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SUMMARY 

The mathematical analysis  presented here is the  r e s u l t  of attempts 
t o  compare ex i s t ing  solut ions with the experimental data  on pressure 
d i s t r ibu t ion  i n  the o i l  film of a short  journal bearing avai lable  i n  
NACA TN 2507. It i s  apparent t h a t  the  end leakage of o i l  flow has a 
predominant e f f e c t  i n  narrow bearings, and t h a t  a simple approximation 
including end-leakage e f f ec t s  would be useful. 

A mathematical function giving circumferential  and axial  pressure 
d i s t r ibu t ion  i n  terms of eccent r ic i ty  r a t i o  or a t t i t u d e  was determined 
ana ly t ica l ly .  The solut ion includes endwise flow and that pa r t  of the  
circumferential  f l o w  which is proportional t o  journal surface ve loc i ty  
and varying f i l m  thickness but neglects t he  e f f e c t  of pressure on the  
circumferential  flow. The so lu t ion  is fundamentally based on the  
Reynolds' equation but, l i k e  other solutions,  neglects one t e r m  i n  
order t o  make the  in tegra t ion  possible. T h i s  solut ion neglects the  
t e r m  which has the  least e f f e c t  i n  narrow bearings, a method o r ig ina l ly  
proposed by Michell and Cardullo. 

The pressure-dis t r ibut ion function was extended t o  determine expres- 
s ions giving applied load, a t t i t u d e  angle, locat ion and magnitude of peak 
f i l m  pressure, f r i c t i o n ,  and required o i l  flow rate as functions of the  
eccen t r i c i ty  r a t i o .  
analysis  is ca l led  the  capacity number, which is  t h e  product of the  
Somerfe ld  number and the  square of the  length-diameter r a t io ,  With 
length-diameter r a t i o  incorporated i n  the  capacity number, bearing per- 
formance curves having capacity number as the abscissa  could be p lo t ted  
as s ingle  l ines .  Comparison of experimental data  with these curves as 
presented i n  t h i s  report  and other reports  showed reasonable agreement 
f o r  short  bearings. 

A bas ic  nondimensional quant i ty  resu l t ing  from t h i s  

The resu l t ing  so lu t ion  applied best  t o  bearings having a length- 
diameter r a t i o  up t o  about 1 and may be ca l led  the  "short-bearing 
approximation." 
and the  e f f e c t  of length-diameter r a t io .  The curves f o r  short  bearings 
as developed i n  t h i s  report  w e r e  compared with the  theo re t i ca l  curves 
of Sommerfeld and Cameron and Wood. 
that t h i s  approximation is  of p rac t i ca l  value f o r  analysis  of beaxaings 
of  small length-diameter r a t i o .  

It y ie lds  simplified relat ionships  including o i l  flow 

Conclusions were reached indicat ing 



2 

INTRODUCTION 

NACA TN 2808 

For more than a half century, inves t iga tors  of the  problems of 
l ub r i ca t ion  have offered a n a l y t i c a l  so lu t ions  giving the  d i s t r i b u t i o n  
of pressure i n  the  o i l  f i lm  of s l i d e r  and journal  ( cy l ind r i ca l )  bearings 
under load. 
approximate mathematical so lu t ions  of Reynolds' equation (reference 1) : 

Most inves t iga tors  have based t h e i r  funct ions on exact o r  

Michell, Kingsbury, and Christopherson have presented so lu t ions  
which may be considered exact i n  that such so lu t ions  s a t i s f y  Reynolds' 
equation f o r  c e r t a i n  f i n i t e  shapes of  bearing surfaces  supporting a 
c e n t r a l  normal load. Michell ( reference 2) solved equation (1) mathe- 
mat ical ly  f o r  t he  rectangular s l i d e r  bearing. Kingsbury (reference 3 )  
determined the pressure d i s t r i b u t i o n  of f i n i t e  s l i d e r  bearings and of 
f i n i t e  journal  bearings sa t i s fy ing  equation (1) by an experimental 
e l e c t r i c a l  analogy. 
sure i n  journal  bearings of f i n i t e  length by u t i l i z i n g  the mathematical 
method of "relaxat ion,"  Cameron and Wood (reference 5 )  have extended 
the  work of Christopherson t o  show the  e f f e c t  of length-diameter r a t i o  
on eccen t r i c i ty  Tatio, a t t i t u d e  angle, and f r i c t i o n  coef f ic ien t .  I n  a l l  
cases, these solut ions are given t o  express na tu ra l  phenomena i n  the  o i l  
f i l m  on the  bas i s  of Reynolds' assumptions regarding lubricat ion,  the  
most important assumption being t h a t  c e r t a i n  terms i n  the  generalized 
Navier-Stokes equations (references 6 and 7) f o r  flow i n  a viscous f l u i d  
may be neglected. 

Christopherson (reference 4) determined the  pres-< 

Some solut ions of Reynolds' equation, of ten  termed approximate 
solut ions,  have been realized by considering e i t h e r  the second term o r  
the  first term of the l e f t  side of equation (1) equal t o  zero. 
solut ions f o r  pressure d i s t r i b u t i o n  give considerably s implif ied mathe- 
mat ical  re la t ionships  among the  var iables .  They are exact solut ions i n  
the  sense that they s a t i s f y  equation (1) f o r  the case of a bearing of 
i n f i n i t e  axial length,  on the one hand, and f o r  the  i n f i n i t e l y  shor t  
bearing, on the other.  However, they a re  regarded as approximate solu- 
t i o n s  when used t o  determine the  pressure d i s t r i b u t i o n  i n  bearings of 
f i n i t e  length,  

Such 

Sommerfeld (reference 8) and Earrison (reference 9 )  evolved a s o h -  
t i o n  f o r  journal  bearings by assuming 
second ?f the  left-hand terms of equation (1). 

dp/az = 0, thus eliminating the  
Such an assumption s t a t e s  
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t h a t  there is  no endwise flow as i n  the  case of an  i n f i n i t e l y  long bearing 
o r  the  case of a f i n i t e  bearing i n  which end leakage is prevented. 

Michell ( reference lo), who solved equation (1) f o r  t h e  rectangular 
s l i d e r  bearing, suggested a so lu t ion  f o r  t h e  journal bearing by dropping 
t h e  first of t he  left-hand t e r m s  i n  Reynolds' equation. Cardullo (refer- 
ence 11) a l s o  presented t h i s  so lu t ion  as giving t h e  pressure d i s t r ibu t ion  
i n  journal  bearings of f i n i t e  lengths usual ly  found i n  engineering prac- 
t i c e .  Because t h e  so lu t ion  by these inves t iga tors  a t taches grea t  impor- 
tance t o  the endwise flow, it has been general ly  regarded as applying t o  
the  case of an i n f i n i t e l y  shor t  bearing i n  which an appreciable endwise 
flow e x i s t s  because of the  absence of much res i s tance  t o  such flow. It 
i s  perhaps because of t h i s  assumption t h a t  ana ly t i ca l  work was not 
extended beyond the  development of a pres sure -ais t r i b u t  ion  f unct ion. 

A t  first thought, it would seem t h a t  dropping the  f i rs t  term i n  
Reynolds' equation assumes t h a t  t he  pressure gradient i n  the  circum- 
f e r e n t i a l  d i r ec t ion  is  zero, thus making any so lu t ion  on t h i s  bas i s  
useless.  However, as indicated i n  the  de t a i l ed  treatment i n  t h i s  report ,  
t h i s  assumption may be interpreted,  not as giving a zero circumferential  
pressure gradient,  but  as giving a f i n i t e  gradient whose e f f e c t  on the  
circumferent ia l  f l o w  of a shor t  bearing is  small compared with the  
e f f e c t  of changing f i l m  thickness. The e f f e c t  of the  circumferential  
gradient on the  flow is int imately connected with the  axial  pressure 
gradient and the  shape of t h e  bearing as given by the  length 2 and 
t h e  diameter d. Both gradients depend upon the  dis tance from the  point 
of maximum f i l m  pressure t o  a boundary where the  pressure is  zero. 
These dis tances  are r e l a t ed  t o  sd/4 f o r  the circumferential  gradient 
and 2/2 f o r  t he  axial  gradient.  Thus, as 2 becomes small compared 
with d, the  circumferential  gradient becomes s ~ l l  compared with the  
ax ia l  gradient. 

Reliable experimental measurements of pressure d i s t r ibu t ion  i n  
f i n i t e  journal bearings were obtained by McKee and McKee (reference 12) 
sometime after t h e  mathematical treatments of Michell and Cardullo were 
published and discussed. On comparison, it was shown that the  theo- 
r e t i c a l  Sommerfeld-Harrison d i s t r ibu t ion  was not i n  agreement with 
experimental data. 
experiments, a l s o  demonstrated t h a t  the  Harrison theory did not agree 
f o r  f i n i t e  cases. Almost no e f f o r t  was made t o  compare the  Michell- 
Cardullo theory with t h e  experiments although a comment was made by 
Hersey i n  reference 12 t h a t  Rouse had found the  Michell-Cardullo theory 
t o  be i n  b e t t e r  agreement with experiment than was the  Somerfeld- 
Harrison theory. 

Bradford and Grunder ( reference l3), after conducting 

This report  concerns the extens'ion of t he  short-bearing pressure- 
d i s t r i b u t i o n  function of Michell and Cardullo t o  give equations f o r  the  
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various bearing charac te r i s t ics .  This short-bearing approximation 
makes ava i lab le  formulas r e l a t i n g  eccen t r i c i ty  r a t i o  t o  applied load, 
a t t i t u d e  angle, angular pos i t ion  of peak f i l m  pressure,  f r i c t i o n ,  
required o i l  flow, and the  r a t i o  of peak f i lm pressure t o  un i t  pres- 
sure on projected area. 

Experimental o i l  f i l m  pressure data  obtained by DuBois, Mabie, 
and Ocvirk (reference 14) ind ica te  that the  short-bearing pressure- 
d i s t r i b u t i o n  function is  i n  reasonable agreement with na tura l  phenomena 
i n  a high-speed, heavily loaded journal  bearing of 2/d = 1.0. Experi- 
mental data  by McKee and McKee (reference 12)  a l s o  show t h i s  function 
t o  be i n  reasonable agreement f o r  low-speed, l i g h t l y  loaded bearings of 
Z/d = 1.13. Comparisons of experimental and ana ly t i ca l  pressure d is -  
t r i bu t ions  are shown i n  the  figures of t h i s  report .  Another experi- 
mental report  (reference 17) shows the  extent  of t he  agreement between 
the  short-bearing approximation and experiment f o r  bearing performance 
cha rac t e r i s t i c s  such as eccen t r i c i ty  r a t i o ,  a t t i t u d e  angle, f r i c t i o n ,  
and o i l  flow of shor t  bearings f o r  Z/d of 1/4, 1/2, and 1.0. 

The author is  g rea t ly  indebted t o  Professor George B. DuBois f o r  
h i s  many helpful  suggestions, espec ia l ly  f o r  a suggestion which led  t o  
the  recognition of the  capacity number and f o r  pointing out  i t s  funda- 
mental charac te r i s t ics .  

The work reported herein i s  a p a r t  of a bearing research project  
which i s  being conducted a t  Cornell  University under the  sponsorship 
and with t h e  f inanc ia l  ass i s tance  of t h e  National Advisory Committee 
f o r  Aeronautics . 

SYMBOIS 

Dimensional quant i t ies :  

2 bearing length, inches 

d bearing diameter, inches 

r bearing radius ,  inches 

C r  r a d i a l  clearance, inches 

‘d diametral  clearance, inches (2cr )  

e eccen t r i c i ty  of journal  and bearing axes, inches 
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circumferential  bearing f r i c t ion . fo rce ,  pounds 

f l u i d  f i l m  thickness, inches 

l o c a l  f l u i d  f i l m  ve loc i t ies  i n  x-, y-, and z-directions,  
inches per second 

surface speed of journal, inches per second 

journal  speed, rpm 

journal  speed, rps  

angle measured from locat ion of maximum f i l m  thickness 
t o  locat ion of peak f i l m  pressure, degrees 

angle measured from load l i n e  t o  locat ion of peak f i l m  
pressure, degrees 

a t t i t u d e  angle, angle between load l i n e  and l i n e  of 
centers  of journal and bearing, degrees 

applied cen t r a l  load, pounds 

components of applied load p a r a l l e l  and normal t o  l i n e  
of centers  of journal and bearing, pounds 

l o c a l  f l u i d  f i lm  pressure, pounds per square inch 

pressure a t  8 = 0 and TC i n  theory of bearing without 
endwise flow, pounds per square inch 

peak pressure i n  f l u i d  film, pounds per  square inch 

u n i t  pressure on projected area, pounds per  square inch 

f l u i d  shearing stress i n  x- and z-directions, pounds 
per  square inch 

flow per  un i t  t i m e  i n  x- and z-directions, cubic inches 
per  second 

rate of o i l  flow, cubic inches per  

required rate of f l u i d  flow, cubic 

absolute v iscos i ty  of f lu id ,  reyns 

second 

inches per second 

Centipoise s 

( 6.9 x lo6 
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Nondirnensional quan t i t i e s  : 

eccen t r i c i ty  r a t i o  o r  a t t i t u d e  

radial clearance rat i o  

diametral clearance r a t i o  

length-diameter r a t i o  

capacity number 

Sommerfeld number - - (r ($) 
(9 f r i c t i o n  coef f ic ien t  

s 

f r i c t i o n  var iable  

required o i l  f l o w  number ( QreqNl) 
xdlcd 2 

(9) peak-pressure r a t i o  

P%SSURF: DISTRIBUTION I N  SHORT JOURNAL BEARINGS 

UNDER NORMAL CENTRAL LOAD 

NACA TN 2808 

The ea r ly  port ion of the following ana lys i s  embodies the assumption 
and ana ly t i ca l  reasoning employed by Reynolds ( reference 1) t o  y ie ld  
equation (1). 
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Analysis Following Reynolds' Method 

7 

When acted upon by a normal cen t r a l  load, t he  ro t a t ing  journal  is  
made t o  displace with respect  t o  the s t a t iona ry  bearing such %hat the  
element of f l u i d  dx, dy, and d z  of figure 1 moves i n  a converging 
f i l m  of o i l .  
t he  element t o  flow i n t o  the  wedge at a circumferent ia l  ve loc i ty  u; 
s ince  the  o i l  f i l m  is of f i n i t e  extent  i n  the  a x i a l  d i r ec t ion  of t he  
bearing, the  element has a ve loc i ty  w i n  the  endwise d i rec t ion .  

Because the  f l u i d  i s  viscous, t he  r o t a t i n g  journal  causes 

Both bearing and journal  a r e  of length 2 and diameter d o r  
radius  r. The journal  r o t a t e s  at a constant angular ve loc i ty  having 
a surface ve loc i ty  of U with respect  t o  t h e  s t a t iona ry  bearing surface. 
Ekcause the centers  of t he  bearing 0 and t h e  journal  0' are displaced 
by an amount e, the o i l  f i l m  w i l l  be of var iab le  thickness h. It i s  
assumed that the  circumferent ia l  dimension of the f i lm  may be unwrapped 
such t h a t  o i l  f i l m  i s  e s s e n t i a l l y  moving between surfaces  one of which 
may be considered a plane. The coordinates x, y, and z are chosen 
as shown i n  f igure  1 such t h a t  the x-direct ion i s  circumferential ,  the  
y-direct ion is radial, and the  z-direct ion is measured from the  center  
of the bearing p a r a l l e l  t o  t he  bearing and journal  axes. 

Figure 2 shows the  forces  which a r e  assmed t o  a c t  on the  f l u i d  
element i n  laminar flow a t  an a r b i t r a r y  loca t ion  i n  the converging o i l  
f i l m .  I n  both x- and z-directions,  it is assumed that  shearing s t r e s s e s  
-rx and -rZ and normal pressures p a r e  ac t ing  a s  shown. I n  the 
x-d'irection, f o r  example, two shearing vectors and two normal vectors 
a r e  assumed; i n  the general  case, two addi t iona l  shearing vectors should 
be shown ac t ing  on the  sides of the  element, but these a r e  considered 
negl ig ib le  

Assuming t h a t  s t a t i c  equilibrium of an incompressible f l u i d  preva i l s  
and t h a t  i n e r t i a  forces  a r e  negl igible ,  t he  sumanation of forces  i n  the  
x-direct ion and separa te ly  i n  the  z-direct ion r e s u l t  i n  the following 
re la t ionships  between shearing and normal pressures.  I n  the following, 
because of s i m i l a r  mathematical treatment, equations applying i n  the  
z-direct ion are developed i n  p a r a l l e l  with equations i n  the  x-direction. 
Thus 
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The shearing stress ac t ing  between layers  of viscous f l u i d  i n  
laminar flow is  dependent upon the  inverse slope of the ve loc i ty  pro- 
f i l e  as given below: 

T = p -  a U  

ay 
X 

where p i s  the  absolute v i scos i ty  of  the f lu id .  

Di f fe ren t ia t ing  equations (3)  and (3a) with respect t o  y and 
subs t i t u t ing  i n  equations (2)  and (2a)  give: 

a2w ap 

ay2 
w - = -  

( 3 )  

Equations ( 4 )  and (h) are integrated t o  give var ia t ions  of veloc- 
i t i es  u and w with respect t o  y throughout the thickness of  t he  
o i l  f i l m  (ve loc i ty  p r o f i l e s )  by assuming t h a t  the Viscosity and pressure 
are constant throughout t h e  o i l  f i l m  thickness. Thus, p, dp/ax, and 
ap/& are constants with respect t o  y. Assuming t h a t  no s l i p  exists 

the  boundary conditions are: u = 0 
w = 0 a t  y = h. In tegra t ing  equa- 

between f l u i d  and bearing surfaces,  
and w = 0 a t  y = 0; u = U and 
t i ons  ( 4 )  and (ha) yields:  

The forms of equations ( 5 )  and 
are parabolic. It may be seen t h a t  

Y ( Y  - h)  

(5a) show t h a t  the  ve loc i ty  p ro f i l e s  
f o r  the  ve loc i ty  p ro f i l e  i n  the  
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circumferential  d i r ec t ion  the first term of equation ( 5 )  gives a l i n e a r  
ve loc i ty  p ro f i l e  indicated by the dashed l’ine i n  f igure 3 ,  and the  second 
term makes the  p ro f i l e  parabolic. 

The ve loc i ty  p ro f i l e s  may be used t o  determine the quant i t ies  of 
f l u i d  flow per un i t  of time i n  the x- and z-directions.  The quant i ty  
q, 
the  area h dz; the  quant i ty”  q, is  the flow i n  the z-direction through 
an  area h dx as shown i n  figure 4, These quant i t ies  may be expressed 
as follows: 

is the flow i n  the  x-direction through a transverse plane having 

q z = g h w d y d x =  (1:; --- 2) dx 

Considering the flow of f l u i d  through an  elemental volume of Itimen- 
s ions h, d x ,  and dz, as shown,in f igure  5 ,  an equation of cont inui ty  
of flow may be wr i t ten  s ince it i s  required t h a t  the  quant i ty  en ter ing  
must be equal t o  the quantity leaving. 
assumed. Thus, 

A steady state of flow i s  

Equation (7) indicates  that the  r a t e  of increase i n  flow i n  one 
d i r ec t ion  i s  equal t o  the decrease i n  the r a t e  of flow i n  the other  
d i rec t ion .  
equations ( 6 )  and (6a) and assuming t h a t  the  v iscos i ty  is  constant i n  
a l l  regions of the f l u i d  r e s u l t  i n  Reynolds’ equation i n  the form of 
equation (1) 

Subs t i tu t ing  i n  equation (7)  the proper der ivat ives  of 

Pr inc ipa l  Assumption f o r  Short Bearings 

The following analysis  r e s u l t s  i n  the pressure-dis t r ibut ion func- 
The pr inc ipa l  simplifying t i o n  as given by Michell and Cardullo. 
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assumption made i n  t h i s  ana lys i s  is one regarding equation (6) f o r  t he  
flow i n  the  x-direction, namely, t h a t ,  of the  two right-hand terms, the  
second is  negl ig ib le  compared with the  first. 
the  first t e r m  represents  t he  flow as given by the  area of t he  t r i a n -  
gu lar  por t ion  of the  ve loc i ty  p ro f i l e ;  t he  area of the  p r o f i l e  between 
the  dashed l i n e  and the  parabolic curve i s  considered t o  be small by 
comparison. This does not mean t h a t  ap/ax is necessar i ly  small, but 
t h a t  the  term h3/12p(ap/ax) is small. Thus, it is  assumed tha t :  

Referring t o  figure 3(a), 

- Uh dz qx - 2 

Comparing equation (8) with equation (6), it may be seen that the  
assumption made r e s u l t s  eventual ly  i n  the  omission of the  first of the  
left-hand terms i n  Reynolds’ equation (equation (1) ). The so lu t ion  
which follows w i l l  there.fore include t h a t  p a r t  of the circumferent ia l  
flow proport ional  t o  journal surface ve loc i ty  and varying f i l m  thick-  
ness but w i l l  neglect the  e f f e c t  of c i rcumferent ia l  pressure gradient 
on t h i s  flow. Any change i n  c i rcumferent ia l  flow w i l l  d i r e c t l y  inf lu-  
ence the a x i a l  flow and the ax ia l  pressure gradient.  

The shape of the bearing as given by t h e  length 1 and the  diam- 
e ter  d a f f e c t s  the  r e l a t ionsh ip  between the circumferent ia l  and a x i a l  
pressure gradients.  Both gradients  depend upon the  dis tance from the 
po in t .o f  maximum f i l m  pressure t o  a boundary where the pressure is  zero. 
For the circumferent ia l  gradient  t h i s  dis tance is r e l a t ed  t o  nd/4 and 
i s  r e l a t e d  t o  2/2 f o r  the a x i a l  gradient.  Thus, as 2 becomes small 
compared with d, the ci rcumferent ia l  gradient  becomes small compared 
with the  a x i a l  gradient.  

Neglecting the  e f f ec t  of c i rcumferent ia l  pressure gradient  on the  
flow, the r a t e s  of change of flow i n  the  x- and z-directions are given 
by d i f f e r e n t i a t i n g  equations (8) and (6a) : 

U ah d z  - = - -  
ax 2 ax 

(9)  

Equation (9) is  a r e s u l t  of the above assumption and ind ica tes  
t h a t ,  when the  flow is i n t o  the converging o i l  f i l m ,  the  decrease i n  
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flow i n  the circumferential  d i r ec t ion  i s  due pr imari ly  t o  a decrease i n  
f i l m  thickness. Subs t i tu t ing  equations ( 9 )  and (ga)  i n  the  cont inui ty  
equation (7) r e s u l t s  i n  the simple d i f f e r e n t i a l  equation: 

Referring t o  Reynolds' equation (equation (1)) it is seen t h a t  
equation (10) lacks the  first left-hand term, Since h is  not a func- 
t i o n  of z ,  equation (10) may be writ ten: 

Further,  s ince none of the terms on the  right-hand s ide of equa- 
t i o n  ( loa )  are functions of z, in tegra t ion  gives: 

The constant of in tegra t ion  C 1  may be evaluated from the  boundary 
condition that dp/dz = 0 a t  z = 0 f o r  symmetrical flow about the 
transverse plane of symmetry a t  the center  of the bearing, From the  
condition t h a t  pressures a t  the  ends of the bearing are a t  the  atmos- 
pheric datum of zero gage pressure, C 2  may be determined from p = 0 

a t  z = +2/2. Thus the pressure d i s t r ibu t ion  as a function of x and 
z i s  given by: 
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Since dx = r de, equation (11) may be given i n  polar  coordinates: 

For the journa l  a x i s  displaced e with respect  t o  the  bearing axis ,  
the  f i l m  thickness may be approximated by: 

h = cr + e cos 8 = c r ( l  + n cos 8 )  (12) 

where cy is the  r a d i a l  clearance and n is  the eccen t r i c i ty  r a t i o ,  
o r  a t t i t u d e  of the  journal  with respect  t o  bearing, given by the  r a t i o  
e/cr. As shown i n  f igure  1, 8 is measured from the  s t a t i o n  where t h e  
the  f i l m  is of maximum thickness.  Thus 

dh - = -crn s i n  8 
de 

Subs t i tu t ing  equations (12) and (la) i n  equation ( l l a ) :  

Expression (13) shows t h a t  t he  pressure d i s t r i b u t i o n  is parabol ic  
i n  the  z-direct ion and s inusoida l  i n  the circumferent ia l  d i r ec t ion  
giving zero pressures at  z = f2/2 and 8 = msr where m is  an  integer .  
Figure 6 shows the  approximte forms of the  d i s t r ibu t ions  i n  the  x- and 
z-direct ions.  

EXTE3XSION OF ANALYSIS RESULTING IN BEARING 

PERFORMANCE CRARACTERISTICS 

As discussed i n  anqther s ec t ion  of t h i s  report ,  experimental data  
show t h a t  the pressure-d is t r ibu t ion  funct ion as given by equation (13) 
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is  i n  good agreement with short-journal-bearing behavior. This apparent 
agreement has l ed  t o  the  extension of the analysis  t o  include the deter-  
mination of other  bearing charac te r i s t ics ,  given below, which the  
pressure-dis t r ibut ion function makes possible. 

Extent of Pressure i n  F u l l  Cyl indrical  Bearings 

A s  shown i n  f igure  6 the  circumferential  pressure d i s t r ibu t ion  
given by equation (13) i s  posi t ive i n  the converging f i l m  0 < 0 < r[ 
and i s  negative i n  the  diverging f i l m  5[ < 0 < 2". The maximum nega- 
t i v e  pressure is  shown t o  be equal i n  magnitude t o  the maximum posi- 
t i v e  pressure, a condition which does not appear t o  ex is t  except i n  
very l i g h t l y  loaded bearings. 
as shown by the  dashed l i n e  i n  f igure 67 not exceeding that of atmos- 
pheric pressure, is possible. In  the absence of a high d,atum pres- 
sure,  the negative pressures are assumed t o  be of negligible magnitude. 
It is  assumed, f o r  moderately and heavily loaded bearings, t h a t  the 
pos i t ive  pressure region from 
ca r r i e s  the  t o t a l  load. 

A negative pressure of s m a l l  magnitude, 

0 = 0 t o  fi, as given by equation (l3), 

Applied Load P and Capacity Number Cn 

The ex terna l  load P may be re la ted  t o  pressures induced i n  t h e  
o i l  f i l m  by performing ce r t a in  integrations.  Choosing X- and Y-axes 
as shown i n  f igure  7, the integrat ions of pressures on the  journal i n  
the  d i rec t ions  of these axes w i l l  give components PX and % of the 
r e su l t an t  force which is  equal t o  P. The in t eg ra l  expressions f o r  
Px and Py are: 

Subs t i tu t ing  equation (13) f o r  
t o  2: 

p r  cos 0 d0 dz 

pr  s i n  0 de dz 

p and in tegra t ing  with respect 
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Employing Sommerfeld's mathematical technique ( see  appendix), t he  
in tegra t ions  with respect  t o  8 yield:  

The applied load is  given by: 

P = 1- 

Subs t i t u t ing  P = p ' l d  and U = nN'd gives: 

The left-hand term is a grouping of bearing var iab les  i n  nondimen- 
s i o n a l  f'orm and is  seen t o  be dependent upon the  e c c e n t r i c i t y  r a t i o ,  
o r  a t t i t u d e ,  n. This t e r m  is the  capacity number Cn and may be 
recognized a s  t he  Sommerfeld number S t i m e s  the  square of  the  length- 
diameter r a t i o .  Thus, 
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Att i tude  Angle $ 

The angular pos i t i on  of t he  l i n e  of ac t ion  of the load P with 
respect t o  the  loca t ion  of t he  minimum f i l m  thickness, o r  point  of 
c l o s e s t  approach, is the  a t t i t u d e  angle 
which may be detennined from: 

@, as shown i n  f igu re  7, 

PY t a n  @ = - 
PX 

Figure 8 shows t h e  journal  bearing reor ien ted  such t h a t  the  load 
l i n e  of ac t ion  is v e r t i c a l .  

Peak-Pressure Angle a 

The angular pos i t ion  o f  the loca t ion  of peak pressure with respect 
t o  the  load l i n e  is  the  peak-pressure angle a as shown i n  f igu re  8. 
By determining emax, the  angle a t  which maximum pressure a c t s ,  a may 
be determined. D i f f e ren t i a t ing  equation (13) with respect  t o  8 and 
rnax i 'mi z ing : 

a = @ - (180 - emax) 

F r i c t ion  Variable f v  

Because of the assumed l i n e a r  ve loc i ty  p r o f i l e  i n  the  o i l  f i l m  i n  
the c i r c W e r e n t i a 1  d i r ec t ion ,  t he  shearing stress a t  any loca t ion  8 
is the  same a t  both the  journal  surface and the  bearing surface and 
may be expressed as: 
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The c i rcumferent ia l  f r i c t i o n  force may be evaluated by the f o l -  
lowing in t eg ra l  : 

With h i= C r ( l  + n COS e ) ,  then 

The coef f ic ien t  o f , f r i c t i o n  f is  commonly defined as the r a t i o  
of f r i c t i o n  force  t o  the  appl ied load. 
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The first equivalent of f v  i n  equation (213 is  the  f r i c t i o n  
var iable  representing a nondimensional grouping of 'bearing var iables  
including the coe f f i c i en t  of f r i c t i o n .  The f r i c t i o n  var iable  is bas i -  
c a l l y  dependent upon the  eccen t r i c i ty  r a t i o  as indicated by the last 
equivalent which a l s o  includes the capacity number. 

O i l  Flow Number qn 

Equation (6a) may be used t o  determine the rate of o i l  flow dis- 
charging from the two ends of the bearing. Proper subs t i t u t ion  f o r  h 
and dp/dz 
point  i n  the o i l  f i l m :  

gives the following expression f o r  the  a x i a l  flow a t  any 

A t  the  ends of the bearing: 

' The above equations indicate  t h a t  the a x i a l  flow w i l l  be outward 
from the bearing i n  the region of the converging f i l m  0 < 8 < II where 
the pressures are posi t ive.  They a l s o  show that i n  order t o  develop 
negative pressures i n  the  f i l m  a t  
a x i a l l y  inward. A reservoi r  of f l u i d  must be ava i lab le  a t  the ends of 
the bearing as a source of supply. The rate of outward a x i a l  o i l  
flow Q a t  the  ends of the bearing from t h e  region of pos i t ive  pres- 
sure  is given by the  following in tegra l :  

II < 8 < 2n, t he  o i l  flow must be 

= Ucrln 

= fidkd n 
2 
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Equation (22) gives the  flow which is the  r e s u l t  of hydrodynamic 
ac t ion  of the load-carrying film, and it is seen t o  depend upon the  
eccen t r i c i ty  r a t i o  n. The rate of flow t o  be supplied t o  the  bearing 
through an  i n l e t  hole or grooves on the  unloaded s ide of t he  bearing 
must be equal t o  t h a t  given by equation (22)  which may be looked upon 
as the  required rate of flow. 
dimensional form is the  required o i l  flow number: 

Equation (22) i n  the  following non- 

Qre q 
= n  

N '  
2 

9n = 
RdZCd - 

The required o i l  flow number is seen t o  be numerically equal t o  
the  eccen t r i c i ty  r a t io .  

Peak-Pressure Ratio k 

The r a t i o  k of peak pressure i n  t h e  o i l  f i l m  t o  the  un i t  pressure, 
where the un i t  pressure p' i s  defined as the  load divided by the  pro- 
jec ted  area of the bearing, is  termed peak-pressure r a t io .  Since 61mx 
i s  known, it is seen t h a t  t he  peak pressure is  given a t  z = 0 as: 

P,X 
1 + n cos emX 

Therefore, 

o r  

65rn s i n  e,, 

> 3  = cn (1 + n cos emax 

CURVES FOR SHORT JOURNAL BEARINGS 

A s  shown i n  f igure  9 ,  the  manner i n  which the f i l m  pressures are 
d i s t r ibu ted  i n  the circumferent ia l  d i r ec t ion  i s  dependent upon the 
trigonometric portion of equation (13) which has been termed the  
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pressure-d is t r ibu t ion  function. It may be seen t h a t  the i n t e r e s t i n g  
region of the  d i s t r i b u t i o n  is  i n  the  second quar te r  of t he  converging 
o i l  f i l m  f o r  where the  pressures and pressure grad ien ts  
become grea t  f o r  la rge  values of the  e c c e n t r i c i t y  r a t i o ;  for n = 1.0 
the  maximum pressure approaches an i n f i n i t e  value s ince  the  denominator 
of equation (13) becomes zero a t  The locus of peak values of 
t he  d i s t r i b u t i o n  function shows t h a t  the  maximum pressure i s  a t  8 = fi/2 
f o r  n = 0 and moves t o  the  loca t ion  of minimum f i l m  thickness a t  
8 = I[ f o r  n = 1.0. The curve of f igu re  9 ind ica tes  t h a t  t h e o r e t i c a l l y  
extremely high pressures may be sustained by the  hydrodynamic ac t ion  of 
t h e  lubr icant  without meta l l ic  contact of the  bearing surfaces; i n  
prac t ice ,  t h i s  i s  l imi ted  by the  exactness of the  bearing surfaces ,  
freedom of the lubr icant  from d i r t  and g r i t ,  t he  s t rength  of t he  
materials of t he  bearing surfaces ,  and the r i g i d i t y  of t he  journal  and 
bearing aga ins t  bending o r  o ther  e l a s t i c  deformations. 

x/2 < 0 < x 

8 = x. 

The form of equation (13) for shor t  bearings may be compared with 
the  following d i s t r i b u t i o n  function as given by Sommerfeld for bearings 
without endwise flow: 

( 2 5 )  
pur 6n(2 + n cos e )  s i n  8 

P = -[ 
cr 2 ( 2  + n2) (1  + n cos 

where po is the datum pressure a t  0 = 0 and x (maximum and minimum 
f i l m  thickness)  which may be ca lcu la ted  from the  pressure a t  t h e  loca- 
t i o n  where the  f l u i d  en te r s  the  bearings, usua l ly  taken a t  
For po = 0, equation ( 2 5 )  gives negative pressures of magnitude equal 
t o  the pos i t ive  pressures. 

0 = 3/2n. 

Att i tude  Angle 6 
As shown i n  the polar  diagram of f igure  10, the  a t t i t u d e  angle i s  

p lo t t ed  as a function of the  e c c e n t r i c i t y  r a t i o  from equation (18). 
The a t t i t u d e  angle gives the  angular pos i t ion  of the  l i n e  through the  
bearing and journa l  cen ters  with respect t o  the  l i n e  of ac t ion  of the 
applied load. A t  values of n near zero, the  l i n e  of centers  is 
near ly  normal t o  the  load l i n e  and becomes p a r a l l e l  t o  the load l i n e  
a t  n = 1.0. The general  shape of the pa th  of t he  journal  center  shown 
has been given by o the r  inves t iga tors  both a n a l y t i c a l l y  and experi-  
mentally. 
menta l  curve h-hose shape is  similar t o  t h e  curve of f igu re  10. A s  may 
be seen, t he  path of' the  journal  is s l i g h t l y  within a semicircle. 

Bradf'ord and Davenport ( re ference  16) have obtained an  experi-  
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The equations given i n  the foregoing sec t ions  show that t h e  quan- 

The capacity number i s  a l s o  r e l a t e d  t o  t h e  eccen t r i c i ty  r a t i o .  
t i t i es  representing bearing behavior a r e  dependent upon e c c e n t r i c i t y  
r a t i o .  
Thus, curves are presented showing short-bearing performance p lo t t ed  as 
a func t ion  of t he  capacity number f o r  s impl i c i ty  and usefulness, as Cn 
is e a s i l y  determined. 
between capacity number and e c c e n t r i c i t y  r a t i o  such t h a t  peak-pressure 
angle, f r i c t i o n  var iab le ,  required o i l  flow number, and peak-pressure 
r a t i o  as w e l l  as e c c e n t r i c i t y  r a t i o  may be p lo t t ed  as functions of the 
capacity number as shown i n  f igu res  11 t o  15. 

Equation (17) gives t h e  required r e l a t ionsh ip  

Customarily e c c e n t r i c i t y  r a t i o  and f r i c t i o n  variable have been 
p lo t t ed  as functions of the  Sommerfeld number i n  which s ingle- l ine  
curves give values f o r  bearings without endwise flow. R e c h t l y ,  f o r  
bearings having endwise flow (reference 5 ) ,  families of curves on the  
bas i s  of Sommerfeld number have been given with length-diameter r a t i o  
as a parameter. 

Because the capacity number includes both the  Sommerfeld number 
and the  square of the length-diameter r a t i o ,  the  curves of f igu res  11 
t o  15 appear as s ing le  l i nes .  To i l l u s t r a t e  t he  bas ic  r o l e  of t he  
capacity number, t h e  same performance quan t i t i e s  a r e  shown p lo t t ed  
aga ins t  Sommerfeld number i n  f igu res  16 t o  20. 

Eccent r ic i ty  r a t i o  n as a function of capacity number Cn i s  
given by t h e  curve of f igu re  11. A s  i n  the case of pressure d i s t r ibu -  
t i on ,  it may be seen t h a t  extremely heavy loads may t h e o r e t i c a l l y  be 
supported by the o i l  f i l m  a t  la rge  values of the  e c c e n t r i c i t y  r a t i o .  
An i n f i n i t e  load is  t h e o r e t i c a l l y  required at n = 1.0 for meta l l ic  
contact  of t h e  bearing surfaces .  Figure 16 shows t h e  f'amily of curves 
which r e s u l t  from p l o t t i n g  e c c e n t r i c i t y  r a t i o  n as a function of t he  
Sommerfeld number S. It may be seen t h a t  for a given e c c e n t r i c i t y  
r a t i o ,  the load capacity increases as the square of the length-diameter 
r a t i o  increases  within t h e  l/d range of sho r t  bearings. 

The curve of f i gu re  12, based on equations (17) t o  ( 2 0 ) ,  shows the  
manner i n  which the angular pos i t i on  a of peak pressure i n  the  o i l  
f i l m  var ies  with capacity number. The peak pressure is shown t o  be a t  
t h e  load l i n e  for n = 1.0; although it i s  not shown, the  loca t ion  of' 
the peak pressure a l s o  approaches the load l i n e  as n approaches zero. 
An i n t e re s t ing  fea ture  i s  t h a t  the maximum angular displacement of the 
peak pressure as given by a is approximately POo a t  n % 0.4 and 
Cn : 0.15. For  comparison, if' t h e  ex ten t  of the o i l  f i l m  i s  considered 
t o  be 271, as i n  the  Sommerf'eld so lu t ion ,  t h e  value of a reaches a 
maximum of' 900 a t  n = 1.0. Figure 17 gives the  values of a i n  f i g -  
ure 12 as a family of curves p lo t t ed  with Somerfe ld  number as abscissa .  
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A s  obtained from equations (21)  and (l7), t h e  f r i c t i o n  var iab le  
as a function of capacity number is  shown i n  figure 13 and as a func- 
t i o n  of Sommerfeld number i n  f igu re  18. The nondimensional forms of 
t he  f r i c t i o n  var iab le  i n  the  two f igures  d i f f e r  i n  that-, as given i n  
f igu re  13, t h e  f r i c t i o n  var iab le  includes t h e  square of t he  length- 
diameter r a t i o  whereas, i n  f igu re  18, it is  i n  t h e  form o r i g i n a l l y  
given by Somerfeld.  Theoret ical ly ,  no d i s t i n c t i o n  can be made between 
f r i c t i o n  var iable  f o r  the  bearing and t h a t  f o r  t h e  journa l  inasmuch as 
the  ve loc i ty  p r o f i l e  i n  the  o i l  f i l m  i s  assumed t o  be l i nea r .  Actually, 
a d i f fe rence  is  thought t o  e x i s t  which depends upon t h e  couple equal 
t o  Pe s i n  @. In  f igu re  18, it appears t h a t  f o r  2/d r a t i o s  g rea t e r  
than 1.0 the  curves of f r i c t i o n  var iab le  would approach t h e  s t r a i g h t  
l i n e  given by Petroff .  

It is i n t e r e s t i n g  t o  note from equation (23)  that the  o i l  flow 
number corresponding t o  the  flow required i n  t h e  loaded tportion of t h e  
f i l m  is  numerically equal t o  the  e c c e n t r i c i t y  r a t i o  n. Therefore, t he  
curve i n  f igu re  14 of required o i l  flow number aga ins t  capacity number 
i s  i d e n t i c a l  with t h e  curve of eccen t r i c i ty  r a t i o  i n  f igure  11. Simi- 
l a r l y ,  t he  curves i n  f igu res  19 and 16 are numerically iden t i ca l .  
Although the  curves a r e  not extended t o  give values a t  n = 0, it may 
be shown t h a t  no o i l  flow i s  required f o r  zero load and n = 0. 

Equation (24) gives the  curve of peak-pressure r a t i o  as a function 
of capacity number i n  f igure  15. 
the  curves of peak-pressure r a t i o  appear as i n  f igure  20. For  t he  
region of low applied loads i n  f igure  15, k is approximately 2.0 and 
rises rap id ly  t o  an  i n f i n i t e  value as the  capacity number approaches 
zero and n approaches 1.0. 

P lo t ted  aga ins t  the Sommerfeld number, 

COMPARISON OF EXPERIMENT WITH TmORY 

Experimental measurements of  o i l  f i l m  pressure d i s t r ibu t ions  i n  
sho r t  bearings were obtained from references 12  and 14, 
compared with t h e  pressure d i s t r ibu t ions  given by equation (13) as 
shown i n  f igu res  21 t o  25. 

These were 

Measurements of bearing c h a r a c t e r i s t i c s  such as e c c e n t r i c i t y  r a t i o ,  
a t t i t u d e  angle, f r i c t i o n  var iab le ,  and o i l  flow number are given i n  
reference 15 where comparisons are shown with t h e  a n a l y t i c a l  values 
obtained from t h e  equations and curves of t h i s  report .  These measure- 
ments ind ica te  t h a t  t he  short-bearing theory is i n  good agreement with 
experiment f o r  bearings having length-diameter r a t i o s  of 1/4, 1/2 and 1. 
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A number of p l a s t e r  models pictured i n  reference 14 show the meas- 
ured o i l  f i l m  pressures i n  a f u l l  journal bearing with babbit l ining.  
Model 2 of the group of f i v e  models represents the  pressure d is t r ibu-  
t i o n  for a bearing of acted upon by a normal cent ra l  load, 
Model 2 alone i s  of i n t e r e s t  since the  other models represent measured 
pressures f o r  bearings acted upon by misalined loads and moments. 

Z/d = 1.0 

The measured circumferential  pressure d is t r ibu t ions  as shown i n  
model 2 are given by the  so l id  l i n e s  of figure 21. Circumferential 
pressures a t  the center  of the 1-- 5 inch-long bearing and a t  1/4, 1/2, 8 
and 3/4 inch on each s ide of center  are shown. 
mentally measured pressures is  such t h a t  the  angle at  the  load l i n e  
i s  goo. 

The p lo t t i ng  of experi- 

The following data  represent t he  conditions which prevailed i n  
taking f i l m  pressure data  for model 2: 

Bearing diameter, d, in. 5 . . . . . . . . . . . . . . . . . . . . .  1- 8 
5 Bearing length, 2 ,  in. . . . . . . . . . . . . . . . . . . . . . .  1- 
8 

Load, P, l b . .  . . . . . . . . . . . . . . . . . . . . . . . . .  2200 . . . . . . .  833 
Speed,.N, r p m  . . . . . . . . . . . . . . . . . . . . . . . . . .  5000 

N ' ,  r p s . .  . . . . . . . . . . . . . . . . . . . . . . . . . .  83.3 
Average f i l m  temperature, O F  . . . . . . . . . . . . . . . . . .  197 
Absolute v iscos i ty  a t  197O F, 16.7 cent ipoises  o r  

p i n r e y n s  6 . . . . . . . . . . . . . . . . . . . . . . .  2 . 4 2 ~ 1 0 -  
D i a m e t r a l  clearance a t  room temperature, in. . . . . . . . . .  0.0033 
Diametral clearance a t  1970 F, in. . . . . . . . . . . . . . .  0.0020 
Radial clearance a t  197O F, in. . . . . . . . . . . . . . . . .  0.0010 

Bearing pressure on projected area, p' , lb/sq in. 

* 

Aviation 1120 o i l  w a s  preheated t o  140' F and pumped in to  the bearing 
a t  a pump pressure of 40 pounds per square inch; the  o i l  entered the 
bearing a t  the center through two 1/8-inch-diameter holes, 430 apart ,  on 
the unloaded s ide of the  bearing. The v iscos i ty  of t he  o i l  given above 
i s  based on the bearing temperature given by a thermocouple located 
1/16 inch from the  bearing surface a t  t h e  center of the bearing on the  
loaded side.  

I n  order t o  calculate  the  ana ly t i ca l  values from equation (13) f o r  
the  above conditions, the eccen t r i c i ty  r a t i o  i s  f i rs t  determined from 
t h e  capacity number and the  curve of f igure  11. Thus, 
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Quanti t y  

At t i tude  a n g l e , l  6, deg 

Peak-pressure angle ,  a, deg 

Peak-pressure r a t i o ,  k 

23 

Exper i mental Analyt ical  

60 60 
20 19F 1 
2.49 2.50 

- 2.42 x 10-6 x 83.3 - 
833 

= 0.159 

and, i n  accordance with f igu re  11, 

n = 0.413 

The ana ly t i ca l  pressure-dis t r ibut ion curves given as the  short-  
bearing-theory curves of  f igure  21 were determined from equation (13)  
f o r  n = 0.415 and z = 0, +_1/4, t1/2, and +3/4 inch as follows: 

n s i n  9 

( I  + n COS e )  3 P = -  2 4  rcr  

Since the angular sca le  8 is d i f f e r e n t  from the  sca le  used i n  
the experiment, two angular sca les  a r e  required d i f f e r i n g  by goo - @. 

From the ana ly t i ca l  values of Cn and n above, t he  following 
quan t i t i e s  are determined from the  curves of figures 10, 12, and 15: 
At t i tude  angle,  peak-pressure angle ,  and peak-pressure r a t i o ,  respec- 
t i ve ly .  These are compared below with the experimental quant i t ies  
taken f'rorn model 2. 
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Figure 21 shows t h a t  t he  ana ly t i ca l  and experimental d i s t r ibu t ions  
are i n  reasonably good agreement except i n  t h e  region of c loses t  approach 
near the ends of the bearing. It i s  believed that if  the  bearing surfaces 
were exact ly  cy l indr ica l ,  and without e l a s t i c  deformation, t he  experi- 
mental curves would meet commonly a t  the  pos i t ion  of c loses t  approach as 
shown by the theo re t i ca l  curves. The a c t u a l  posi t ion of c loses t  approach 
may be var iable  along the  length of the  bearing because of def lec t ion  and 
be llmout hing . 

The experimental curves of model 2 are t h e  averages af pressures 
taken f o r  clockwise and counterclockwise ro t a t ion  of the journal; a l so ,  
they are averages of pressures at  corresponding points  each s ide  of the  
cen t r a l  transverse plane of the  bearing, as indicated i n  reference 14. 
The pressures of model 2 were measured over an angular range of approxi- 
mately 180° so t h a t  it is  not possible t o  compare the  theo re t i ca l  d i s -  
t r i b u t i o n  function over the  f u l l  1'30O. 
son is  made i n  t h e  important higher-pressure range. 

However, as shown, the  compari- 

In  the  calculat ion of capacity number, it may' be seen t h a t  t he  
determination of t he  bearing clearance a t  operating f i l m  temperature is  
of  c r i t i c a l  importance; using the  room-temperature clearance would r e s u l t  
i n  a much l a rge r  eccen t r i c i ty  r a t i o .  
diametral clearance as a function of t he  operating f i l m  temperature of 
the  tes t  bearing used t o  obtain da ta  f o r  model 2. This curve w a s  deter-  
mined experimentally by slowly increasing the  speed of t he  journal and 
thereby increasing the  f i l m  temperature t o  t h e  point where the  d i f f e r -  
e n t i a l  expansion of the journal  and bearing caused inc ip ien t  seizure  of 
the par t s .  A t  se izure ,  the  room-temperature clearance is  reduced t o  
zero, giving a measure of the  change i n  clearance as a function of film 
temperature. 
t i ons  a t  room temperature give three points  t o  determine the  curve. 

Figure 26 gives t h e  changes i n  

A s  i s  shown i n  f igure  26, two seizure points  and condi- 

Curves of circumferential  pressure d i s t r ibu t ion  as given analyti- 
c a l l y  by Sommerfeld's so lu t ion  f o r  bearings having no endwise flow are 
a l s o  shown i n  f igure  21. The eccen t r i c i ty  r a t i o  as given by the  following 
equation is n = 0.106 f o r  t h e  conditions of model 2: 

It may be seen t h a t  the eccen t r i c i ty  r a t i o  determined by the  

This i s  a consequence primarily of  assuming t h a t  the 
Sommerfeld equation i s  about one-fourth of t h a t  determined by the  short-  
bearing theory. 
unloaded s ide ,of the  bearing contributes t o  the support of the applied 
load. 
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Using the value of n = 0.106, t h e  pressure d i s t r ibu t ion  is given by 
equation (25). The value of po may be determined by tak ing  the  pres- 
sure  a t  
Subs t i tu t ing  i n  equation (25) : 

8 = 3/211 as the  i n l e t  pressure of 40 pounds per  square inch. 

P = - - (  pur 12n ) + P o  

cr2 2 + n2 

2.42 x 10-6 x 2fi x 83.3 x 0 .812~  1.2 X 0.106 + k0 
Po = (0.001)2 (2 + 0.0112) 

= 570 lb/sq in.  

Equation (25) a l s o  gives the  pressure d is t r ibu t ion:  

]+ Po 
P = - [  pur 6n(2 + n cos e )  s i n  8 

Cr2 (2 + n2)(1 + n 'cos  e12 

] + 570 - 2.42 x x 2x x 83.3 x 0.8122 

(0.001)2 
- 

+ 0.106 cos e )  s i n  e 
(1 + 0.106 COS e ) 2  

- - 2 6 4 ~ 2  ] + 570 

The values of pressure from the above equation are shown p lo t ted  as 
a s ingle  curve i n  f igure  21. The angular sca le  8 coincides with t h a t  
used i n  the  experiment because the  Somerfeld theory places the  load 
l i n e  a t  e = 90'. 

It may be seen t h a t  the  values from the short-bearing approximation 
are i n  close agreement with the experimental data presented. Comparing 
the two ana ly t i ca l  solut ions is not completely j u s t i f i e d  because the  
short-bearing theory i s  based on the assumption of a ruptured film 
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Quantity 

Capacity number, Cn 
Eccentricity r a t io ,  n 
Atti tude anglel ,  Id, deg 

Peak-pressure angle, a, deg 

Peak-pressure r a t io ,  k 

extending degrees whereas the  Sommerfeld so lu t ion  i s  based on a com- 
p l e t e  f i l m  of 2n degrees. If t h e  Sommerfeld case w e r e  based on a 
ruptured f i l m ,  t he  e c c e n t r i c i t y  r a t i o  would be more near ly  equal  t o  t h e  
short-bearing value. However, t he  pressure d i s t r ibu t ions  by the  two 
theor ies  cannot be similar s ince the  Sommerfeld so lu t ion  gives no a x i a l  
va r i a t ions  i n  f i l m  pressure.  

Test No. 1 

Experi- Analyt- 
mental i c a l  

---- 0.0815 
0 555 ---- 

50 50 

12L 1% 
3.06 3.00 

2 

Comparison with Experiments by McKee and McKee 

Eight cases of experimental pressure d i s t r ibu t ions  i n  bearings of 
under normal c e n t r a l  load are presented by McKee and McKee 2/d = 1.15 

i n  reference 12. Four of t h e  experiments w e r e  conducted on a journal  
bearing having a diametral  clearance of 0.007 inch and four,  on a 
bearing having 0.002-inch clearance. Both bearings were 1.00 inch long 
and 0.87 inch i n  diameter. Maximum applied loads were 25 Founds and 
the  maximum journal  speed w a s  592 rpm. The bearings were operated com- 
p l e t e l y  submerged i n  the lubr ica t ing  o i l ,  and the temperature of the 
o i l  w a s  measured with a thermometer located i n  the  o i l  ba th  severa l  
inches from the  bearing f i l m .  

I n  f igures  22 t o  25, a comparison is  made of the  experimental d i s -  
t r i bu t ions  with those given by the  short-bearing funct ion f o r  the  four  
t e s t s  with the  diametral  clearance of 0.005 inch. The agreement between 
experiment and theory w a s  b e t t e r  f o r  these tests than f o r  those with 
0.002-inch diametral  clearance.  Calculations of capaci ty  number, 
e c c e n t r i c i t y  r a t i o ,  pressure d i s t r ibu t ion ,  a t t i t u d e  angle ,  peak-pressure 
angle, and peak-pressure r a t i o  were made i n  the  same manner as f o r  
model 2. Some of the  a n a l y t i c a l  and experimental quant i t ies  are com- 
pared i n  the table below. 

Test No. 2 I T e s t  No. 3 I Test, No. 4 I 
Zxperi- 
nental 

---- 
---- 
48 

12 

3.13 

0.0352 
0.688 

lAnalytical  value of @ i s  measured from load l i n e  t o  location of zero pressure which 
theo re t i ca l ly  coincides with minimmu f i l m  thickness. 

The experimental values of peak-pressure angle and peak-pressure 
r a t i o  f o r  both clearances are compared with the  short-bearing a n a l y t i c a l  
curves i n  f igures  27 and 28. It may be seen t h a t  the  agreement between 
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experiment and theory is not as close f o r  the 0.002-inch clearance as 
f o r  the  l a rge r  clearance. The experimental values of peak-pressure 
angle i n  f igure  27 appear t o  be qui te  divergent from t h e  ana ly t i ca l  
values given by the  curve. However, as may be seen i n  the pressure- 
d i s t r i b u t i o n  curves of figures 22 t o  25, t h i s  divergence is less con- 
spicuous on a d i f f e r e n t  angular scale .  
it may be seen t h a t  t he  divergence of  the experimental and analytical 
pressures is  such that the  ana ly t i ca l  values represent an  average of 
the experimental values which are i n  some instances above and i n  some 
instances below the ana ly t i ca l  ones. 

I n  comparing f igures  22 t o  25, 

Although the  comparisons of the  ana ly t i ca l  quant i t ies  with those 
by McKee and McKee are not as close as those with model 2, it may be 
seen from the preceding table and f igures  22 t o  25 t h a t  the agreement 
i s  reasonable as t o  order of magnitude of pressures and the  shape of 
the  pressure-dis t r ibut ion curves. It i s  in t e re s t ing  t o  note t h a t  the  
region of pressures below atmospheric as shown experimentally is  small 
enough t o  be considered negl igible  as i s  assumed i n  the  short-bearing 
approximation. 

COMPARISON OF ANALYTICAL CURVES 

I n  both the  ana ly t i ca l  work of Cameron and Wood (reference 5 )  and 
i n  the  Short-bearing approximation of  t h i s  repor t ,  length-diameter r a t i o  
has been incorporated as an important var iable  i n  journal-bearing per- 
formance. For t h i s  reason, a comparison i s  made i n  f igures  29 t o  31 of 
curves of eccen t r i c i ty  r a t i o ,  a t t i t u d e  angle, and f r i c t i o n  var iable  as 
given by these ana ly t i ca l  solutions.  I n  addition5 ana ly t i ca l  curves 
determined by Sommerfeld (reference 8)  f o r  bearings without endwise f low 
are a l s o  shown for comparison. 

The differences i n  the  ana ly t i ca l  solut ions l i e  i n  the basic  assump- 
t i ons  made i n  each case. Both the solut ions by Cameron and Wood and the  
short-bearing approxirnation assume a ruptured f i l m ,  d i f f e r ing  from the 
Sommerfeld so lu t ion  which assumes a continuous f i l m  of 271 degrees. 
This difference i s  of grea t  influence as shown i n  the curves of eccen- 
t r i c i t y  r a t i o  and a t t i t u d e  angle i n  f igures  29 and 30; the  curves 
representing the  two ana ly t i ca l  solut ions assuming ruptured films are 
i n  reasonably good agreement but are qui te  divergent from the so lu t ion  
depending upon a continuous f i l m .  

An important difference between the so lu t ion  by Cameron and Wood 
and the  short-bearing so lu t ion  is t h a t  the  former is based on a ruptured 
film whose extent  depends upon the  Sommerfeld number and the  la t te r  
assumes t h a t  t he  ruptured f i lm  extends 71 degrees f o r  a l l  values of t he  
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Sommerfeld number, Another important difference i s  t h a t  the so lu t ion  
by Cameron and Wood is  exact  mathematically i n  sa t i s fy ing  Reynolds' 
equation (equation (1)) whereas the  short-bearing .solut ion is  not 
because of i t s  assumption of a l i n e a r  ve loc i ty  p r o f i l e  i n  the  circum- 
f e r e n t i a l  d i r ec t ion  of f l u i d  flow. It is in t e re s t ing  t o  note t h a t  t h e  
two so lu t ions  f o r  eccen t r i c i ty  r a t i o  and a t t i t u d e  angle are less diver- 
gent as 2/d becomes smaller and approach each o ther  as 2/d approaches 
zero. 

Although the  Sommerfeld solut ion,  as shown i n  f igure  29, gives low 
values of eccen t r i c i ty  r a t i o  a t  the  high Sommerfeld numbers, it is  
in t e re s t ing  t o  note that it gives higher eccen t r i c i ty  r a t i o s  than t h e  
short-bearing so lu t ion  i n  the  heavily loaded region of low Sommerfeld 
numbers. In te rsec t ions  of t he  Somerfe ld  curve with short-bearing 
curves represent i den t i ca l  conditions of load and eccen t r i c i ty  r a t io ,  
Apparently the  Sommerfeld curve and the  curves p lo t t ed  by Cameron and 
Wood f o r  do not i n t e r sec t  as is indicated by the ' two curves 
i n  f igure  29. 

2/d = m 

Figure 31 compares f r i c t i o n  var iable  as given by the  three analyt-  

2/d r a t io s .  
i c a l  solutions.  Again the  theory of Cameron and Wood and the  short-  
bearing theory are i n  c lose agreement as t o  the  e f f e c t  of 
Because the  so lu t ion  by Cameron and Wood satisfies Reynolds' equation, 
it shows a difference i n  f r i c t i o n  var iable  f o r  t he  bearing and f o r  t h e  
journal  as shown i n  f igu re  31; the  short-bearing so lu t ion  does not 
ind ica te  t h i s  difference because of t he  assumed l i n e a r  circumferential  
f i l m  ve loc i ty  p ro f i l e .  For an 2/d grea te r  than 1.0, a l l  solut ions 
are w e l l  approximated by the  Petroff  l i n e  a t  t h e  high Sommerfeld num- 
bers. It is in t e re s t ing  t h a t  a l l  solut ions assume a 2n f i l m  i n  deter- 
mining the  f r i c t i o n  var iable  although a ruptured film i s  assumed i n  two 
instances. Apparently t h i s  assumption i s  v a l i d  from the  experimental 
r e s u l t s  given i n  reference 15 and from experiments by many o ther  
invest igators .  

An important fea ture  of the  Sommerfeld so lu t ion  and the short-  
bearing so lu t ion  is t h a t  t he  solut ions appear i n  equation form giving 
simple re la t ionships  among t h e  bearing var iables  i n  nondimensional 
quant i t ies  such as the Somerfe ld  number and the capacity number. 

C ONC LUS IONS 

From comparisons of experimental data f o r  f i lm pressure d i s t r ibu -  
t i o n  with the  a n a l y t i c a l  values as given by the  short-bearing approxi- 
mation and the theo re t i ca l  curves of Sommerfeld and Cameron and Wood, 
the following conclusions may be drawn: 
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1. The assumption of a l inea r  circumferential  veloci ty  p ro f i l e  
appears t o  be a good approximation of journal-bearing behavior f o r  
shor t  bearings but a l imi t ing  length-diameter r a t i o  t o  which the  
assumption is appl icable  probably ex is t s .  Experimental data on eccen- 
t r i c i t y  r a t i o  as given i n  NACA TN 2809 show agreement within p rac t i ca l  
l i m i t s  with the  ana ly t i ca l  approximation a t  length-diameter r a t i o s  of 
1/4, 1/2, and 1.0. 

2. The assumption of a separated o i l  film on the  unloaded s ide is  
representat ive of tes t -bear ing behavior. It is in te res t ing  t o  note 
that the  ana ly t i ca l  r e s u l t s  of Cameron and Wood and the  short-bearing 
approximation agree on t h i s  assumption and t h a t  the  resu l t ing  curves 
by the two analyses are i n  reasonable agreement i n  the  range of low 
length-diameter r a t io s .  

3. The short-bearing approximation yields  equations which give 
Eccentr ic i ty  s implif ied relat ionships  among the  bearing variables.  

r a t i o ,  a t t i t u d e  angle, locat ion and magnitude of peak f i l m  pressure, 
f r i c t i o n ,  and required o i l  flow rate are given as s ingle- l ine curves 
when p lo t ted  with respect t o  the capacity number. 

4. The capacity number is  a basic  nondimensional quantity which 
includes the  length-diameter r a t i o  as w e l l  as the  usual  quant i t ies  
such as load, speed, viscosi ty ,  and clearance. These curves are of 
p r a c t i c a l  value as charts  f o r  analysis  of short  bearings. 

. 5 .  The short-bearing approximation and the  Sommerfeld equations 
f o r  long bearings may be considered as s i m i l a r  types of solut ion based 
on d i f fe ren t  assumptions, and each has a range of length-diameter r a t i o s  
i n  which it is useful. 

C orne 11 Unive rs it y 
Ithaca,  N. Y., March 28, 1952 
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APPENDIX 

INTEGRATIONS OF TRIGONOMETRIC FUNCTIONS IN 

EQUATIONS (14) AND (lh) 

For equation (14): 

Subs t i t u t  ing : 

- 1 1 - - -  COS e 
(1 + n cos e )  n n ( 1  + n cos e) 

then 
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For equation (lh): 

-n s i n  8 d0 s i n  8 x n sin20 de 
(1 + n cos e)  3 

By using 

u = s i n  8 

and i f  

then 

.- 

du = C O S  8 de 

-n s i n  0 d0 dv = 
(1 + n cos 0 )  3 

If 
cos 0 de - - cos 8 d0 - 

(1 + n cos 012 

s i n  0 

+ n cos 0 )  o (1 + n cos 012 
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Using Sommerfeld' s subst i tut ions:  

NACA TN 2808 

and 

2 1 - n  1 + n cos 8 = 
(1 - n cos a) 

then 

(1 - n cos a) = 
2n(1 - n2) 2n(1 - n2) 312 

En 

2(1 - n2,3I2 
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Figure 1.- Flu id  element i n  converging o i l  f i l m  of cy l ind r i ca l  bear ing 
w i t h  endwise f l o w .  

(a) In  x-direct ion where 
aTx aP 
ay ax’ - = -  

(b) I n  z-direct ion where -. . 

FLgure 2.- Assumed forces ac t ing  on f l u i d  element. 
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( a )  IE x-direct ion where (b) In  z-direct ion where 

Figure 3.- Velocity p r o f i l e s  i n  o i l  film. 

(a) Normal t o  x-direct ion where (b) Normal t o  z-direct ion where 

Figure 4.- Quant i ty  of  flow per un i t  time through elemental plane. 
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w- 
Figure 5.- Quantit ies of flow enter ing and leaving f l u i d  element as given 

a, 
ax aZ by - dx + 2 dz = 0. 

(a) I n  x-direction 

+ p  I 

(b)  In  z-direction 

Figure 6.- Pressure d i s t r ibu t ion  i n  a f u l l  cy l ind r i ca l  bearing as given 
by I!=--- ~VU(,, zp) n s i n  e 

3' (I + n COS e )  rc,2 4 
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X 

Figure 7.- System of coordinates chosen f o r  in tegra t ion  of pressures and 
determination of a t t i t u d e  angle @. 

Figure 8.- D i a g r a m  showing a t t i t u d e  angle @, maximum-pressure angle emax, 
and peak-pressure angle a. 
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F i v e  10.- P lo t  of eccen t r i c i ty  r a t i o  against  a t t i t u d e  angle of shor t  
bearings showing posi t ion of journal center  with respect  t o  bearing 
center  (based on equation (18)). 
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SNORT-BEARJfU6 APPROXIMAT/OU 

--- C~NERON AN0 WOOD ~?EFERE&CE S) 
----- - SONMERFELD (R€FE/?EENC€ 8) 
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Figure 30. - E c c e n t r i c i t y  r a t i o  p l o t t e d  a g a i n s t  a t t i t u d e  angle  f o r  
comparison o f  t h e o r e t i c a l  curves.  
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