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SUMMARY

The problem of assessing the errors in the parameters obtained from
a curve-fitting process is considered, and a scheme which may be applied
toward the solution of such problems is obtained. T’his method iS then

specialized to the problem of finding the errors in the calculated
stability parameters of an airplane, and am example is given.

INTRODUCTION

Curve-fitting procedures have found places in nearly all branches
of engineering; in particular, the aeronautical engineer may apply these
methods to the calculation, from flight data, of the stability parameters
of an airplane (references 1 and 2). Whether least squares or any of
the profusion of graphical methods which exists is used for this curve-
fitting process, questions of the errors in the calculated parameters
are bound to arise.

Although there is a considerable smount of literature on the subject
of least squares and curve fitting, comparatively little is to be found
on the related subject of errors. What literature does exist (e.g.,
reference 3) attacks the problem from the point of view of statistics,
arriving, finally, at a quantity called the variance. This quantity,
while giving a satisfactory reply to the error question when applied to
fitting a set of data to a-strai@t line when only one measurement is
subject to error, is far from adeqwte for other curve-fitting problems.
One does not have to look far to find the reason for this; it is that no
method has as yet been devised for calculating the variance when either
the fitted curve is not linear or when more than one measured quantity
is subject to error. This latter objection is not pertinent, perhaps,
when the problem of calculation of stability parameters is considered,
for, although both the input (control-surfacedeflection) and the resTonse
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may be subject to error, it is frequently assumed that only the output
is fallible. This approximation is particularly good when only free-
oscillation data are analyzed. The first objection is, however, more
serious, for, assuming even that all quantities remain within the so-
called linear range, so that the response sat~sfies a linear differential
equation, the response will certainly not be a linear function of the
parameters.

It is shown in the body of this report that the solution to the
error problem depends upon a more or less arbitrary definition, the
only criterion as to the choice of the definition being the usefulness
of the solution to-which it leads. In this respect, it maybe said of
the method derived herein that it is not difficult to apply and appears
to lead to reasonable values of the errors. A relationshipbetween the
error formula given herein and the classical formula for the variance
(in the linear case when such a formula exists) is established.

ANALYSIS ,

Relation of the Problem to Aerodynamics

Suppose one has a set of data which represents a the history of,
for example, pitching velocity of an airplane in resPonse to ~ elevate.?
deflection b(t). If q(t) represents the pitching velocity, then,
under certain shnplifying assumptions, it is shown in reference 1 that
q(t) satisfies the differential equation

d=q:b~+kq=cl~ + cob& dt (1)

where the constants b, k> Cl and Co are functions of the stability
derivatives of the airplane. L.

It may be verified by differentiationthat the following function
represents the general solution of equation (l):

““ Clhl+co
‘e-%Tb(T)dre

Clk=+co t‘1: A2+—

[ -J 1[ [
e-h2T

q(t)= Al+= 15(T)d’rex=t
Aa-hl o

0 J (2)

where Al and A= are constants
(dq/dt)t=o, and ~(o), while Al
istic e~uation

depending on the initial
and L2 are-the roots of

+bX+k=O

conditions q(o)}
the character-

*
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It is often desirable to be able to ascertain the “best” values
constants b and k (or Al and X2), Co and Cl corresponding to

3

of the.
the given

time histories of q(t) and b(t). This problem is the subject of refer-
ences 1 and 2.

Suppose then, that by some means these constants have been evaluated.
There till be a certain “error” in these values, however, due to the
experimental error in the data, the simplifying assumptions mentioned
above, and other causes. The question of the magnitudes of these errors,
given a certain error in the data, is considered in the present report.

General Discussion of the Problem

In order to state adequately the problem of errors, it is first
necessary to give a precise statement of the curve-fitting problem. To
this end, consider a physical quantity qe(t) which is measured at t = to,-
tl, .... tNj where to<tl <.. .<tN. It Is assumed that various theo-
retical considerationswould indicate that qe(t) should be one of the

)“ that is, there should existfunctions of the set q(tlx1,x2,...,~ ,
values of the parameters xl, X2, .... ~ such that

%(q) = q(ti)x@s2>..+J (3)

for all i = O, 1, .... N. However, because of certain unknown errors
in qe, equation (3) is not exactly satisfied for all i. It is desira-
ble then to find those values of the parameters Xk which “most nearly”
cause equation (3) to be satisfied. One means of doing this is to define
the ~best” values of xl, .... ~ as those values of the parameters
which make

N

a minimum. The process of minimizing M is called cuxve fitting by
least squares, and this general problem is considered in reference 2.

As for the error problem, a careful study of the extant literature
on statistics will lead one to the conclusion that the “true” value of a
quantity, upon which the intuitive definition of error rests, has never
been meaningfully defined. Clearly, however, the values obtained for the
errors in a particular yroblem will deyend upon this definition. When
the usual probabilistic statement of the error problem is chosen, the
quantity called the variance arises, along with,the objections raised in
the introductionwhich are concomitant with it.
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Various non~robabilistic statements of the problem are conceivable,
and the statement given below has been chosen-from among them as a useful
one. These nonprobabilistic statements are b=sed on”the concept of the
“sensitivity” of the function q(t}xl)....%) with respect to the parame-
ters. That is, the question is asked: If one of the parameters’.is
changed slightly, does q also change only slightly, or does q change
by a large amount? If a small change in a pai%neter ends in a large
change in q, q is said to be sensitive to changes in that parameter,
and it appears clear that any meaningful theory of errors should lead to
relatively small errors in such a parameter. On the other hand, if q
changes by only a shall amount when a parameter is changed, q is insen-..
sitive with.respect-to that parameter, and the theory should result in a
large error. A quantitative discussion follows.

—

___

-—

—
—

Statement and Solution of the Problem
.

In place of the elusive term “experimentalerror,” we shall intro-
duce the concept of “residual,” defined by the equation

Ei = q(ti)Xl)X2,. ..,XJ- Q(ti) (5)

so that equation (4) may be written in the equivalent form
*

N
M=.~ ei2 “- (4) 9

ifio .,

Su2pose the curve-fittin problem has been solved; that is, suppose

values ?)Xl(o), X=(o), .... Xm 0 of the parameters xl, x=, .... Xm,
respectively, have been found which minimize M. Let

[

@ = q ti,x~(0),X2(0)

1
,...jxm(o)- q~(t~)

so that the minimum value of M is

N
Jo) = u 1

~i(o) 2

i=o
.—

One possible statement of the error problem, which, “withcertain
modifications, will be used in this report, is the following. Choose

any set of numbers
*

Axl, AX2, ● **) %) and E:

X$l)=X$o)+&k (k=l,2,...,m) , ●
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.
The question then is: How large may the quantities Izlxkl be so that

[

~ ~i,xl(l),x=(l),..., %(l)
1[ 1
‘q ti,X~(0),XJO),...,~(O) +i(o)l (6)

for all i=O, 1, .... N? This maximum value of lAxkl maythenbe
defined as the allowable error in Xk. This problem can be solved, but
various objections can be raised as to its significance as a statement
of the error problem. In particular, it is easy to see that this estimate
of the errors may be far too optimistic, for if only m out of the total
of (N+l) values of cl(o) are zero, then the only way in which inequal-
ity (6)-maybe satisfied’for all i is for x~(l) = x~(o) for all k.
That”is, since the number m

A n.
of parameters is usually far less

number, (N+l), of data points, we can say that even though most
residuals be arbitrarily large, the result is that the error in
parameters is zero!

This objection may be overcome by relaxing the requirement

than the
of the
the

(6),
substituting in its place a mean-square
both sides of (6)and summing over i.
then be required to hold instead of the
it will be required that .

N

inequality obtained by squaring
The resulting inequality will
inequality (6). Symbolically,

N
, 1{[qti,X~(l)j...,Xm(l)‘q tfjXJO),...jX~@ 2<

1 [. ]} -~ [Jq’=d:)
i=o .

.
Thus, condition (6) is made to hold only in a mean-square sense over the
whole range of t, while it may not be true for some particular values
of ti. An allowable error in xk is then defined as any value of AXk
for which inequality (7) holds.

This last could reasonably be used as the definition of the error
h xk. In the interest of ease in calculation, however, a Taylor’s
series expansion, with only the first-order terms being retained, will
be used to linearize the problem.

(
This maybe done since neither the

residuals ei o) nor the errors &k maybe too large; if they were, it
may be said that there is something wrong with the theory which predicted
that equation (3) will be approximately true, or with the experiment
leading to the data qe(ti), or that the experiment has not been proPerlY
designed. In order to shorten the formulas, the following notation will
be used:l

lFor the sake of clarity, it should be mentioned that two different types
of subscript are used in this report, attached to the sane quantity q.
Of the experimental data ~, we have already spoken; in addition, the

* quantities qk are now defined by equations (8). There need be no
confusion, however, for the subscript e will always be used to denote
the data; other subscripts will be used as defined.

9

----



NACA TN2820

.

q(ti) =

qk(ti)=

T/e shall alOo write

~

[
q ti,x:o),...,xm(o)

1

Aq(ti) in place of the

1qt~,xl(l),...,xm(l) -
1

so that the inequality (7) defining

(k=l,2,...,m)
./

difference

r
q t~,xl(o),.:o,xm(o)
1 1

the errors in the xk becomes

N“
r

)’ IAq(ti)]2~ M(0)

(8)
. .

—.—

.—

——

(7)
UL J
i=o —

If the errors in the parameters are not too large, it is clear that
the fol.lotiingequation is approximatelytrue:

m .-

Aq(ti) =
I

qk(ti)~k
*=

Utilizing this linearization~rocess, inequality (7) becomes
2

*

~ [::::”]
~ M(o) (9)

= =

The modifications‘ofthe definition of errors have finally been completed.
:

We now define the error in xk as the largest value of lAxkl for which
inequality (9) holds, regardless of the valu=s.of the other Ax’s.

In oi’derto be able to draw some pictures, it winnow be &ssumed
that m =-2.

1
The generalizationto larger m. will be presented after-

wards. Thus,it is assumed that the function q is dependent on two .
parameters only:

q= q(ti#@J

r

.
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L

For brevity in the formulas, we shall write ~k for AXk and shall
define

N

%1 = I
r%(ti) 12

i=o

& ,1

!112= L ql(ti)~Jti)
i=o r

N

Q2 ‘ I [@i) 12

i=o

The inequality (9) defines a certain domain
boundary is given by the following equation:

(lo)

J

in the (El~E2) plane whose

!tllE12+ %.2E1E2 + !L22E22 = ~(o) (11)

The graph of equation (n) is either an ellipse, a parabola, or an hyperb-
ola. It is clear that if the definition of error which has been chosen
is significant, equation (11) must represent an ellipse, for if it did

.
not, infinite errors would be obtained. It is just as well that the
proof that equation (11) does indeed represent an ellipse be given here,
for it is very simple. Consider the discriminant.

of equation (11), which becomes, using equations (10),

N

2
qll~z - !112 =

I
[q~(ti) 12

i=o

~[q2fti,12-[~q.(ti)~2(tiy

The curve in question is an ellipse if and only if the discriminant is
positive. However, the inequality

N N q--q.(ti)q2(tiJ20~[%(ti)12 ~ [Q(+41

i=o i=o
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the well-known Schwarz inequality. AS is also well known$

cannot occur unless ql(ti) is proportional to q=(ti) for
—A.—

all i, and as this implies that the parameters xl and Xa ar= not
inde~endent, it canbe assumed, without 10SS of generality, that ql(ti)
and ~=(ti) are not proportional. This completes the proof.

—

If the ellipse which represents equation (11) shouldbe drawn, a
@?aph similar to the one shown in sketch (a) would be obtained.

(Z

Sketch (a)

Since there are no first-order terms in equation (11), the ellipse must
be symmetric with respect to the origin. Interpreting this c~e~ it
may be said that any point which lies inside the ellipse has coordi-
nates which define an allowable error in X1 fid X2. However, in the
definition of the error in the parameters, it WELSsaid that the error
in xk is the largest value of IAxkl for,which ineqtiity (9) holds)
regardless of the values of the other Ax*s. For this reason, in order

c

—



2E

.

NACA TN 2820
*

to define the error in the parameters by means of
enclose the ellipse of sketch (a) in a rectangle,

/
/

/
/

‘\
.\\

+- _./ /“

9

the diagram, we must
as in sketch (b).

1

/

/

Sketch (b)

Any point lying within this rectangle is considered as defining an
allowable error. If Z1 tid Ea denote the errors (i.e., the maximum
allowable errors) in xl and X2, respectively, then EL and ~zare
obtained as the maximum vaiues of El and ~z lying in the rectangle.

If.m = 2 as in the above example, the errors can always be found
graphically. However, if m>2, an analytical method must be used.
Such a method will now be found for the case where m = 2, and the
generalization will then be shown.

It is clear that the sides of the rectangle drawn as solid lines
in sketch (b) are the tq.ngentsto the ellipse at the points where

d~l o
—=
dgz

~=o

dE~ I

Calculating these derivatives from equation (11), we obtain
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.

Setting these derivatives equal to zero results in the equations

These equations are not to be solved simultaneously, for they define
errors in different parameters. Instead, the first of equations (12)
is to be solved simultaneouslywith equation (33.)to find El the
maxtium value of El. Similarly, the second of equations (12\ is to be
solved along with eqyation (11) to yield the error, E2 ~ in X2. Per-
forming these operations, one obtains the following expressions for El
andw:-2

../-’-2] :

(13)

In the general case when m~2, the following equation occurs in
place of equation (11):

where

N

qjk = Lqj(ti)qk(ti)

i=o

—

(14)

(15)
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.
and the quantities qj(ti), ~(ti) are defined in eqwtion (8). If ~h
denotes the msxinnmvalue of ~h satisf~ng equation (14), so that Eh

* is the error in ~ , the problem is to find
‘h “ It may h solvedby

setting the (m-1) derivatives of the form

agh
(J=1,2,...,h-l,h+l,...,m)

q

q,, to zero
for fh. one
a problem are

and solving the resulting equations along with equation (14)
need not go through this process each time the errors in
to be calculated, for it can be done once and for all as

follows: Differentiating

.
Setting these derivatives
eqyations which are to be

-. for gh:

m

I ‘jk‘k
k= 1

equation (14), it may be seen that

equal to zero, we obtain the following (m-1)
solved simultaneously along with equatiori(14)

= O, j=l,2,....l.h+l,l,m..,m (16)

Equation (14) can be written in the form

m m

1(1 )
qjk~k Ej =M(0) (14)

j=l k=~

Taking equation (16)into account, it may be seen that the parenthesized
quantity is zero except when j=h, and so we obtain the equation

(17)

* This equation and equation (16) are m linear equations to be solved
for ~h. This maybe done, in general, by means of Cramerts rule (the
method of determinants).

.
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Let ,

.
.

q q22 ””* q=
l). 21

. . ..*O . .

and let Dh be the minor of qhh in D, so that

Dh .

q 11 ~~z ● *. ‘l(h-l) ‘l(h+l) ““” qim

q~l q22 .*.
‘G(h-1) ‘z(h+l) ““” ‘2Yn

. . . . . . . . . . . . ● ...*, . . . . . . ..*

‘(h-1)1 ‘(h-l)z ““” q(h-l)(h-l)q(h-l)(h+l) ““” q(h-l)m

‘(h+l)l ‘(h+l)a ● ● “ q(h+l)(h-l)q(h+l)(h+l) ““” ‘(h+l)m

I
. . . . . . . . . . . . . ..*.. .*...* ,..

Then, by virtue of equations (16) and (17),

That is,

#

(18)

(19)

(20). _
.-

Equation (20) is the desired formula for the error in xk.

Connection of formula (20) with the variance concept.- Although the
formula (20) for the errors was obtained without the aid of statistical
notions, it may nowbe shown that a relationship exists between the
parametric errors as defined herein and the concept of vsriance.

.

c

.
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.
Suppose that the given

the parameters, so that
a

approximating

dti).= ~Jti)xl + @i)x2

13

function q(t) were linear in

+

where the functions ql(ti) are independent
Differentiating this l&t-equation, we have

● ☛☛ +qm(ti)xm

of the parameters xk.
that

aq(ti)
— = C&(ti) (k=l, ... , m)
a%

and, utilizing eqwtion (15), that

~.j~ = ) ~qj(ti)qk(ti)

In reference 3,
squares process

the familiar
are shown to

i=o

normal equations obtained from the least-
be

.

5

where2

(21)

and q~(ti) represents
of the coefficients in

~+ = L @i)qk(ti) .

i=o

the given data. Let D denote the determinant
equation (21), and let ~ be the minor of q~

in D, so that D and% are given by equations (18) and (19), respec-

tively. Then, if IY2 ~enotes the mean-square error in the data, while
~h2 denotes the mean-sqtzareerror to be expected in the parameter ~
(i.e., U2 And ah2 ae the variances of the data and of %, respec-
tively), it is shown in reference 3 that if q(ti) is’s linear function
of the parameters,

(22)

2The comma is placed after the subscript E to indicate that it is a
different sort of symbol from the other subscripts. Thus, j and k are

. to vary, assuming the values 1, .... m; however, the subscript G fS
used merely to indicate that the experimental data qe(ti) is used in
the definition of q~,k..
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Noting now that U2 affords an estimate for the error in the data when
t e statistical conception of the error pro~lem is considered, while
?M 0, occupies a similar position in the present theory, a relationship
between the variance in a parameter and what has herein been called the
allowable error in that parameter can be established. Comparing eqya-
tions (20) and (22), it-may be seen that the ratio of the variance in a
parameter to the statistical measure of the error in the data is the
ssme as the ratio of the error in a parsmeter to the nonstatistical
measure of the error in the data. In symbols,

(23)

This is a remarkable fact that in formulating a theory of errors which
abstains from the use of probability theory, a notion of error has still
been defined which bears as intimate a relation to the statistical ideas
as that describedby equation (23). Of course, this relationship has
been proved only in the case of linear curve-fitting problems. From .
this, however, it might ‘appearreasonable that even for general nonlinear —
problems equations (20) and (23) (and, therefore, (22)) afford an e~res-
sion for the variance. This leaves an interesting problem for future
research.

There is an important conclusion to be

If, as before, N + 1 is the
are related (reference 3) by

TIIUS,from equation (23),

number of data
the equation

M(o)
~2 -

N-1-l

drawn from eqpation (23).
points, then cy2and M(o)

.

6

..—

..-

.-

.-

.-,

.

‘h2 = (N+l)~h2 -

.

-

which implies that ~h is larger than ~. This result should not be

too surprising, for it will be recalled that ~~ is a measure of the
.—

s~r:o: ~~ ‘hil-e‘e ‘ave ‘ried~-in ‘h} ‘0 ‘ef‘“e some ‘ort – ““—.

APPLICATION TO AN EXAMPLE

Referring to eqyation (2), if there is some value & of the such “
that 8(t) = O for all t~ta (i.e., if a pulse elevator input has been

.
.
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applied to the airplane), it may be seen that for t~ta, the pitching.
velocity is a sum of two exponential

●

✎

✎

ti

0.4
●5
.6
;;

●9
1.0
1.1
1.2
1.3
Lb
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2

2.3
2.4
2.5
2.6
2.7
2.8
~.9
3.0
3.1
3.2

@i:

0.224
.lx
●020
-.057
-.U2
-.148
-.160
-● 150
-.127
-.097
-.062
-.032
-.005
.017
.030
.036
.035
.032
.027
.020
.015
●011
.008
.005
.003
.001
0
0
0

~= B1eX~t + B&&

where B1,B2,X1 and X2 are constants depending on the
stability derivatives of the airplane.

In general, such data are oscillatory; that
is,A1,X2,Bl andB2 are complex. Let I.l= Z +7’i,

‘l=: (P-@’i), i2= -1. Since q is real, X2= Z-Z’i,

B2 = ~ (B-~’i), and

~= ezt(~ cos Zrt - ~! sin Ztt) (24)

The data given on this page are actual flight data
which represent the pitching velocity of a test airplane
in response to an elevator deflection which was zero for
au t~o.4 (t . 0 is taken at the beginning of the pulse).
These data are fitted to a sum of exponential in refer-
ence 2, where the results

7 = -1.366 B = 0.614

z? = 3.071 B’ = -0.208

~(o) = 0.000895

were obtained. The errors in these
calculated, utilizing equation (20)

(25)

parameters will nowbe
bnd substituting z, Z*,P,

and P’ for X1,X2,X3, and X4, respectively.

Calcdation of the errors in Z, Zr,1%andP’.- ‘Takingderivatives
from equation (24), one may see that

aq
tezt(p cos Z’t - p’ sin Zft)

%=

aq
—==bezt(p sin Zrt + p’ cos ZTt)
av
&.=

ezt cos Z’t
ap
& =-eztSb ~,t
ap 1

(26)
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Identifying z with the parameter xl, z~ with X2, ~ with X3, .

and p’ with X4, it maybe seen that ql(ti) [=-J .is given in
column IL of table I and qz(ti) is given by minus column 15, while
qa(ti) ad qA(ti) are given, respectively, by column 6 and by minus
column 7. Therefore, referring to equations (15), and letting circled
numbers refer to columns in table 1, we have that

Inserting these nunibersinto the e~ression (18) for D, we obtain

o.i68 0.006 0.228 -0.091
D= .006 .212 .117 .389

.228 .117 ● 415 ● 051
-.091 .389 .051 .985

~thermore,

= 0.000343

I
0.212 00117 , 0.389

D==’ .117 ●415 ‘.051= 0.0145
.389 .053. .985

0.168 0.228 -().091
“D2= .228 .415 ●051 = o.o115

-.091 .051 .985
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0.168 0.006 -0.091
D3 = .006 .212 ● 389 = 0.00744

-● 091 ● 389 .985

0.168 0.006 0.228
D4 = .006 .212 .117 = 0.0017’7

.228 .117 .klp

Substituting these numbers and the value of M(o) given in equations (25)
into equation (20), we obtain

IA2 1= 0.194
lAz’~= .173
IAP [= .139

I

(27)
]AB’1= .068

where AZ denotes the error in Z, AZ? in z?, etc. On a percentage
basis, this implies that z, Z1, ~,andp’, respectively, are known to
within about 14, 6, 23, and 33 percent.

Calculation of the error in the stability parameters.- It has been
shown how the errors in the parameters Z; z’~ ~,and~’ “~ybe fo~d”

. However, the problem of interest to the aeromicist is the calculation
of the errors in the stability parameters b} k) Cl$ and Co of eq,ua-
tion (l). While q(t) can be written directly as a function of b$ k, CU

.- and Co instead of the parameters Z, Zr, p, and ~’ and the method
described above applied, it is believed that the following general con-
siderations simplify the calculations.

Suppose, as before, that q(t) is a function of the m
eters Xk, k=l,...,m, and that the errors & in the xk
found. suppose further that there are n other parameters
each of which is a function of xl, X2,..., and ~. Thus,

Yj = Yj(Xl$...$XM)~ J=l~OOOp

The error Ayj inyj may then be estimated from the formula

.

It
of.

should be noted that equation (28)gives a
the errors.

param-
have been

Yl)***3ynj

(28)

quite pessimistic value
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From the definition of Z and J’, we may now write

b = -27

k= 112+2’2 ‘

and so,

(29)

Also,

Thus, applying equation (28) using the error values (27), we see that

lAb]=21AZl= 0.388

@ I= 2 ltAZl+2 ]z’AVI = 1.59

and since, from equations (29),

b = ,2.732

k = 11.30 }

it follows that b and k are known to within about 14 percent.

This same scheme will nowbe applied to the computation of the
errors in Cl and Co. It will be noticed that s,ince Cl and Co are
quite complicated functions of z and 1~, ourtask will be considerably
more difficult than it was when computing /Abl and lAk].

.

*

As before, suppose the input b(t) is zero for all t greater
than k. Make the following definitions:

.

.
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.

so that

f

ta

Si= e-zT8(T)cos 2’Td’f
ti

L

J’
l+j

sit= e‘zT~T)sin” ztTdT

t4
A

k
Ri =

J
Te-17@T) cos llTdT

ti

k
Rit=

J
Te-zT@T) Sin Z17d~

ti

asi=_ asi’
=-Ri-si ~

asi = asi f~ -3r=-Ri’
I

Also define
J

Ztqsp Cos Z’ti -
%i=e

Si sin Z’ti)

(30)

(3U

2ti zfSi-2Si’) cos Z’ti + (ZSi+ij’Si’)sin Z’ti]ali = -e [(

/

(32)

al = Zr[q=(ti)-e ‘ti(j3cos _L’ti - f3’ sin Z’ti)] J

N N

T

N

“%0 = %i2 aol =
z

aoia~i * =
I

%iai
=0 bo i=o

1

(33)
N H

L

N

alo = %iaoi all =
I

2
%i al =

I
Chiai

=0 i=o i=o

With these definitions, it Is shown in reference 2 that C!Oand C=
satisfy the equations

%0 CO + aol Cl = a.

I

(*)
alo Co + all Cl = al
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Therefore, if p
the derivatives

aoo

alo

NACATN 2820

denotes any one of the four parameters 2, l?, p, ~~, .

aCo/&? and aCIBp can he fetid from the equations

aco aclSZk30 boo a%l
+‘1 T F-cO&--cl~

1

.
&-
aco acl kl klo ball (35)

F ‘allF=x-cGr-cn F-
The problem before us is the calculation of these derivatives.

From the definitions (32) and from equations (31), it follows that

a%i
—=eZtia2 [(tisi’- Ril) cos Z’ti - (tiSi - Ri) sin Zlti]

aati
—=tiali.i-~i.te
a2

2ti[(z?Ri_

/

ZRi’) cos 2’ti + (zRi + Z’Ril) sin 7:ti]

.
aai =

x
- Z~tieZti(~cos Z’ti - ~’ sin Z’ti)

a%i_
,

elti
a2~

[(Ri - tiSi) cos Ztti + (Rit - tiSi~) sin Ztti]

aali
{‘ti[Si+ z(tiSi.-Ri) + Zt(tiSi’ -~=-

/

Rit)] COS Ztti +

[s1’ - zl(t~si - Ri) + Z(tiSif -Ri’)] Sin Ztti

b q , ~,tiezti
~

(~ sin Z’ti + p’ cos Z’tt)
= 2’

auoi o

~=

%i o—=
ap
bi— =+,ezti,0sltti
ap I

a%i
~=o

aal~
Z-&=o

ki—.zte ‘tisin Zttiapt ‘1 “
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‘z%(t) cos 2’t, e‘zt~(t) sj..i 2?t, te
.

The quantities e -%(t) Cos?tt,
te-Zt8(t) sin Zit must be integrated to find Si, SiY, R~ and Ri!.

. These quantities are calculated in table II and are plotted versus time
in figure 1. They were integrated
the values displayed in table II.
tions (33))it

% =alo=~

%l=@12=
and that

may be seen that
*

0.000399

by means of a planimeter to obtain
Referring to table 11 and equa-

@’ @ ‘-0=0029’ al=,@ ~ @

= o.kg4
0.0’41

2X9X(Q

&310
%-

=Z” Q) x

k.
-n =x@x@+

aal

-si-=z@x@)+

= -0.000152

@ +@l X @ =0.001388

= -O.0U64

@ X @ = 0.00772

X@ X @ = -0.0851

0.000232

@ +/y@ x @ = -0.001571

= 0.01226

Z @ X @ = -0.0381

aal
~ =x@x@+x@x@=o.280
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?kl
—=z@x@=o.899ap

Substituting these numbers
tions (34) and (35), it follows

while

aco
— .6.65
al

aaooo :.
—=

in the appropriate places in equa-
that

= -37.90

= 15.8a

acl
—“ 7*79az

aco acl—= -27.38
aZ’

—--=-2.25
a~,

aco ‘acl
~

=108.93 — = 50.50
ap

Using equations (28) and (27), we obtain, finally,

@o]= 37.5

IACII= 11.5

Therefore, Cl is known to within about 72
tithin 99 percent.

percent; Co is only knolhlto

.

.

.—
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.
The large errors in some of the parameters are worthy of

special comment. It should be noted first of all that the particululy
. large error in Co is completely consistent with what has been found

for some time by empirical means. “It has been found that upon repeat-
ing a set of flight records, msking the two sets identical as far as
that is possible, two entirely different values of Co have often been
obtained.

Secondly, it will.be recalled that in the derivation of the formula
for the errors it was required that the errors be smal13 this is cer-
tainly not the case for some of the errors. For this reason, the error
of 37.5 in” Co particularly niaynot be considered as definitive. The
theory developed herein fails for such alarge error> ud the actti
error in co may be much larger than that calculated. However, this is
not serious, for an error as large as 99 percent renders the calculated
parsmeter value meaningless in any case, and it matters not at ~
whether the error is 99 or 199.perbent.

Finally and most important is.the fo~o~% conclusion reg~diw
the entire philosophy of calculation of stability parameters from pitch-
ing velocity data alone in response to an elevator pulse: This experi-
ment is ill.designed for the calculation of CO. In general, when a

pulse is applied ta produce a set of pitching velocity data, no more

* should really be e~ected from the analysis than the period and the
damping parameters k andb. If, in addition, the analysis results in
a value of Cl whose error is within reasonable limits, this should be

. regarded as fortuitous. It should be stated that no example has yet
been found for which Co may be cal.culatidat all accurately.

Such a negative comment as the preceding deserves a remark on the
possibility of the most accurate calculation of Co. If one were to
measure a step response rather than a pulse response, the analysis of
these data would surely lead to more reliable values of Co. The
reason for this lies in the easily proved proportionality of the steady-
state value of q(t) with Co.

‘~is conclusion is drawn for the pammeter Co alone ad not also
for Cl, as would seem to be indicated by the error of 72 percent

. in Cl, pri=ily because the error in Cl is not always as large as.
this. With some data which have been analyzed, the error in Cl has
been far less, of the order of 30 percent.

.
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CONCLUDING BXMARKS
.

.

A formula has been given fiich maybe wed to find the errors in
the parameters obtained from a curve-fittingprocess. The method of
derivation did not use the concepts of probability theory, since the
latter ideas lead to quantities for which there is no known method of
solution. However, the result that the formula obtained bears a close
relationship to the classical probabilistic formula in case the curve-
fitting problem is linear (the only case for-which such a formula has_ ;
been derived and proved valid) is proved.

As maybe seenby studying the example given, the ease of appli-
cation of the method is directly dependent on the simplicity of the
form of the function which has been fitted. Thus, if b, k, CU andCo
are the aerodynamic parameters occurring in.the differential equation (1),
the errors in b and k may be calculated fairly rapidly; the errors
in Cl and Co require more time. However, if the method of least
squsres (reference2) is used for the curVe-fitting problem, a great
many of the compuktions which are needed to find the errors will have
already been performed in the process of finding the parameters.

.—

The method actually Weights favorably the method of least squares
in another manner. The errors, as given by equation (20), are propor-
tional to the square root of the sum of the squares of the residusls, a

which quantity is minimized by the least-squares process. However, it
is not believed that this weighting is a serious limitation, for no
matter what means are used for fitting the curve, if this latter method
is to have significance and is to lead to a good fit of the data, the
sum of the squares of the residuals will also be near its minimum.

FinaU.y, it has been shown that pitching velocity data in response
to a pulse are not alone adequate to compute the parameter Co (and, to
a lesser extent, Cl) occurring in the differential equation of motion.
Usually, all that may be obtained from such data are the parameters b _
and k, which determine the dsmping and the period of the oscillation.
In some cases, Cl may also be obtained with’reasonable accuracy.

Ames Aeronautical Laboratory
National Advisory Committee for Aeronautics

Moffett Field, Calif., July 30, 1952
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TABLE I.- ‘IHEERRORSIITZ, 2’,flAMD P’

. *

1 2 3 4 5 6 7 8 9 m II 12 13 14 15

7CWti e ‘i cosz$t~ fiin 1~ t~ @x@ @x@) (KJXB @x pi @ -@ @x @ @x fj & pl IQ+(Q @x @

1 0.4 0.579 0.336 0.94.2 o; ;;; 0.545 0. llg -0. ULh 0.233 0.093 0.335 -0.041 0.294
2 .5 .505

0.118
.035 .999 . m .on

.441
-.105 . n6

-.269 .963
.058 . go -.CKA .305 .153

-. U8
i?

.424 -.073
:? .% -. %7

-.088 .016 .009 .26L
.837

.025 .285 . in
-.21-Q .322 -.U29 -.067 -.(%2 -.044 .198

.8
. @-4 .241

.335 .632
.169

--77s -.260
2

.212 -.163 -.044 -.115 -.092 .13
.292

.054 .~84 .147
-.930 .369 -.272 .ma -.167 -.022 -.144 -.130

7 1::
.066 .Ow

.255
.123

-.998 .070 -.254 .018 -.156
8 1.1

-.004 -.1!52 -.152 .011 .053 .0s4 :$4
.223 -.972 -.235 -.=6 -.052 -.133 .OIL -.144 -.158 -.032 .045 .013

9 1.2 Jg -.856 -.518
. olk

-.166 -.100 -.102 .021 -.123 -.148 -.062 .035 -.027 -.033
LO 1.3 -.659 --752 -. I.I-2 -.=7 -.064 .027 -.05 -.124 -.078 .023
u l.k

-.055
.148

-.073.
-.401 -.gti -.059 -.13.5 -.036 .028 -.065 -.090 -.083 .012

E! 1.5
-. on

.L29 -.105 -.995
-.099

-.014 -.I28 -.008 .02’7 -.035 -.053 -.079 .C03 -.076 -.114
L3 1.6 .112 .200 -. w .023 -.11o .014 .023 -.039 -.015 -.068 -.C05 --072 -.u6
h 1.7 .098 .487 -.873 .048 -.OEK .029 .018 .011 .020 -.053 -.o1o -.063 -.106
L5 1.8 .096 .728 -.685 .062 -.059 .038 .012 .026 .047 -.036 -.013 -.049 -SW
L6 L9 .075 .= -.433 .067 -.032 .041 .007 .035 .066 -.020 -.014
L7 2.0

-.034 -.064
.065 .$g3 -.140 .064 -.CQ9 .040 .O@ .038 .076 -.Lx16 -.013 -.019 -.038

L8 2.1 .057 .987 .166 .056 .009 .034 -.00Q .036 .076 .006 -.o12 -.CQ6 -.olf?
1.9 2.2 . o% .&m .455 .044 ,023 .027 -.C05 .032 .070
a 2.3 .043j .71J3

.01+ -.QW, .035,
.704

.QIKI

;:lw .030 .aL9 -.UW3 j22 .058
IL 2.ti

.019 -.006 .012 .028
.038 .464 .e&5 .033 .011 -.007 .043 .Oa -.004

Q 2.5 .033 .175 .995 . OF
.017 .040

.004 -.007 .010
-:%

.026 .020 -.031 .019 .047
?3 2.6 .029 -.131 .991 .028 -.002 -.cH36 .Co4 .009 .017 .001 .cH.8 .047
?4 2.7 .025 -.42!5 g -.o11 .023 -.C07 ;:mOJ -.@X! -.CQ5 .014 .032
25 2.8 .022 -.678

.016 .044
-.015 ,016 -.009 -.006 -.016 .010 .003 .013

?6 2.9 .019 -.W .495
.036

-.017 .009 -.010
?7 3.0

-.CQ2 -.008 -.024 .Oc% .003 .Oog .027
.017 -.978 - .oI.6 .C#4 -.010 -.031

-:%
-.W -.027 .CKJ2 .003 .006 .017

?8 3.1 .015 -.995 -.014 -.Q21 -.ocg o“ -.009 -.028 -.001 .CQ3 .L?@ .C07
?9 3.2 .013 -.920 -.33 -.012 -.005 -.037 .LXn -.c08 -.026 -.C03 .C02 -cm -.C02

z @Je = 0.168 z @x @ .-o.117

&i!

xx -4.0c16

8

x7@J .O. *
z = 0.228 z = 0.415
z = 0.091 E@x@ =-0.051
x~ = o.212 E~= = 0.985
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TABLE II.- ~ ERRORS TN Cl JWO Co

1 2 3 b Y 6“ 7 8 9 10 U 12 13 14 13 16 17 16 19 20 a

Row t$ a(ti)•-’t~:x lq ‘in l,t, a x@ ix (!J g)x(7J @n@ 2+ Sf, @x@ 3X@ Ri Ri ‘
8 “ @@

X@ @x@ @%i.” @

1 0 * l.cm 1.CW 0 1.033 0 0 0
z .05 .03 1.072 .%3

0.CQL7X 0.01493 0 O.(-OME6 0.c03234 1.QM Q 0.0M99 0
.W1 .CQU37 .01497 .axt?y ‘.mw .MM@4 .m3234 .%?3.143.Olm

O.cm$d
.153 I.* .Mk .03 .mno .o1o72

.Io .C451.1L3 .953 .3Z? 1.093 .347 .C4 .016 .mcJA m.- .Lxkn .031* .ti* .ma .8% .= .- .- .-
: .1? .Kn 1.227 .W .kk5 1. ,057.LW339.M?r3 -cum @55 .m~ .e .737.333.W33 .03595 .~333

2J .&y ;.BJ ..9U 3TJ ~%J :% ;% .095.x .owx .- .- .~~
; .n9 .@ ..M332 S&lo .Cx2525 sew’ ml.G53 :%% :E :Si :2% %% %2
7 .32 :033 1:X77 .635 .1% :gL& ~g ~.m
n .35 0

.033 .Omio .IXV76 .Cc6M .01@3 .CvJXm .COJM A& .%& ~.mnl .Wcm. .-
1.613 .t76 o 0 0

:%
0 0

.* l:LW 0 i 0
0 0

9 .M 0 1.727 .396 0 0 0 0 0 .155 , %? o 0 0
*

22

ml O)(1

1 0.0%70
2 .063n
~ .03277

.*33
3 .m%
6 .o11o6

.m123
: 0.
9 0.

39

~ @x@

1 -3.CQ2??
2 -.cte23
3 -.onu
b ..WU77

: ::3
.Cex4

: 0
9 0

%

?an g) x 1.

1 0
2 .*

.337
: .L31

,m
2 .76$
i 1:0%
? 1.226

+

23 27

k

F
(@Xa

.=%7
-.m9S0
-.M’7SZ
-.02233
-LW61
-.*
-mm

@xl!

D.*3M
.CW97
.Cw%
.0395
.Ce-@
.01259
.lxe33

D
0

@xz
O.w
-.GC4!
-.0222
-.ol’m
-.x
-.0?5$
-.mw

MmJ.6
.C%7m
.C&e2
.c4776
.0w3
.01636
.M22-I

O.@ml
.Q9x?l
.Ww7
.C%49
.oe&.9
;~3 _lu

0.M633 O -o.m’ml
.u637 .C@+ -.*55
:% Jx&.5J~.ogq

.01kJ3 .0%L5 -:03=03

.W767 .CMY -.M29

.OJlm ~.oxw ;.ml@2
o
000 J

o.61b
.56?
.5U
.U6
.3S2
.31L
.2L3
.M1

o
-.032
-.055
-.076
-.o?l
-.io3
-.UO
-.314
-.U3

O.&&

:%
.Xk
.473
.b17
.3%
.’255
.233

‘.W3:2
.055
.’am -.324
.320 -.h33
.3!0 -..
.S=0
.272 -..3
.Z?i

0
0 1 1 1 1

wM u k3

i

B-c) @x@ S6

D.mue6 0 -0.c032?A
-.my.oo -.*3 -.mMn
-.CCG035-.0X15*-.um913
-.muA7 -.cmm -.oxvn
-.mcM8 -.mu93 -.ccma
-.cml.m-.CCKW74 .-
-.c&vlf)-mom ox@

a

ax@

LA13
-.rnm
-.W?+
-.0257
-.mm9
-. LX055
0
0

61

@x 1

ZFii%i/
.C@23!
.Cu277:
.m143
.0X571
.C032G?
.OXdJ

M

Z)+@@x 1’ 43%z @-@ 63X63m z @xl’ ‘a+@ @@ G-cld @
O.olw L1.y%& :..x& O::g O.oma 4.- 0. 0.01726 chow

-:%3 .Owl -.mw .*
-.02+96 .o1076 -J2M7

.m7Lo -.03@ :% .M656 -.m3aXJ .m323-.mw .002!+5-.on43 :rnm .M210 .m

.Ccc46-.0m7 .QX%3 .OX&y ;WOm .om33 .om19 .M31
0 0 0
0 0 : : : 0 : 0 : : 0w--K- 1 1 1 I 1 1 I 1 I 1

& 63 64 65 ~ 67 63 I 69 70 73. 72
1 I I I I

33 59 ! &

0
-.032
-.1*
-au
-.293
-. m
-.?23
-.37
.M6

o 0
0 : 0

0
0
—

H
73 74 73 16

*** —.—.

@x@ T-&@%

0 -Lab .3.on o
-.oI.6-.cc.5-2.835 .W
-.m3 -b* -2.555 All

:o~ -.291 -2.2k2 1.U5
-.OR -1.9U 1.~5

.1X .03b -1-%9 1.?0.7

.2&l? .& .1.231 1.6?I

.2S5 .272 -.926 1.677

.331 .3%? -.~ 1.67k

~!?9s-aomjs z @%@ -42MG’161 Zfjjxe -C-0U2 r. @x@ --o.cmm z@x@ -ala

z@x@j --0.CM92 z @x@ .~omm z@x@ -a*79 x@x@-am3u z@x@ .-am+
z @; @ -*a6u

88

Zti

88

-Cmm%9zx .-O.133

88

Zx --C50199
z

8

8$

xx - &en
- O.* xx --Xm6z? Ex .0a Mu6xx --o.ole.? 2%

z

- c.0163
x@3-o.4$4 S@x@ --am3M .?@x@ .-O.0M701 z@x@ -al% x@x@ .-0.224
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Figure l,- The voriution with time of four quantities required for the
ca/culution of CO and C,.
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