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SUMMARY

The problem of assessing the errors in the parameters obtained from
a curve-fitting process is considered, and a scheme which may be applied
toward the solution of such problems is obtained. This method is then
speclalized to the problem of finding the errors in the calculated
stability parameters of an sirplane, and an example is given.

INTRODUCTION

Curve~fitting procedures have found places in nearly all branches
of engineering; in particular, the aercnautical engineer may apply these
methods to the calculation, from flight data, of the stability parameters
of an airplane (references 1 and 2). Whether least squares or any of
the profusion of graphical methods which exists is used for this curve-
fitting process, questions of the errors in the calculated parameters
are bound to arise,

Although there is a considersble amount of literature on the subject
of least squares and curve fitting, comparatively little is to be found
on the related subject of errors. What literature does exist (e.g.,
reference 3) attacks the problem from the point of view of statistlcs,
arriving, finally, at & quantity called the variance. This quantity,
while giving a satisfactory reply to the error question when applied to
fitting a set of data to a straight line when only one measurement is
subject to error, is far from adequate for other curve-fitting problems.
One does not have to look far to find the reason for this; 1t is that no
method has as yet been devised for calculating the variance when either
the fitted curve is not linear or when more than one meagured quantity
is subject to error., This latter objection is not pertinent, perhaps,
when the problem of calculation of stebility parameters is considered,
for, although both the input (control-surface deflection) and the response
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may be subject to error, it is frequently assumed that only the output

ig fallible. Thig approximation is particularly good when only free-
oscillation data are analyzed. The first objection is, however, more
serioue, for, assuming even that all quantities remain within the so- _
called linear range, so that the response satlisfies a linear differential
equation, the response will certainly not be a linear function of the
parameters.

It is shown in the body of this report that the solution to the
error problem depends upon a more or less arbitrary definition, the
only criterion as to the choice of the definition being the usefulness
of the solution to which it leads. In this respect, it may be said of
the method derived herein that it is not difficult to spply and sppears
to lead to reassonsble values of the errors. A reletionship between the
error formula given herein and the classical formula for the variance
(in the linear case when such a formula exists) is established.

ANALYSIS

Relation of the Problem to Aerodynemics

Suppose one has a set of data which represents a time history of,
for example, pitching velocity of an airplane in response to an elevator
deflection 8(t). If q(t) represents the pitching velocity, then,
under certain simplifying assumptions, it is shown in reference 1 that
q(t) satisfies the differential equation

2
dt dt

where the constants b, k, C; and C, are functions of the stability
derivatives of the_airplane. =

It may be verified by differentiestion that the following function
represents the general solution of equation (1):

) c xl+c AT 2 MtCo k Ry } xat
a(t) -[ f S(T)dT} \:Ag+——k2_k1 f 3(7)a .

O

where A, and A, are constants depending on the initial conditions q(o),
(dq/dt)t_o, and 6(0), while A; and Ap are the roots of the character-
istic equation

2 +bAr+k=0



NACA TN 2820 3

It is often desirable to be able to ascertain the "best" values of the.
constants b and k (or Ay and Az), Co and C; corresponding to the given
time histories of q(t) and 8(t). This problem is the subject of refer-
encesg 1 and 2.

Suppose then, that by some means these constants have been evaluated.
There will be a certain "error" in these values, however, due to the
experimental error in the data, the simplifying agsumptions mentioned
above, and other causes. The question of the magnitudes of these errors,
given a certain error in the data, is considered in the present report.

General Discussion of the Problem

In order to state adequately the problem of errors, it is first
necesgsary to give s precise statement of the curve-fitting problem. To .
this end, consider a physical quantity qe(t) which ig measured at t = tg,
tisy «.., ty, where to<ti <...<ty. It is assumed that various theo~
retical considerations would indicste that qe(t) should be one of the
functions of the set q(tlxl,xa,...,xm); that is, there should exist
values of the parameters X3, X5y «..; Xy such that

Q.e(tj_) = Q(ti,xl:xa’“-:xm) (3)

for all i =0, 1, ..., N. However, because of certain unknown errors

in qg, equation (3) is not exactly satisfied for all i. It is desira-
ble then to £ind those values of the parameters xy which "most nearly"
cause equation (3) to be satisfied. One means of doing this is to define
the "best" values of X3, ..., X; as those values of the parameters
which make :

N
M = z laltesxysXpyeeesxm) - ae(ts)1® (4)
i=0

e minimum. The process of minimizing M 1is called curve fitting by
least squares, and this general problem is considered in reference 2.

As for the error problem, a careful study of the extant literature
on gtatistics will lead one to the conclusion that the "true" value of a
quantity, upon which the intuitive definition of error rests, has never
been meaningfully defined. Clearly, however, the values obtained for the
errors in a particuler problem will depend upon this definition. When
the usual probsbilistic statement of the error problem is chosen, the
quantity called the wvarisnce arises, along with the objections raised in
the introduction which are concomitant with it.
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Various nonprobabilistic statements of the problem are conceivable,
and the statement given below has been chosen from among them as a useful
one. These nonprobabilistic statements are based on the concept of the
"sensitivity" of the function q(t,%y,...,X;) with respect to the parame-
ters. That is, the question is asked: TIf one of the parameters is
changed slightly, does gq also change only slightly, or does gq change
by a large amount? If a small change in a parameter ends in a large
change in ¢, q is sald to be sensitive to changes in that parameter,
and it appears clear that any meaningful theory of errors should lead to
relatively small errors in such a parameter. On the other hand, if g
changes by only a shall amount when a parameter 1s changed, q 1s insen-_
sitive with. respect-to that parameter, and the theory should result in a
large error. A quantitative discussion follows.

Statement and Solution qf the Problem

In place of the elusive term "experimental error," we shall intro-
duce the concept of "residual," defined by the equation

€] = Q(ti:xl’xz,”-:xm) '_Qe('ti) _ (5)

so that equation (4) may be written in the equivalent form

N L . . .
M =.}: €12 | _ (&)

i=o0 .

Suppose the curve-fitting problem has beén solved; that 1s, suppose

values xl(o), Xo O), esey Xy o) of the parameters X;, X5, <.+, Xmy

respectively, have been found which minimize M. Let

Ei(o) = q_[ti,xl(o),xa(o),o--’Xm<o)] - qe(ti)
so that the minimum value of M 1is

N

(o) _ Z%J"’]a

i=0

One possible statement of the error problem, which, with certain
modifications, will be used in this report, is the followlng. Choose
any set of numbers AX,, &Xy5 «e0; Oy, and let

xk(l) = xk(o) + ox,  (k=1,2,...,m)
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The question then is: How large may the quantities |Axk| be so that

lq[ti,xl(l),xau),_,,,xmm] ] q[ti,xl(o),xa(o),,;.,xm<o)] ’sgei(on (6)

forall 1=0,1, ..., N7 This maximum value of IAxkl nay then be
defined as the allowable error in Xxi. This problem cen be solved, but
various objections can be raised as to its significance as a stetement

of the error problem. In particular, it is easy to see that this estimste
of the errors masy be far too optimistic, for if only m out of the total
of (N+1) values of ei(o are zero, then the only way in which inequel-
ity (6) may be satisfied for all i is for xk(l) = xk(o) for all k.
That is, since the number m of parameters is usually far less than the
number, (N+1), of data points, we can say that even though most of the
residuals be arbitrarily large, the result is that the error in the
paremeters is zero!

This objection may be overcome by relaxing the requirement (6),
substituting in its place a mean-square inequality obteined by squaring
both sides of (6) and summing over i. The resulting inequality will
then be required to hold instead of the inequality (6). Symboliceally,
it will be required that .

i{q[ti,,;lu),...,xm(l) J | [ti,xlb),...,xm@}}zii [eim]iM(z)T |

Thus, condition (6) is made to hold only in a mean-square sense over the
whole range of +t, while it may not be true for some particular values
of t4. An allowable error in xk 1s then defined as any value of Axy
for which inequality (7) holds. .

This last could reasonably be used as the definition of the error
in xx. In the interest of ease in calculation, however, a Taylor's
geries expansion, with only the first-order terms being retalned, will
be used to linearize the problem. Thig may be done since neither the
- residuals ei(o) nor the errors Axy may be too large; if they were, it
may be said that there is something wrong with the theory which predicted
that equation (3) will be approximately true, or with the experiment
leading to the data qe(ti), or that the experiment has not been properly
designedi In order to shorten the formulas, the following notation will
be used:

lFor the sske of clarity, 1t should be mentioned that two different types
of subscript are used in this report, attached to the same quantity dg.
Of the experimental data q., we have already spoken; in addition, the
quantities gqyp are now defined by equations (8). There need be no
confusion, however, for the subscript e will always be used to denote
the data; other subscripts will be used as defined.




6 ' NACA TN 2820

alt1) = q[ti,xl<o>,.;,,Xm<o>]

(8)
Bq[ti,xl(o),._.,xm(o)]

Bxk

qk(ti) = 2 ._(k=l,2,¢-.,m)

We shall also write AQ(tj) in place of the difference

q[ti,xl <1>,...,xm<1>] - q [ti,xi (o),.i;,xmm]

go that the inequality (7) defining the errors in the x; beconmes

i [Aqfti)]asmm | (7)
i=0 .

If the errors in the parameters are not too large, it is clear that
the following equation is aspproximately true:

m —
aq(tg) = z Q{4 YAk
k=1

Utilizing this linearizatlon process, inequality (7) becomes

N m 2 .
z z Gl ty)ax |l < M(o) (9)
1=0 k=1

The modifications of the definition of errors have finally been completed.
We now define the error in xi as the largest value of |Axk| for which
inequality (9) holds, regardless of the valués.of the other Ax's.

In order to be able to draw some pictures, it will now be assumed
that m =-2. The generalization to larger m. will be presented after-
wards. Thus, 1t is assumed that the function ¢ is dependent on two
parameters only:

qQ = Q(tiyxlyxg)__

il

a1
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For brevity in the formulas, we shall write £ for Axy and shall

define
)
= Z [ql(ti

£
|

Q1o = Z ql(t )Q.g(tj_ P (lO)
i=0
N

Ups = Z [ax(t1) 12
i=o

The inequallty (9) defines a certain domain in the (§,,t,) plane whose
boundary is given by the following equation:

Q11812 + 20108285 + Qapbs” = u () (11)

The graph of equation (11) i1s either an ellipse, a parabola, or an hyper-
bola. It is clear that if the definition of error which has been chosen
is significant, equation (11) must represent an ellipse, for if it did
not, infinite errors would be obtained. It is just as well that the
proof that equation (11) does indeed represent an ellipse be given here,
for it is very simple. Consider the dlscriminant

2
Q11922 = 935

of equation (11), which becomes, using equations (10),

N 2
G19%2 - E: [ql(tl)]2 EZ la{ tl)]z E: q (t1)a (t1)
i=0 i=0

The curve in question is an ellipse if and only if the discriminant is
positlve. However, the inequality

N

N N
z 4 (1) 12 Z [ 617 - Z ax(t1)as(t)| > 0
i=0 i=o '

i=o
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is precisely the well-known Schwarz inequality. As is also well known,
the equality cannot occur unless q,(ti) is proportional to q,(ty) for
sll 1, and as this implies that the parameters x; and x, are not
independent, it can be assumed, without loss of generality, that ql(ti)
and qz(ti) are not proportional. This completes the proof.

If the ellipse which represents equation (11) should be drawn, a
graph similar to the one shown 1in sketch (a) would be obtained.

£2

-
-

Sketch (a)

Since there are no first-order terms in equation (11), the ellipse must
be symmetric with respect to the origin. Interpreting this curve, it
may be sald that any point which lies inside the ellipse has coordi-
nates which define an allowsble error in x, and x,. However, in the
definition of the error in the parameters, it was sald that the error
in xg 1s the largest value of |Axg| for which inequality (9) holds,
regardless of the values of the other Ax's. For this reason, in order
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to define the error in the parameters by means of the diagram, we must
enclose the ellipse of sketch (2) in a rectangle, as in sketch (b).

€2
1= =
- T ~
// \\
-~
7
7 |
/ /
/ /
/ Z g
/ / !
/
P
A //
\\ -
,\\\ /n//
Sketech (b)

Any point lyling within this rectangle is considered as defining an
alloweble error. If E, and E, denote the errors (i.e., the maximum
allowsble errors) in x; and x,, respectively, then =, and X, are
obtained as the maximum valugs of ¢, and ¢, lying in the rectangle.

If . m=2 as In the above example, the errors can always be found
graphically. However, if m>2, an analytical method must be used.
Such & method will now be found for the case where m = 2, and the
generalization will then be shown.

It is clear that the sides of the rectangle drawn as solid lines
in sketch (b) are the tangents to the ellipse at the points where

ae,

=0
ak,
EE.%:O
dg,

Calculating these derivatives from equation (11), we obtain
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ag, 915 E; + 955 &
d§2 q;; £, + 49,5 €

dé, 931 &, *+ Q12 65 ?

ag, 1o §1 + 9,5, £

J

Setting these derivatives equal to zero results in the equations

Qo E1+dp b= O
(12)
Q13 €1+ Qo 85=0

These equations are not to be solved simultaneously, for they define
errors in different parameters. Instead, the Tirst of equations (12)
1s to be solved simultaneously with equation (11) to find =E,, the
maximum value of £,. Similarly, the second of equations (125 is to be
solved along with equation (11) to yleld the error, 5., Iin xp. Per-
forming these operations s one obtains the followlng expressions for EJ_

and P
\
. M(O)q_22
=y T >
911 5 = 935
(13)
i %O P
':‘2 = >

91 955 " %12 J

In the general case when m2>2 » the following equation occurs in
place of equation (11):

m

) agtsty = u(©) (14)
Jok=1
where
N
Uy = ZQJ(ti)qk(ti) (15)

1=0
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and the quantities q3(ti), qx(ti) are defined in equation (8). If =
denotes the maximum value of &y satisfying equation (14), so that =
is the error in =x,, the problem is to find IEh. It may be solved by
setting the (m-1) derivatives of the form

3ty

(J=1,2,...,b-1,h+1,...,m)

3¢ 4

equal to zero and solving the resulting equations along with equation (14)
for E&p. One need not go through this process each time the errors in

a problem are to be calculated, for it can be done once and for all as
follows: Differentiasting equation (14), it may be seen that

m
Z Lkt
oty _ = J
3 n
Ankéx
k=1

Setting these derivatives equal to zero, we obtain the following (g—l)
equations which are to be solved simultaneously along with equation (1k)
for gh:

m
Z q_jk gk = O, ,j=l,2,-n o’h-l,h"‘l’oo o« (16)
k=1
Equation (14) can be written in the form
m m
z ijkgk -E‘,j = M(O) (1k)
j:l k:l

Teking equation (16) into account, it may be seen that the parenthesized
quantity is zero except when J=h, and so we obtain the equation

. (o) |

M

§ Y b = £ (17
h

k=1

This equation and equation (16) are m linear equations to be solved
for E, . This may be done, in general, by means of Cramer's rule (the

method of determinants).
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Let

935 9,5 Qim

D = Qo1 9pp °** Aoy (18)

9ny 9m2 *°° Ym

and let Dy be the minor of qu, 1in D, so that

9, Q12 +o» Qy(n-1) Li(h+1)  *c Lam

9oy 22 -+ Qgy.-g) U(h+1) " %om

Dh = | pn-1)1 Yb-1)2 *** L(h-1)(h-1)%(h~1) (b+1) *°°* Y(k-1)m (19)

Ln+r1)1 Yn+1)2 *° Ybes) (R-2)3(b+2) (he1) °°° Yht+i)m

e o o & o o s s s e . e & o o s s o e & 8 e o s » o =

Uy Qe *** 9p(h-1) 9m(h+1) °*°  %mm

Then, by virtue of equations (16) and (17),

_mlo) Dy

D

h £y

That is, : -

Ep = ¥, (20)
D

Equation (20) is the desired formula for the error in Xk

Connection of formuls (20) with the variance concept.- Although the
formula (20) for the errors was obtained without the ald of statistical
notions, it may now be shown that a relationship exists between the
parametric errors as defined herein and the concept of variance.
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Suppose that the given approximating function q(t) were linear in
the parameters, so that

alty) = a.(b1)x; + g (t1)%e + ¢+ + qp(ti)xn

where the functions qj(ti) sre independent of the parameters xy.
Differentiating this last equation, we have that

9g(t1) _ (1) (k=1, ... , m)
Oxy

and, utilizing equation (15), that

. .
Ay = Z a3(t1)ap(ts)
i=0

In reference 3, the familiar normal equations obtained from the least-
squares process &re shown to be

m
9eXy = e,k - (21)
where J=1
N .
de,k = z ae(ti)a,(ts) .
1=0

and qe(ti) represents the given date. ILet D denote the determinant
of the coefficients in equation (21), and let Dp be the minor of gpp
in D, so that D and Dy are given by equations (18) and (19), respec~-
tively. Then, if 0% denotes the mean-square error in the data, while
Gh2 denotes the mean~square error to be expected in the parameter =x}
(i.e., o2 and th are the variances of the data and of xy, respec-
tively), it is shown in reference 3 that if q(t3) is'a linear function

of the parameters,
/D : '
0h =0 ——Dh (22)

2The comms is placed after the subscript e to indicate that it is a
different sort of symbol from the other subscripts. Thus, j and k are
to vary, assuming the values 1, ..., m; however, the subscript e is
used merely to indicate that the experimental data qe(ti) is used in
the definition of qe,k'
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Noting now that o2 affords an estimate for the error in the data when
t?e statistical conception of the error problem is considered, while

M o} occupies & similar position in the present théory, a relatlonshilp
between the varlance in a parameter and what has herein been called the
allowable error in that parameter can be established. Comparing equa-
tions (20) and (22), it-may be seen that the ratio of the variance in a
parameter to the statistical measure of the error In the .data is the
game as the ratio of the error in a parameter to the nonstatistical
measure of the error in the data. 1In symbols,

=2 2
b (23)

o) oF

This is & remarkable fact that in formulating a theory of errors which
abstains from the use of probability theory, a notion of error has still
been defined which bears as intimate a relation to the statistical ideas
as that described by egquation (23). Of course, this relationship has
been proved only in the case of linear curve-fitting problems. From
this, however, it might appear reasonable that even for general nonlinear
problems equations (20) and (23) (and, therefore, (22)) afford an expres-
glon for the varlance. This leaves an Interesting problem for future
research.

There is an important conclusion to be drawn from equation (23).

If, as before, N + 1 1s the mumber of data points, then o% and m(o)
are related (reference 3) by the equation

o2 = u(0)

Thus, from equation (23),
Ehz = (N+1) th

which implies that =y 1s larger than op. This result should not be
too surprising, for it will be recalled that op® 1s a measure of the
probable ‘error in xy, whlle we have tried, in Zp, to define some sort
of meximum error. : - .

APPLICATION TO AN EXAMPLE

Referring to equation (2), if there is some value 1ty of time such
that 3(t) = 0 for all t>ty (i.e., if a pulse elevator input has been
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applied to the airplane), it may be seen that for t2>ty, the pitching
velocity is a sum of two exponentisls

q = Bjetat 4 poelst

t1 qe(ti) where Bj,B,,A; and Ay are constents depending on the
stability derivatives of the airplane.
0.4 0.22h
y -120 In general, such data are osclllatory; that
01 <020} 45 %),0p,B1 and B, are complex. ILet A, = 1 +1'i,
. -.057 i
.81 -.112 B1=-2- (B+B'1), i® = - 1. sSince q 1is real, Ay =1-1'1,
9 -.148 1
0| -.160| Bz = 5 (B-p'1), and
. -.150
. -.127 .
.3 -.097 q = elt (B cos 1't - B! sin 1't) (2k)
A4} -.062
. -.032
-.005 The data given on this page are actual flight data

.017| which represent the pltching velocity of a test airplane
.030| 1n response to an elevator deflection which was zero for
.036] a1l +t20.4 (t = 0 is taken at the beginning of the pulse).
.0351{ These data are Ffltted to & sum of exponentials in refer-
.032| ence 2, where the results

.027
.020
.015 L
.011 A
.008
.005 m(®) = 0.000895
.003
.00L

0.61%
-0.208 (25)

-1.366 B
3.071 B!

0 were obtained. The errors in these parameters will now be
0 calculated, utilizling equation (20) &nd substituting 1, 1, B,
0 and B for x,,X,,Xs, and x,, respectively.

PNHOWONOWMFWNHOW OO FWMND K O\W W~ G\ &

WWWMOOONON NN NN

Calculation of the errors in 1, 1% B, and B'.~- Taking derivatives
from equation (24), one may see that

. A

%: te '5(B cos 1't - B! sin 1't)
g%% =-te1t(B sin 1't + B! cos 1't)
. % (26)
Sg'= elt cos 1"t

B
aa_q =-elt gin 1'% J

B?
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Tdentifying 1 with the parameter X3, ' wlth x5, B with Xg,

_ dq(t
and B' with x4, 1t may be seen that ql(ti) [:= _E%L)Jis given in

column 11 of table I and a(t1) is given by minus column 15, while
a5(t1) and q.(t1) are glven, respectively, by column 6 and by minus
column 7. Therefore, referring to equations (15), and letting circled
numbers refer to columns in table I » we have that

4. == @ = 0.168

Ue=8n=-2@ x @ = 0.006
Ug=9g = =z @ x @ = 0.228
Q=93 =20 x @ =-0.091
0.=2@° = 0.212°

Aog = g2 = -2 ® x @ = o.117

Gag = q4a =2 x G = 0.3
1ge =20 = 0.5 '
dys=-% & x (@) = o0.051

2" = 0.985

Inserting these numbers into the expression (18) for D, we obtain

0.162 0.006 0.228 -0.091

| .00 212,117 .389 | _

D L2028 L117 .15 Lomt | = 0000343
-.091  .389  .051 .985

Furthermore,
¢.212 . 0.117 . 0.389| . .
Dy-="| .17 .45 - .051] = 0.01k45
.389 .051 ".985 )
0.168 0.228 -0.091
Dy = .228 415 051 = 0.0115
"0091 .051 -985
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0.168 0.006 -0.091

D = | .006 .212 .389 | = 0.007kk
-.091  .389 .985
0.168 0.006 0.228

Dg = | .006 212 117 | = 0.00177
228  .117 15

Substituting these numbers and the value of M(O) given in equations (25)
into equation (20), we obtain

a1 |= 0.19k

[avt]= .173 |

[AB [= .139 (27)
|AB!|= .068 J

where A7l denotes the error in 1, Al in 1', etc. On a percentage
basis, this implies that 1, 1!, B, and B', respectively, are known to
within about 1k, 6, 23, and 33 percent.

Calculation of the error In the stability parameters.- It has been
shown how the errors in the parameters 31, 3', B, and B' may be found.
However, the problem of interest to the aserodynamicist is the calculation
of the errors in the stability parameters b, k, Cy, and C, of equa-
tion (1). While q(t) can be written directly as a function of b, k, Ci,
and Co 1instead of the parameters 1, 1', B, and B* and the method
described above applied, i1t is believed that the following general con-
siderations simplify the calculations.

Suppose, as before, that q(t) is a function of the m param-
eters =Xk, k=l,...,m, and that the errors Axx in the x} have been
found. Suppose further that there are n other parameters y;,..«,¥ps
each of which is a function of x3, X5y..., and xm. Thus,

Yy = yj(xl,...,xm), J=l,...,n

The error ij in Yy may then be estimated from the formula

m ay
|avs|= ) [ axe (28)
= | O

It should be noted that equation (28) gives a quite pessimistic value
of the errors.
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From the definition of 1 and 1!, we may now write

b = -21 : 5
kﬂzﬂ,g}. (29)
and so,
9 __, Ob , b _ b _
31 Tdir ¥ gt
Also,
ok ok
—_—= 2 = = 0
3

Ok r Ok
—— 2?, —— O
o' op!

Thus, applying equation (28) using the error values (27), we see that

jab| =2|a1]=0.388
|Qk | =2 |1a1[+2 | 'arr| = 1.59

and since, from equations (29),

b=2.732)"
k = 11.30

it follows that b and k are known to within about 1k percent.

This same scheme will now be applied to the computation of the
errors in C, and Co. It will be noticed that since C; and Co are
qulte complicated functions of 1 and 1', our task will be conslderably
more difficult than it was when computing |Ab| and |Ak|.

As before, suppose the input &(t) is zero for all t greater
than tg. Make the following definiltions:
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ta }
81 = f e~ lT§(T) cos 1'TdT
t1 '
to
Sit= e~T§(r) sin 1'rtar
t1
30)
‘e > (
Ry = 7e~lT§(t) cos 1'7dr
ti
ta
Ri'= f re~lTy(T) sin 1'rdT
t }
so that
981 081!
———— IE e s IE = Ri
ol T
} (31)
081 951!
1 gy
ot o1
Alsc define ;
Gpi = eZti(Si' cos 1'ty - 81 sin 1't3)
@y = -ezti[(Z'Si-ZSi') cos 'ty + (1S1+1'S1i') sin 1't4]] (32)

o = 1 [au(t1) -e" (s cos Uty - B sin 17t3)]

N N N W
oo = ap1® 8p1 = }: Aoidii 8o = Ez Coild
= i=o i=o (33)
X N N f
210 = Z @i%31 831 = Z @3® 8 = z ®yi0i
=0 1=0 i=o )

With these definitions, it 1s shown in reference 2 that Cp and C;
satlisfy the equations

800 Co + 803 Cl = 8o

810 Co + 811 C3 =23
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Therefore, 1f p denotes any one of the four parameters 1, l', 8, B',
the derivatives OCo/dp and OC;/dp can be found from the equations

ac oc 9 3 3
800 S 801 1 &g —Co 800 —Cy 801

810 =— + & = -c -C
10 ap 11 ap ap Oap 1 ap

The problem before us 1ls the calculation of these derivatives.

From the definitions (32) and from equations (31), it follows that

d 4 )
_g%l = e "“L[(£481' - Ry') cos Uty - (t181 - Ry) sin 1't4]
Soai _ i, : \
= tidyi + agy + € “[(1'Rgy - 1Ry') cos 1'ty + (IRy + 1'Ry') sin Z’ti]f
day 1ti
<7 =~ 1'tye” "(B cos 1'ty - B! sin 1'ty) )
3 t
Ba;i = e¥™ [(Ry - t451) cos 17ty + (Ry' - £153') sin 7'83] )
ao.‘li _ lti [ t
S5 = S1 + 1(t181 - By) + 1'(t181' - Ry")] cos 1'%4 +
[84' - 2'(%481 ~ Ry) + 1(t484' - Ry')) sin 1'%y

oay ay 1ty
—_— = —= 4 I't4e sin 1*ty + B! cos 1'%
5 T 1e" (8 1+8 1) )

da . \

ol =0

9B

8&11 - .O r

B

da

L =-Z'e7’ti cos 1'%4

3B ’

w

a1

——— O

OB’

Oaty4 =0 >

Jp!

day

= Z?ezti sin 1'%y

d8'
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The quantities e~ '585(t) cos 1't, e s(t) sin 1, te’ZtB(t) cosi't,
te'ZtS(t) sin 7't must be integrated to find Sj, Si!', Ry, and Ry'.
These quantities are calculated in table II and are plotted versus time
in figure 1. They were integrated by means of a planimeter to obtain
the values displayed in table II. Referring to table IT and equa-
tions (33), it may be seen that

200 == E)° = 0.000399
810 =2 @) x (39 = -0.00292
ey, =% G = 0.0241

and that

-0.0615
0. 4ok

0-z@ x @
a; =X Cg) X 65?

)
i

a:‘;° 22@) x @ = -0.000152

a:ol,=3::;0=z.@ x 6 +26) x & =0.001388
1

=223 x 63 = -0.0126k4

3

.aiza =z @ x 6) + 69 x &3 = 0.00772
%a;zl_ =230 x 6) + 269 x @ = -0.0851

R0 220 x @
aaa;'l=2azlto=z@ x 6) +£G6) x @ = -0.001571
- =2:@ x €9 = 0.01226

3

..;Z_? =@ x @ +z 6 x = -0.0361

g_j} =26 x @ +=6) x € =0.28

0.000232
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dago -0 dage

aB B BB' -

aao]_ z-a_aj:gg 38.01 =Ba_-,_o=

9B o opt  op’

da,, _ daj; _

38 N

.%8‘82=2@x@=-0104 gﬁguz@x@=o.0163
B

ﬁ:z@x@=o.899 '.E.’ii'.—_z@x@=-0224

op i 3p" ’

Substituting these numbers in the appropriate places in equa-
tions (34) and (35), it follows that

Co = '37-90
Cl= 15.88
while

3Co aCy
—_— = 6. —_—
37 65 ) T.79
dCo oc
- = -27.38 —2 = 2.2
L RA 1.3 ol >
dCo aC,
— = 108. — =50
S8 06.93 38 50.50
oc . ¢ '
—2 = -239.79 —2* = -38.35
Jp! op!

Using equations (28) and (27), we obtain, finally,

|ace)= 37.5
lac,|= 11.5

Therefore, C; is known to within about T2 percent; Cy; is only known to
within 99 percent.
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The large errors in some of the parameters are worthy of
special comment. It should be noted first of &1l that the particularly
large error in Cp is completely consistent with what has been found
for some time by empirical means. It has been found that upon repeat-
ing a set of flight records, making the two sets ldentical as far as
that 1s possible, two entlrely different values of C, have often been
obtained.

Secondly, it wlll be recalled that in the derivation of the formula
for the errors it was required that the errors be smallj this is cer-
tainly not the case for some of the errors. For this reason, the error
of 37.5 in Cp particularly nmay not be considered as definitive. The
theory developed herein fails for such a large error, and the actual
error in Cg mey be much larger than that calculated. However, this is
not serious, for an error as large as 99 percent renders the calculated
parameter value meaningless in any case, and it matters not at all
whether the error is 99 or 199 .percent.

Finally and most important is the following conclusion regarding
the entire philosophy of calculation of stebllity parameters from pltch-
ing velocity data alone in response to an elevator pulse: This experi-
ment is i1l designed for the calculation® of Co. In general, when &
pulse is applied to produce a set of pitching velocity data, no more
should really be expected from the analysis than the period and the
damping parameters k and b. If, in addition, the analysis results in
a value of C, whose error is within reasonable limits, this should be
regarded as fortultous. It should be stated that no example has yet
been found for which Co may be calculated at all accurately.

Such a negative comment as the preceding deserves a remark on the
possibility of the most accurate calculation of Co. If one were to
measure & step response rather than a pulse response, the analysis of
these data would surely lead to more reliable values of Cp. The
reason for this lies in the easily proved proportionality of the steady-
state value of q(t) with Co.

®This conclusion is drawn for the parameter C, alone and not also
for C,;, as would seem to be indlcated by the error of T2 percent
in C,, primarily because the error in C; is not always as large as
this. With some data which have been analyzed, the error in C; has’
been far less, of the order of 30 percent.
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CONCLUDING REMARKS

A formula has been given which may be used to find the errors in
the parameters obtained from & curve-fitting process. The method of
derlvation did not use the concepts of probability theory, since the
latter ideas lead to quantities for which there is no known method of
solution. However, the result that the formula obtained bears & close
relationship to the classical probabllistic formula in case the curve-
fittlng problem is linear (the only case for which such a formule has . Z
been derived and proved valid) is proved.

As may be seen by studying the example given, the ease of appli-
cation of the method 1s dlrectly dependent on the simplicity of the
form of the function which has been fitted. Thus, if b, k, C,, and Cq
are the aerodynamic paremeters occurring in the differential equation (1),
the errors in b and k may be calculated fairly rapidly; the errors
in C; and Co require more time. However, if the method of least
squares (reference 2) is used for the curve-fitting problem, a great
meny of the computations which are needed to find the errors will have
already been performed in the process of Ffinding the parameters.

The method actually weights favorably the method of least squares
in another manner. The errors, as given by equation (20), are propor-
tlonal to the square rcot of the sum of the squares of the residuals,
which quantity is minimigzed by the least-squares process. However, 1t
1s not believed that this welghting is a serious limitation, for no
matter what means are used for fitting the curve, if this latter method
is to have significance and 1s to lead to a good fit of the data, the
sum of the squares of the residuals will also be near its minimum,

Finally, it has been shown that pitching velocity data in response
to a pulse are not alone adequate to compute the parameter Co (and to
e lesger extent, C 1) occurring in the differentiasl equation of motion.
Usually, all that may be obtalned from such data are the parameters b
end k, which determine the damping and the period of the oscillation.
In some cases, C; may also be obtained with reasonable accuracy.

Ames Aeronautical Laboratory
National Advisory Committee for Aeronautics
Moffett Field, Calif., July 30, 1952
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TABLE IT.~- THE ERRORS IN C; AND Co
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