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TECHNICAJ NOTE 2837

CORRECTIONS FOR DRAG, LIFT, AND MOMENT OF AN AXIALLY

SYMMETRICAL BODY PLACED IN A SUPERSONIC TUNNEL

HAVING A TWO-DIMENSIONAL PRESSURE GIMDIENT

By I. J. Kolodner, 3’.Reiche, and H. F. Ludloff

The corrections for drag, lift, and moment are derived for an
axially symmetrical bcxlypkced in the test section of a supersonic tun-
nel, on the assumption that the test section is characterized by a two-
dimensional pressure field originating from construction flaws. Although
relatively simple longitudinal and transverse pressure gradients are
assumed, the analytical treatment beccnnesrather difficult because of the
difference in symmetry between the body and the basic flow field.

Assuming irrotational conditions, the velocity potential of the flow
around,the body is expanded in a threefold manner: (1) In powers of the
thickness parameter of the bdy c, (2) in powers of a parameter b
ckracterizing the inhamogeneity of the basic flow field, and (3) as a
Fourier series in the azimuth f3 around the baly atis. Each expansion
is taken into account not further than up to the second term.

Upon substitution of this potential series, the nonlinear eqwtion
of motion and the boundary condition on the body surface are split into
a set of linearized boundary-~lue problems which can be solved analfii-
Cally. The mathematical techniques used for the solution are explained
in appendixes.

Assuming the two-dimensionalpressure field, the drag, lift, and
mom~t corrections for arbitrary bcdy shapes are obtained in closed ana-
lytic form. The physical meaning of the results and their validity are
discussed.

INTRODUCTION

Consider an axially symmetrical bcdy placed in the test section of
a supersonic tunnel. The test section, instead of providing uniform
flow, my be chamcterized by a two-dimensionalpressure field. In

—-— —. ~ _ .——. .. . ..—



2 NACA TN 283’7

geneml, such a pressm field will consist of a longitudinal as well
as a transverse pressure gmdient, prcducing a stream-anglevariation
along the tunnel axis.

The difference in symmetry between the body and the field engen-
ders considerable difficulty in the analy+ic trea-t of the problan,
involving a Fourier expansion of the disturbance potential of the bdy.
Therefore, a relatively shple, linear gradient is assumed: On the axis,
the horizontal component of velocity BY equal the original velocity of
the uniform stream Uo, but the tmnsverse gradient may produce a verti-

cal velocity ccmrponent

‘Y
= bx (1)

yielding the desired stream-anglevar~tion. Here b is a small param-
eter which chamcterizes the first-ofier deviation of the actual basic
flow from the uniform field.

This work was done at New York University under the sponsorship and
with the financial assistance of the National Advisory Cammittee for
Aeronautics.

SYMBOLS

b parameter characterizing inhmuogeneity of pressure field

% = bZ/co

c 10C?31 sound

co sound speed

D drag

speed

corresponding

f(x) bcdy profile function

L

2

M

lift

bmiy length

moment

to U.

————
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M. =

P

P.

~2 .

U.

Uolco

local static pressure

static pressure at velocity U.

U2+V*+W’2

original velocity of basic field

U,v,w axial, radial, and circumferentialvelocity components
*

x,r,(3 cylindrical coo*tes

X,y,z rectangular coordinates

a local angle of attack

*7 adiahtic exponent

6 bmiy thickness parameter

P local density

Po density at velocity U.

T potential function

TWO-DIMENSIONAL EM51C FLOW FIELO

The two-dimensionalvelocity potential q of the basic flow field
satisfies the well-known potential equation:

(2)

_—. —.. . —



4 NACA TN 2837

where c is the local velocity of sound. The Eernoulli equation yields

co (2+7- lUo2_q2
2 )

~2
= QX2 + 9Y2

co is the value of c when q = Uoj ~d 7
exponent.

Now assume that the basic potent~l may
power series in b:

This procedure will

q. P+l-qol+#cpo2+

is the adiabatic

be represented as
.

. . .

(3)

a fomal

(4)

permit determination of the functions ~oo, ~ol,

and so forth. It is immterial whether this procedure will lead to a
convergent power series, since the res~ts ~Y be considered as satis-
factory even if the series has only an asymptotic character.

Choose

~oo = Uox

and require that for y = O (i.e., on the x-axis)

q)x=Uo

qy = bx
)

(see “Introduction”). This @plies that, for y = O,

~ol=o
x

.

for n>l
}

(5)

(6)

(7)

.—
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.

Inserting equation (4) into equation (2) and requiring that this be an
identity in b, it is found that, up to second-otier terms in b,

(8)

where

~2.u!!-l.Mo2-l
co

and

B2&@ - ‘?Vop = -M:
{[ 1

}

(y + 1) +’(7 - 1)B2 qxo~=ol + 2q#cpwol (9)

The geneml solution of equation (8) is

where f and

In order

~ol
= f(x -BOY) + E+ + $OY) ‘

g are arbitm~ functions.

that conditions (7) be satisfied, one must have

f’(x) + g’(x) = o

-p@(x) - g(’x~ ‘x

This i.mplie’sthat

from which it

f(x) = -g(x) =-&x?

follows that

[ I@l=L (x+ py)p : (x- fly)p
“ 4p ‘w (lo)

_ .——
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Inserting this result into equation (9) gives

M.
Now, -— X3

3P*C0
general solution

where F and G

that

P*T=02-b-Y02=-#& (ga)

is a particular solution of equation (%). Hence, the

is

~02 = Mo X3 +F(x - Py) +G(x+ BY)
-~

●

are arbitrary functions.

Proceeding as before to

Substitution yields

From equations
becomes:

, F(x)

for q02

satisfy conditions (7), one easily finds

M.
=G(x) =— X3

6P2C0

the simple form

02 M.
T co XY2=— (11)

(4), (10), and (11), the potential of the basic flow

nasic
%~b2 +...

‘uox+b~+co

Hence:

Px ‘0 fb2 +...=Uo+by+= 1
M.

‘Y
=bx+2 ~xyb2+ . . . I

b

(12)

(13)

—.—. -— -———— .——
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The equation of the streamlines, in the present
turns out to be:

2M2-1
Y-gc #b + ‘2 -1 ysbp =~x?b

00 co2 aoco

appro~tion,

+ constant (14)

From the Eernoulli equation (equation (3)), in combination with the
adiabatic relations

=2 = 1#
P

(15)
2

‘0=7

where p is the density, one obtains
the expression:

__ (@2”=&
Po 2p02c02

Using eqmtions (13), this yields, up

@ . JJoyb - ~
Po

and on the x-axis,

P.
~
.1

for the excess pressure @ = p - p.

*(uop - qz) (16) ‘

to second-order terms in b,

— J

&_l/#—-. .
Po 2

(17a)

(17b)

.

—...—. ———~ —— —— .—.—
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Therefore the pressure gradient of the basic flow has the two components:
r.

Px,= (&)x = -Poxb2

}

w

. Py (= (@)y=-PoUob- PoMo2+l)yb2

(18)

In the manner indicated above, all the higher-otier coefficients in
the expansion for q could be determined successively. (They turn out,
indeed, to be polynomials in x and y.) These coefficientsare, how-
ever, not needed in the present work. It is understock that expres-
sions (12), (13), and (17) for the basic potential, the corresponding
velocity components, and the excess pressure are valid only in a
restricted region of the working section around the disturbing body.

AXIALLY SU0E3TUCAL SLENDER BODY IN TWO-DIMENSIONAL

BASIC FIAW - THE DISTUFU31NCEPOTENTIAL

It is assumed
mately written as

(p . (qw

This assumption is

Differential Equations

that the

+ t& +

total velocity potential

b~02) + (@O + be2@1)

by no means trivial nor arbitmry.
by the fact that in this way it is possible to sati8fy the bohdary con-
~tions on the bcdy and the-’’characteristiccondition~’(see appen&x A)
in such a way that the error committed-in cp-as given by equation (19)
is small compared with the terms written down. The method adopted here
is such that it can be extended (stepwise) to better and better approxi-
mations. It is not obvious, however, what the dependence of the next
term on b and e is. The method, if pushed further, leads to a
formal series in b, c, and loge E, with, at best, an asymptotic char-
acter. For further elucidation, see the section “Boundary Conditions.”

The terms in the first parentheses in equation (19) represent the
basic flow potential as discussed in the section “Two-DtiensionalBasic
Flow Field,” while those in the second parentheses represent the disturb-
ance potential prcduced by the body, and c is the thickness parameter

.

.

q can be approxi-

+... (19)

It is justified

—
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.,
of the body whose equation, written in cylindrical coordinates (r, 19,
x), is assumed to be

f(o) = f(2) = o

The first term in the disturbance potential is the well-known term of
the linearized theory. The second term represents the influence of the
pressure gradient (of the basic flow) on the disturbance potential. In
the present work, higher-order appro~tions will not be considered.

An important and rather restrictive assumption has been tacitly
made by using expansion (19) for cp,nsmely, that

(In order to compare different orders of magnitude, the dimension-
less quantity ~ = bZ/co is intraiuced. In the equations in the text,

the dimensional parameter b- is kept, and inequality (20) is taken into
considemtion in a suitable manner.)

That expression (20) follows from equation (19) can be seen from
the following argumentation: If one sets 6 = O, the potential p must
reduce to the basic potential, since a needlelike object prcduces no
disturbance in-a three-dimensionalflow. On the other hand, if one
sets b = O (i.e., assumes that the ksic flow is uniform), q must
reduce to the disturbance potential of a body moving in uniform flow.
It is well-known (see reference 1) that the ~econd term of this poten-

tial is of the order e4 lo% .s. This term has been omitted in equa-

tion (19) as small compared with a term in ~2b, and this is permissible

only if ~ >> C2 loge ~. On the other hand,

potential has been omitted as small compared

in particular, 2with the smallest term be .
Without this restrictive assumption (20) the
become prohibitive.

The cylindrical
a way that the plane

coordinates x, r, and

the term in b3 in the basic

with all terms written down,

This implies that ~<< c.
computationalwork would

6 are introduced in
of the -basicflow is the plane 6 =“0. Then,

such

,—-.— -—.—————
—
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putting y = r cos e and z = r sin 19,the potential equation for
q(x,r,O) becomes

(21)

~’ is again given by eqwtion (3), where now q2_”2Here, - ‘?X + Qr
2+1

~ %2”

Inserting expansion (19) into potential equation (21), and ordering terns

in powers of b and G, one obtains in orders b and b’ equations (8)

~d (9); in order 62,

in order ~’b,

tial

M

{[ 1 }-: (7 + 1) + ($ - 1)P2 W=10 + %&lo + a?r~o Cos e

(22)

(23) .

Equation (22) is the well--own equation for the linearized poten-
&o- The term 10 has been omitted since, as is well-known,4 Tn.

r~ ‘u
the linearized potential does not depend on 6. Equation (23) for the

“inten3ction potential” cp11 is inhomogeneous and, since its right-hand

side involves 0 explicitly; &l certainly depends on 13. Expanding

Q1l into a Fourier series (since the problem is symnetric in 19, &l
is obviously a cosine Fourier series) there is obtained:

,

.— — — — .—.—
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9“ =s ,J’(x,r)cos .,
n=o

(24)

Substituting equation (24) in equation (23), it is found that the Fourier
coefficients satisfy the differential equations

~2q%ll 11
- Tnrr

11 11
-;9% +;2z Tn =0 n+l (25)

(26)

where

[
S(x,r) = (7 + 1) + (7-

1
1)B2 ~lo + 2@ + @=lo (27)

It @l.1 be shown in the next section that the boundary conditions can be

satisfied only by making qnll ~ O for n ~ 1. Hence the interaction.
potential reduces to

(+J1 = qlll(x,r)cos e (28)

Boundary Conditions

The flow velocity must be tangential to the bmly at its boundary,
hence

Cpr = Ef’(x)w (29)
4

for

r = ef(x)

Inserting expaion (19) in equation (29) and taking account of equa-
tions (5), (10)”, and.(ll)j the boundary con~tion becomes:

●

—. . .—— .——_—.— .——— ——— — ..——__ —.
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(M
bxcos0+b22

)
2 10

& Xr cos2e + c qr +b’25%: co”””. .0 =
n=o

( 2% 2 210+
6f~(x)Uo+brcos6+b -r cos2f3+cqx

b~ z
2W

~nxll cosne +...
n=o )

for

r= Gf’(x)

.

To be able to order the terms of equation (29a) in an appropriate
10 11 dependmanner, it has to be -- how qxlO~ Pr ~ Qx11, and qr

on 6 for r = Gf(x).

T’ms knowledge
ential equation

which vanish to the
approaches Infinity
shown in appendix B

is gained by considering solutions of the differ-

(30)

left of the cone r = x/P and tend to zero as one
along a characteristic r = x/~ + Constant. It is
that such solutions are given by

1-

.
.

_.—— —
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where g(~) is an arbitrary, n times differentiable
identically zero for ~ <0, and that, as r 4 0,

*X =
();1— n+Orn

L(Ologer) n=o

~>

function which is

(32)

d

It may now be shown how the bounda~ conditions for cplO, qll, and

so forth can be determined successively in a unique way. First, @o

()

10=01
satisfies equation (30) with n = O; hen~e ~ for r a’ O,F

2 10and 6 ~r is 0$ the order c for r = cf(x). Matching terns in 6
in equation (29a), one now gets the condition

10 =u~f(x)f’ (x)lti ~r (33)
r~O

This condition

Boundary-Value

determines cp10 uniquely (see the section “Solution of

Problems”). Next-consider ~11 which also satisfies

equation (30) with n = Q.
11

Using equations (32), the term be2qor ,=

as r = cf(x); since there are no other terms of this order in equa-

tion (29a),.onefist set cpoll~ 0, which of course is a solution of

11 for n > 1 are of the order‘equation (25). Now; the terms bc~nr

O(bc)

bcl-n
and become infinite as c ~0, unless *nll~ O for all’values

of n greater than 1. This proves the statement made at the end of the

U does not satisfysection “Differential Equations.” The potential ~

equation (30) but is a solution of an equation with the same left-hand side

with a nonvanishing right-hand side. Thus %11 is obtained by adding

to an expression of the type of equation (31) a particular solution of
equation (26). It is shown in the section “Solution of Boundary-Value

. —--- —. ——— ———— -——-—--—-
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Problems” that it is possible to find such a

the r derivative of higlierorder than ~
2

11 is that of $ for nsingularity of cpl
r

as r ~ O, and the term

b62~11cos@= b2 lim
r

[(iJfx r~O

Term vanishing

part icular solution with
,,

for r ~ O. Hence the
.

= 1, that is, 91
(r)

11=0 1
r T

(%,:’) Cos e +

to higher order

The only term of this order in equation (29a) is bx cos e and so one
gets the condition:

Grouping the =tched and ~tched terms in equation (29a) and
substituting r = cf(x) wherever r appears explicitly, equation (29a)
now reads:

1

[

— ‘h (%’0)- ] *[:. Fe)+Uof(x)f’(x) G +
f(x) r ~ O

1

X#(X) b COS 6 + ‘~ xf(x)b2G + ~ xf(x)b2, COS 2G - f’(X)f(X)&2 COS 6-
co co

M
& f’(x)~(x)b2c3 - ‘+

r

2 10
f?(x)f2(x)b263 COS 2e + ~ Q -

0 0 ,r
L

63Qx10f’(X) - esl)f’(X)~~ 11 COS @+ . . . = O
x

.
(35)

.—
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.

The first two brackets in equation (35) are zero, by virtue of the
imposed boundary conditions (33) and (34). All the unmatched terms

15

are—
of higher order in e and b and ~ be disregarded. In particular,,
the terms in the last two sets of brackets are of order higher than e
and b, respectively,whereas the last two terms are of the order

~310~~ and ~%, respectively, as maybe seen by equations (32).
These terms could be retched only by considering higher approximations
to q.

The preceding discussion rmkes clear how to proceed with higher-
order approximations. The various terms in the expansion all satisfy
equations of the type of equation (30) with nonhomogeneous terms. At
each step only a finite number of Fourier coefficientswill be con-
sidered. The singular behavior of these Fourier coefficients becomes
worse with the order of the coefficients, but this is in turn compen-
sated by an appropriately large exponent of 6 in the expansion, thus
making the coefficients appropriately small at the boundary of the body.

Solution of Boundary-Value Problems

The solution of equation (22) with boundary conditia (33) is the
well-known expression for the linearized disturbance potential of the
K&&n-Moore problan, which is used herein in the fonu given by Courant
and Friedrichs (see reference 2)

where

k(x) =~f2(x)

This is exactly the solution $ of equation (31) with n = O and

1 u+’(x).g(x) =2 Clearly, using e“quation(B6b) of appendix B,

r~o(~~O) =2g(x)= Uof(X)f’(x). Itisassumed that:

(37)
,

f(o) = f(2)’=o

._..— - .—..—. - .-. ———-— .——— —— -——————- ——-—-— —————-—-—— —-- --—
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This implies that

k(0) =k(l) = O

1 (37a)
k’(0) =k’(Z) =oJ

Us~g formulas (Ill)and (B4) of appendix B, upon setting n = O and

1 u&t(x), it follows that:g(x) =2

if

x-pr
~ 10 . -U.
x,

o

J
x/Pr

= -U.
1 *

(38)

TO solve equation (26) for qlll subject to boundary condition (34),

one must first find a @rticular solution of equation (26) and add to it
an appro@ate solution of equation (26) with the right-hand side equal
to zero (homogeneouscase), such that the sum satisfies the required
boundarg condition, equation (34). It is verified in appendix C that a
particular solution of equation (26) is given by

()
*qp

[
SY&lo:qxm+ 1‘02(7‘ 1)&r10 (39)

4B2

——-



3W NACA TN 2837

It is observed that:

()11 *=0r291 ~
r :? o

(40)

This follows,

()
%xlO=O; J

since
()

@O = O(loge r), ~10 = O(loge r), qrl-o= O * ,

‘d .%r
()

10=OA, in virtue of equations (32) with n = O.
~2
\/

Hence the appropriate solution of the homogeneous equation
(),91

11 * ~t

satisfy the same boundary condition as that imposed on cplU itself;

().T1
11 *

is now immediately found, since it satisfies equation (30) with

n= 1, and

( )=Mm r2 %11 r = -x#(x) = - 2xk(x)

By equation (B&), appendix B, the desired solution is obtained from
,

formula (31) with n = 1 and g(x) = -&k(x). Hence:,

Using eqmtions (39), (41), (36), and (38), there is finally

(41)

obtained

#= (,>’)’+ (,:’)-

J cx/~r kt(x -fh’”r)+xk’’(x - $rrfl dr
. -Mo2r

El

+
1

[
x/P)7T ~(x - f3rT)+ 2(x- f3rT)k’(x-

13J 1PM) +Pr2k”(x - j3rT)aT

‘K

(42)
1

...——- --- -——-———- ——— —.—— — —



where

~ =M04(7 + 1)

W2

Differentiating, one gets:

X/~ T bkt(~
Pj’ - pm) + 2(x- prT)k’l(x- &T) +P#k’”(x - &rj_ dT

dz

+

1

(P- ?l~)*“‘ ‘0) (43)

and obviously:

(44)

.—. — —
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COMPUTATION OF VELOCITIES, PRESWS, AND FORCES

Velocity Components on Surface of Body

Denote by u, v, and w the axial, radial, and circumferential
velocity components, respectively,and split each one into three parts,
due to the &sic potential, the first-otier disturbance potential, and
the interaction potential. The first of these are computed immediately
from equation (12), whereas the computations involved in evaluating the
others are carried out in appendix D.

In the following relations it is important to have all terms arranged
in the proper order of magnitude. In view of relation (20)

1G >> E*>> 6% >> J lo& e >>ile*loge E >>&2>>%*E>>E2C2

>> 64loge%>>6410Q 6 1(4-6)

Upto te-kmsin be2, one now has, by differentiat& equation (12))

U~sic = Uo+b@/~cosG+.. .

1

‘basic =bxcose+ ...

‘basic =-bxsin@+ . . . ‘ J

(47)

———- -.—..————-—- .——. — — ..—— —
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Using formulas (D8) and (D9)

Fk“(x) log ~ 2
e ~ k(x)

of appendix D:

+ Terms of order c4 loge G

.[d++ij+...k’tt(x) log

c~elo = o

Using formulas (D1O) to.(D12) of appendix D:

b~~l 11 CO-S6 = be

[ 1

t5iTJ+~;:) Cos e+...
x 2k

be~lrll COS o =
[

-bx COS e + b~2 10& c (~02 - 2)kt(x) +

(~02 -
1

l)A’’(X) Cos e + lx%(x) Cos e + . . .

K“ be2 loge e ~02 -=-bx sine- 2)k’(x) +

(~02 _
1

1)*’’(X) sin 13- b&*(x) SiIlo + . . .
\

(48)

(49)

.
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From equations (47), (M), and (49) one obtains:

u=‘basic + ‘disturhnce

~

x
= U. + C2 loge m&’’(x) - G2U0

o

Terms of ofier 64 lo& G

At present all one needs to know about w

1

1Xk’(x)

m Cos 6 +

and v is that ‘

21

(50) “

w= -2bx sin e +
{}

be2 lo% 6 + Terms of higher order (51)

and that

~= &k’(x)

w+ {}
e3 lo% 6 + Terms of higher order (52)

#

It is immaterial whether one knows what the above bmces actually
represent.

Now consider again boundary condition (29a)

Tr = Gf’(x)qx for r = ef(x)

or

k’ (X)v= Gfl(x)u=6—
{a “

Substituting U and V obtained in equations (50) and (52), it is now
observed that the unmatched term of lowest order is proportional to

G5loge e. It may be easily verified by use of the method Qf the sec-
tion “Boundary Conditions” that introducing a new term in the potential,

——..-.___. .— _— _ ._— —— —- ———.. — -
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to cancel this tezm in the boundary condition, will result in the addi-

tion to u of a term of or.ler e4 loge2e; higher-order corrections will .

introduce in u terms of still higher order. Consequently, formula (~)

for u is certainly correct to the order’ be2 lo= e (see rela-

tions (46)). The same-mnnot be said about formula (52) for v and
formula (51) for w. In these equations, higher-order potentials will

introduce corrections of order 65 lo% 6, so that the method yields

expressions for v and w correct, on the bal.y,only to order G3 loge E.

This is already sufficient to carry out the computation of the pressure

field.near the axis, correct to the order bc2 lo% 6 (see next section).
On the other hand, one can easily find a better formula for v, on the
body, than the previous one. Indeed, using the boundary condition and the
prssent knowledge about u, the expression

is correct to the order be3 lo% 6, hence definitely to the order b62.

The quantity

where

s =*(U02 - qq ‘

q2=u2+v*+w’2 (54) -

is of importance in the evaluation of pressure on the btiy, dreg, and
lift. Since the expansion for u begins with a term of order unity,
this quantity my be computed at best to an order not higher than or

equal to G4 lo&&. Using equations (50), (53), and (51) one easily
finds:

..—-– ,— — -——— ———
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.

.

S = -C2 loge dJo2k’’(x) + e%02
{1

x ki’l(x- ~) - k“(x) da +

o a

JXk’(x;
b2(2x2 ain26) + . . .

im -

correct to order b~2 loge G.

(55)

Lift, and Pitching MomentPressure, Drag,

Using formula (16) for the excess pressure, one finds

4 = pos

P=PO+POS
1

(56)

correct to the order b62 loge e.

The drag is the x component of the pressure force integrated over

the body surface. The surface element of the body is
rdxd,

, where ,
cos a

is the azimuth angle and a, the local angle of attack. Then the element
of the drag force is

dD=prtanadxd,

Since

pr tana =p62f(x)f’(x) = e~k’(x)

one gets:

(57)

I

_—. —— -. — ..—_____ . . .
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nX

J k’(x) dx = O
0

J’
x

k’(x)k’’(x) ti = O
0

J
21r

Cosede=o
o

2
only terms in 6 and in b2 of S, equation (55), contribute to the
drag. Thus, one obtains

D= D1+D2 (58)
,

Here

is the well-known formula for the drag in the linearized theory (see
reference 2, section 153; for a simpler computation, see appendix E) and

1

JJ
21’C

D2 = -po~2b2 ax &k’(x) sin2e W
o

J
z

= 41’rpoE%2 Xk(x) ax
o

where D2 represents the effect of the inhomogeneityof the flow.
Observing that

[ ]2ti= 62@k(xfl ax=(iv11Cf(x)

( 63)

-—. –.— —-
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is the volume element of the body, one may write:

D2 = 2PO:V%’ (61)

where ~ is the distance of the nose of the body from its center of

maSS and V = 21TG2~zk(x)& isthevol-ofthebo~. I?omla (%)
do

for the drag is correct

The lift is the y
over the body surface.

to the order ~64 loge 6.

component of the pressure forces integrated
The element of lift is

All terms of p contribute nothing to the lift, except for the term
in eb (see equations (55) and (56)). !?hus .

(62)

an expressionwhich

The element of

is correct to the order bc3 loge ~.

the pitching moment about the nose is:

dM=pc0s8rxdxd6’

. ~P=X CO. 8 b ~

p contribute nothing to the moment, except for theAgain, all terms of
term eb (see equati&s (55) and (56)). ‘Hence

M= -4pouo1162~2ti~2”~,(x)+ ]*X%l(X) cOs2ede = o (63)

.
an expressionwhich is correct to the order bcs loge c.

—. ———— ——- .-— —— —— ,—— —
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Validity of Results - Physical Interpretation

As was stated at various points in the text, the derivations do not
yield results which are all correct to the sane order of magnitude. For
clarity, the main conclusions are listed again.

The main assmption on orders of magnitude is that

62 loge c << G << E

The potential and veloci~ components away from the body are determined

to the order b62. They contain terms of orders

l>>b >> C2 >> b2”>>bc
2

On the body they are determined as follows:

(1) The u component of velocity is

b~2 loge c and contiins terms of orders

1>> E2 loge G >>

(see formula (50)).

determined to the order

(2) The v component of velocity is determinedto the order

bej loge ~ and contains terms of orders

3 ‘2E >> E3 loge G >> G >> bc

(see formula.).

(3)
contains

(4)

terms of

The w component of velocity is determined to the order b and
onl.ya termin b (see formula (51)).

-..

The pressure is determined to the order b+ loge e and contains
orders

1>> 62loge < >> C2>>bc >> b2

(see form~as (56) and (55)).

.
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4
The drag is determined to the order bc loge 6 and contains terms

of orders 64 >> b2c2 (see formula (x)). Both the lift and the pitching

moment are determined to the order bes loge e, the former containing

the only term of order b62 and the latter being zero to this order.

Of the two hag terms, the one proportional to 64 is the wave
drag of the body, in the representationby Courant and Friedrichs.

One might anticipate from general physical considerationsthat a
“horizo@al-buoyancy” term will occur which shouldbe equal to the
product of volume and pressure gradient in the x+lirection. From equa–
tions (18) it can be seen that for the assumed basic field, the x gra-
dient of the pressure, up to order b, is zero. Therefore no drag term

of the order be2 may be expected. Note that in order to compute the

drag, the expression for the pressure has to be multipliedby e2, since

the surface element is proportional 42.

The second drag term occurring in equation (58), of order b2g,
can be seen to originate from two different terms in the velocity poten-
tiaI. One contribution comes from the so-called interactionpoten-

tial @, havirigas a factor b+; &l- itself is shown to be propor-
tional to l/r. The correspondingpressure term turns out to be propor-

b2 near the axis, sotional to (%11)2 and is thus proportional to

b2~2that the drag term becomes of order . The other contribution origi-

nates from the potential coefficients &l and @* of the basic field,

which are proportional to b and b2. Since the basic field has no
singularity on the axis, the correspondingvelocities ahd pressures do
not change their order, as the body surface is approached. Therefore,

also, these.terms will make contributionsto the drag of order b2c2.

A drag ti~’of-’oidei IJQ3 which could be anticipated from contri-

butions of @l (proportionalto b) and of ~ (proportionalto be2)
can be shown to vanish when the pressure distribution is inte~ated over
the body surface.

As seen from equation (62), the lift consists only of one temn which

is proportional to bc2. The origin of this term can be traced back to

contributionsfrom qP~ as well as @l; & 1 leads to a pressure term
which is proportional to y so that the whole expression for the pres-
sure on the surface becomes proportional to be and the lift expression

becomes proportional to b62; &l leads to a pressure term which is

. —
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proportional to ~“ and is thus altogether of order be, hence again

a lift temn of order b62 results.
.

One might expect that,lift terms of order be, bc2, and E3 occur,

in analogy to the corresponding result for”two-dimensionalbodies. But
it can be shown that the respective expressions vanish when the corre-
sponding pressure terms are integrated over the body surface.

T!& moment about the nose of the body has been shown to vanish, up

to order b~s loge .6. This peculiar result, which holds for an arbitrary
body contour, must be attributed to the very special basic field that has
been chosen.

New York University
New York, N. Y., November 5, 1951

1

.,.

.

.

— —— —-
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. AFPENDIX A

CHARACTERISTICCONDITION

It must,be postulated that the total disturbance potential “

vanishes at the “characteristicsurface,” the equation of which maybe
written in the form

Q(X) =0 (o)(x) +-M (l+X) + . ● .r= (A2)

where

~~ ~02=M2_1a

tial (Al) an$ using
higher-order terms,

Hence:

and

w (x) =xpo

Inserting equation (A2)

(A3)

into disturbance poten-

a Taylor expansion, there is obtained, neglecting

b~2f:0E;Q(0)(xzQ(1)(x)‘~b(o)(x)‘01}

~lOF(0)(xP)(x)+~E;o(0)Kl‘0r

Using the notation of appendix D,

+0=

}

-U~O(k’)

-% 10 =Uo~oI1(k”)

p = Cos e~ll

(A4)

(A6)

———. —— ---–——
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.

.— .

‘d’= [
cos 8 -Mo2rIO(k’) - xfio21()(k”) + 2PoIl(k) +

12P@l(k’) + pPo~Il(k”) - 2f302r12(k’) (A7)

(See equation (42).) It is easy to prove that all the integrals In(g)
approach zero when x approaches Per. In the present case, only the

special values n=O,l, and2 are needed. Now

J
/~or..&-(x - &T) dT

12(d =
1“ dcl

~t ~/j30r= 1 + 5. Then

[
.lo&l+5+

where G = Ig(x - PorT)l_ is

to zero if b jO. Similarly,

(A8)

always finite. The above expression goes

.

-- —.- ———
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.
approaches zero if 5 + O and

112+,~’y:=w/-
-1

where G~ = lTg(x - ~orT)[ma is finite. Also this integral approaches

zero if b~O. Hence, all the integrals In(g) occurring in equa-

‘0)(x), meaning that thetions (Ah) and (A5) vanish for r = x/~. = O

characteristic condition is fulfilled.

.

.

“

s

.

..—-.. —..—-— -———— - --
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-APPENDIX B

PKOPEKWIES OF THE FUNCTION w IIEl?INEDBY ~UATION (31)

It is shown first that equation (31) satisfies equation (30). The
E

differentiationof v is carried out easily after introducing 7 = ~
x-

as a new integrationvariable. One obtains then

and it follows that

L

1
‘ (n+l)(x - ~r.) + --&(n )(X-&T) d. -
mg

.

.

.

—.
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.
Now, one may verify that the integrand on the preceding page,

(T+wl)n+(. -=)n_(# ,)g(.+@(x pr-r)+

G [-

Q“++.. jh’r) +--&g 1(“+X. pr.) =r~
J

—

*k.+/==1)”- (T-

33

- (r,)~d~l g(”+’) (x - pr-r) +

J-)]T
2 -1

}

n g(n)(x - pm)

identically zero and equation (30) isso that the right-hand side is
satisfied by ~. Differentiating equation (Bl) with respect to x
and r and transformingback to the original variable of integration 5,
one obtains

(B3)

‘+’r=z“:+’’~x-’r{‘x-E%2wn+
L

.

x (X+ -~ +(’-‘-r g(n)(o) (@+)

2“rn+3n!
m “

—— — —— .—--- .- __ -.— — —— .—.—_——_.
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As r +0; the integrands in equations (B3) and (B4) remain finite
and continuous over the full range o< {<x- 13r,except in the case
of *X for n = O. Hence

Jlim (+$x)=-+ ox(x-~)n-’g(n+’) (~)d~-~ g(n)(0)
r+O

n-

J

lx
(x- E)

n-2g(n)= (~) d~
n! 0.

=+’(x) n>O (B5)

r: o (++’%-)=*C (X - E)ng(n+l)(5)dg + ~ .(n)(0)

J‘(n:l)! ()

x(x _ g)n-lg@)(~) d~

= g(x) n>O (B6a)

r ~. (rvr) =2JXgt(~) dg + 2g(0) =2dx) n = O (B6b)

(n-l)(o) = o.provided that g(0) = g’(0) = . . . = g It follows then that

1
Vx=-+g’(x)-jp. . .

n >0

vr’dx)~+.”.
#1+1

L

where the dots indicate terms of hi@er order in r as r
sham in appendix D that, for n = O, wx is of the order

. (B7)

~0. It is
of loge r.

‘I’hat~, ~x, and Vr vanish for x < @ is obvious, since the

integrands then become identically zero. It may also be verified’that

both *X and Wr are proportional to ~ as one lets r tend to

infinity along a characteristic x = 13r~Constant. m

—
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APPENDIX c

35

VERIFICATION OF IE@’SION (39) AS A P~ICUIAR

SOLIITIONoF EQUAT1ON(26)

It is to be verified that e~ansion (39)

(cl)

is a solution of the nonhomogeneousequation (26)

=
{ 1 }-~(7+1)+(7 - 1)P2 rqx10 +2qr10 +2xqxr10 (C2)

One has

L(~~lO) = !32%qr=10 - r2qrrr10 - ~rqrr10 - 3qr10

(C3)

.— . ____ _——_._ —.
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( )L r~” + xrqx10 + ~ r29r10 =

132r&10
10

- 3&10 + I&q= 10 + 2p2rq)M10 _
- rqn

(r f32~ 10-?rr10 -+% ‘0) + 4~2%’0 - ~’” -

1
1

10 - *qr 10 - ‘2q& 10 .
~ ~r

_*#o - ‘2@#

1 10 = 0 (cf. equation (22)). Sincesince p*q=lo - filo - ~ %

MO* =p*+l,

r~” + xrTx10 + M“*:*+ 1) #qrlo =

(C4)

rd” + xr~10 + * r2qr10 + ‘7 + 1) ~P~2(7 -1, r2%10

From equations (C3) and (C4) it follows then that

{

,-.

L(~ll)* = -M& ~7 + 1) + ~2(7 -
11) rq~ 10 + 29r10 + 2xqlm

- :}

10

completing the verification.

(?L )
*

Expression (Cl) for 11 was found by guessing

tion (C2) has a solution of the fom

O =Mdo +B~~10 + Cxr~10

and detemnining the constants A, B, and C.

that equa-

.
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APPENDIX D

COMPUTATION OF VELOCITY COMPONENTS ON SURFACE OF BODY

In order to evaluate the velocity components at the body, one must
find the dependence on c. of integrals of the type

1
x/rF n

In(g) =
T g(X - PrT) “dT

1 ~cl

for n = O, 1, and 2,’as r = Gf(x)

J
x

1 CPg(x - Cr)= dcs (Dl)

~r (~r)n ~~

and e~O. Using the identities

T= C+x-fh.d-q

.

~2

[
= -& (x - 19rT)2 - 2x(x - MT) + X5

it is seen immediately that

[ 1
Ii(g) =&xIO(g) - Io(xg)

12(d =& [X%o( g) - 2XICJ24
($r)2

In order to get that part,which does not vanish
sion for 10 is needed up to the temns in r2.

Write R = jllrand integrate

(D2)

““’ -...:q(,d =
f

g(x - a) au

----,- d=-
“’\.\

as E +0, the expres-

=.,
‘-...,h

\
--,

“., ..---

(D3)

— .—-.——..— —— —- ——.— .. —-.——
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three times by parts. Since the successive integrals of
&-

are
R2

loge (0+ i-)

a loge (.+ d=) - ~~

($+ $),% (.+ v“) - ; .i-

one easily finds that
.

in the last part the original variable of integration T has been used.
Expanding the brackets in
(l<T<m as Rj O),

the above integrand in inverse powers of T
one gets

# + ~ + Terms of order ~ or higher

The contribution of the unwritten terms of the integral is of order R~
R2, one now gets, afterand may be neglected. Keeping terms up to

simplifying the integral.by successive integrations by parhs~

[

R2

1
[

R2
Io(g) = g(x) +~g’’(x) loge 2 - ~g~”) - 1()

Xg’(o) ; -

--“

1 !lti+y:~x -u)+$g’’(x -q%g’(x)R + ~=g,
./-’..-

.

.

—.— —— —— .— —
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.
Now

39

J J’Xg(x-u) da= ‘g(x-u) -g(x)

c 0
da + g(X) 10ge ~ -

R o

JR g(x - u) - g(x)

u
da

o

The first integral is finite; the second integral yields

R2gt ~(x) +. . .g’(x)R - ~

Similarly,

*2

J
Xg’’(x-u)ti=f

J
x g’,’(x- u) - g“(x) da +

~R G 40 u

L ‘1(x)R2 loge :+ . . .hg

Hence, finally,

I
x

$(X -,(Y) - g(x) da + R;1
x

10(/4 = g“(x - u) - g“(x) da +

O’” 0
G

[

2

1
.dx) +& g“(x) log 23 - 1

r- 1

~2

‘R
~ g(o) - Xg’(o) ~ +

; g’‘(x)R2 (D4)

Replacing R=13r = f3Gf(x)= eB~2k(x), one now gets, using eq~tions (D4)
and (D2),

‘x
lo(g) = -g(x) loge G +

J

_g(x - CY)~- g(x) do

o
+

‘g(x)’04aa+Tems0f0rde;’2”10ge’‘D5)\

—— ,—— — .— -
——.—.—--—— —.—— —— -.
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x
Ii(g) = 1+ rk(x)g(a) da + (E loge ~)P ~ g’(x) -

cf32k(x) O

—n6P (x) x g’(x - Cr) - g’(x) da + g(o) +
20 u x

L

1

~

Xg(x-u)-g(x)w+
Z’. u

(D6)

(D7)

Using formulas (D5), (D6), and (D7), the integrals occurring in the
velocity components, equations (38) and (42) to (4’5),are evaluated by

mere substitution. There are obtained, as

~

x k“(x - u) - k“(x) ,
= da +Uok’’(x) loge c - U.

o a

1-k“(x) log z 2 + ‘I’ems of order G
2

e ~ k(x)
log, e+... (D8)

,.

— — —— –.———
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1-

p

x

0

k’”(x - U) - k’ l’(X) ~+ k’’(0)
u —-l-

x

Lei%+fl} +..k“’(x) log (D9)

k“(0)

[ 1=$kx)+~ +Eloge,

4~2@’(X~ - 213212~’ ‘(XU - 2P~2k(x)e212&’ ‘‘(X~ -

(P- )
Mo2xk’’(0) + . . .

41

= ‘>+ ~mo2-2)kt(x)+(m02 - l)xkfl(xj@3. 6 + Q(x) + . . .

(Dll)

o

-.— ... —_____ .- —.-— —. ——
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where
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.

{
[ ,Er~}-.(3.2 -2) fxk’(x-u)-k’(x)~+k,(~)~~~

o
a

{

(mop- 1) j’ x (x--cr)k’’(u)u) -’k’’(X)

o
a

~+=lt(xl[oge; ~-q}+

( )AM2 k’(x) +P-PO ~ Mo%k’ ‘(X)

-M027+’(xD -Mo%+$’i(xfl +

,j~+(’u +,& Ifxx’(xg +

o

P13- 61&’ ‘(XX

=%+[%2-2-W+ (=.2- w+’~ 6 ‘Q*(X) + ~ o ~

Q*(x) = -(3M02-
{

2) ~x “(x - :) - “(x) da +

k@@.e&+q}-

(~02 _
c

xk’‘(X)

1

d

Dots indicate terms which either vanish as e ~ O
faster than the last term considered. In the above
fact that k(0) = k’(0) = O was used (see equation

or tend to zero
five formulas the
(37a)).

.

— —
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AJ?PENDIXE

,W

DERIVATION OF FORMULA FOR DRAG IN LINEARIZED THEORY

Formula (59) for D1 is the well-knbwn expression for the drag of

the linearized theory. For the sake of completeness, a simple deriva-
tion of this formula is given. From equations (57), (56), and (55),

% = zI {,x kf!(x - U) - kfl(x)
k’(x) du+

2q30u0264 o 0
a

[(iJ

}

2

r

k’ X
k“(x) loge ~~ -

~ k(x) , hk(x)
dx

,.

Since

A .

F12 , ~’(x]3
k’(x)kl’(x) loge –

~ k(x) ‘~ k(x)

-&kc]2’OgtiEl

- d ~k’(x)

and k’(0) = k’(z) = O, the above integral

1

f~

‘k’’(x - a) -k’’(x)
I= k’(x)

o 0
a

reduces to

1

do + k“(x) loge’x dx

Now, the bracket above

J
X k;! x _( u) - k“(x)

da + k“(x) loge X =
o

0

[
k“(x - a) - k,(x~ ~Oge a ~ + kr~(x) loge X +

J

x

J

x
kllr(x _ u) loge u = k‘‘(o) loge x + krrr(x - ~) loge u dcr=

o 0

1d ‘kff(~ _ ~) loge u da
=0

.

—. ——._ ... .. .. . . .. . ——...— —.. —— . —..——
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so, after integratingby parts,

J
1

J’
x

I=- =“(x) k~I(X _“u) loge a da
o 0

,.

= -Jz‘Jxk’’(x)k’’(u)‘-oge‘x- ‘) ‘“

which is the desired result.

.

.— -— -.
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