultaneously equations (D19) and. (D20). Insertion 
of these values in equation (D7) gives the desired equation for the 
temperature distribution through a trapezoidal section 

(Tg,eTi) [ç(i1)0i)'+ iJ1(i1)H0(i)]

(20) 

[iJ1 (i 1)H1(i 2 )] - [H1(i1)iJ1(i2)] + 2K2k 

where

F = H1 (i 1)J0 (i 2) + iJ1(i1)iH(i2) 

For a wedge, l 0. Then, from equation (D15) it is seen that 

0, and as a consequence, 	 and iJ1(i 1) = 0. 
Equation (20) then simplifies to
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h2 

2K2kB (
Tg,e Ti) J0(i) 

e = h12	 (21)


2K2kB 
J0(i2)-iJ1(i2) 

Concentric circle annulus approximation for blade leading edge. - 
The derivations of the equations giving blade temperatures at the inner 
and outer edges of the annular region are given as follows (fig. 4(c)): 

D	 - 
Heat entering from hot gas = 2it - ho( Tg,e_TB,o)	 (D2l) 

D	 dT Heat flowing over circle with diameter D = 2r . k3 _4	 (D22) 
d) 

D1 
Heat leaving to coolant = 2it -- hj.( TB, 1-Ti )	 (D23) 

A solution of equation (D22) is 

'i =(2)ioge(cl2 )
	

(D24) 

where C12 is an Integration constant. Application of the boundary 

conditions

TB = TB,o when .D = D0 

and

T.=T.. . when D=D. b	 i1	 1 

to equation (D24) results in the elimination of C12 and an evaluation. 
of Q, namely,

D0 

= () ioge()
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or

2ltkB(TB,o_TB,i) 	
- 

=
(D25) 

From simultaneous solutions of equations (D21),' (D23), and. (D25) it 
is found. that

Tg,eT 
,o_TB,i

2
(25) 

1 +	 D0 (D0h0 + Dh1) 
loge 

From a simultaneous solution of equation (D24) and equation (D24) with 
the inner boundary condition applied, and. use of equation (D25), it is 
found. that

D 

TB = TB,i +	 D0 (TB,o_TB,j)
(24) 

log—

From equations (D23)-and(D25) and from equations (D21) and (D25) 
-there are obtained

2 

- = T1 + D0 (TB,o_T,i)	 • (22) 

Dh	 loge
1 

and	 - - 

2kB,. 
TB ,Q = Tg,e	 •	 D0 (,O_TB,i) •	 (23) 

Dh log - e]. 

Equations (22) to (25) express the blade temperatures in terms of known 
quantities.	 • -
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Section of blade approximated by parallel plates. - The derivation 
of the equations expressing the blade temperatures at the inner and. 
outer edges of a blade section approximated by a region between parallel 
plates is given as follows (fig. 4(d)): 

Q = heat entering from the hot gas = ho(Tg,e_TB,o) 

Q = heat leaving to the' coolant = hi(TB,i-Tj) 

Q = heat flowing thiough the section = 	 (TB,'o-TB,i) 

where a is the distance between the plates. Equating these heat flows 
results in the following system of equations:	 ' 

( TB 4O TB,i) = ho(Tg,e_TB,o)	 hi( TB,i_T )	 (D6


A simultaneous solution of equations (D26) gives 

+ ah0hi (hoTg,e+hiTi) 

TB,i=	 'k	 '	
'(26)


1 + ah0h (h0+hj) 

and

TB,Q = T

g,e	 (hoTg,e+hiT)	

, (27) 

From equations (26) and' (27) it follows that 

TB4O-TB,i =

	

	 Tg,eTz	
(D27)


1 + crh0h1 (h0+h)
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Figure 2. - Rectangular parallelepiped used to approximate 

trailing section of 4-inch turbine blade for three-
dimensional analysis..
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Figure 3. - Correction for heat received by trailing edge.
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[H]

53 

Liquid I 
coolant

at T

(b) Trapezoid. 

Tg,e 

Liquid coolant

at T1 

(c) Concentric circles.	 (d) Parallel plates. 

Figure 4. - Simplified shapes used in one-dimensional 

chordwise analysis.
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Figure 5. - Turbine-blade section showing coolant passages.
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(a) Thermal conductivity of blade, 

15 Btu/(hr)(ft)(PF). 

Figure 10. - Three-dimensional temperture distribution

in trailing section of turbine blade. 
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Figure iO. - Continued. Three-dimensional temperature

distribution in trailing section of turbine blade. 
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Figure 11. - Compartson of one-dimensional chordwise 
temperature distribution through rectangular trailing 
section with three-dimensional temperature distribution 
through rectangular parallelepiped. Thermal conduc-
tivity of blade, 15 Btu/(hr)(ft)(°F). 
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.1	 .2	 .3	 .4	 .5	 .6 
Distance from coolant passage, in. 

Figure 12. - One-dimensional chordwise 
analysis of effect of shape on prevalent 
blade temperature. Thermal conductivity 
of blade, 15 Btu/(hr)(ft)(°F)..
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analysis of prevalent blade temperature for 
trailing section of blade. 



66	 NACA TN 2321 

IEffective gas temperature J	 1 ,I. 

1900 

1800 

1700 

1600 

1500 

1400
Rectangular 
- section 

1300 

1200 

1100
Trapezoidal


section 

1000 

900
0	 40	 60	 120	 160	 200	 240 

Thermal conductivity, Btu/(hr)(ft)(°F) 

Figure 14. - Trailing-edge temperatures obtained 
from one-dimensional chordwise analysis. Coolant 
temperature, 2000 F.

1.11 
0



NACA TN 2321	 67 

1.188t1

207 I	 200 
Gas-to-blade heat-
transfer coefficient	 82 
(Btu/(hr)(sq ft)(°F))	 2OO 

270	
190-/ / 

I 
7220

	

	 / / 182 
18O->, / 

39O	
l90	 l76	 A182 

185 180	 I 
20J\ 	 /185 

29\O t/90 

27O'
240 

260	 250 
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variation of heat-transfer coefficient around blade 
perimeter.
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Figure 16. - Effect of variation of gas-to-blade heat-transfer 
coefficient on temperature distribution through cross section 
of water-cooled turbine blade. Thermal conductivity of blade, 
15 Btu/(hr)(ft)(°F); effective gas temperature, 2000° F; 
average water temperature, 2000 F.
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Figure 17. - Effect of variation of thermal conductivity on 
temperature distribution through water-cooled turbine blade. 
Gas-to-blade heat-transfer coefficient, 222 Btu/(hr)(sq ft)(°F), 
effective gas temperature, 2000° F; average water temperature, 
200° F.
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Figure 18. - Cross section of water-cooled turbine 
blade showing location and size of five coo]ant 
passages used in determination of effect of 
varying trailing-section length on trailing-edge 
temperature.
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Figure 19. - Trailing-edge temperature as function of 
length of trailing section of blade for water-
cooled turbine blades with five coolant passages 
and various thermal conductivities.
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