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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

TECHNICAL NOTE 2661 

A SUMMARY OF DIAGONAL TENSION 

PARI' I - METHODS OF ANALYSIS 

By Paul Kuhn, James P. Peterson, 
and L. Ross Levin 

SUMMARY 

Previously published methods for stress and strength analysis of 
plane and curved shear webs working in diagonal tension are presented 
as a unified method. The treatment is sufficiently comprehensive and 
deta.iled to make the paper self-contained. Part I discusses the theory 
and methods for calculating the stresses and shear deflections of web 
systems as well as the strengths of the web, the stiffeners, and the 
riveting. Part II, published separately, presents the experimental 
evidence. 

INTRODUCTION 

The development of diagonal- tension webs is one of the most out
standing examples of departures of aeronautical design from the beaten 
paths of structural engineering. Standard structural practice had been 
to assume that the load-bearing capacity of a shear web was exhausted 
when the web buckled; stiffeners were employed to raise the buckling 
stress unless the ~Teb was very thick. Wagner demonstrated (reference 1) 
that a thin web with transverse stiffeners does not "fail" when it 
buckles; it merely forms diagonal folds and functions as a series of 
tension diagonals, while the stiffeners act as compression posts . The 
web-stiffener system thus functions like a truss and is capable of 
carrying loads many times greater than those producing buckling of the 
web. 

I 
For a number of years, it was customary to consider webs either as 

"shear-resistant" webs, in which no buckling takes place before failure, 
or else as diagonal-tension webs obeying the laws of "pure" diagonal 
tension. As a matter of fact, the state of pure diagonal tension is an 
ideal one that is only approached asymptotically. Truly shear-resistant 
webs are possible but rare in aeronautical practice. Practically, all 
webs fall into the intermediate region of "incomplete diagonal tension." 
An engineering theory of incomplete diagonal tension is presented herein 
which may be regarded as a method for interpolating between the two 
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limiting cases of pure-diagonal-tension and "shear-resistant" webs, the 
limiting cases being included. A single unified method of design thus 
replaces the two separate methods formerly used. Plane webs as well as 
curved webs are considered. 

All the formulas and graphs necessary for practical use are collected 
in two sections, one dealing with plane webs and one with curved webs. 
However, competent design work, and especially refinement of designs, 
requires not only familiarity with the routine application of formulas 
but also an understanding of the basis on which the methods rest, their 
reliability, and their accuracy. The method of diagonal-tension analysis 
presented herein is a compound of simple theory and empiricism. Both con
stituents are discussed to the extent deemed useful in aiding the reader 
to develop an adequate understanding. The detailed presentation of the 
experimental evidence, however, is made separately in Part II (refer-
ence 2); a study of this evidence is not considered necessary for 
engineers interested only in application of the methods. 
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FREQUENTLY USED SYMBOIB 

cross-sectional area, square inches 

Young's modulus, ksi 

shear modulus, ksi 

effective shear modulus (includes effects of diagonal 
tension and of plasticity), ksi 

force in beam flange due to horizontal component of 
diagonal tension, kips 

moment of inertia, inches4 

torsion constant, inches4 

length of beam, inches 

effective column length of upright, inches 

bending moment, inch-kips 

force, kips 

internal force in upright, kips 
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Q 

R 

R" 

RR 

Rd,Rh 

S 

T 

d 

dc 

e 

h 

hc 

he 

hR 

hU 

k 

kss 

q 

t 

a. 

static moment about neutral axis of parts of cross section 
as specified by subscript or in text, inches 3 

total shear strength (in single shear) of all upright-to-web 
rivets in one upright, kips 

shear force on rivets per inch run, kips per inch 

value of R required by formula (40) 

restraint coefficients for shear buckling of web (see 
equation (32)) 

transverse shear force, kips 

torque, inch-kips 

spacing of uprights, inches 

clear upright spacing, measured as shown in figure 12(a) 

distance from median plane of web to centroid of (single) 
upright, inches 

depth of beam, inches 

clear depth of web, measured as shown in figure 12(a) 

effective depth of beam measured between centroids of 
flanges, inches 

depth of beam measured between centroids of web-to-flange 
rivet patterns, inches 

length of upright measured between centroids of upright-to
flange rivet patterns, inches 

diagonal-tension factor 

theoretica.l buckling coefficient for plates with simply 
supported edges 

shear flow (shear force per inch), kips per inch 

thickness, inches (when used without subscript, signifies 
thickness of web) 

angle between neutral axis of beams a.nd direction of 
dia.gonal tenSion, degrees 
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Suqscripts: 

1m' 

Pm' 
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av 
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deflection of beam, inches 

normal strain 

Poisson's ratio 

centroidal radius of gyration of cross section of upright 
about axis parallel to web, inches (no sheet should be 
included) 

normal stress, ksi 

"basic allowable" stress for forced crippling of uprights 
defined by formulas (37), ksi 

shear stress, ksi 

"basic allowable" value of web shear stress given by fig
ure 19, ksi 

flange flexibility factor, defined by expression (19a) 

diagonal tension 

incomplete diagonal tension 

pure diagonal tension 

flange 

shear 

upright 

web 

allowable 

average 

critical 

compressive y i eld 

effective 
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max maximum 

ult ultimate 

Symbols Used Only for Curved-Web Systems 

R radius of curvature, inches 

z curvature parameter, defined in figure 30 

d spacing of rings, inches 

h length of arc between stringers, inches 

Subscripts: 

RG ring 

ST stringer 

PlANE - WEB SYSTEMS 

1. Theory of the "Shear -Resistant" Beam 

Typical cross sections of built- up beams are shown in figure 1. 
When the web is sufficiently thick to resist buckling up to the f ailing 
load (without or with the aid of stiffeners), the beam is called "shear
buckling resistant" or, for the sake of brevity, "shear resistant. " Web 
stiffeners, if employed, are usually arranged normal to the longi tudinal 
axis of t he beam and have then no direct influence on the stress 
distr i bution. 

I f the web-to-flange connections are adequately stiff, the s t res ses 
i n bu i l t -up beams follow fairly well the formulas of the engineeri ng 
t heor y of bending 

Mz 
(J -

I 
(1) 

q = SQ 
I 

( 2 ) 
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with the understanding that the shear flow in outstanding legs of flange 
angles and similar sections is computed by taking sections such as A-A 
in figure l(a). As is well-known, the distribution of the shear flow 
over the depth of the web follows a parabolic law. Usually, the dif
ference between the highest shear flow in the web (along the neutral 
axis) and the lowest value (along the rivet line) is rather small, and 
the design of the web may be based on the average shear flow 

q = S~ (1 + 2~) 
av I \ 3~ 

where ~ is the static moment about the neutral axis of the flange 

area and Qw, the static moment of the web material above the neutral 
axis. When the depth of the flange is small compared with the depth 
of the beam (fig. l(c)) and the bending stresses in the web are neg
lected, the formulas are simplified to the so-called "plate-girder 
formulas" 

q s 
he 

which imply the idealized structure shown on the right in figure l(c). 

When the proportions of the cross section are extreme, as in fig
ures l(a) and l(b), formulas (1) and (2) should be used, because the 

(4 ) 

use of formulas (3) to (5) may result in large errors. In such cases, 
the web-to-flange connection, particularly if riveted, is often over
loaded and yields at low loads. The beam then no longer acts as an 
integral unit, the two flanges tend to act as individual beams restrained 
by the web, and the calculation of the stresses becomes very difficult 
and inaccurate. 

2. Theory of Pure Diagonal Tension 

The theory of pure diagonal tension was developed by Wagner in 
reference 1. The following presentation is confined to those results 
that are considered to be of practical usefulness, and the method of 
presentation of some items is changed considerably. Mathematical com
plexities have been omitted, and an empirical formula is introduced for 
one important item where Wagner's theory appears to be unconservative. 

-, 

.. 

.. 
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2.1. Basic concepts. - A diagonal-tension beam is defined as a 
built-up beam similar in construction to a plate girder but with a web 
so thin that it buckles into diagonal folds at a load well below the 
design load (fig. 2) . A pure-diagonal- tension beam is the theoretical 
limiting case in which the buckling of the web takes place at an infini
teSimally small load. Although practical structures are not likely to 
approach this limiting condition closely, the theory of pure diagonal 
tension is of importance because it forms the basis of the engineering 
theory of diagonal tension presented in section 3. 

The action of a diagonal-tension web may be explained with the aid 
of the simple structure shown in figure 3(a), conSisting of a parallelo
gram frame of stiff bars, hinged at the corners and braced internally 
by two slender diagonals of equal size . As long as the applied load P 
is very small, the two diagona l s will carry equal and opposite stresses. 
At a certain value of P, the compression diagonal will buckle (fig. 3(b)) 
and thus lose its ability to take additional large increments of stress. 
Consequently, if P is increased further by large amounts, the additional 
diagonal bracing force must be furnished mostly by the tension diagonal; 
at very high applied loads, the stress in the tension diagonal will be 
so large that the stress in the compression diagonal is negligible by 
comparison. 

An analogous change in the state of stress will occur in a similar 
frame in which the internal bracing consists of a thin sheet (fig. 3(c)). 
At low values of the applied load, the sheet is (practically) in a state 
of pure shear, which is statically equivalent to equal tensile and com
pressive stresses at 450 to the frame axes, as indi cated on the inset 
sketch. At a certain cr itical value of the load P, the sheet buckles, 
and as the load P is increased beyond the critical value, the tensile 
stresses become rapidly predominant over the compressive stresses 
(fig. 3(d)). The buckles deve l op a regular pattern of diagonal folds, 
inclined at an angle a and following the lines of the diagonal tensile 
stress. When the tensile stress is so large that the compressive stress 
can be neglected entirely by comparison, the sheet is said to be in the 
state of fully developed or "pure" diagonal tension. 

2.2. Theory of primary str esses .- A gir der with a web in pure 
diagonal tension is shown in figure 4(a). To define this condition 
physically, as sume that the web is cut into a series of ribbons or strips 
of unit width, measured horizontally. Each one of these strips is 
inclined at the angle a to the horizontal axis and is under a uniform 
tensile stress cr. 

The free-body diagram of figure 4(b) shows the internal forces in 
the strips intercepted by the section A-A combined into their resultant D. 
Since all strips have the same stress, the resultant is located at mid
height. The horizontal component HD (= S cot a) of D is balanced 
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by compress i ve forces H in the two flanges. The two forces H must 
be equal, D being at mid-height, therefore 

H 
8 cot CL 
2 

( 6) 

The total flange force is thus 

F +M = -- + H = ±M 8 cot CL 
h h 2 

In the free-body diagram of figure 4(c), each strip is cut at right 
angles, giving the stress-carrying face a width of sin CLj the force on 
each strip is therefore at sin CL. The number of strips intercepted by 
section A-A is equal to h cot CLj the total force D on all strips is 
therefore 

D at sin CL X h cot CL = oht cos CL 

But from statics 

D 
8 

sin CL 

Therefore 

8 oht cos CL 
sin CL 

or 

s 28 (8 ) 
ht sin CL cos CL ht sin 2CL 

The upright is under compression, counteracting the tendency of the 
diagonal tension to pull the flanges together (fig. 4(d)). The force Fu 
acting on each upright consists of the vertical components of the forces 
acting in all the strips appertaining to each upright, that is, in d 
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strips (since the strips have unit width horizontally). But as just 
found, the vertical component of h cot a strips is equal to 8j 
therefore 

S 

or 

d h cot a 

d 
-S tan a 

h 

If each strip is connected to the flange by one rivet, the force on this 
rivet is equal to the force at sin a in the strip. Since the strips 
are of unit width horizontally, this is the rivet force per inch run, 
designated by R". Substitution of the value of (J from formula (8) 
gives 

R" 8 (10) 
h cos a 

The angle a is usually somewhat less than 450 j consequently, a slightly 
conservative value for most cases is 

R" ~ 1.414 ~ (lOa) 

All stresses or forces are now known in terms of the load P, the 
dimensions hand d of the beam, and the angle a. To complete the 
solution, the angle a must be foundj the principle of least work may 
be used to find it. 

The internal work in one bay of the beam is given by the expression 

w 

(The subscript e on AU is necessary only for single uprights and will 
be explained in connection with formula (22). For double uprights it is 
unnecessary.) By substituting into this expression the stress values in 
terms of 8 that follow from formulas (8), (9) , and (6), which are 

28 2T (11) 
ht sin 2a sin 2a 
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Sd tan a - hAU
e 

S 

2AF 
cot a 
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Tdt t -- an a 
AUe 

(12) 

Tht 
cot a 

2AF 

differentiating to obtain the minimum, and omitting the constant factor 

S2/E, there results 

dW 
da 

8d cos 2a 

ht sin32a 
+------ d cos a 

2AF . 3 
Sln a 

Substituting into this expression the values for the stresses given by 
equations (11), (12), and (13) and equating to zero results in the 
relation 

-0" = 0 

from which 

( 14) 

If 0", O"F' and O"u are expressed in terms of S and a, trigonometric 
equations for a are obtained; the most convenient one is 

1 + ht 

tan4a 
2AF 

1 + 
dt 

(15 ) 

AU e 

After the angle a has been computed by formula (15), the stresses can 
be computed by formulas (11) to (13). In plane webs, the angle a 
generally does not deviate more than a few degrees from an average value 
of 400 • 
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2.3. Secondary stresses.- Formulas (11) , (12) , and (13) def i ne the 
primary stresses caused directly by the diagonal tens i on. There are also 
secondary stresses which should be taken into account when necessary. 
The vertical components of the web stresses 0 acting on the f langes 
cause bending of the fla.nges between uprights as shown in figure 5(a). 
The flange may be considered as a continuous beam supported by t he 
uprights; the total bending load in one bay is equal to Pu and, if it 

is assumed t o be uniformly distributed, the pri mary maximum bending 
moment occurs at the upright and is 

In the middle of the bay there is a secondary maximum moment half as 
large. 

(16) 

If the bendi ng stiffness of the flanges is small , t he defl ections 
of the flanges i ndicated in figure 5(a) are sufficient t o relieve the 
diagonal-tension stress in those diagonal strips that are attached to 
the flange near t he middle of the bay. The diagonals at tached near the 
uprights must make up for this deficiency in stress and thus carry higher 
stresses than computed on the assumption that all diagonals are e qually 
loaded. In figure 5(b) , this changed distribution of web stress is 
indicated schemat ically by showing tension diagonals beginni ng only near 
the uprights . The redistribution of the web tension str esses also causes 
a reduction in the secondary flange bending moments. On the bas is of 
simplifying assumpt ions, these effects have been evaluat ed by Wagner 
(reference 1 ) and may be expressed by the following formulas: 

(18) 

Graphs for the fact ors C2 and C3 will be given under sect ion 4, where 

all graphs are collected for convenience of application. The factors are 
functions of the flange-flexi bility parameter md , which is defined by 

d sin a 4 (J:.. + J:..).!.. 
~ IC 4h 
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where the subscripts T and C denote tension and compression flange, 
respectively. For practical purposes it is sufficiently accurate to use 
the following simplified form of this formula, in which the angle ~ is 
assumed to be slightly less than 45°, and the sum of the reciprocals is 
replaced by four times the reciprocal of the sum 

4 t 
(19a) 

In reference 1, Wagner gave a second value of rod, 1.25 times as large as 
the value given by equation (19a), based on a different derivation, and 
recommended that the second value be used because it is more conservative. 
Previous papers have usually quoted this more conservative value of rod, 
but it appears to be more conservative than necessaryj it was based on the 
assumption that d» h, a condition which is now avoided in actual 
designs. 

2.4. Behavior of uprights.- The uprights in a diagonal-tension beam 
may be double (on both sides of the web) or singlej both types are always 
fastened to the web. The buckling strength of the uprights cannot be 
computed immediately by ordinary column formulas because the web restrains 
the uprights against buckling. As soon as an upright begins to buckle out 
of the plane of the web, the tension diagonals crossing the upright become 
kinked at the upright, and the tensile forces in the diagonals develop 
components normal to the web tending to force the upright back into the 
plane of the web, as indicated by the auxiliary sketch in figure 6(a). 
The restoring force exerted by the diagonal-tension band upon the upright 
is evidently proportional to the deflection (out of the plane of the web) 
of the upright at the point where the diagonal crosses it. The upright 
is therefore subjected to a distributed transverse restoring load that is 
proportional to the deflectionj the problem of finding the buckling load 
of such a compression member is well-knOwn, and methods of solution may 
be found in reference 3, for instance . Wagner has given the results of 
calculations for double uprights with clamped or pinned ends in the form 
of curves (fig. 6(b)), showing the ratio PU/PUE as a function of the 

ratio d/h, where Pu is the buckling load of the upright and PoE the 

Euler load, that is, the buckling load that the same upright would carry 
if it were a pin-ended column not fastened to the web. 

The assumption of clamped ends would be justified only if the ends 
of the uprights were fastened rigidly to the flanges and if, in addition, 
the flanges had infinite torsional stiffness. Usually, beam flanges 
have a rather low torsional stiffness and thus do not justify the assump
tion of clamped ends for the uprights. Tests of beams with very thin 
webs have furthermore shown that even Wagner's curve for pin-ended double 
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uprights as shown in figure 6(b) is entirely too optimistic for low 
values of d/h. The straight line marked "Experiment" in figure 6(b) 
(from reference 4) is slightly conservative for the average of the tests 
available, but several test points fall so close to it that only a large 
number of new tests could justify a higher curve (see Part II (refer
ence 2)). In order to make this experimental curve applicable to 
uprights not in the Euler range, it may be expressed as a formula for 
reduced or effective column length of the upright in the form 

h 

which is valid for d < 1.5hj for d > 1.5h, of course, Le = h. In 

practice, d is seldom chosen larger than h in order to keep the 
flange-flexibility factor ad low. 

(20) 

Single uprights are, in effect, eccentrically loaded columns. As 
long as the load is infinitesimal, the eccentricity e is evidently the 
distance from the plane of the web to the centroid of the upright. If 
the uprights are very closely spaced, the web between uprights must 
def-lect (on the average) in the same manner as the uprights. Under this 
condition, the eccentricity is equal to the initial value e all along 
the upright and does not change with increase in load. The upright is 
therefore designed by the formulas used for an eccentrically loaded com
pression member with negligible deflectionj the bending moment in the 
upright is ePU, and the stress in the fibers adjacent to the web is 

(21) 

where p is the radius of gyration, of the cross section and AUe is 

the effective cross-sectional area, which is evidently defined by the 
expression 

(22) 

Approximate values of the ratio AuejAu are shown in figure 7 for typical 

single uprights. It should be noted that the web sheet contributes no 
"effective width" to the upright area under the condition of pure diagonal 
tension considered here. Formula (22) would also apply to a double upright 
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not symmetrical about the web. 
are symmetrical; in this case, 

In most cases, however, double uprights 
e = 0, and thus AUe = AU. 

If the uprights were extremely widely spaced, the major portion of 
the web would remain in its original plane (on the average, i.e., 
averaging out the buckles). Consequently, the compressive load acting 
on the uprights would remain in the origi nal plane, and the upright 
would act as an eccentrically loaded column under vertical loads, except 
for the modification introduced by the elastic transverse support 
furnished by the web. However, barring freak cases, extremely wide 
spacing of the uprights would result in the nonuniform distribution of 
diagonal tension shown in figure 5(b). In this configuration, the direc
tion of the compressive load (as seen in a plane transverse to the plane 
of the web) is determined essentially by the configuration of the web in 
the vicinity of the upright-to-flange joint; conditions are therefore 
again similar to those in the case of the closely spaced uprights. On 
the basis of this consideration, formulas (21) and (22) are being used 
for all single uprights regardless of spacing, and the available experi
mental evidence indicates that this practice is acceptable at the present 
stage of refinement of the theory_ 

2.5. Shear deformation of diagona.l-tension web.- The shear deforma
tion of a web working in pure diagonal tension is larger than it would 
be if the web were working in true shear (a condition that could be 
realized by a.rtificially preventing the buckling). The effective (secant) 
shear modulus GpDT of a web in pure diagonal tension can be obtained by 

a simple strain-energy calculation as follows: Consider one bay of the 
web system and denote by r the shear deformation of the bay. The 
external work performed during loading is 

1 - Srd 
2 

~ S S d 
2 htGpDT 

The internal strain energy stored is 

Now 0, aU, and OF ca.n be expressed as functions of S by formulas (11) 

to (13); after transposing terms and canceling, there results the formula 

, 

'" 
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E 

GpDT 

which may be transformed with the aid of equation (15) into 

2 ht 2 ) sin a + cos a 
2AF 

or 

_E _ = 2 (2 _ aF _ au) 
GpIYl' a a 

15 

(23a) 

(23b) 

( 23c) 

In beams of the type considered here, the flanges are usually so heavy 
t hat the t erm containing the flange area is negligible. Equation (23a) 
can the n be simplified to 

2 
---

. 2 
(23d) 

Sln a 

When the uprights as well as the flanges are very heavy, the angle a 
becomes e qual to 450 , and 

E 
GPDT = 4 (23e) 

3. Engineering Theory of Incomplete Diagona l Tension 

The t wo preceding sections presented "analytical" theor i es of the 
shear-re s i stant beam and of the beam in pure diagonal t ens ion . An 
engineering or "working" theory will now be developed t hat connects these 
two ana l ytical theories. It may be considered as a met hod of interpo
lating between the t wo analytical theories, guided by an empirical law 
of deve l opment of the diagonal tension. The purpose of this section is 
to present the engi neering theory, to explain physical considerations 
and cert ain det a i ls, to describe (where it seemed advi sable) how empirical 
data wer e obtai ned, and to indicate the accuracy of the method. The sec
tion thus f orms the basis for section 4, which gives i n conc i s e form all 
the informat i on needed for actual analysis. This divi sion of subject 
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material between two sections entails some disadvantages for a first 
readingj however, the advantage of having section 4 in the form of a 
llready reference ll section for practical application, unencumbered by 
uackground material, is felt to outweigh the disadvantage. 

3.1. General considerations.- When a gradually increasing load is 
applied to a beam with a plane web, stiffened by uprights and free from 
large imperfections, the following observations may be made: At low 
loads, the beam behaves in accordance with the theory of the shear
resistant beamj the web remains plane and there are no stresses in the 
uprights. At a certain critical load, the web begins to bucklej these 
buckles are almost imperceptible, and very careful measurements are 
necessary to define the pattern. As the load is increased more and 
more, the buckles become deeper and more distinct and the buckle pattern 
changes slowly to approach more and more the pattern of parallel folds 
characteristic of well-developed diagonal tension (fig. 2). The process 
of buckle formation and development is accompanied by the appearance and 
development of axial stresses in the uprights . 

It is clear, then, that the theory of the shear-resistant beam can 
be verified directly by stress measurements at sufficiently low loadsj 
it is furthermore possible (although rare) that a beam may remain in the 
shear-resistant regime until web fracture or some other failure takes 
place. The state of pure diagonal tenSion, however, is a theoretical 
limiting casej a physical beam may approach this limit fairly closely, 
but it can never reach the limit, because some failure will take place 
before the limit is reached. A direct experimental verification of the 
theory of pure diagonal tension is thus impossible. Fortunately the 
theory is so simple (as long as the effect of flexibility of the flanges 
may be neglected) that experimental verification is unnecessary. 

Physical intuition suggests, and measurements have confirmed, that 
the state of pure diagonal tension is approached fairly closely when the 
applied load is several hundred times the buckling load. Beam webs that 
fail at loads several hundred times the buckling load are encountered in 
practice, but they are the exception rather than the rule. For the great 
majority of webs, the ratio of failing load to buckling load is much less, 
and the theory of pure diagonal tension gives poorer and poorer approxi
mations as this ratio decreases. 

In order to improve the accuracy of the stress prediction, it is 
necessary to recognize that most'practical webs work in incomplete 
diagonal tenSion, or in a state of stress intermediate between true shear 
and pure diagonal tension. The first suggestion for such an improvement 
was made by Wagner (reference 5) for curved webs and was adopted by 
others for the design of plane webs. The suggestion as applied to the 
braced frame of figures 3(a) and 3(b) may be stated as follows: As the 
load P increases from zero, both diagonals work initially. At a certain 

... 
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load Pcr ' the compression diagonal will buckle, the load in the diagonal 

being Dcr ' For any further increase in the load P, the load D in the 

compression diagonal is assumed to remain constant and equal to Dcr ' 

Applied to the sheet-braced frame of figures 3(c) and 3(d), the assump
tion may be phrased as follows: If the applied shear stress T is 
larger than Tcr ' only the excess ~ - Tcr) above the critical shear is 

assumed to produce diagonal-tension effects. 

Let TDT denote that portion of the applied shear stress T which 

is carried by diagonal-tension action. The mathematical formulation of 
the assumption then becomes 

(24) 

The "applied shear stress" T(=S/ht) is evidently a nominal stress, that 
is to say, it does not exist physically as a shear stress. 

3.2. Basic stress theory.- The use of formula (24) improves the pre
diction of the upright stresses, but the improvement is of significant 
magnitude only for a narrow range of proportions. An improved theory was 
therefore sought, with the following desired characteristics: 

(1) The theory should cover the entire range of beam proportions, 
from the shear-resistant to the pure-diagonal-tension beam 

(2) The theory should be as simple a.s pOSSible, because each air
plane conta.ins hundreds of elements that must be designed by considera
tions of diagonal-tension action 

A theory of this type has been developed in a series of steps (refer
ences 4 and 6 to 9). This section presents that portion of the theory 
which deals with the calculation of the primary stress conditions. 

The applied nominal shear stress T is split into two parts: a 
shear stress TS carried by true shear action of the web, and a por-

tion Tur carried by diagonal-tension action. Thus 

T 
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or 

(1 - kh 

where k is called the "diagonal- tension factor . 11 It may be noted that 
formula (24) is a special case of this general formulation, with the 
factor k defined by 

k 1 - (26) 

by virtue of the assumption made . In the improved theory, the factor k 
is still considered to be a function of the "1oading ratio" T/ Tcr but 

wa s determined empirically from a series of beam tests . The empirical 
expression (reference 4) is 

k = tanh (0 . 5 loglO .2..-) 
\: Tcr 

For T < 2, expr ession (27) is approximated closely by the expression 
Tcr 

k 

where 

p 
T - T cr 

T + T cr 

(27a) 

For T ~ Tcr ' the factor k is zero and the web is working in true 

shear. As the loading ratio T/Tcr approaches infinity, the factor k 

approaches unity, which denotes the condition of pure diagonal tension . 

in the web for the l imiting 
general intermediate case. 

Figure 8 shows the state of stress 
ca ses (k = 0 and k = 1.0) and for the 
Superposition of t he two stress systems 
the stress 01 along the direction a 

to this direction, respectively, 

in the general case gives for 
and the stress 02 perpendicular 

2kT + T(l _ k)sin 2a 
sin 2a 

(28a) 
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(For these equations, and for all equations of this s ection, it is 
assumed that t he flanges are not sufficiently flexible to produce sig
nificant nonuni formity of stress.) 

The val ue of 

by (26) except for 

k given by express i on (27) is less than t hat given 

the limi ting cases (2.. = 1.0 and 2.. ~ 00). This 
Tcr Tcr 

fact implies that the true shear stress in the sheet must deve lop values 
larger than Tcr ' contrary to the assumption on whi ch expression (24) is 
based. At f i rst glance , the assumption that the diagonal compres s ive 
stress does not increase beyond the critical value appears plaus ible, 
particularly i f one bears in mind the picture of the braced frame in 
figure 3(b) . However, it is well-known that deeply corrugated sheet can 
carry very h i gh shear stresses before collapsing. In t he l i ght of this 
fact, it does not seem reasonable to assume that the hardly perceptible 
buckles which form in a web loaded just beyond the critical s t re ss 
deprive the sheet immediately of all ability t o carry any further increase 
i n diagonal compressive stress and consequently any i ncrease in true 
shear stress. 

If the sheet is thus assumed to be able to carry diagonal compressive 
stress, it is consistent to assume that it can also carry compressive 
stresses paralle l to the uprights or to the flanges; i n other words, some 
effective width of sheet should be assumed to cooperate with t he uprights 
and the flanges. Trial calculations for the upright s t resses developed 
in test beams gave satisfactory agreement when the effective width working 
with the upright was assumed to be given by the expression 

0.5(1 - k) (29) 

The effective width of 0.5d immediately after buckling may be thought of 
as produced by the sinusoidal distribution of stresses i ndi cat ed in fig
ure 9. The assumpt ion of linear decrease wi th k was made as the 
simplest expedient possible. 

With the assumptions made so far, the formula for t he stress in an 
upright is obta i ned by modifying formula (12) , which i s vali d f or pure 
diagonal tens i on, t o read 

kT tan a. 
( 30a) 

AU 
dte 

+ 0. 5 (1 - k) 

. ' 
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Similarly, formula (13) for the flange stress produced by the diagonal 
tension becomes 

kT cot a. 

2AF 
ht + 0.5(1 - k) 

Formula (14) for the angle a. may be written in the modified form 

E - €F 

E - EU 

( 30b) 

(30c) 

This form is more general than formula (14), because it is applicable 
when web, flanges, and uprights are made of materials having different 
Young's moduli. The strains appearing in formula (30c) are defined by 

; 

with the stresses crl and cr2 defined by equations (28a) and (28b); 

therefore, 

E = :!:.. r .2k + (1 - k) (1 + I-l) sin 2:1 
E ~ln 20. ~ (30d) 

For practical purposes, sin 20. may be taken as unity, because the 
angle a. lies between 450 and 380 for almost all reasonably well designed 
webs. Expression (30d) then becomes 

(30e) 

All charts and graphs for plane diagonal tension shown in this paper were 
calculated by use of this approximation. (For curved webs, the approxi
mation is too inaccurate because the angle a. assumes much lower values.) 

It might be noted that the buckle pattern immedia.tely after buckling 
is not a pattern of parallel folds; this pattern is only approached asym
totically. Consequently, the term "angle of folds" has, strictly speaking, 
no meaning for incomplete diagonal tension, but it is sometimes used for 
the sake of brevity instead of the more correct term "a.ngle of diagonal 
tension. " 

I 

.. 
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The stress component T(l - k) sin 2a in formula (28a) arises from 
the true shear existing in the web. This component affects the diagonal 
web strain E and thus the angle a. The state of diagonal tension 
produced by the component kS of the applied shear load is therefore 
not a state of "pure" diagonal tension. It is a state of "controlled" 
diagonal tension in which the angle a is affected by the simultaneous 
presence of a true shear stress in the web. In order to bring out this 
distinction where necessary, the following set of symbols is used: 

Dl' "controlled" diagonal-tension component of the total stress 
system when 0 < k < l. 0 

IDl' (for incomplete diagonal tension) total stress system 
when 0 < k < 1.0 

PDl' (for pure diagonal tension) stress system when k = 1.0 

The "coupling" between diagonal tension and shear in the IDl' case 
makes it impossible to calculate the angle a directly, as in the 
PDT case. Equations (30) must be solved by successive approximations. 
A value of a is assumed, and equations (30a), (30b), and (30d) are 
evaluated. From the resulting stresses, the strains are computed and 
inserted into equation (30c). If the angle computed from (30c) does 
not agree with the assumed angle, a new computation cycle is made with 
a changed value of a. With a little experience, three cycles are 
usually sufficient. For most practical problems, the necessity of going 
through this procedure has been eliminated by the preparation of a chart 
(section 4) which gives the answer directly for beams with flanges 
sufficiently heavy to make EF negligible compared with E. 

In keeping with the separation of the total stress system in a web 
into a shear part and a diagonal-tension part (expressions (25)), the 
shear deformation of a web may be separated into corresponding parts 

With T 

G 
and T 1, this relation becomes 

1 1 - k k (31a) 
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where GDT is eval uated by using formul a (23a) in the modified form 

appropriate to the DT case 

tan2a cot2a 
----------------- + 
AUe ( ) dt + 0.5 1 - k 

~F 
ht + 0. 5(1 - k) 

(31b) 

In most beams, the flange ar ea is sufficient l y l arge to permit neg
l ecting the last term in for mula (31b). With this simplification, 
the ratio GI DT / G becomes a function of the two parameters AUe/ dt and 

k (or T/Tcr) and can therefore be given on a simpl e graph ( section 4) . 

In some rare cases, it may be desirable to estimate the shear defor
mation up to the failing load of the beam. For some materials , it will 
then be necessary to multiply GIDT by a plas ticity correction factor . 

A graph showing this factor for 24s - T3 sheet is given in section 4. The 
graph represents an average curve derived from a series of tests on 
square panels, stiffened by varying amounts to produce different degrees 
of diagonal tension . 

3 . 3 . Remarks on accuracy of basic stress theory.- In the strength 
design of webs, reasonably accurate results may be achieved with the aid 
of empirical data without benefit of a theory of diagonal tension . The 
uprights, however, cannot be designed with any degree of reliability 
without benefit of such a theory. The appraisal of a theory therefore 
should concern itself primarily with the accuracy of predicting the 
upright stresses . 

The engineering theory given in section 3.2 contains two main elements 
strongly affecting the upright stresses that require verification: expres
sion (27) for the diagonal- tension factor k and expression ( 29) for the 
effective width of sheet . It has not been considered important to date 
to attempt separate verification of these two itemsj special test speci
mens with construction features not representative of actual beams would 
be required, and the elaborate instrumentation necessary would preclude 
the possibility of making checks over a wide range of proportions . The 
method actually chosen was to measure the upright stresses in a series 
of beams . Such measurements constitute only a check on the accuracy with 
which expressions ( 27) and (29)) used in conjunction, predict the upright 
stresses) but this type of check is considered reasonably satisfactory 
except perhaps for thick webs . 

The direct evidence used originally to establ ish the empirical 
relation (27) and to chose simultaneously the assumption (29) was obtained 



-\ 

NACA TN 2661 23 

by analyzing the upright stresses measured on 32 beams tested by the 
NACA. (See Part II (reference 2).) The criterion used for fixing the 
relations was that no unconservative (low) predictions of upright stress 
should result for one test beam as long as the load was below about 
2 3 of the ultimate. It was possible to fulfill this criterion with
out being unduly conservative on the average (see Part II for details). 
On the average, the predictions were about 10-percent conservative (for 
loads below 2/3 of the ultimate). In 20 percent of the cases, the pre
dictions were about 20-percent conservative. In more than half of the 
cases where the prediction was 20-percent or more conservative, the 
upright stress was quite low at 2/3 load (about 7 ksi); the estimated 
probable accuracy of the upright stress under this condition was about 
10 f~rcent. 

At high loads, predicted values of the upright stresses were con
siderably lower than the observed values for some beams. Analysis of 
the data - more particularly those obtained later on thick-web beams -
tended to indicate that the predictions would be low when the shear 
stress in the web exceeded the yield value. The explanation is probably 
that yielding of the web has a double effect: It causes the effective 
width of sheet cooperating with the uprights to decrease more rapidly 
and it causes the diagonal tension to develop more rapidly than in the 
elastic range. No method of correcting for these effects of yielding 
has been developed as yet. 

Errors in predicted upright stresses do not entail error~ of the 
same magnitude in the predicted failing loads of beams. The first reason 
for this fact is that the upright stresses increase at a higher rate than 
the load. The second - usually more important - reason is that any over
estimate of the upright stress resulting from an error in k will be 
accompanied by an overestimate of the allowable stress, because the 
allowable upright stresses depend on k. For instance, for the two beams 
used as numerical examples in section 7, an overestimate of the upright 
stress by 10 percent is accompanied by an overestimate of the allowable 
stress by 7 percent, and thus by only a 3-percent overestimate of the 
failing load of the entire beam. As a result, errors in the predicted 
upright stresses appear to be overshadowed by the uncertainties existing 
at present in the prediction of the allowable stressesj until these 
uncertainties are reduced, corrections for the errors mentioned in the 
preceding paragraph may be of small value. It is also pertinent to 
observe that the measurements of upright stresses at high loads are not 
reliable in some cases. 

3.4. Comparison with analytical theories. - Any analytical theory of 
incomplete diagonal tension is unaVOidably complex, and attempts to 
develop such a theory have been made only fairly recently. Koiter has 
developed approximate solutions (reference 10) for a beam in which the 
uprights are not connected to the webj they act thus purely as compression : 



24 

posts and do not influence the buckling of the web. 
lations made by Koiter for several values of AU/dt 
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Comparative calcu
give upright 

stresses somewhat over 20 percent in excess of those given by the engI

neering theory when -I- = 8; for -I- = 100, the excess is of the order 
Tcr Tcr 

of 5 rercent. The excess stresses may be explained qualitatively by the 
fact that the web does not furnish any contribution to the effective area 
of the upright if the upright is not connected to the web, as assumed by 
Koiterj the discrepancy obviously decreases continuously as the ratio 
T/Tcr increases. In view of the simplifying assumption of disconnected 

uprights made in the theory, the agreement may be considered as satis
factory. The effective shear modulus calculated by Koiter is somewhat 
lower than that calculated by the engineering theory, as would be 
expected. For the limiting case of infinitely stiff uprights, the dif
ferences are 9 and 5 percent for T/T cr equal to 8 and 100, respectively. 

For uprights of practical sizes (AU/dt of 0.67 and 0.18), the differences 
are at most 3 percent. 

A physically more realistic theory was developed by Denke (refer-
ence 11), who assumed a buckle pattern consistent with the fact that the 
uprights are connected to the web. Calculations made by Denke (refer-
ence 12) for a series of 28 NACA test beams show in almost all cases 
somewhat lower upright stresses than predicted by the engineering theory. 
This implies rather close average agreement with the test results because 
the engineering theory is conservative on the average (having been adjusted 
to avoid unconservative predictions in anyone beam). The predictions by 
Denke's theory were slightly unconservative in some cases; significantly 
unconservative predictions (about 30 percent) were made for two beams 
with very low stiffening ratios AU/dt, a fact that may be of importance 
in the application of the theory to thick-web beams. 

Koiter's theory was intended to apply primarily at large loading 
ratios but was considered by him to be reasonably applicable at loading 
ratios down to unity. Denke's theory was set up from the beginning to 
cover the entire range of loading ratios from unity to infinity. Such 
a wide scope of the theories could be obtained only by rather severe 
simplifying assumptions. A different line of attack was chosen by 
Levy (references 13 and 14), who used a more exact theory at the expense 
of being restricted to low loading ratios. A comparison of upright loads 
calculated by Levy's theory and calculated by the engineering theory is 
shown in figure 10. Upright loads rather than stresses are shown to 
permit including the limiting case of infinite upright area. The loads 
shown are based on the maximum stress, which occurs in the middle of the 
upright. The maximum stress will be discussed in the next section; its 
use in figure 10 does not affect the comparison and permitted direct use 

of Levy's data without conversion. For the case (AU = 0.25; ~ = 0.4), 
dt h 



NACA TN 2661 25 

the two theories agree closely. For the other two cases, the engineering 
theory gives somewhat unconservative (low) stresses as compared vrith 
Levy's theory. Test results, on the other hand, have indicated so far 
that the engineering theory tends to give somewhat conservative values 
for the upright stresses, but the number of reliable tests is small for 
low values of the ratio TITcr (about 2), where the percentage dif-

ferences are largest . It is an open question, therefore, which theory 
is closer to the truth. 

3.5. Amplification of theory of upright stresses.- Under the con-
=-~--~--------------------~----~~~----------

dition of pure diagonal tension (and constant shear load along the length 
of the beam), the upright stress aU is constant along the length of the 

upright. However, it had long been noted in tests that this stress 
actually has a maximum value aUmax at the middle of the upright and 

decreases towards the ends) a fact referred to as "gusset effect" (refer
ence 7). The stress aU given by the engineering theory is the average 

taken along the length of the upright. (This is the manner in which the 
experimental data used to established expression (27) for k were 
evaluated. ) 

Section 3.9 discusses the observation t hat most upright failures in 
practical beams can be ascribed to a local-crippling type of failure. It 
seems reasonable to assume that the maximum stress crumax is a better 

index for such a type of failure than the average value aU' This assump

tion is supported by the observation that all attempts to base an empirical 
formula for the allowable value (causing failure) of the upright stress 
showed much larger scatter when aU was used as index than when crumax 
was used. 

The variability of aU, or the ratio aUmax/au, is largest just after 

buckling of the web and decreases as the diagonal tension develops. The 
accuracy and the scope of the available experimental data are not adequate 
to establish the ratio aumax/au empirically . On the other hand) the 

stress conditions just beyond buckling are reasonably amenable to a theory 
of the type developed by Levy (references 13 and 14). The calculations 

given in these two references cover two configurations (~ = 0.4 and 1.0). 
For lack of better information) the ratio aUmax/aU is assumed to vary 

linearly with the ratio d/h; with this assumption) the two calculated 
sets of values fix the relation. The calculations cover the range of 
TlTcr up to about 6 or 8 and thus provide only a narrow range of varia-

tion of the factor k; under these conditions) it is not considered 
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justified to make a more elaborate assumption than that of l inear varia
tion of crUmax/crU with k . 

The resulting graph (section 4) thus rests on a limited set of data 
and should be considered as tentative. Such experimental evidence as 
exists from beam tests tends to indicate that the ratio obtained from 
the graph is probably somewhat less re l iable than the basic stress 
theory itself. 

3.6. Calculation of web buckling stress . - Theoretical formulas for 
the critical shear stress Tcr are available for plates with all edges 

simply supported, all edges clamped, or one pair of edges simply sup
ported and the other pair c l amped. With an accuracy sufficient for all 
practical purposes, a formula covering all these cases can be written 
in the form 

where kss is the theoretical buckling coefficient for a plate with 

simply supported edges having a width d and a length h (where 

(32) 

h > d). The coefficients Rh and Rd are coefficients of edge restraint, 

taken as R = 1 for simply supported edges and R = 1.62 for clamped 
edges; the subscripts denote the edge to which the coefficient applies. 
Formula (32) represents all available theoretical results (references 3 
and 15 to 17) with a maximum error believed to be less than 4 percent; a 
more precise evaluation of this error is not possible at present because 
some of the published solutions for plates with mixed edge conditions 
are known to be somewhat in error because of an err oneous choice of buckle 
pattern (reference 18), but the correct values have not yet been computed. 

In actual beam webs, the edge supports are furnished by the flanges 
and the uprights; the panel edges are thus neither simply supported nor 
clamped, and the actual edge conditions mayor may not lie between these 
two conditions. Some available theories consider the effect of bending 
stiffness of the uprights, but they still give results differ ing over 
100 percent from test results over a considerable portion of the prac 
tical range of proportions . (The most important reason for the weakness 
of the theory is probably the one discussed in section 3.9.) For the 
time being, calculations of Tcr for diagonal-tension analysis are 

therefore based on formula (32), supplemented by empirical restraint 
coefficients which are functions of the ratio tuft (section 4) . It 
is probable, however, that theoretical coefficients based on an adequate 

I 
J 
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theory should eventually replace the empirical coefficients, particularly 
for beams designed to fail at low ratios of TITcr (say less than 4). 

When the uprights are much thinner than the web, the coefficient Rh 
becomes very low. In such a case, the critical stress calculated by 
formula (32) may be less than that calculated with complete disregard of 
the presence of the uprights. The latter value should then be used, 
because low values of the empirical restraint coefficients (less than 
about 0.5) are not covered by tests and thus are unreliable, and because 
formula (32) obviously gives meaningless results when Rh approaches 
zero. 

Formula (32) is valid only as long as the calculated critical stress 
is below the limit of proportionality for the material used. Beyond this 
limit, corrections based on the theory of plastic buckling must be applied; 
the theories presented in references 19 and 20 have been used to compute 
the correction curves given in section 4 for bare and clad webs, 
respectively. 

3.7. Failure of the web.- As is well-known, the engineering beam 
theory is not entirely capable of predicting the failure of beams, even 
of simple cross sections; it must be supplemented by empirically deter
mined moduli of rupture. In an analogous manner, the engineering theory 
of incomplete diagonal tension must be supplemented by empirical failure 
moduli. This section deals with the failure of webs. Since a modulus 
of rupture is a fictitious stress, the method of computing the stress 
must also be specified and constitutes an integral part of the definition 
of the modulus. 

The stress in a web may be expressed either as a nominal shear stress 
or as a nominal diagonal-tension stress; the first alternative is used 
here. The peak nominal stress in a sheet panel may then be defined by the 
formula 

T'max (33a) 

In this expression, Cl is a correction factor to allow for the fact 

that the angle a of the diagonal tension differs from 450 ; by for
mula (11), for k = 1 

1 
- 1 

sin 2a 
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The factor C2 is the stress-concentration factor arising from flexi
bility of the flanges and introduced in equation (17). (Both factors 
are given graphically in section 4.) The effect of factor C2 is 
assumed to vary linearly with k in expression (33a) for lack of better 
data. The effect of factor Cl is assumed to vary with the square of k 
on the basis of test results on curved diagonal-tension webs, in which 
the angle a varies over a wider range than in plane webs. In the plane 
webs under consideration here, the angle is usually near 400 , and the 
factor Cl is unimportant. 

In curved webs, the determination of the angle a (and thus the 
determination of Cl) is somewhat tedious. Consequently, a slightly 

different procedure for calculating the web strength is used that may 
also be applied to plane webs, with results differing at most by 2 to 
3 percent from those obtained by the first procedure. (This error is 
less than the scatter found in tests of nominally identical webs.) In 
the second procedure, the peak web stress is written as nominal shear 
stress in the form 

Tmax (33b) 

that is to say, the angle factor Cl is omitted. On the other hand, 
the allowable stress is now no longer considered as a property of the 
material alone but is considered to be a function of the angle UpDT' 

the angle that the folds would assume if the web were in a state of pure 
diagonal tenSion. 

In order to determine the allowable stresses, a series of 97 tests 
was made on long webs of 24s-T3 and Alclad 75S-T6 aluminum alloy (refer
ence 21). The external loads were applied as equal and opposite axial 
forces to the flanges; the loading was thus essentially a pure shear 
loading. The diagonal-tension factor k at failure was varied chiefly 
by using different hit ratios of the webs. The rivet factor 

(
1 - Diameter) was varied from about 0.6 to about 0.9; 0.6 is about the 

Pitch 
lowest value likely to be encountered in practice, 0.9 marks roughly the 
region where rivet failure or sheet bearing failure becomes critical. 
The" uprights were heavy but were not connected to the web except for the 
lowest values of k and were not connected to the flanges in order to 
eliminate "Vierendeel frame" action. In most tests, bolts were used 
instead of rivets, with the nuts drawn up "just snug" because friction 
between the sheet and the flange is a very important, but highly variable, 
factor. The sheet was protected from direct contact with the bolt heads 
by heavy washers. Some tests were made with the nuts tight, and older 
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tests with riveted panels were used to estimate the increase in strength 
obtained by friction effects. 

Almost all tests fell within a scatter band of tlO percent from the 
average for a given value of k. The scatter may be attributed to dif
ferences in friction, material properties, and workmanship, the first 
factor probably being the largest one. About 85 percent of the tests 
fell within t5 percent of the average and, at low values of k, more 
than 90 percent fell within the t5-percent band. The curves of "basic 
allowable" stress given in section 4 (denoted by T* all and shown in 
fig. 19) represent the line 10 percent below the average of the scatter 
band; they are furthermore corrected as noted to specified material 
properties (defined by the ultimate tensile strengths) which lie well 
below the typical values. 

Because of the large sizes of the flanges and uprights used in the 
tests, the angle factor Cl was zero (a = apDT = 450) and the stress-
concentration factor C2 was also zero. The tests thus established the 
basic allowable values of T'mex, or of Tmax for apDT = 450 (shown 
as the top curves in figs. 19(a) and 19(b) of section 4). Detailed test 
results are given in Part II. 

The curves for values of apDT other than 450 were calculated as 

follows: By formula (11), the tensile stresses vary inversely with 
sin 2aPDT; the values of T*all for k = 1.0 were therefore calculated 

by multiplying the experimental value obtained for 450 by sin 2a. In 
webs working in true shear, the allowable stress is evidently not 
influenced by the sizes of the flanges and the uprights; therefore, all 
curves of T*all must have as common end point at k = 0 the experi-

mental value of allowable true shear stress. For any given value of 
apDT' the two end points of the curve were thus established. The con-

necting curve was drawn on the assumption that the difference between 
the curve in question and the experimental curve for 450 varied linearly 
with the factor k. 

The curves for angles well below 450 are needed mostly for curved 
webs rather than plane webs, and such experimental confirmation as 
exists for low angles was obtained on curved webs. 

The name "basic" was given to those curves because they serve as a 
basis for a system of computation. They determine directly the allowable 
stresses for the attachment conditions that existed in the main tests 
(bolts with heads protected by washers, nuts just snug). For other con
ditions (rivets, web sandwiched between flange angles, etc.), the basic 
allowable values are modified as specified in section 4 on the basis of 
auxiliary tests • 
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It should be noted that all shear stresses are based on the gross 
section, not on the net section between rivet holes. This simple pro
cedure is possible because the tests disclosed an interesting fact: 
When the ratio of rivet pitch to diameter was varied (for a fixed value 
of the diagonal-tension factor k), it was found that not the failing 
stress on the net section, but the failing stress on the gross section 
was a constant within the scatter limits mentioned previously. This some
what surprising result indicates that the stress-concentration factor 
varies with the rivet factor in such a manner as to just offset the 
change in net section. Qualitatively, the change in stress-concentration 
factor agrees with that found in straight tension tests: As the net sec
tion decreases (for constant gross section), the stress distribution 
becomes more uniform, and the ultimate stress based on the net section 
approaches the ultimate found in standard tensile specimens without holes. 
The quantitative result that the change in stress concentration just 
offsets the change in net area should, of course, be regarded as a pecu
liarity of the specific materials tested. 

In the relatively thin sheets used in these tests, the diagonal
tension folds are quite deep, and sharp local buckles form in the vicinity 
of the bolt heads. If the bolt heads bear directly on the sheet, these 
local buckles cause additional stresses around the bolts that lower the 
allowable shear stress. In a number of comparative tests (reference 22 
and other data), the decrease was found to be about 10 percent. Rivet 
heads are larger than the corresponding bolt heads and thus presumably 
give about the same conditions as bolt heads protected by washers. The 
difference cannot be shown directly by tests because rivets have the 
additional feature of setting up friction, which can be fairly well 
eliminated when bolts are used by leaving the nuts loose. Use of the 
"basic allowable" curves when the attachment is by means of rivets 
would therefore imply the assumption that the rivets have lost their 
clamping pressure in service but that there are no additional local 
stresses under the rivet heads even if no washers are used. Tests on 
riveted panels and beams (using no washers) showed generally strengths 
at least 10 percent higher than those developed with just-snug bolts 
with washers. 

Because the buckles in thicker sheet are less severe, one might 
believe that the thicker sheet would have higher failing stresses; how
ever, a few beam tests on sheet up to 0.2 inch thick do not support this 
belief. All these tests, however, did fall in the center of the scatter 
band or higher, so that somewhat higher allowables might be permiSSible 
in thicker sheets. 

When single uprights are used, the simplest construction results if 
the web is riveted to the outside of the flange angle, because the 
uprights then require no joggling. Preliminary results indicate that 
such an ~symmetrical arrangement of the web results in lower web failing « 
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stresses if the web is thick. With webs having h = 60 
t 

31 

and offset by 

2.4 times their thickness from the center line of the flanges, the web 
failing stress was reduced by about 10 percent. On webs with h = 120 

t 
and more, no detrimental effect was noted. 

Adjacent to an upright which introduces a heavy load into a web, 
the web stress is not uniformly distributed over the depth of the web. 
If the entire shear load is introduced at one station (as in a tip
loaded cantilever, for instance), the efficiency of the web may be as 
low as 60 percent, and efficiencies higher than 80 percent are very 
difficult to achieve. The factor of stress concentration (reciprocal 
of the web efficiency) cannot be estimated with any degree of accuracy 
at present; even the location of the point of maximum stress (top or 
bottom flange) cannot always be predicted, because it depends on the 
degree to which the diagonal tension is developed. Under these cir
cumstances, the only safe procedure is to reinforce the web by a doubler 
plate in the first bay. 

If the load introduced at the tip does not constitute the entire 
shear load applied to the beam, or if the point of load application is 
not the tip (for example, fuselage reaction in wing spar continuous 
through fuselage), the conditions are less severe, but some allowance 
for stress concentration must be made. Also, contrary to elementary 
theory, a heavy local load will produce some shear stresses in the web 
outboard of the station of load application. The integral of the shear 
stresses taken over the depth of the beam is, of course, zero in order 
to fulfill the requirements of statics. 

3.8. Upright failure by column action.- As discussed in section 2.4, 
the web acts as a restraining medium that modifies the effective column 
length. Because tests have indicated that the theoretical formulas for 
the restraint action are too optimistic, an empirical formula for pure 
diagonal tension has been introduced (formula (20)), and section 4 gives 
a modification of this formula appropriate for incomplete diagonal 
tension. 

Column failure by true elastic instability is possible only in 
(symmetrical) double uprights. A single upright is an eccentrically 
loaded compression member. A theory for single uprights is difficult 
to formulate because the eccentricity of the load is a function of the 
deformations of the upright and of the web, which are very complex; the 
failing stress of the upright is thus a function of the web properties 
as well as of the upright properties. It is evidently advisable that 
the stress aU in a single upright (formula (21)) be limited to the 
column yield stress for the upright material. 
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In four tests of beams with very slender single uprights, a two
half-wave type of failure has been observed. The wave form was clearly 
visible at low loads and, at two-thirds of the ultimate load, the 
deformations were indisputably excessive on three beams. As a tentative 
method of avoiding this situation, it is suggested that the average 
stress over the cross section of the upright be limited to the allowable 
column stress for a slenderness ratio hU/2P. This rule is conservative 

(in general) as far as ultimate strength is concerned, but the sacrifice 
appears to be necessary in order to achieve reasonably small deformations 
at limit load. 

3.9. Upright failure by forced crippling.- Almost all failures on 
uprights (double or single) of open section may be explained as being 
caused by forced crippling. The deformation picture may be described 
as follows: Let the angle section shown in figure 11 represent a por
tion of the upright. The shear buckle forming in the web forces the 
free edge A-A of the attached leg to take on a wave form. The amplitude 
of this wave is a maximum at the free edge and zero along the heel B-B 
of the angle. If the deformations are large, then a similar wave appears 
along the free edge C-C of the outstanding leg, but the amplitude is very 
much smaller, because this edge is under tension, the upright being under 
eccentric bending. If the stiffener were of Z-section, the line C-C 
would also remain straight, and only an extremely small wave amplitude 
would be noticed along the free edge of the free leg. 

(The deformation picture just described probably indicates the main 
reason why the existing theories of the buckling of stiffened webs often 
give very poor results. They assume that the stiffener bends with the 
sheet without deformation of the cross section. This assumption might 
yield an acceptable result if the stiffener were welded to the web along 
the heel line B-B. Actually, it is riveted to the web along a line 
between the free edge A-A and the heel line B-B. Thus, the bending 
stiffness that comes into play is more nearly that of the attached leg 
alone, rather than that of the entire stiffener.) 

The physical action of a strip along the edge A-A of the upright is 
analogous to that of a beam-column. The strip is under the compressive 
stress cru created by the diagonal tension, and under a lateral pressure 
exerted by the web buckle. The problem is thus not one of elastic insta
bility, as is true of the problems normally called local crippling. 
Large deformations can and do occur while the compressive stress in the 
upright is negligible. 

No theoretical attention has been given to the problem of forced 
crippling, although the possibility that forced crippling acts as a 
"trigger mechanism" for failure had been suggested by several experi
menters. It must be admitted that a theoretical analysis would be very 
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diffi cult because a large-deflection theory of plates would be required 
(at le~st if the analysis is carried to the ultimate load, as it should 
in order to be practically useful). An empirical formula has therefore 
been developed that fits single or double uprights with a change in coef
ficient (section 4). A rather large collection of data was available to 
establish this formula because almost all upright failures encountered 
could be ascribed to forced crippling. The cross sections included 
angles and Z-sections, both with and without lips, and J-sections. 

The probability of failure by forced crippling evidently depends on 
the "relative sturdiness" of upright and web; a sturdy upright will not 
be deformed severely by a thin web. The empirical formula developed 
assumes that the relative sturdiness can be measured by the ratio of 
thickness of upright to thickness of web. Such a single-parameter 
description of the complex phenomenon of forced local crippling can 
obviously be no more than a first approximation and therefore cannot 
give very high accuracy. The test results show a scatter band of 
±20 percent. The constants recommended for design are based on the lower 
edge of the scatter band. 

No information is available on forced crippling of closed-section 
uprights; it is doubtful whether closed uprights with flat sides offer 
material advantages over open sections. 

Upright sections are not infrequently chosen by the criterion that 
the moment of inertia should be a maximum for a given area. This one
sided emphasiS is quite misleading; a greater moment of inertia for a 
given area means a thinner section, which has less local bending stiff
ness and is thus more susceptible to forced crippling. In order to 
demonstrate this fact, two beams (about 70 in. deep) were built, having 
the same web thickness, upright spacing, and upright area, but differing 
in moment of inertia of the (single) up-rights. The moment of inertia 
was doubled on the second beam, but this beam carried only 75 percent 
of the load carried by the first beam; the first beam failed by web 
rupture, the second, by forced crippling of the uprights. (See Part II.) 

3.10. Interaction between column and forced-crippling failure.- It 
should be realized that column failure and forced-crippling failure are 
not, in reality, two completely independent types of failure; forced 
deformation of the cross sections will affect the column behavior of the 
upright. A certain amount of interaction effect is included automatically 
in the formulas for the allowable stresses because they are empirical. 
It is possible, however, that for very different proportions, or for 
different loading conditions than those that existed in the tests, some 
direct allowance for interaction may be necessary. For instance, the 
uprights were, in all but a very few tests, subjected only to the com
pressive loads arising out of the diagonal-tension action of the webs; 
they were not subjected to externally applied compressive loads. In 
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cases where the compressive stress due to externally applied loads is of 
the same order of magnitude as that caused by the diagonal-tension 
action, the problem of interaction between forced crippling and column 
buckling may become serious. It might be mentioned that a forced
crippling problem also exists when externally applied compression is the 
only force acting, that is to say, the skin buckles of a stiffened com
pression panel generally reduce the failing stress of the attached 
stiffener below that of the free stiffener. 

3.11. Web attachments.- The web-to-flange rivets or bolts carry a 
load per inch run R" equal to S/h for a shear-resistant beam (k = 0) 
and 1.414s/h for a beam in pure diagonal tension (k = 1, see formula (lOa)). 
Linear interpolation between these two values gives for incomplete diagonal 
tension 

R" S 
hR (1 + 0.414k) (34) 

The depth hR used in formula (34) is the distance between the rivet 
lines in the top and bottom flanges if the rivet lines are single, or 
the distance between the centroids of rivet patterns in the most general 
case of multiple rivet lines. There is a wide-spread custom of using 
the effective depth he instead of hR' a practice that has been found 

to give definitely unconservative results on some test beams; in many 
cases, of course, the unconservatism is sufficiently small to be covered 
by the hidden factors of safety usually existing in rivet design. 

Literal interpretation of the basic concept of incomplete diagonal 
tension would require that the rivet load be considered as made up of 
two components: a force (1 - k)S/h acting horizontally, caused by 
the shear component of the load, and a force kS/h cos a (according to 
formula (10)) acting at the angle a. The two forces should be added 
vectorially. The resulting formula for R" is more complicated than 
formula (34) and gives somewhat lower values (except, of course, at 
k = 0 and k = 1). This formula might be considered more rational than 
formula (34), but this purported greater rationality is spurious because 
the factor k expresses average stress conditions in the panel, and the 
conditions along the riveted edge are not average. Experimentally, the 
"more rational" formula has been found to be somewhat unconservative 
(see Part II) and is therefore not given here. 

The upright-to-flange rivets simply carry the upright load into the 
flange and require no special comments. 

The upright-to-web rivets must be investigated for several conditions 
that justify some comments. 
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In double uprights, the rivets must have sufficient shear strength 
to permit the upright to develop its potential column strength. In 
civil-engineering practice, where built-up columns are frequent, various 
rules are used to determine the required shear strength, and they lead 
to widely different results. Tests were therefore made on several series 
of double-angle columns (reference 23); the formula derived from these 
tests (given in section 4.14) is essentially based on one of the methods 
used in civil engineering, in which the shear strength is computed as 
though the member were loaded not as a column, but as a beam (by a 
distributed transverse load). 

A riveted-up section evidently cannot achieve the same strength as 
an (otherwise identical) monolithic section. For the purpose of obtaining 
the formula just mentioned, the required shear strength has been defined 
arbitrarily as the shear strength that will permit the riveted-up section 
to develop 98 percent of the strength of the monolithic section. To be 
entirely consistent, then, the usual column allowable stress should be 
reduced by 2 percent; however, this small reduction may be omitted because 
the formula for effective column length is somewhat conservative. If the 
rivet strength provided in an actual case is much less than that given 
by the formula, the allowable column stress must be reduced. This situa
tion should not arise in new designs, but it did arise in a number of 
the test beams designed before the formula was developed. A reduction 
factor derived from the tests is given in section 4. 

With single uprights, the shear buckles in the web tend to lift the 
sheet off the upright; with double uprights, the web buckles tend to 
split the two upright sections apart. These actions produce tensile 
forces in the rivets, and an empirical criterion for tensile strength 
is therefore given in section 4. It should be noted that tensile failure 
of a rivet is equivalent to tensile failure of the rivet shank only when 
the head is relatively high. With low rivet heads, the tensile failure 
is caused by shearing the head off axially; with flush rivets, tensile 
failure may be caused by the rivet pulling through the sheet. Because 
flush rivets have a low tensile strength, the problem usua.lly demands 
most attention on the outside skin; it is therefore discussed somewhat 
more fully in the section 9.9, which deals with the attachment of curved 
webs. 

The criterion for the required tensile strength of rivets is based 
on rather scanty direct evidence (Part II). However, out of 135 beams 
tested by manufacturers, the great majority satisfied the criterion 
(which is one reason why the available direct evidence is scanty). One 
large company is using a shear criterion which gives practically the 
same results as the tensile criterion does for rivets where shank failure 
determines the tensile strength. It is believed, therefore, that the 
criterion is not unduly severe, although it may be conservative. 



NACA TN 2661 

3.12. Remarks on reliability of strength formulas.- In sections 3.7 
to 3.11, the various types of failures have been discussed in a general 
fashion. In section 4, specific formulas recommended for use in design 
are presented. The formulas are derived from test plots forming scatter 
bands and are consistently based on the lower edges of the scatter bands; 
they are thus intended to give a very high degree of assurance that any 
given beam under consideration will carry the design load. Because the 
scatter bands are fairly wide, this high degree of assurance of safety 
is necessarily obtained at the expense of considerable conservatism for 
most beams. 

The following remarks are based on the analysis of 64 beams tested 
by the NACA, 135 beams tested by five manufacturers, and about 140 NACA 
tests made to establish the strength of webs under nearly pure shear 
loading. The remarks are rather general; a more detailed discussion is 
given in Part II. 

The degree to which the formulas fulfill the intended purpose of 
safe design may be characterized by the following statement: It is 
estimated that predictions unconservative by more than 2 percent should 
occur in less than 5 percent of all cases , and predictions unconserva
tive by more than 5 percent should occur only with negligible frequency. 
Excluded are local regions where large loads are introduced and beams 
with very flexible flanges (wd> 2.5). 

The scatter exhibited in web-rupture tests may be ascribed to the 
variations of three factors: 

(1) Material properties 

(2) Local stress conditions around rivets or bolts 

(3) Friction between sheet and flange 

In the NACA tests on webs under pure shear loading, the material prop
erties were fairly uniform, and individual corrections were made. The 
webs were attached by bolts, with the nuts carefully adjusted to be 
just snug; the friction between the sheet and the flange was therefore 
small. Nevertheless, the width of the scatter band was about ±10 percent, 
which must be attributed mostly to variations in item (2). In beam tests, 
then, the failing strengths of webs may be expected to average 10 percent 
higher than the recommended allowable values adjusted to actual material 
properties, and occaSional values 20 percent higher than the allowables 
may be found. An additional increase above the allowable may be realized 
from the portal-frame effect (see appendix). 

It may be remarked that the procedure of correcting for actual 
material properties is not very accurate. This correction is commonly 
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based on the tensile strength developed by a coupon of standard shape. 
Such a single tensile coupon neither evaluates possible anisotropy, nor 
does it evaluate compressive properties; these factors should be evaluated 
because shear is equivalent to tension and compression at ±450 to the axis. 
Furthermore, the standard tensile test does not evaluate the static notch 
sensitivity of the material . Fragmentary test evidence indicates that 
an increase in tensile strength brought about by a deviation from the 
specified heat treatment may be more than overbalanced by an increase of 
the static notch sensitivity. The standard tensile test therefore does 
not appear to be a very reliable index for correcting the strength of a 
web that f a ils at rivet holes, although its use is probably preferable to 
making no correction. 

Plots of upright stresses causing failure by forced crippling show 
a width of scatter band of ±20 percent. Thus, the average of a suffi
ciently large number of tests of different designs may be expected to 

be 18 = 1.25 times higher than the recommended allowable values, and 
O. 

occasional uprights may develop 1.5 times the allowable value. For 
uprights failing by column action, the data available are insufficient 
to establish a width of scatter band. Taken at face value, however, 
they appear to indicate about the same width of band as for failure by 
forced crippling. The width of the scatter bands for upright failure 
is probably caused largely by inade quacy of the empirical formulas, and 
only to a very minor extent by variation of material properties. Con
sequently, higher allowable stresses would seem acceptable if they are 
verified for any given case by a specific test. 

It should be remarked that upright failure at a load 1.5 times the 
design load is, of course, possible only if the web also develops 
1.5 times the design load. In a well-designed beam, such a contingency 
should not arise because the scatter band for web strength is much 
narrower. Many of the test beams under discussion here, however, were 
deliberately built with overs trength webs in order to obtain data on 
upright failure. 

A discussion of the accuracy of strength predictions would be incom
plete without some mention of pitfalls in test technique . 

If ordinary hydraulic jacks are used to apply the load, and the load 
is measured by measuring the oil pressure, calibration tests must be made 
to check for friction in the jack. (Values up to 40 percent have been 
measured. ) 

If the beam tested is a cantilever, the slope of the beam axis at 
the tip may be quite large in the last stages of the test. The force 
applied to the jack is then inclined, and the horizontal thrust com
ponent may greatly increase the friction in the jack. This component 
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also falsifies the bending moment in the beam and should be eliminated by 
using rollers. Rollers should also be used when the beam is tested as R 

" s imple beam" on two supports; a beam bolted to two supports cannot be 
considered as a "simple beam" when the deflect i ons are large. 

When individual beams are being tested, it is almost always neces
sary to provide supports against lateral failure. Care is necessary to 
reduce the friction against these supports. Thick-web beams rollover 
with considerable force and thus produce considerable friction against 
fixed side supports. Wooden guides are objectionable because there is 
danger that the beam flange may dig into the supports and hang up. 

3.13. Yielding.- According to the official design rules, the stress 
in a structural member should not exceed the yield stress when the 
structure is subjected to the design yield load. For members subjected 
to axial stress, such as spar caps, the application of the rule is clear 
and Simple. The stress can be calculated or measured, if necessary; 
stress peaks due to bolt holes or similar discontinuities are so localized 
that they are neglected by common tacit consent. The allowable yield 
stress either constitutes a part of the official materials specifications, 
or it may be measured by a well-defined and readily applicable procedure. 
For shear webs, however, the situation is much less clear. Except in 
the rare case of a truly shear-resistant web, the stress system is com
plicated, and the allowable yield stress is not covered by the specifi
cations. The suggested procedure which follows is an attempt to 
formulate a simple procedure consistent in its main features with that 
used for axially stressed members. 

The nominal web stress given by formula (33a) is used to define the 
stress existing in the web. (Formula (33b) could be used just as well; 
the reason for using (33a) in this discussion is given subsequently.) 

In the basic case of a pure-diagonal-tension web having factors Cl 
and C2 equal to unity, the nominal web shear stress is equal to one
half of the tensile stress (formula (11), with a = 450 ). Consequently, 
the allowable yield value of the nominal web shear stress is one-half of 
the specification tensile yield stress of the web material. For a web 
working in pure shear, the procedure for establishing an allowable yield 
value is somewhat arbitrary, because the standard materials specifications 
do not specify a shear yield stress. However , typical values of shear 
yield stress are often supplied by the materials manufacturer. While 
these values are not obtained on sheet material and are thus open to 
some question, they are probably acceptable for the purpose on hand. 
The typical shear yield stress may be converted into an allowable value 
by multiplication with the ratio of specification tensile yield to typical 
tensile yield stress. With the allowable values of the nominal web shear 
stress established in this manner for k = 1. 0 (pure diagonal tension) 
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and k = 0 (pure shear), their magnitudes for intermediate values of k 
can be estimated by using the curves for the allowable ultimates as 
guides; this procedure is evidently approximate but should be suffi
ciently accurate. A curve established in this manner is given in sec
tion 4 for 24s-T3 material. 

A brief investigation shows that the criterion for yielding of the 
web overrides the ultimate strength criterion for 24s-T3 alloy only 
under a special combination of factors (ultimate allowable based on 
tight rivets, ratio of design yield to design ultimate load 0.74 according 
to Navy Specifications) . For 75S-T6 alloy, the curv~ of allowable yield 
stress lies above the "baSic allowable" ultimate stress and therefore 
cannot override the ultimate strength criterion. 

The procedure outlined here agrees fairly well with the average of 
a number of experimental yield loads determined by several methods in 
manufacturer's tests, but there is a large scatter for the thinner webs 
(t < 0.06 in.). Most of the scatter can be explained by the fact that 
the methods used depend on judgment rather than on measurement. A method 
of this nature may give reasonably consistent results if applied by one 
skilled individual, or by a small group of individuals working in close 
cooperation within one organization. The same method used by a different 
organization, however, may give widely differing r esults. (Most of the 
thick-web data analyzed were obtained within one organization and .Tere 
reasonably conSistent.) 

The reason for defining the web stress by formula (33a) rather than 
by formula (33b) is that only one curve is needed to define the allowable 
stress. The use of formula ( 33b) would require that a family of curves 
of allowable yield stress be constructed, in the same manner as the 
curves of allowable ultimate stress (see section 3.7). 

Ir, practice, "detectable permanent set" has not infrequently been used 
in place of the yield criterion . This practice would correspond to using 
the proportional limit, rather than the yield stress, if sensitive means 
of detection are employed and consequently seems inconsistent with the 
design practice for such members as spar caps . Individual companies may 
use such conservative rules as a matter of design policy. Conservative 
yield allowables imply some weight penalty but decrease the possibility 
of unanticipated yielding due to local stress concentrations not taken 
into account in the stress analysis . In very thin webs, for instance, 
yielding may occur because of compression in the unsupported region 
under a joggled upright if the joggle is long; stress concentrations 
also occur in the web corners at uprights through which large local loads 
are introduced into the web. 

The general criterion that "there shall be no permanent set" is 
empty until it is supplemented by a specification as to what quantity 
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shall be measured in order to determine whether a permanent change has 
taken place. In order t o make the result independent of the measuring 
instrument used, the description "detectable set" should be replaced by 
a quantitative definition. In order to arrive at a decision as to what 
quantity should be measured, and how much permanent change should be 
permitted, it will be necessary to consider why permanent set is not 
desired. The answer to this question may be given by aerodynamic or 
functional rather than purely structural considerations. These con
siderations indicate that a host of problems arises as soon as an 
attempt is made to refine the methods for designing against permanent 
set. 



NACA TN 2661 41 

4. Formulas and Graphs for Strength Analysis of Flat-Web Beams 

No attempt should be made to use the following formulas until 
section 3 has been carefully read. 

4.1. Effective area of upright 

(a) Double (symmetrical) uprights: 

(no sheet included in AU) 

(b) Single uprights: 

(no sheet included in AU) 

e distance from median plane of web to centroid of cross section 

p radius of gyration of cross section (pertaining to moment of 
inertia about centroidal axis parallel to web) 

An estimate of the ratio Aue/Au may be made with the aid of figure 7. 

(c) Indefinite-width uprights: When the outstanding leg of an 
upright is very wide (for example, when a bulkhead between spars is 
flanged over and riveted to the spar webs), consider AUe as consisting 

of the attached leg plus an area 12tU2 (i.e., effective width of out
standing leg is 12tU). 

(d) Uprights with legs of unequal thickness: 
the leg attached to the web to determine the ratio 
formula (36) or (37), section 4.10 or 4.11). 

Use the thickness of 
tuft (required for 
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4.2. Critical shear stress 

In the elastic range, the critical shear stress is given by for
mula (32), which takes the alternative forms 

kss from figure 12(a) 

(If dc > hc' read abscissa of fig. 12(a) as dc/hc .) 

"clear" dimensions (see fig. 12(8)) 

restraint coefficients from figure 12(b). (Subscript h 
refers to edges along uprights; subscript d to edges 
along flanges.) 

With Tcr,elastic known, find Tcr from figure 12(c). 

Note 1: When attached legs of double uprights are crowned so as 
to touch web only along rivet line, use d instead of dc • 

Note 2: If Tcr calculated by the first formula is less than 

Tcr calculated with the presence of uprights disregarded, use the 

latter value. 
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where 

4.3. Nominal web shear stress 

The nominal web shear stress is calculated by the formula 

T 

web shear force (external shear minus vertical component of 
flange forces) 

For unusual proportions, use formula (3). When calculating I and 
Qw for use with this formula, multiply web thickness by (estimated) 
diagonal-tension factor k. 

4.4. Diagonal-tension factor 

The diagonal-tension factor k is obtained from figure 13, with 
td o. 
Rh 

When -I- < 2, use formula (27a). 
Tcr 

4.5. Stresses in uprights 

The ratio aU/T can be found from figure 14 if the beam flanges 
are reasonably heavy. If not, use procedure described near end of 
section 3.2. 

The stress aU is the average taken along the length of the upright. 
(For a double upright, au is uniform over the cross sectionj for a 
single upright, aU is the stress in the median plane of the web along 
the upright-to-web rivet line.) 

The maximum value of aU occurs at midheightj the ratio aumax/au 

is giveu by figure 15. 



L 
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4.6. Angle of diagonal tension 

The angle a of the diagonal tension is found with the aid of fig
ure 16(a), if it is desired, by using the ratio crU/T obtained previously 
(section 4.5). The recommended procedure for finding the allowable web 
stress requires use of the angle apDT' which is found by equation (15)j 

a graphical solution based on this equation is given in figure 16(b). 

4.7. Maximum web stress 

The maximum (nominal) web stress is calculated by either expres
sion (33a) or (33b)j these expressions are, respectively, 

and 

The factor Cl is taken from figure 17, the angle a obtained from fig

ure 16(a) being used. The factor C2 is taken from figure 18. 
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4.8. Allowable web stresses 

(For failure in web-to-flange attachment line.) 

Figure 19 gives "basic allowable" values (denoted by T*all) for 
Tmax that are used as follows for different types of connections: 

(a) Bolts just snug, heavy washers under bolt heads, or web plate 
sandwiched between flange angles: Use basic allowables. 

(b) Bolts just snug, bolt heads bearing directly on sheet: Reduce 
basic allowables 10 percent. 

(c) Rivets assumed to be tight: Increase basic allowables 10 percent. 

(d) Rivets assumed to be loosened in service: Use basic allowables. 

If the nominal web shear stress is expressed as Tmax (section 4.7), 
the allowable value is taken from the curve with the appropriate value 
of ~PDT' If the nominal web shear stress is expressed as T'max (sec-

tion 4.7), the allowable value is taken from the top curve labeled 
~PDT = 450

• 

Rivets are assumed to be not of any countersunk type. 

Note 1: The allowable web stresses defined by figure 19 are valid 
only if the standard allowable bearing stresses (on sheet or rivets) are 
not exceeded. 

Note 2: For webs unsymmetrically arranged with respect to flanges 

and with ~ < 100, the allowable web stress should be reduced. (See 

section 3.7.) 

Note 3: At pOints where local loads are introduced into the web, 
the allowable web stress should be reduced. (See section 3.7, last 
two paragraphs.) 
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4.9. Effective column length of uprights 

The effective column length Ie of an upright is given by the 
empirical formula 

(d < 1.5h) 

- 2 A-) 
hU 

(d > 1.5h) 

where 

hU length of upright, measured between centroids of upright-to- flange 
rivet patterns 

4.10 . All owabl e stresses for double uprights 

(Webs and uprights made of the same aluminum alloy; open-section 
uprights riveted to web.) 

(a) To avoid forced-crippling failure, the maximum upright stress 
GUmax should not exceed the allowable value Go defined by the 
empirical formulas 

Go 2lk2/ 3 (tU/t)1/3 ksi (24s-T3 alloy) (36a) 

Go == 26k2/ 3 (tU/ t )1/3 ksi (75S-T6 alloy) (36b) 

Nomographs for these formulas are given in figure 20. If Go exceeds the 
proportional limit, multiply it by a plasticity correction factor ~,which 

can be taken as 

Esec 
E 

with the moduli determined from the compression stress- strain curve of the 
upright material . 

(b) To avoid column failure, the stress GU should not exceed the 
column allowable taken from the standard column curve for solid sections 
with the slenderness ratio Le/p as argument. (The curve for solid sec
tions is considered adequate because the forced-crippling criterion con
siders local failure.) 

--~----------------------------------.------------------. --- -----
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4.11. Allowable stresses for single uprights 

(Webs and uprights made of the same aluminum alloy; open-section 
uprights riveted to web.) 

(a) To avoid forced-crippling failure) the maximum upright stress 
aUmax should not exceed the allowable value ao defined by the empirical 

formulas 

(24s-T3 alloy) (37a) 

(75S-T6 alloy) 

Nomographs for these formulas are given in figure 20. If ao exceeds 

the proportional limit) apply the plasticity reduction factor as for 
double uprights. 

(b) To avoid column failure or excessive deformation) the stress aU 
should not exceed the column yield stress) a.nd the average stress over 
the cross section of the upright 

cruav 

should not exceed the allowable stress for a column with the slenderness 
ratio hu/2P. 
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4.12. Web-to-flange rivets 

The rivet load per inch run of beam is given by formula (34) as 

where 

R II = Sw (1 + O. 414k) 
hR 

hR depth of beam measured between centroids of rivet patterns) top 
and bottom flanges 

4.13. Upright-to-flange rivets 

The end rivets must carry the load existing in the upright into the 
flange. If the gusset effect (decrease of upright load towards the end 
of the upright) is neglected) these loads are 

for double uprights 

Pu = cruAu 
(39 ) 

for single uprights 

Pu = cruAue 



NACA TN 2661 

4.14. Upright-to-web rj.vets 

For double uprights, the upright-to-web rivets should be checked for 
two possibilities of failure, one due to shear caused by column bending, 
one due to tension in the rivets caused by the tendency of the web folds 
to force the two components of the upright apart. 

To avoid shear failure, the total rivet shear strength (single shear 
strength of all rivets) for an upright of 24s-T3 alloy should be 

100QhU 
RR = kips bLe 

(40 ) 

where 

Q 

b 

hU/"4; 
For 

static moment of cross section of one upright about an axis 
in the median plane of the web, inches3 

width of outstanding leg of upright, inches 

ratio from formula (35), section 4.9 

uprights of other materials, it is suggested that the right-
hand side of formula (40) be multiplied by the factor: Compressive yield 
stress of material divided by compressive yield stress of 24S-T3 alloy. 

If the actual rivet strength R is less than the required strength RR' 
the allowable stress for column failure (section 4.10) item (b)) must be 
multiplied by the reduction factor given in figure 21. 

The strength necessary to avoid tension failures is given by the 
tentative criterion: 

Tensile strength of rivets per inch run > 0.15tcrult ( 41) 

where crult is the tensile strength and t, the thickness of the web. 

For single uprights, the tensile strength necessary to keep the 
folds of the web from lifting off the upright is given by the tentative 
criterion: 

Tensile strength of rivets per inch run > 0.22tcrult ( 42) 

-- --- --- ---~ --------



- -- --_. ~.-.~---------------------

50 NACA TN 266] 

The tensile strength of a rivet is defi ned as the tensile load that 
causes any failure; if the sheet is thin, failure will consist in the 
pulling of the rivet through the sheet. (See section 9.9 for data.) 

No criterion for shear strength of the rivets on single uprights 
has been established; the criterion for tensile strength is probably 
adequate to insure a satisfactory design. 

The pitch of the rivets on single uprights should be small enough 
to prevent inter-rivet buckling of the web (or the upright, if thinner 
than the web) at a compressive stress equal to aUmax • The pitch should 

also be less than d/4 in order to just ify the assumption on edge sup
port used in the determination of T cr • The two criteria for pitch are 

probably always fulfil-led if the strength criteria are fulfilled and 
normal riveting practices are used. 

4.15. Effective shear modulus 

The effective (secant) shear modulus 
diagonal tension is given by figure 22(a) 
ure 22(b) gives the plasticity correction 

GIDT of webs in incomplete 
for the elastic range. Fig
factor Ge/G1DT for webs of 

24s-T3 alloy. 

4.16. Secondary stresses in flanges 

The compressive stress in a flange caused by the diagonal tension 
may be taken as 

a kSW cot a. 

2AF 

The primary maximum bending moment in the flange (over an upright) is 
theoretically 

Mmax 

where C3 is taken from figure 18. The secondary maximum moment, half
way between uprights, is half as large. Because theSE moments are highly 
localized, the block compressive strength is probably acceptable as the 
allowable value. The calculated moments are believed to be conservative 
and are often completely neglected in practice. 

--------- ----- ..... _-----
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5. Structural Efficiency of Plane-Web Systems 

In many problems of aircraft structural design, the over-all dimen
sion of the component to be designed is fixed by aerodynamic or other 
considerations, and the load that it must carry is also known. These 
given requirements imply inherent limitations on the structural effi
ciency that may be achieved. ConSider, for example, two compression 
members required to carry a load of 10 kips; the first one is specified 
to be 1 inch long, the second one 10 feet long. Obviously, the first 
one will be merely a compression block, which can be loaded to a very 
high stress and is thus very efficient. The second one will be a fairly 
slender column, which can carry only a low stress and is thus unavoid
ably rather inefficient. 

As an aid in choosing the most efficient designs possible, Wagner 
suggested (reference 24) that the given parameters - load and dimension -
be combined into a structural index having the dimensions of a stress 
(or any convenient power or function of a stress). For columns, the 

index would be P/L2 , and for shear webs, it would be S/h2 , but for 
convenience in plotting certain curves, the square root of these expres
sions is usually preferred; the structural index for shear webs is thus 

V:S/h, where S is conventionally expressed in pounds and h in inches 
in order to obtain a convenient range of numbers. A web that is required 
to be very deep, but to carry only a small load may be termed "lightly 
loaded"; it has a low index value which connotes unavoidably low effi
ciency. A shallow web carrying a large load is "highly loaded"; it has 
a high structural index and can be designed to be more efficient than 
the lightly loaded web. A web 70 inches deep and carrying a load of 
10,000 pounds (side of a flying-boat hull) would have an index value 
of 1.4; a web 10 inches deep and carrying a load of 100,000 pounds (web 
of a monospar fighter wing) would have an index value of 31.8. These 
two examples indicate roughly the range of the index value for conven
tional designs. 

In order to obtain a general idea of the structural efficiency of 
plane webs in incomplete diagonal tension, systematic computations have 
been made for the following conditions: 

(1) The material is either 24s-T3 for web and uprights, or 
Alclad 75S-T6 for the web and 75S-T6 for the uprights. 

(2) The upright spacing is fixed at either one-fourth of the web 
depth or equal to the web depth. 

(3) The cross section of the upright is an angle having legs of 
equal thickness but unequal width. The leg attached to the web is 
assumed to have a width-thickness ratio of 6, the outstanding leg a 
ratio of 12. Single as well as double uprights are investigated • 

. ' 
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The allowable values used for web shear stresses are those shown in 
figure 19. The allowable upright stresses for forced crippling are 
taken from figure 20. The curve of allowable column stress is defined 
for 24s-T3 material by the Euler curve and a straight line tangent to 
it, starting at 52.5 ksi at zero length. For 75S-T6 uprights, the 
Euler formula is used with the tangent modulus substituted for Young's 
modulus. 

With the design conditions thus fixed, web systems have been 
designed by a trial-and-error method to give simultaneous failure of 
the web and the uprights; the result may be termed "balanced designs." 
It has not been proved that a balanced design is necessarily the optimum 
(lightest) design, but spot checks on a number of designs have failed 
to disclose any cases where the efficiency could be improved by 
unbalance. 

The results of the calculations are shown in figure 23. The upper 
diagrams show the structural efficiency, expressed as a nominal shear 
stress 

S 
T 

that is to say, as the shear stress that would exist in the fictitious 
web obtained by adding the upright material in a uniformly distributed 
manner to the actual web. The upper limit for T is the allowable 
shear stress for webs with k = 0; at this limit, no stiffeners are 
required, the flanges alone being sufficient to make the web buckling 
stress equal to the stress at which the web fails in the connection to 
the flange. 

The lower diagrams in figure 23 show the " stiffening ratio" AU/dt. 
These diagrams are useful for finding a trial size of upright after the 
necessary web thickness has been estimated, as discussed in section 6. 
For double uprights on Alclad 75S-T6 webs, interpolation between the 

d d 
curves for h = 1.0 and h = 0.25 is not permissible for index values 

above about 10; a more complete set of curves is therefore given in 
figure 23(c). 

For a given web material and index value, the stiffening ratiO 
depends to some extent on the upright spacing (d/h) and on the type of 
upright (double or single). However, the effiCiency of the web system 
as measured by T is practically independent of upright spacing and 
upright type for 24s-T3 webs. For 75S-T6 webs designed for an index 

J 
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value greater than about 14, double uprights closely spaced (~ = 0.2~ 
appear to give appreciably better efficiency than the other three 
arrangements, but the following practical considerations should be 
borne in mind. 

At low values of diagonal tension (say k < 0.05), the calcula
tions are very sensitive to changes in the web-buckling stress, the web 
allowable stress, and the shape of the upright (ratio b/tU)' Figure 24 
shows the approximate relation between the index value, the thickness 
ratio h/t, and the factor k, based on the calculations for figure 23. 
Inspection of figure 24 shows that, for the web system under considera-

tion (75S-T6, double uprights, ~ = 0.25), the value of k = 0.05 is 

already reached at an index value of about 15. For higher index values, 
the efficiency that can be counted upon in any given practical case is 
therefore somewhat doubtful; it may be only very little more than the 
efficiency of systems with single uprights and wider upright spacing, 
which are much more desirable for production. 

Inspection of figure 24 shows that the thickness ratio of the web 
(h/t) depends only on the index value, in first approximation. Because 
the ratio h/t is more readily visualized than the index value, 
approximate (average) values of h/t are shown in figure 23 in addi
tion to the index values. Inspection of this figure shows that thick 
and medium-thick webs occupy the largest part of the figure, while the 
thin webs are crowded together on the left side. Wagner recommended 
(reference 1) that webs be designed as diagonal-tension webs for index 
values less than 7 (and as shear-resistant webs for index values greater 
than 11). Webs that fall under Wagner's classification of diagonal
tension webs therefore occupy only a narrow strip on the left-hand 
edges of figure 23. 

Each curve in figure 23 has two branches. On the right-hand branch, 
the uprights fail by forced crippling; on the left-hand branch, they 
fail by column bowing. (The sudden change in direction of the curves 
at their right-hand ends is caused by the "cut-off rule" regarding the 
critical shear stress given in note 2 of section 4.2.) Inspection of 
the figure shows that column failure becomes decisive only when the 
index value is quite low, about 4 or less, and the h/t ratio is cor
respondingly large (over 1000). In present-day practice, such thin 
webs are encountered only infrequently; upright failure by forced 
crippling therefore predominates in practice. 

As long as failure by forced crippling remains decisive, the 
efficiencies shown in figure 23 can be improved somewhat by choosing 
more compact upright sections (lower b/tU) than those chosen for the 
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calculations. The practical limitation will be the edge distance 
required for upright-to-web and upright-to-flange rivets. 

Figure 25 shows a comparison of the most efficient web systems for 
the two materials considered. The curves represent faired envelopes 
for the range of upright spacing studied. 

An often-debated question is the relative efficiency of sheet webs 
and truss webs. Figure 26 gives a comparison of 24S-T3 alloy sheet webs, 
Pratt truss webs, and Warren truss webs, based on a revision of the study 
made in reference 25. The truss-web members were assumed to be square 

tubes with a ratio ~ = 24 of the walls in order to eliminate local 

instability problems. The same allowable stresses (including the 
column curve) were used as for the sheet webs. Compression members were 
assumed to be pin-jointed for design purposes. For a number of trusses, 
sufficiently detailed designs were made to permit an estimate to be 
made of the weight added by the gussets and by the end-connection inef
ficiency of the web members. The tension members of the trusses were 
designed to be capable of carrying sufficient compression to enable the 
truss to carry a negative load equal to 40 percent of the positive load. 
(The sheet webs will carry 100-percent negative loads.) 

Figure 26 shows that the Pratt truss is decidedly less efficient 
than a sheet web except over a very narrow range, but the Warren truss 
is somewhat more efficient than the sheet web over a consider.able range 
of the index value. The following considerations, however, may influ
ence the choice between the two types of shear webs: 

(a) The method of designing sheet webs has been proved by about 
200 tests covering a large range of proportions. There does not appear 
to be a single published strength test of a truss of the type con
sidered. It is quite possible that the secondary stresses existing in 
trusses with riveted joints may reduce the actual efficiency below the 
theoretical value. 

(b) In general, the designer is required to design a beam rather 
than a shear web alone. The allowable flange compressive stresses for 
a sheet-web beam are quite high (often above the yield stress), while 
the long unsupported chords of the Warren truss would have rather low 
allowable stresses. The efficiency of the tension chords is also lower 
in the truss because the web shears are introduced in concentrated 
form and thus necessitate large rivet holes through the flanges. Inef
ficiency of the flange might therefore counterbalance efficiency of the 
web. 

(c) If the web to he designed is for the spar of a conventional 
wing with ribs, additional members must be added to the Warren truss 

----~------- _. -
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for attaching the ribs. On a sheet web, the uprights can be used for 
this purpose with little, if any, additional material being required. 
In addition, considerations of rib weight may require changes of the 
slopes of the truss diagonals, and the efficiency of the truss is fairly 
sensitive to such changes. 

(d) The truss has generally poorer fatigue characteristics than 
the sheet web and is more expensive to manufacture. 

(e) The truss gives access to the inte.rior of the structure; this 
fact alone is often sufficient to overbalance all other considerations. 

6. Design Procedure 

For design, the following procedure is suggested: 

With the given parameters S and h, the index {:S/h is calculated. 

With the help of the efficiency curves in figure 23, a value of 
d/h is chosen (other design considerations affecting the spacing being 
considered, if necessary), and the choice between single or double 
stiffeners is made. 

The appropriate lower diagram in figure 23 is used to find the 
stiffening ratio AU/dt. 

Figure 24 is used to find h/t and thus the web thickness t. 
(This figure was prepared from the computation data for figure 23.) 
Normally, the use of standard gages is required; the next-higher stand
ard gage should be chosen, in general. If the ratio h/t cannot be 
estimated with sufficient accuracy from figure 24, use the figure to 
obtain an approximate value of k. Next, assume ~PDT = 400 and use 

figure 19 to find an approximate value for Tall. (Correct this, if 

necessary, for proper edge condition as specified in section 4.8). The 
required web thickness is then 

S t = .,.----
he Tall 

The area AU can now be calculated, the values of d, t, and 
AU/dt being known, and an upright having this area is chosen. Again, 
the next-higher standard area should be chosen unless the web thickness 
chosen is appreciably higher than the required thickness (i.e., nearly 
one gage-step higher) . 



NACA TN 2661 

As long as forced crippling is the decisive mode of failure of 
the upright, the formulas indicate no reason for choosing anything more 
complicated than an angle section for the upright. However, because 
the empirical formulas for forced crippling are not very accurate, it 
is quite possible that detailed experiments on a specific design may 
show some other cross sections to be somewhat better. 

Attention is called to the fact that the allowable web stresses 
given by figure 19 are based on "minimum guaranteed" material proper
ties which are considerably below the typical properties. The use of 
higher properties in design is permitted by the regulating agencies 
under some conditions; the allowable web stresses may then be increased 
in proportion. 

The allowable stresses for uprights given in section 4 are also 
conservative; the degree of conservatism is discussed briefly in sec
tion 3.12 and in more detail in Part II (reference 2). The uncertainty 
is probably caused almost entirely by the weakness of the empirical 
formulas; variability of material properties is believed to be a very 
minor factor. Consequently, higher allowable stresses can be used for 
the uprights if the design is verified by a specific static test. 

A final word of caution regarding figure 23 may not be amiss. 
The curves shown are strictly valid only when the stipulated allowable 
stresses are applicable and when the uprights have the stipulated 
cross section. Under other conditions, the curves will be somewhat 
different, and the differences may not be small; consequently, the 
charts should not be used as a means of strength analysis. 

7. Numerical Examples 

As numerical examples, a thin-web beam and a thick-web beam will 
be analyzed. Both beams were tested in the NACA research program; the 
failing loads measured in the tests will be used as "design ultimate 
loads" P. 

Example 1. Thin-web beam.- The thin-web beam chosen as example 1 
is beam I-40-4Da of Part II (reference 2) or reference 4. The uprights 
consist of two angles 0.750 x 0.625 x 0.125. "The material of web and 
uprights is 24s-T3 aluminum alloy. The web is sandwiched between the 
flange angles. The flange-flexibility coefficient rnd (formula (19a)) 
is 1.20. 

/ 
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Basic data: (All linear dimensions are in inches.) 

h = 41.4 ~ 38.6 
e 

h 37.1 c 

d = 20.0 dc 19·37 

t 0.0390 tu 0.125 

p 30.3 kips tu 
Upright section p 

0.353 in. 2 

0.351 

From these data: 

AU 
dt = 0.454 he t 1.61 in. 2 3·20 

Buckling stress: 

With tu 
t = 3·20 

~ and t; large, figure 12(b) gives 

hc 
From figure 12(a), with 1.91 

dc 

By formula (32) 
2 

T cr, elastic = 5·92 x 10.6 x 103 x ~9 ~~~O) x 1. 62 = 0.416 ksi 

Figure 12(c) shows that T = T 
cr,elastic cr 

for this stress; therefore, 

Web stress: 

Loading ratio: 

Tcr = 0.416 ksi 

p 30·3 
T = net = l.bi 

T 

Tcr 
18.8 
0.416 

18.8 ksi 
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Diagonal-tension factor: 

From figure 13 

k 0.680 

Upright stress: 

From figure 14 

-
T 

0.90(18.8) 16.9 ksi 

Allowable upright stress for column failure : 

The effective column length is, by formula (35), 

Le = 38.6 28.0 
Vl. O + 0.6802(3 - 2 X 0.519) 

28.0 
0·351 

79 .8 

n:2E 
crall = 2 = 16.5 ksi. 

(Le/p) 

This is in the long-column range. Therefore 

This value would be the allowable stress for a solid-section col~. 
The upright consists of tl.JO angles riveted together. By formula (40), 
the required rivet strength was computed as: 

The actual rivet strength was 

R = 4.65 kips 

Wl'th the ratl'o R 4.65 0 545 f ' 21' d t' f - ~ . ,lgure glves a re uc lon ac-
RR - 0·50 

tor 0.94. The allowable upright stress is therefore 

crall = 16·5 X 0.94 = 15.5 ksi 

Since the beam failed when the computed upright stress was 16.9 ksi 
(see heading "Upright Stress"), the allowable stress of 15.5 ksi was 
about 8 percent conservative. 
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Allowable upright stress for forced crippling: 

d 
With hu = 0·519 and k = 0.680, figure 15 gives 1.14 

1.14 x 16.9 19.2 ksi 

From figure 20 

0'0 = 24.0 ksi 

The allowable stress is 25 percent greater than the existing stress. 

Allowable web stress: 

According to figure 16(a) , with 
au 
- = 0·90 
i 

tan a. = 0.81 

According to figure 17, 

According to figure 18, with md 1.20, 

Therefore 

and k 0.680, 

T'max = T (1 + k2Cl )(1 + kC 2) = 18.8 X 1.01 x 1.01 = 19.2 ksi 

The allowable web stress according to figure 19(a) is 22.0 ksi which 
is 15 percent greater than the existing stress. 

. . {S _ V~03~0 Note. The index value of the beam lS ~ - 1. = 4.20. 

Interpolation on figure 23(a) shows that a beam with this index value 
would be a balanced design if it had a ratio AU/dt equal to 0.46 
and that the uprights would fail by forced crippling. 

The actual ratio AU/dt is 0.454 and is thus very close to the 
value given by figure 23(a). However, the calculations for this figure 
are based on upright sections having b/tu ratios of 6 and 12 for the 
attached and the outstanding legs, respectively. The actual sections 
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have ratios of 5 and 6, respectively; they are thus stockier than those 
assumed for figure 23(a). As a result, the detailed analysis shows 
that the uprights have excess margin against failure by forced crippling 
but are somewhat weak in column action. The detailed analysis thus shows 
that the design is slightly unbalanced and that beam failure should be 
caused by column failure of the uprights; this prediction agrees with 
the test result. 

Example 2. Thick-web beam.- The thick-web beam chosen as exam
ple 2 is beam V-12-10S of Part II. The uprights are single angles 
0.625 X 0.625 X 0.1283. The material is 24s-T3 aluminum alloy. The 
web is bolted (using washers) to the outside of the flange angles. 

As in example 1, the test failing load will be used as "design 
ultimate load." Two sets of allowable stresses will be given for 
forced-crippling failure of the uprights and for web failure. The 
first set represents the values recommended for design use, obtained 
from the graphs or formulas quoted. The second set, given in paren
theses following the first set, represents the "best possible estimate." 
The differences are as follows: 

(a) The "best possible estimate" for the crippling allowable is 
based on the middle of the scatter band, while the "recommended for 
design" value represents the lower edge of the scatter band. The "best 

possible estimate" for crippling allowable is therefore A = 1.25 
0.0 

times the value given by formula (37). 

(b) The "best possible estimate" for the web strength is obtained 
by multiplying the design allowable (fig. 19) by the factor: Actual 
tensile strength over specification strength (or 69.3/62) and by the 
factor 1.10 to obtain the average rather than the lower edge of the 
scatter band for the tests on shear webs. (See section 3.7.) 

Basic data: 

he 11.58 in. hU 9.875 in. hc 9.875 in. 

d 7.00 (=dc ) in. t 0.1043 in. p 0.182 in. 

AU 0.1443 in. 2 
tu 0.1283 in. e = 0.251 in. 

axl 1.37 ~ 0·3125 in. ~ 2.32 in. 2 

P 34.5 kips 
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Effective upright area: 

AU 
e 

Buckling stress: 

2 

1 + (g:ig~) 

tu 
t 

1.23 

3·00 

0 . 0497 
AU 

e 
dt 

kss = 6 · 70 

61 

0.0681 

Tcr,elastic 6.70 X 10.6 X 103 ( 0.1~43t ~. 93 + ~ (1.62 - 0.93) (3)J 
16.55 ksi 

According to figure 12(c): 

Stress analysis: 

T = 16.10 ksi cr 

T 
1. 77 

T 
cr 

k 0.123 (from fig. 13 or formula (27a)) 

aU 
0 . 227 

T 
au = 6.48 ksi 

aU = 8 . 34 ksi 
max 



62 NACA TN 2661 

Column failure of uprights: 

A ~ X ~ angle with an effective length less than 9.9 inches is evi

dently in no danger of column failure at a stress of 6.48 ksi. 

Forced-crippling failure: 

tu 
t = 1.23 7.0 (8.75) ksi 

Comparison of the two values of Go with au shows that the 
max 

"design allowable" value ( 7 . 0 ksi) would have predicted upright failure 
at a load about 16 percent lower than the test failing load, while the 
"best possible estimate" of 8.75 ksi would have predicted upright 
failure at a load 4.5 percent higher than the test load. In the test, 
the web ruptured, but these figures indicate that upright failure 
might have contributed to the web failure or else would have been the 
primary cause of failure if the web had been slightly stronger. 

Web failure: 

From figure 16(b): 

From figure 19(a): T 
all 

= 3.84 

25 (30.75) ksi 

The actual web stress at failure (web rupture) was computed to 
be 28.56 ksi. (The correction for effect of flange flexibility is 
negligible.) The "design allowable" value of 25 ksi therefore would 
have predicted the f a ilure too low ' (conservatively) by about 12 percent. 
The "best possible e s timate" of 30.75 ksi would have predicted the 
failure about 8 percent too high. If the correction for actual material 
properties had been made, but not the correction for scatter in shear
web tests, the prediction would have been very close. 

Note: According to the "best possible estimates," failure of the 
uprights should have precipitated failure of the beam at a load less 
than 4 percent lower than that causing web failure. In the test report, 
failure was attributed to web failure. It appears, therefore, that the 
design was very closely balanced. 
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V34500 The index value for this beam is 11.58 = 16.0. According to 

figure 23(a), this index value would require a ratio AU/dt of 
about 0.26, while the actual ratio was only 0.198. This high efficiency 
of the test beam is attributable to the use of an upright section having 
a b/tU ratiO of 5, which is considerably more compact than the section 
assumed for the calculations leading to figure 23(a) . 

CURVED-WEB SYSTEMS 

The analysis of diagonal tension in curved-web systems utilizes 
the methods developed for plane-web systems. The discussion is there
fore kept brief except for new problems introduced by the curvature. 
The circular cylinder under torque loading is the simplest case and is 
used as the basis of discussion. 

8. Theory of Pure Diagonal Tension 

If a fuselage were built as a polygonal cylinder and subjected to 
torque loads (fig. 27(a)), the theory of diagonal tension would evi
dentlybe applicable and require only minor modifications. If the fuse
lage were built with a circular-section skin, but polygonal rings 
(fig. 27(b)), the sheet would begin to "flatten" after buckling and 
would approach the shape of the polygonal cylinder more and more as 
the load increases. In the limit, the theory of pure diagonal tension 
would be applicable, but in the intermediate stages, the theory devel
oped for plane webs evidently would not be directly applicable. In an 
actual fuselage, the rings are circular, not polygonal (fig. 27(c)); 
.consequently, all the tension diagonals of one sheet bay cannot lie in 
one plane, even when the diagonal tension is fully developed; an addi
tional complication therefore exists. 

In order to derive a theory of pure diagonal tension in circular 
cylinders with a minimum of complications, it is necessary to consider 
special cases. Wagner has given fundamental relations (reference 5) 
for two cases: cylinders with panels long in the axial direction 

(d > 2h, see fig. 27(d») between closely spaced stiffeners (h <] R), 
and cylinders with panels long in the circumferential direction 

(h > 2d, fig. 27(e)) between closely spaced rings (d < ~ R). In the 

first case, the majority of the tension diagonals lie in the surface 
planes of the "polygonalized" cylinder; in the second case, the 
majority of the tension diagonals lie on a hyperboloid of revolution. 
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In the development of the theory of pure di agonal tension for 
plane webs, it was pointed out that all the stresses are known as soon 
as the angle a. of the folds is known. The fundamental formula for 
finding this angle is formula (14), which may be transformed by dividing 
numerator and denominator by Young's modulus into 

( 43) 

This formula can also be applied to the diagonal-tension field formed 
by an originally curved panel on the basis of the following 
considerations. 

Imagine a panel long in the axial direction (fig. 27(d)) to be cut 
along one long edge and both curved edges. If the panel were now 
flattened out, the cut long edge would be separated from the stringer 
by a distance 6 equal to the difference between the length of the arc 
and the length of the chord, which is approximately 

(The restriction to closely spaced stiffeners, h < 1 R, is made in 

order to permit the use of this formula.) The same configuration would 
have been obtained if the panel had been made flat originally and tben 
compressed by the amount 6. The change from a circular section to a 
polygonal section that ·takes place while the diagonal tension develops 
is therefore equivalent to a compressive strain 6/h in the rings, and 
formula (43) may be used to compute the angle a. for a curved panel by 
writing 

The formula thus becomes 

2 tan a. 

1 (h)2 
ERG - 24 R 

( 44.) 

E - 1 (h)2 
ERG + 24 R 
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For the panel long in the circumferential direction, the relations 
are more involved, but the final result again takes a simple form 
(reference 5) 

( 45) 

If the restrictions as to the ratio d/h are disregarded} and 
both formulas are applied to a cylinder with square panels (d = h), it 
will be seen that the "flattening-out" terms become equal and the 
formulas give identical results if 

or 

2 1 tan a. = -
3 

o a. = 30 

which is a fairly representative angle for curved webs. It may be 
assumed} then} in view of the empirical factors contained in the theory 
of incomplete diagonal tension, that for practical purposes formula (44) 

d d 
may be used if h > 1.0 and formula (45), if h < 1.0. The tests avail-

able so far tend to confirm the assumption that no limitations need be 
placed on the aspect ratio d/h of the panels. Until further data 
become available, however, it would be well to limit the subtended arc 

of the panel to a right angle (h = ~ R) unless the ring spacing is very 

small; it should also be noted that the investigations of the panel long 
in the circumferential direction made to date are very sketchy. 

When the strains on the right-hand side of formula (44) are 
expressed in terms of the applied shear stress by using the basic 
formulas 

Tth cot a. Ttd tan a. 2T 
-

AST 
a --

RG - ~G sin 20. 

the formula becomes a transcendental equation for a. and may be written 
in the form 

(d > h) ( 448.) 
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where 

2 

A = ~(~) E 
T 

. , 

Similarly, formula (45) becomes 

where 
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1 + RS (h > d) ( 45a) 

Graphs based on these formulas are shown in figure 28. 

The effective shear modulus of a cylinder in pure diagonal tension 
is obtained by the basic formula (23a), modified only to suit the nota
tion for curved-web systems 

( 46) 

It will be noted that the formulas given contain the actual areas 
of the stringers and rings. In practice, these stringers and rings are 
probably always single; in the case of plane webs, single uprights enter 
into all equations with an effective area given by formula (22), but the 
following considerations i ndicate that the actual areas should be used, 
in general, for the analysis of cylinders. 

Consider a cylinder of closed circular cross section (fig. 27(c» 
with closely spaced rings under the action of torques applied at the 
two ends; the rings as well as the stringers are assumed to be riveted 
to the skin. The rings in such a structure are evidently in simple 
hoop compression that balances the circumferential component of the 
diagonal tension; the eccentricity of the rings does not affect the 
hoop compression, the load actually being appli ed to the ring in the 
form of a uniformly distributed radial pressure. Consequently, the 
actual area of the rings should be used in the calcu}_ations. 

The stringers are loaded eccentrically by the skin, but they can
not bow from end to end; they are constrained by the rings to remain in 
a straight line, except for secondary bowing between the rings and local 
disturbances in the vicinity of stations where the magnitude of the 
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shear load changes. In the main, then, the stringers act as though 
they are under central axial loads, and their actual areas should 
correspondingly be used. 

When the rings are "floating" (fig. 29(a)), the radial pressure 
exerted by the skin tension is transmitted to the rings in the form of 
forces Pr concentrated at the stringers. The circular beam under 
hoop compression and isolated radial forces shown in figure 29(a) are 
statically equivalent to the straight beam shown in figure 29(b) , a 
continuous beam under uniform load. The maximum bending moment in the 
ring (under the stringer) is therefore 

By statics, with sufficient accuracy if h < 1, 
R 

therefore 

p 
r 

h Ttd tan a
R 

2 

~G = Tt ~~ tan a 

For the remainder of this section} the discussion is confined to 
cylinders with panels long in the axial direction (d > h) . 

Because of the polygonal shape ac quired by the cross section of the 
cylinder as the diagonal tension develops, each tension diagonal experi
ences a change in direction as it crosses a stringer. Consequently, 
each tension diagonal exerts an inw.ard (radial) pressure on the 
stringer. The magnitude of this pressure per running inch of the 
stringer is 

rth P = -- tan 0-
R 

If this pressure were distributed uniformly along the length of the 
stringer, the primary peak bending moment in the stringer (at the 
junction with a ring) would be given by the formula 

( 48) 

( 49) 
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A secondary peak moment would exist half-way between rings; its magni
tude would be one-half of the primary peak. 

For several reasons, the radial pressure p is not uniform. The 
first and most important reason is as follows. The derivation of 
formula (48) for p assumes that every tension diagonal experiences 
the same change in direction as it crosses the stringer; this is the 
condition that would exist if the "rings" of the cylinder were built as 
polygons. Since the rings are actually circular (or curved), a portion 
of the tension diagonals near each end of a panel will be forced to 
remain more or less in the original cylindrical surface and will thus 
experience little change in direction. The radial pressure is therefore 
less near the ends than given by the simple formula; as a result, the 
primary peak bending moment may be much less, and the secondary peak 
somewhat less than indicated by the formulas based on a uniform dis
tribution of the pressure. Other reasons for nonuniform distribution 
of the pressure are sagging of the stringers, possibly sagging of the 
rings, and nonuniformity of skin stress. 

The effects of nonuniform distribution of the radial pressure could 
perhaps be estimated under the condition of pure diagonal tension con
sidered here, but the calculations would be tedious and would probably 
require additional approximations. Under the practical condition of 
incomplete diagonal tension, additional large difficulties would arise. 
In any event, elaboration of the procedures for computing bending 
moments is not likely to be worthwhile in view of the empirical nature 
of the theory of incomplete diagonal tension. 

9. Engineering Theory of Incomplete Diagonal Tension 

9.1. Calculation of web buckling stress.- Theoretical coefficients 
for computing the buckling stress Tcr in the elastic range, based on 
the assumption of simply supported edges (reference 26) are given in 
figure 30. Over the limited range of available tests, these theoretical 
formulas have given better results than any empirical formulas for 
buckling of curved sheet, particularly when the appearance of stringer 
(compressive) stresses was used as the criterion for sheet buckling. 
It should be noted, however, that in the limiting case of flat sheet 
it has been found necessary to modify the theoretical coefficients by 
means of empirical restraint coefficients (section 4.2). Logically, 
analogous modifications should also be made for slightly curved sheet 
(small values of Z in fig. 30), but no recommendations can be made at 
present concerning a suitable procedure. 

9.2. Basic stress theory.- As pointed out in section 8, the 
eometric change of shape from a circular to a polygonal cylinder 
ith d > h is equivalent to producing a compressive strain in the 

1 
I 
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rings, and a similar consideration applies when h > d. The development 
of the diagonal tension therefore proceeds more rapidly in a curved web 
than in a plane web, and the empirical relation between the diagonal
tension factor k and the loading ratio TIT must be generalized. cr 
Analysis of test data has shown (reference 27) that they can be fitted 
fairly well by the generalized formula 

k = tanh ~.5 td) Tj + 300 Rh loglO -
Tcr 

(50) 

with the auxiliary rules: 

(a) If h > d, replace dlh by hid. 

(b) If dlh (or hid) is larger than 2, use 2. 

Figure 13 shows equation (50) in graphical form. 

With the same assumptions as in plane diagonal tension, the 
stresses and strains in stringers and rings are given by the formulas 

kT cot a. 

kT tan a. 

(J 

ST 
E 

For floating rings, the factor 0.5(1 - k) representing effective skin 
in formula (52) is omitted. 

The web strain € is obtained by formula (30d). A graph for 
evaluating this strain in the usual range of design proportions is 
given in figure 31. In curved diagonal-tension fields, the longitudinal 
and the transverse stiffening ratio are in most cases of the same order 
of magnitude. The stringer stress and the ring stress thus depend on 
three parameters, the two stiffening ratios and the radius of curvature. 
With this number of parameters, it is impracticable to prepare an 
analysis chart for curved diagonal-tension fields corresponding to 
figure 14; the analysis must therefore be made by solving the equations 
in the manner described in section 3.2 for the general case of plane 
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diagonal tension. A first estimate of a is made; equations (51), 
(52), and (30d) are solved; the resulting values of E, EST' and ERG 

are substituted into formula (44) (or (45)) to obtain an improved value 
of a, and so forth. 

As a first approximation to the angle a, the value apDT for pure 

diagonal tension given by figure 28 may be used. A better first approxi
mation to a is obtained if the angle apDT taken from figure 28 is 

multiplied by the ratio a/OpDT given by figure 32. This curve repre

sents the average of the scatter band obtained by plotting the ratios 
a/OpDT for a number of webs with proportions varied within the usual 

design range. In general, the value of a obtained in this manner 
will be within 20 to 30 of the final value found by successive approxi
mation. Analysts with some experience generally dispense with the use 
of figures 28 and 32 and simply assume an initial value of the angle a. 

The stresses given by formulas (51) and (52) are average stresses 
that correspond to the value aU given by formula (30a). The maXimum 
stresses are obtained, as for plane webs, by multiplication with the 
ratio amax/a given by figure 15. It is possible that these ratios 

may require modification for strongly curved panels. As mentioned in 
the discussion of plane webs, direct experimental verification of the 
ratio is extremely difficult because of the difficulty of separating 
the compression stress from the stress due to bending and the stress 
due to forced local deformation. 

The effective shear modulus of curved webs in incomplete diagonal 
tension is computed by formulas (31a) and (31b) , with ~G substituted 

for AU and AST substituted for 2AF . In order to be consistent 
e 

with the assumption that the "polygonization" takes place immediately 
after buckling in cylinders with d > h, the polygon section should be 
used in the calculations. Thus, for a circular cylinder with equally 
spaced stringers, the shear flow due to torque and the torsion constant 
should be computed by the formulas 

T 
q 

J 
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where ~ is the angle subtended by two stringers. The reduction fac
tors in the brackets are approximate but are sufficiently accurate for 

values of ~ up to about ~ radian (12 or more stringers, uniformly 

spaced). It may be noted that the percentage correction for J is 
roughly twice as large as for q. 

9.3. Accuracy of basic stress theory.- Because the development of 
diagonal tension in curved webs depends on more parameters than in plane 
webs, and because the test specimens are more expensive to construct and 
test, it has not been feasible to check the behavior of curved webs 
experimentally as thoroughly as for plane webs. An effort has been 
made to check a sufficient number of extreme cases to insure reasonable 
reliability over the usual range of deSigns, but very few checks have 
been made to date with h > d. The reliability of the basic stress 
theory appears to be about the same as for plane-web systems except for 
the effective shear modulus, which is somewhat overestimated for curved 
webs. 

9.4. Secondary stresses . - The primary maximum bending moment in 
a floating ring can be calculated by using expression (47), which is 
valid for pure diagonal tenSion, and multiplying it by the diagonal
tension factor k. The secondary maximum, which is equal to one-half 
of the primary maximum and occurs half-way between stringers, has been 
checked experimentally in one case and agreed very closely with the 
computed value. 

The maximum bending moment in a stringer can similarly be calcu
lated by using expression (49) and multiplying it by the factor k. 
However, as pointed out in the discussion of expression (49), this 
formula cannot be regarded as reliable. There have been very few 
attempts to check these moments by strain measurements. Such a check 
is extremely difficult because the effective width of skin working with 
the stringer is not known with sufficient accuracy, and consequently it 
is difficult to separate bending from compressive stresses. Even more 
difficult is the problem of allowing for the local bending stresses due 
to forced deformation of the stringer cross sections. Taken at face 
value, the few data available indicate that the secondary peak moment 
(half-way between rings) may agree roughly with the calculated value 
(one-half of the primary peak). The primary peak at the rings, however, 
appears to be even less than the calculated secondary peak. The 
analysis of available strength tests on cylinders has also led to the 
conclusion that the maximum moment appears to be no larger than the 
calculated secondary peak. It is suggested, therefore, that the bending 
moment in the stringer at the ring as well as the moment at the half-way 
station be computed by formula (49), with the factor k added and the 
factor 12 replaced by 24. 
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9.5. Failure of the web.- The nominal shear stress T at which 
a curved web (or skin of a cylinder) ruptures would be given directly 
by the curves of figure 19 if the diagonal tension were uniformly djs
tributed. For plane webs, nonuniformity of stress distribution is 
allowed for by the stress-concentration factor C2 (formula (33b)) 
which is calculated by Wagner's theory of flange-flexibility effects. 
For curved-web systems, no corresponding theory has been developed; 
the factor C2 is thus necessarily taken to be zero. In order to 
compensate for the error introduced by this assumption, the allowable 
stress taken from figure 19 is multiplied by an empirical reduction 
factor which depends on the properties of the stringers and rings. 
From analogy with the plane-web case, it would seem that the reduction 
factor should depend primarily on the bending stiffnesses of stringers 
and rings. However, for the tests available to date, much better cor
relation was achieved by using the stiffening ratios involving the 
areas as parameters. 

The allowable ultimate value for the shear stress T in a curved 
web is thus given by the empirical express i on (reference 27) 

where 

* 

T 
all 

ARG AST 
/::, = 0·3 tanh dt + 0.1 tanh ht 

The value T all - is given by figure 19; the quantity /::, may be read 

* from figure 33. It may be noted that T can exceed T , because 
all all 

the ~uantity /::, can exceed the value 0.35 if the stringers and rings 
are heavy. The explanation lies in the fact that a grid-system of 
stringers and rings can absorb some shear; the effect is analogous to 
the portal-frame effect in plane-web systems. 

In section 4.8, it is stated that the basic allowable values of 
shear stress for plane webs may be increased 10 percent if the web is 
attached by rivets assumed to remain tight in service. All the curved 
webs tested also developed this higher strength, but the number of 
tests is small. 

It should be noted that section 4 also states that the rivets are 
assumed to be not of any countersunk (flush) type because no appli
cable tests are available; this statement holds for curved webs as well 
as for plane webs., 
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9.6. General instability.- As a check against the danger of col
lapse of the cylinder by general instability, the empirical criterion 
developed by Dunn (reference 28) is available. This criterion gives 
the shear stress Tinst at which instability failure will occur and 

is shown graphically in figure 34. The full lines indicate the region 
covered by the test points, which lie close to the lines with very few 
exceptions. No explanation was found for the sudden shift from one 
line to the other. The radii of gyration PST and PRG should be 

computed on the assumptions that the full width of sheet acts with the 
stringer or ring, respectively, and that the sheet is flat, because 
the empirical criterion was obtained under these assumptions. Graphs 
for evaluating radii of gyration for stringer-sheet combinations are 
generally given in stress manuals and are therefore not given here. 

9.7. Strength of stringers.- Geometrically, the stringers of a 
cylinder correspond to the flanges of a plane-web beam, and the rings 
correspond to the uprights of the beam. Functionally, however, the 
stringers as well as the rings of a cylinder under torque load act 
essentially like the uprights of a beam; the strength analysis of 
stringers therefore involves the same considerations as the design of 
uprights. 

In the discussions on plane-web beams, it was shown that uprights 
can fail either by forced crippling or by column action, and that 
forced crippling dominates over most of the practical range of design 
proportions. The problem of column failure was therefore treated 
rather briefly, and the problem of interaction between column failure 
and forced crippling was only mentioned. 

In curved-web systems with many rather light stringers, the 
problem is unfortunately not so simple. The investigations made to 
date are hardly more than exploratory, but they indicate that column 
action may be relatively more important than in plane webs for the 
following reasons: 

(a) The angle of diagonal tension is lower in curved webs than 
in plane webs (200 to 300 against 400

, roughly); the stringers there
fore receive a relatively higher load than the uprights. 

(b) The bracing action which a plane web exerts against column 
buckling is absent in curved webs. In fact, the radial component of 
the diagonal tension applies a transverse load to the stringer, which 
acts therefore as a beam-column rather than as a column. 

The importance of column action of the stringers arising from 
these causes is increased greatly by the necessity of designing 
cylinders such as fuselages to carry bending moments as well as torque 
loads. 
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In view of the great importance of column action in stringers, 
it would be highly desirable to have rather complete and reliable 
methods of predicting this type of failure. Most of the customary 
methods are adaptations of those developed for "free" columns not 
attached to webs. These methods are highly unreliable because 

(a) the twisting mode of failure is greatly altered by attachment 
to a web, and 

(b) the skin usually buckles well before ultimate failure takes 
place. The forced local buckling of the stringer section induced by 
the skin buckles materially reduces the resistance against column 
buckling or twisting unless the stringer is unusually sturdy, that is 
to say, unusually resistant to forced buckling. 

The problems involved are very complex, and very little useful 
information is available even for the much simpler problem of the 
stiffened cylinder in compression. A purely empirical solution is 
hardly feasible in view of the many parameters involved. Substantial 
progress in the analysis methods for torsion cylinders can therefore 
be expected only when an adequate theory of the compression cylinder 
has been developed. 

For the time being, the following checks are suggested in addi
tion to the check against general instability discussed in section 9.6. 

(1) The strength against forced crippling should be checked in 
the same manner as for uprights on plane webs. 

(2) A check should be made against column failure. For Euler 
buckling normal to the skin, fixed-end conditions can probably be 
assumed to exist at the rings. The column curve established in the 
usual manner (using the local crippling stress for the stringer section 

as allowable for ~ = 0 probably requires some reduction to allow for 

the effect of skin buckles unless the ratio tST/t is larger than 3. 
Consideration should be given to the possibility of twisting failure 
if the column curve is obtained by computation. Some allowance should 
be made for beam-column effect. 

(3) The maximum compressive stress in the stringer should be 
computed as the sum of the stress crST (computed in accordance with 

section 10.4) and the stress caused by the bending moment MST 
(section 10.5). 

9.8. Strength of rings.- Floating rings should be designed to 
carry the combined effect of the hoop compression cr

RG 
(section 10.4) 

'----------------_.-
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and of the bending due to the moment MRG (section 10.6) at the 
juncture with the stiffener. A check at the station midway between 
stiffeners (where the moment is only half as large, but of opposite 
sign) may be necessary if the cross section of the ring is such that 
the allowable stresses in the outer and the inner fibers differ 
greatly. 

Rings riveted to the skin should be checked against forced 
crippling in the same manner as the stringers. No recommendations can 
be made at present concerning checks against instability failures 
other than that given in section 9.6 for general instability. For the 
tests available, the two checks (for forced crippling and general 
instability) used in conjunction gave adequate strength predictions, 
but the number of tests is very small because the rings were usually 
overdesigned in order to force stringer or web failure. 

Unless the stringers are made intercostal (which leads to loss of 
effi'ciency in bending strength of the cylinder and is therefore seldom 
done) the rings must be notched to permit the stringers to pass through. 
At the notch, the ring stress is increased because the cross section is 
reduced; this effect is aggravated by the suddenness of the reduction, 
that is to say, a stress-concentration effect exists. The free edge of 
the notch should therefore be checked against local crippling failure. 
In the tests of reference 29, all specimens (representing fuselage side 
walls) failed in this manner. If the stringer is connected to the ring 
by a clip-angle of sufficient length riveted to the web of the ring, 
the net section at the notch is increased, and the edge of the notch 
can readily be stiffened so much that there is no danger of this type 
of failure. No specific recommendations on this problem can be made 
at present because no adequate tests are available. 

9.9. Web attachments.- For the edge of a panel riveted to a 
stringer, the required rivet shear strength per inch run is taken as 

" E (I R =ql+k---cos a. 

This formula is obtained from formula (10) with the assumption used to 
obtain formula (34). For an edge riveted to a ring, cos a. is replaced 
by sin a.. 

If the sheet is continuous across a stiffening member, but the 
shear flow changes at the member, the rivets evidently need be designed 
only to carry the difference (Rl II - R2 ") between the adjacent panels. 
In such cases, neither the factor k nor the angle a. for the lower
stressed panel is likely to be needed for other purposes. In order to 
eliminate the necessity of calculating these values for the purpose of 
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rivet design, simplified criteria may be used and should be adequate 
for practical purposes. 

Rivets should fulfill the criterion for tensile strength given by 
expression (42). Curved surfaces are encountered mostly on the outer 
surface of the airframe, where flush rivets are often required for aero
dynamic reasons. Flush rivets usually develop a low tensile strength 
because they pull through the sheet; the check for tensile strength is 
therefore important. 

Data for the tensile strength of protruding-head rivets taken from 
reference 30 are given in figure 35. Data for some types of flush 
rivets, taken from reference 31, are given in figure 36. These data 
are for so-called NACA rivets, in which the countersunk head is formed 
from the rivet shank in the driving operation and then milled off 
flush. For "conventional" rivets with preformed countersunk heads, the 
tensile strengths were found to be from 10 to 20 percent lower for some 
test series (reference 31). Additional data on flush rivets may be 
found in references 31 and 32. 

9.10. Repeated buckling.- It has been f ound experimentally that 
a load in excess of the buckling load will cause a lowering of the 
buckling stress for the next application of the load. Thus, in a 
series of tests on curved panels (reference 33), the buckling stress 
was lowered as much as 30 percent after 10 loads, and as much as 40 per
cent after 60 load applications. The maximum applied shear stress was 
of the order of 50 percent in excess of the buckling stress; in the 
worst case, it was near the probable proportional limit, but in the 
great majority of cases it was well below this limit. The reason for 
the lowering of the buckling stress therefore presumably must be sought 
in large but highly localized sheet bending stresses associated with 
the buckle formation ("plastic hinges"). 

In static tests made in the aircraft industry, standard practice 
appears to be to apply the test load in steps; after each step, the 
load is removed in order to check for permanent set. Thus, any shear 
web will have been buckled a number of times before the ultimate load 
is reached. The calculations, on the other hand, use formulas for 
buckling stresses that can be considered as valid only for the case 
where the test load is increased continuously until failure occurs. 
In the test, then, the diagonal tension will be more fully developed 
than predicted, and consequently failure will take place at a lower 
load than predicted. 

The magnitude of the error in the predicted strength depends on 
the degree to which the diagonal tension is developed at failure, that 
is to say, on the magnitude of the diagonal-tension factor k, on the 
type of failure, and on the history of the loadings. 
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The prediction of sheet failure in curved-web systems is not 
sensitive to moderate errors in k, although somewhat more sensitive 
than for plane webs, as inspection of figure 19 indicates. The predic
tion of stringer or ring failure by forced crippling is not sensitive 
because an overestimate of k leading to an overestimate of the 
stresses developed also leads to an overestimate of the allowable 
stresses. (For balanced designs, a given small percentage error in k 
results in about one-third as much error in the predicted load.) The 
prediction of a column failure in a stringer, however, is presumably 
much more sensitive because the allowable stress in this case is 
presumably independent of k. 

The angle of twist of a cylinder is extremely sensitive to small 
errors in k, or TITcr' in the vicinity of the buckling torque. An 

addition of 20 percent to the buckling torque may double or triple 
the angle of twist. Since previous buckling or other factors can 
easily cause a 20-percent error in the estimated buckling torque, it 
is evident that the calculated angle of twist can be in error by 
100 to 200 percent in the region from, say, 0.8Tcr to 1.5Tcr ' 

At the present, there are no methods available for estimating any 
of the effects of repeated buckling quantitatively. 
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10 . Formulas and Graphs for Strength Analysis 

of Curved-Web Systems 

No attempt should be made to use the following formulas until sec 
tions 8 and 9 have been carefully read . 

10 . 1 . Critical shear stress 

The critical shear stress Tcr is obtained with the aid of fig 

ure 30 and figure 12(c). Note that d is the distance between rings 
riveted to the skin (not floating) . Use judgment in reducing Tcr if 

Z < 10 and tST/ t ( or tRG / t ) < 1 . 3 . 

10 . 2 . Nominal shear stress 

When d > h, the nominal shear stress T for post -buckling condi
tions is calculated as though the sheet wer e unbuckled and flat between 
stringers . 

10. 3. Diagonal- tension factor 

The diagonal- tension factor k is obtained from figure 13, or by 
formula (50) . The spacing d is measur ed between rings riveted to the 
skin . 

When h > d, the nominal shear stress may be calculated (in 
general) as though the sheet were unbuckled. 
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10.4. Stresses, strains, and angle of diagonal tension 

By formulas (51), (52), (30d), (44), and (45), respectively, 

kT cot a. 

AST + 0. 5(1 - k) 
ht 

kT tan CL 

= GST 
E 

79 

(For float i ng rings, omit 0 . 5(1 - k) in the last expressionj use actual 
r i ng spac i ng for d.) 

E - T[ 2k + sin 2CL(1 - k)(l + ~~ 
- E~in 20. ~ 

(Use fig. 31 to evaluate E.) 

E -

(d > h) 

+ l(h)2 
24 R 

E - ERG 

E - EST 
(h > d) 

The equations are solved simultaneously by successive approximation. 

10.5. Bending moments in stringers 

The suggested design value for the moment in a stringer at the rings 
as well as halfway between rings is 

hd2 
MST = kTt - 4 tan ex. 

2 R 
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10.6. Bending moment in floating r ing 

The pr imary maximum moment in a floating ring (at the junction with 
a stringer ) is 

The secondary maximum hal f - way between stringers is half as large. 

10 . 7. Strength of web 

Obtain: ~PDT from figure 28 (or by formula ( 44a) or ( 45a)) 

* T all from figure 19 

6 from figure 33 

Then) by formula (53)) 

The value Tall may be increased 10 percent for rivets that remain tight 

in service . It is not appl icabl e without special verification if rivets 
are of any flush type . 

10 . 8 . Strength check) stringers and rings 

Check for gener al instability (fig . 34) . 

Check stringers against column failure. See section 9 . 7 for 
suggestions . 

Check against forced crippling as follows: For stringers) compute 
aSTmax ) with amax / a from figure 15 . Allowable value is ao from 

figure 20 (single uprights) . For rings (not float i ng)) check similar ly 
with aRGmax ' 

On notched rings) check edge of notch against buckl ing . 

If rings are floating, assume aSTmax e quals aST' 

Design floating rings to carry combination of hoop compression (for
mula (52) or section 10.4) and bending moment (section 10 . 6) . 
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10.9. Riveting 

For edges of panel along stringer, the required rivet shear strength 
per inch run is, by formula (55), 

For edge riveted to ring, replace cos a by sin a. 

Rivets should be checked for tensile strength (which includes rivet 
pulling through the sheet as one possible mode of failure). The tentative 
criterion for tensile strength is given by expression (42) as 

Tensile strength of rivets per inch run > 0.22tcrult 

For tensile strengths of rivets, see figures 35 and 36. 
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11. Combined Loading 

The preceding sections have dealt with the problem of designing a 
shell subjected to pur e torque loading. They may also be used for 
designing a shell subjected to transverse loads producing bending, pro
vided the shell is so short that the axial stresses produced by bending 
are small compared with the shear stresses. If the shell is not very 
short, however, a number of problems of combined loading arise . As a 
first step toward the solution of these problems, the cylinder subjected 
to torsion and compression has been investigated in reference 34, and 
the following method of analysis has been found to yield reasonable 
accuracy. 

The critical shear stress is calcul ated with the aid of figure 30 . 
This stress is now denoted by Tcr,O' where the additional subscript 

zero indicates the condition of shear acting alone . Next, the cr itical 
compressive stress is calculated and denoted by acr 0' Because the , 
classical theory of compr ession buckling of curved sheet is in poor 
agreement with tests, the theoretical buckling ~oefficients should be 
modified by an empirical factor (reference 35). In figure 37, the 
va l ues Tcr ° and acr ° are plotted on a a-T diagr am. These two , , 
pOints are connected by an "interaction curve . " Each point on the inter 
action curve characterizes a pair of critical stresses acr a.nd T cr 
that, acting in conjunction, will produce buckling of the sheet. This 
curve has been drawn from the equation 

acr 
--- + 

acr ° , ( 
Tcr \2 

Tcr,O) 
I (56) 

which describes the interaction with sufficient accuracy (reference 35). 

Let a denote the compressive stress that would exist in the cylinder 
if the sheet did not buckle (i . e., remained fully effective) under the 
action of the design compressive load P. Similarly, let T denote the 
shear stress that would exist if the sheet did not buckle under the action 
of the design torque T. The values of a and T establish the point C 
in the a-T diagram of figure 37. The line drawn from C to the origin 
intersects the interaction curve at point D. The critical stresses acr 
and Tcr characterized by point D are used in the following steps . For 
convenience of notation, there are also used the interaction factors 

Tcr 

Tcr,O 
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With the aid of the ratios 

A B 
T 

cr 

which can be computed directly from the dimensions of the structure and 
the specified design loads, the interaction factors can be written in the 
form 

R ~ - -- + --- + 1 T A ~2 
2B 4B2 

The total stringer stress is the sum of the stringer stress due to 
the compressive load P and t he str inger str ess due to the diagonal 
tension caused by the torque, or 

C T 
a ST ~ cr ST + cr ST 

The stress crCST is computed by the formula 

aGST 
P 

The load P must be taken as negative because it is compressive; n is 
the number of stringers, AST is the area of one stringer, and ~C is 

the effective-width factor . This factor is taken as the K~rma:n-Sechler 
expression for effective width (r efer ence 36), multiplied by the ratio 
RC in order to make all owance for the presence of the torque loadingj 
thus 

~c ~ RCO.89 ~ ocr 
crCST 

(60 ) 

If expression (60) is substituted into equation (59), a quadratic equation 
is obtained which yields 

c cr ST (61) 
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where 

D ( 62) 

The stress dTST is computed by formula (51)) modified by the 

ratio RT in order to allow for the presence of the compressive load 
the modified formula is 

p. , 

dT
ST 

kT cot a. 
(63) 

The interaction factors RC and RT) by definition, describe the 
interaction between compression and torque at the instant of buckling. 
Their use in formulas (60) and (63) to describe the interaction on the 
effective width is fundamentally arbitrary. However, in the usual 
design range, the effect of moderate errors in estimating the effective 
width is unimportant; any reasonable method for estimating the effect 
of interaction on effective width is therefore acceptable for the time 
being. 

The stress in a ring is computed, according to reference 34, by the 
unmodified formula (52). This procedure is, in principle at least, open 
to some question; it would seem that some interaction factor ShOllld be 
added in the denominator, as was done in equation (63). In the tests 
made to date, the rings were relatively large; for this reason, and 
because the ring stresses are proportional to tan a. (instead of cot a. 
as the stringer stresses), the experimental ring stresses were too low 
to afford a sensitive check on this point. 

The diagonal strain in the sheet is computed by equation (30d), on 
the implied assumption that it is not modified significantly by the com
pressive force carried by the sheet. The angle a. is computed by 
formula (44) or (45), the strain EST being computed from the total 

compressive stress aST given by expression (58). The diagonal-tension 

factor k is obtained from figure 13 by using Tcr (not Tcr,o)' 

The stress computation for the case of combined loading thus differs 
from that for the case of pure torque loading in the following items: 

(1) The critical stress is reduced by interaction 

- ----~-

1 
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( 2 ) The stringer stress due to the load P must be added; this 
calculation involves an interaction factor 

( 3) The calculation of the stringer stress due to the torque involves 
an interaction factor 

Concerning item (1), there is ample theoretical and experimental evi
dence to justify the belief that the calculation is sufficiently accurate 
for deSign purposes. The factors used in items (2) and (3) are arbitrary, 
but they have only a very minor effect except for low loading rat i os. 
Conse quently, the accuracy with which the stresses can be computed under 
combined loading might be expected to be about the same as for pure torque 
loadi ng, as long as the ratio TIT cr is greater than 2, and this expect a
tion was fulfilled in the tests of reference 34. 

The question of allowable stresses for failure is more problematical. 
The allowable value of skin shear stress is probably not changed signifi
cantly by added compression, but there is no experimental evidence on 
t his score. As far as true column failure of the stringers is concerned , 
it would be immaterial whether the compressive stress in the stringer 
a rises d i rectly from the axial load P, or indirectly (through diagonal
tens i on action) from the torque; in other words, column failure would be 
assumed to take place when the total stringer stress given by expres
sion (58) reaches the column allowable value. The condition of true 
column failure would only exist, however, if the cross section of the 
stringer were completely immune to forced deformations induced by skin 
buckles. As mentioned previously, the problem of interaction between 
forced deformation and column failure is probably more seri ous in curved 
than in plane webs, and fragmentary data indicate that no practical 
stri nger section may be completely free from interaction effects. 

Since it appears that there will be some interaction in most cases , 
the i nvestigation of reference 34 was carried out in the region where 
the interaction i s clearly largej namely, on stringers designed to fai l 
by forced crippling in the case of pure-torque loading. Five cyl i nders 
of identical construction were builtj one was tested in pure compression, 
one in pure torsion, and the other three in combined compression and 
torsion. The results were fitted by the interaction formula 

(
T)1.5 P -- + -- = 1.00 

To Po 
( 64) 

where T and P are the torque and the compressive load that cause 
stringer failure when acting simultaneously, To is the torque causing 
stri nger failure when acting alone, and Po is the compressive load 
causing stringer failure when acting alone. When this formula is used, 
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it is not necessary to compute the stringer stress by the method described 
previously for combined loading; a stringer-stress computation is made 
only for the case of a pure torque to calculate To. Ideally, the load 
Po would also be calculated, but at present it would be safer to obtain 
this load by a compression test on one bay of the complete cylinder, or 
on a sector of this bay large enough to contain at least five stringers. 

12. General Applications 

The discussions and formulas for curved diagonal tension have been 
given on the assumption that the structure considered is a circular 
cylinder. Evidently, more general types of structure may be analyzed 
by the same formulas by the usual device of analyzing small regions or 
individual panels. The questions of detail procedure that will arise 
must be answered by individual judgment, because more general methods 
are not available at present. The results will obviously be more 
uncertain, for instance, if there are large changes in shear flow from 
one panel to the next. It should be borne in mind that in such cases 
problems in stress distribution exist even when the skin is not buckled 
into a diagonal-tension field; the existence of these problems is often 
overlooked because elementary theories are normally used to compute the 
shear flows. 

13. Numerical Examples 

As numerical examples of strength analyses of curved diagonal
tension webs, two cylinders will be analyzed that were tested in the 
investigation of reference 34. The cylinders were of nominally iden
tical construction and differed only in loading conditions. They had 
12 stringers of Z-section and rings also of Z- section. The rings were 
notched to let the stringers pass through them. Clip angles were used 
to connect the stringers to the rings and at the same time to reinforce 
the edge of the notch. The analysis will be made for the test loads 
that produced failure. The third ~xample illustrates the calculation 
of the angle of twist for the cylinder used in the first example. 

Example 1. Pure torsion.- The example chosen is cylinder 1 of 
reference 34. The material is 24s-T3 aluminum alloy. 

Basic data: 

R 15.0 in. t 0.0253 in. d 15.0 in. 

E 10.6 X 103 ksi 0.32 h 7.87 in. 

G 4.0 X 103 ksi 

------
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I Stringers: Z-section t X 1 X t X 0.040; AsT = 0.0925 in . 2 

Rings: Z-section t X 2 X t X 0.081; ARG = 0. 251 in. 2 

Nominal shear stress: 

Buckling stress : 

T = ___ 3_88 ____ = 11. 36 ksi 
2 X 675 X 0.0253 

7. 872 
Z - " 1 - o. 322 155 

- 15. 0 X o. 0253 V 

From figure 30: ks 35 

Tcr 
~2 X 10.6 X 103 X 7.872 

35 = 3.50 ksi 
12 X 152 X 1552 

Loading r atio: 

T 11.36 
- = 3. 24 
Tcr 3.50 

Diagonal-tension factor: 

300 td = 300 0.0253 X 15.0 = 0.965 
Rh 15.0 X 7.87 

From figure 13: k = 0.63 

First approximation for angle of diagonal tension: 

15.0 X 0.0253 
0.251 

1. 513 

87 
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ht 
RS = - = 

AST 

7 . 87 x 0.0253 

0.0925 

1 + RS 
= 1. 256 

1 + RR 

'Q\{f 7 .87 10 . 6 x 103 

2.155 

R V:r 15 . 0 11. 36 
:::: --;:::::=:=:=:-- :::: 10.1 

~1 + RR ~1 + 1. 513 

From figure 28(a): ~PDT = 32 . 30 

From figure 32: 
~ -- = 0.90 

~Pvr 

Stress and strain formulas: 

From formulas (51) and (52): 

NACA TN 2661 

___ 0_._6.::;,.3_X_ l_l _'.::;,.36 __ cot ~ = -11.03 cot ~ ksi 
0.465 + 0.5(1 - 0 . 63 ) 

EST:::: -1.04 x 10-3 cot ~ 

0. 63 x 11. 36 t an ~ 
aRG = - 0. 660 + 0. 5 (1 - 0 . 63 ) 

-8.46 tan ~ ksi 

ERG:::: -0.800 x 10- 3 tan ~ 
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First cycle: 

From figure 31: 

1 (h)2 1 (7.87)2 
24 R = 24 15.0 11.48 X 10-3 

L =: 1. 07 X 10-3 
E 

tan a, = 0.554 cot a, 1.805 

€E 1.90 ; E = 1.90 X 1.07 X 10-3 2.035 X 10-3 - = 
T 

€ = -1.04 X 10-3 X 1.805 = -1.875 X 10-3 ST 

ERG = -0.800 X 10-3 X 0.554 = -0.444 X 10-3 

According to formula (44): 

tan2a, = 2.035 + 1.875 0.280 
2.035 + 0.440 + 11.48 

tan a, 0.529 

Second cycle: 

The final value of a, is closer to the computed value of the pre
ceding cycle than to the initially assumed value; therefore, take as the 
next approximation 

tan a, =: 0.529 + t (0.554 - 0.529) 0.535 

cot a, = 1.87 
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From figure 31: 

EE 
1.92 ; E 2.054 X 10-3 - = 

T 

EST = -1.04 x 10-3 x 1.87 = -1.945 x 10-3 

ERG = -0.800 x 10-3 x 0.535 = -0.427 x 10-3 

2.054 + 1.945 
---..,;..~--~-=---- = 0.286 
2.054 + 0.427 + 11.48 

tan a. = 0.535 

The computed value of tan a. checks the assumed value; the second cycle 
is therefore the final one. 

Stresses: 

cr = EST X E ST -1.945 x 10-3 x 10.6 x 103 = -20.6 ksi 

-0.427 x 10-3 x 10.6 x 103 = -4.54 ksi 

Note: The last strain measurements in the test were taken at 
99 percent of the failing torque. The extrapolation to 100 percent gave 
a stringer stress of -20.20 kSi, which is numerically less than the cal
culated value by 2 percent. 

Web strength: 

Th~ calculated skin stress being 11.36 ksi, inspection of figure 19(a) 
shows that there is a large margin (about 50 percent) against skin rupture. 

Stringers, column failure: 

The radi us of gyrat i on of the stringer section is 0.408 inch; therefore, ~ 

d 
== 18.4 

2p 



13L NACA TN 2661 91 

This slenderness ratio is so low that there is obviously a large margin 
against column failure at the computed value of stringer stress. 

Stringers, forced-crippling failure: 

From figure 15: 1.16 

= -20.6 x 1.16 -23.85 ksi 

From figure 20: 00 = -22.3 ksi 

0.0404 
0.0253 

= 1.60 

Note: The "design allowable" value of the stringer stress (-22.3 ksi) 
is 7 percent greater than the calculated value of -23.85 ksi. Therefore, 
the calculation would have predicted failure at a torque 7 percent lower 
than the actual failing torque, that is, the calculation is 7 percent 
conservative. The "best possible estimate" of the allowable stress (based 
on the middle of the scatter band instead of the lower edge) would be 
25 percent higher than the "design allowable" value; a strength predic
tion based on this value thus would have been 18 percent unconservative. 

Example 2. Combined loading.- The example chosen to demonstrate the 
analysis of a cylinder under combined torsion and compression is cylin
der 5 of reference 34. In order to simplify the demonstration by making 
use of partial results obtained in example 1, it will be assumed that 
the dimensions given for example 1 apply; actually, some of the dimensions 
differed by as much as 2 percent. 

Basic data: 

Dimensions as in example 1. 

T = 303 inch-kips 

Compression area: 

12 stringers 

P = -13.5 kips 

12 X 0.0925 2 1.11 in. 

Sheet (100%) = ~ X 30 X 0.0253 = 2.38 in. 2 

Total 3.49 in. 2 
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Basic stresses: 

Tcr,O 3.50 ksi (see example 1) 

acr,O = -5.95 ksi 

The latter value is computed according to the recommendations of refer
ence 35 with an empirical reduction factor. 

At the design loads, the nominal stresses are 

a -13. 5 
3.49 

-3.87 ksi 

303 T = -- = 8.86 ksi 
34.2 

Interaction factors: 

From formulas (57): 

A = 3.50 = -0.588 
-5.95 

Tcr = 0.878 X 3.50 = 3.07 ksi 

Compressive stress due to axial load: 

B 8.86 -2.29 
= - 3.87 = 

acr -0.228 X 5.95 

From formulas (62) and (61), respectively 

D = 0.445 X 2.155 X 0.228 X ~ 1. 356 = 0.254 

aCST = -10.55 ksi C 
E ST -0.996 X 10-3 

-1. 356 ksi 
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Diagonal-tension factor: 

8.86 
3.07 

2.88 k 0.59 

Stress and strain formulas: 

From formula (63): 

0.59 X 8.86 cot a 
-8.10 cot a ksi 

0.465 + 0.5(1 - 0.59) X 0.878 

T 
E ST -0.764 X 10-3 cot a 

From formula (52): 

0.59 X 8.86 tan a T 
(J RG -6.05 tan a ksi 

0.660 + 0.5(1 - 0.59) 

ERG -0.570 X 10-3 tan a 

computation cycle: 

93 

Only the last cycle will be shown here. This computation is essen
tially the same as for a case of pure torsion (example 1), except that 
the stringer strain due to axial load (ECST) is added to the strain due 

to the torque (E T ST ) • 

The first approximation to the angle a may be obtained by disre
garding the compression, that is to say, in the same manner as in 
example 1. An analyst with some experience may improve this approxima
tion by adding a correction for the effect of the axial load (compression 
load will steepen the angle). 

Assume a = 280 30 '; tan a 0.543; cot a 1.84 
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From figure 31: 

1.86 ; E = 1. 86 X __ 8_.8_6_= 
10.6 X 103 

1.552 X 10-3 

From the strain formulas: 

-1.405 X 10-3 

ERG - -0.570 X 10-3 X 0.543 -0.310 X 10-3 

2 1.552 + 1.405 + 0.996 tan a. = 
1.552 + 0.310 + 11.48 

0.296 

tan a. = 0.544 

This result agrees with the assumed value within the accuracy of 
calculation and thus constitutes the final value. 

By the stress formulas 

-8.10 
0.544 

Therefore the total stri nger stress is 

-14.90 ksi 

aST = -14.90 - 10.55 = - 25.45 ksi 

The value measured (on a cylinder wi th s lightly different actual 
dimensions) was -25 ksi. 

Failure: 

Since the torque is much less than i n example 1 (pure-torque case)) 
there is a wide margin against web rupture. 
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The margin against stringer failure is evaluated by formula (64). 
According to test (reference 34)) the cylinder failed under pure com
pression at Po = 42.0 kips. Under pure torque) the test gave 
To = 388 inch-kips: (the calculated value of To (example 1) is 7 per
cent lower). Thus) with the "design loads" T = 303 inch-kips and 
P = 13.5 kips 

(
.!..)1.5 + ~ = (303)1.5 + 13.5 1.01 
To Po 388 42.0 

Note: Because the "design loads" T and P used in this example 
were actually test failing loads and because the interaction curve was 
based on a series of tests on cylinders of these dimensions) the calcu
lated value of 1.01 indicates that the analytical expression chosen for 
the interaction curve fits this particular test very well. 

Example 3. Angle of twist.- In this example) the angle of twist will 
be calculated for the cylinder of example 1 at the failinG torque. 

According to example 1: 

tan ex, = 0.535 ; cot ex, 1.87 ; sin 2ex, 0.832 k = 0.63 

By formula (31b): 

4 0 . 5352 1.872 
= ------ + + --~~----~------~7 

0.8322 0.660 + 0 . 5(1 - 0.63) 0.465 + 0.5(1 - 0.63) 

E 

Grr.r 

E 

11.50 

5 . 77 + 0 .34 + 5.39 11.50 

10. 6 x 103 

11.50 
0.922 x 103 ksi 
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By formula (31a): 

0.37 + 0.63 
4 X 103 0.922 X 103 

0.0925 X 10-3 + 0. 683 X 10-3 

== o. 775 X 10-3 

G1DT == 1.29 X 103 ksi 

The t orsion constant for the polygon section is 

For a length of 60 inches, the angle of twist is 

TL 388 X 60 
--- == 0.0366 radian 
G1DTJ 1.29 x ' 103 X 492 

Langley Aeronautical Labor atory 
National Advisory Committee for Aeronaut ics 

Langley Field, Va., October 5, 1951 
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APPENDIX 

PORrAL-FRAME EFFECT 

In the stress analysis of plate girders of constant depth, i t is 
customary to assume that the shear web carries the entire shear. This 
assumption is usually a very good one, but it may become inaccurate 
under some conditions. If the flanges are heavy and deep, the portion 
of the shear carried by the flanges may become appreciable; this condi
tion is aggravated by the yielding of the web-to-flange attachments and 
of the web, when the formulas of the elementary beam theory begin to 
break down. 

The tip bay of a plate girder is usually reinforced by a web doubler 
plate. If the unreinforced portion of the web is removed completely, 
there remains a "portal frame" (fig. 38) consisting of the two flanges 
connected by a built-up transverse member. This portal frame can carry 
a shear load which may be appreciable compared with the shear load 
carried in the web. A rough approximation of the portal-frame shear may 
be obtained under the following assumptions: 

(a) The transverse member in the frame is sufficiently stiff to 
ma.inta.in the right angles between this member and the flanges 

(b) The deflections of the portal frame and of the shear web are 
independent of each other except at the tip 

The deflection of the shear web under a load of unit magnitude is 

The deflection of the portal frame under a load of unit magnitude is 
approximately 

where I is the moment of inertia of one flange. Under assumpt i on (b ) , 
the ratio of the shear carried by the web to the total shear is 

S' 
S 

1 1 = ----:---
24EI 

L2htGe 
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Test evidence suggests that it would be wise not to count on 
portal-frame effect in routine strength predictions (Part II, 
section 2.4 ) . Conversely , however, it would seem wise to reduce 
allowable web stresses de duced from special tests if the flanges 
of the test beam are much stiffer than those in the actual airplane 
structure. 

l 
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