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SYMMETRICAT, BODY PLACED IN A SUFERSONIC TUNNEL
HAVING A TWO-DIMENSIONAL PRESSURE GRADIENT

By I. J. Kolodner, ¥. Reiche, and H. F. Ludloff
SUMMARY

The corrections for drag, 1ift, and moment are derived for an
axially symmetrical body placed in the test section of a supersonic tun-
nel, on the assumption that the test section is characterized by a two-
dimensionel pressure field originating from construction flaws. Although
relatively simple longitudinal end transverse pressure gradients are
assumed, the analytical treatment becomes rather difficult because of the
difference in symmetry between the body and the basic flow field.

Assuming irrotational conditions, the velocity potential of the flow
around the body is expanded in a threefold manner: (1) In powers of the
thickness parameter of the body €, (2) in powers of a parameter b
characterizing the inhomogeneity of the basic flow field, and (3) as a
Fourier series in the azimuth 6 around the body exis. Each expansion
is taken into account not further than up to the second term.

Upon substitution of this potential series, the nonlinear equation
of motion and the boundary condition on the body surface are split into
a sBet of linearized boundary-value problems which cen be solved analyti-
cally. The mathematical techniques used for the solution are explained
in appendixes. )

Agsuming the two-dimensionsl pressure field, the drag, lift, and
moment corrections for arbitrary body shapes are obtained in closed ana-
lytic form. The physical meaning of the results and their validity are
discussed.

INTRODUCTION

Consider an axially symmetrical body placed in the test éection of
a supersonic tunnel. The test section, instead of providing uniform
flow, may be characterized by a two-dimensional pressure field. In
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general, such a pressure field will consist of a longitudinal as well
as a transverse pressure gradient, producing a stream-angle variation
along the tunnel axis.

The difference in symmetry between the body and the field engen-
ders considerable difficulty in the enalytic treatment of the problem,
involving a Fourier expansion of the disturbance potential of the body.
Therefore, a relatively simple, linear gradient is assumed: On the axis,
the horizontal component of velocity may equal the original velocity of
the uniform stream Ug, but the transverse gradient mey produce a verti-

cal velocity component

g9, = bx 7 (1)

yielding the desired stream-angle variation. Here b 1s a small param-

eter which characterizes the first-order deviation of the actusl basic
flow from the uniform field.

This work was done at New York University under the sponsorship and
with the financial assistance of the National Advisory Committee for
Aeronautics.

SYMBOLS
b parameter characterizing inhomogeneity of pressure field
b = bl/cy
c local sound speed
Co sound speed corrresponding to Ug
D drag
£(x) body profile function
K(x) = L[2(x)]
L 1lift
1 body length

M moment
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My = Uo/co
P local static pressure
Pg static pressure et velocity Uo

q° = u? + v2 + w2

Uy original velocity of basic field
u,v,v axial, radial, and circumferential velocity components
x,r,8 cylindrical coordinates‘

X,¥,2 rectangular coordinates

a local angle of attack

B =\M2 -1
Ty adiabatic expconent

€ body thickness p;rameter

P local density

Po density at velocity U,

P potential function

TWO-DIMENSIONAL BASIC FLOW FIELD

The two-dimensional velocity pontential
satisfies the well-known potential equation:

(C? - cPxz)q)xx - 2?x¢y®xy * (C2

® of the basic flow field

- 9,8, =0 (2)
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where c¢ is the local velocity of sound. The Bernoulli equation yields
® = co? + L 2(0e? - o) (3)
where
q2 - cpx2 + cpy2

co 1s the value of c¢ when q = Uy, and 7 is the adiabatic
exponent.

Now assume that the basic potential may be represented as a formal
power series in b: ‘

@ = 00 + bpOl + p2g02 + . . . (&)

This procedure will permit determination of the functions ¢00 ¢01

J 2

and so forth. It is immaterial whether this procedure will lead to a
convergent power series, since the results may be considered as satis-
factory even if the series has only an asymptotic character.

Choose
990 = Ux (5)

and require that for y = 0 (i.e., on the x-axis)

Px = Ug
. (6)
Qy = bx

(see "Introduction"). This implies that, for y = O,

cpx01 =0
(0XR
P =X
y > (7
cpxOn = q}yOn =0
‘ for n>1
~7
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Inserting equation (4) into equation (2) and requiring that this be an

identity in b, it is found that, up to second-order terms in b,

BZ‘PxxOl _ q’yy()l -0

where

and

(8)

N {E’ £ 1)+ (7 - DOl O + 2,0 xy°1} (9)

The general solution of equation (8) is

0% = £(x -Bo¥) + &(x + BoY)

wvhere f and g are arbitrary functions.

In order that conditions (7) be satisfied, one must have
£r(x) + g'(x) =0
-B EE"(X) - g('x_):l =x
This implies that
£(x) = -g(x) =5 x°
from which it follows that

90 = 5|+ By)® - (x - By)ﬂ = xy

(10)




6 NACA TN 2837

Inserting this result into equation (9) gives

o 02 02 Mg
Bcpx_x "cpw —-EE'JX (98')
M
Now, -—2  isa particular solution of eQquation (9a). Hence, the

3p2¢,
general solution is

M
@02 o} x

= -8 3 4+ F(x - By) + G(x + By)
3B Co

where F and G are arbitrary functions.

Proceeding as before to satisfy conditions (7), one easily finds
that

F(x) = G(x) = —2 %3

’

=2 xy (11)

From equations (4), (10), and (11), the potential of the basic flow
becomes:

M
- 0 2
Ppasic = UoX + bxy + Eg-xy2 [ (12)
Hence:
Mo 2.2 ’W
q)x=U0+by+-é—g ™ + . .
> (13)
M 2
o, =bx +2 2xyb"+ ...
y Co .
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The equation of the streamlines, in the present approximation,
turns out to be:

2 2
M. - 1 hMo -1
y- —2 " " 3Py 40 " " 5312 = 1 2y 4 Constent (1k)
2Mc, c 2 2M e

From the Bernoulli equation (egquation (3)), in combination with the
adiabatic relations

(13)

where p is the density, one obtains for the excess pressure Ap = p - Po

the expression:

o (o) 162 ) (16)
° ‘

Using equations (13), this yields, up to second-order terms in b,

%Pé = —Uyyb - %KMOQ + 1)y2 + xﬂbe (17=)

and on the x-axis,.

Ap _ _1 22
o =% b (17b)
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Therefore the pressure gradient of the basic flow has the two components:

2

PX . (Ap)x -QOXb

(18)

i

(AP) = _poUOb - po(M02 + l)yb2

Py y

In the menner indicated above, all the higher-order coefficients in
the expansion for ¢ could be determined successively. (They turn out,
indeed, to be polynomials in x and y.) These coefficients are, how-
ever, not needed in the present work. It is understood that expres-
sions (12), (13), and (17) for the basic potential, the corresponding
velocity components, and the excess pressure are valid only in a
restricted region of the working section around the disturbing body.

AXTATLY SYMMETRICAL SLENDER BODY IN TWO-DIMENSIONAL
BASIC FLOW - THE DISTURBANCE POTENTIAL

Differential Equations

It is assumed that the total velocity potential ¢ can be approxi-
mately written as

0 = (40 + w00+ 102 ¢ (B0 ndel) 4. L. (19)

This assumption is by no means trivial nor arbitrary. It is justified
by the fact that in this way it is possible to satisfy the boundary con-
ditions on the body and the "characteristic condition" (see appendix A)
in such a way that the error committed- in ¢ as given by equation (19)
is small compared with the terms written down. The method adopted here
is such that it can be extended (stepwise) to better and better approxi-
mations. It is not obvious, however, what the dependence of the next
term on b and ¢ is. The method, if pushed further, leads to a
formal series in b, ¢, and log, €, with, at best, an asymptotic char-
acter. For further elucidation, see the section "Boundary Conditionms."

The terms in the first parentheses in equation (19) represent the
basic flow potential as discussed in the section "Two-Dimensional Basic
Flow Field," while those in the second parentheses represent the disturb-
ance potential produced by the body, and € 1is the thickness parameter
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of the body whose equation, written in cylindrical coordinates (r, 8,
X), is assumed to be

A
E

A
o~

r = ef(x) 0

I
(@)

(o) = £(1)

The first term in the disturbance potential is the well-known term of
the linearized theory. The second term represents the influence of the
pressure gradient (of the basic flow) on the disturbance potential. In
the present work, higher-order approximations will not be considered.

An important and rather restrictive assumption has been tacitly
made by using expansion (19) for @, namely, that

@ loge € <b<e¢ (20)

(In order to compare different orders of magnitude, the dimension-
less quantity b = bZ/cO is introduced. In the equations in the text,

the dimensional parameter b is kept, and inequality (20) is taken into
consideration in a suitable manner.)

That expression (20) follows from equation (19) can be seen from
the following argumentation. If one sets € = 0, the potential ¢ must
reduce to the basic potential, since & needlelike object produces no
disturbance in a three-dimensional flow. On the other hand, if one
sets b =0 (i.e., assumes that the basic flow is uniform), ¢ must
reduce to the disturbance potential of a body moving in uniform flow.

It is well-known (see reference 1) that the second term of this poten-

tlal is of the order h log, ¢. This term has been omitted in equa-

tion (19) as small compared with a term in €2b, and this is permissible
only if b > ¢ log, €. On the other hand, the term in b3 in the basic
potential has been omitted as small compared with all terms written down,

in particular, with the smallest term beS. This implies that b << €.
Without this restrictive assumption (20) the computational work would
become prohibitive.

The cylindrical coordinates x, r, and 8 are introduced in such
a way that the plane of the -basic flow is the plane 6 = 0. Then,
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putting y = r cos 8 and 2z = r sin 6, the potential equation for
o(x,r,0) becomes

(c2 - q’xz)cf’:oc * (°2 - CPI'Z)q’rr * (C2 ) % %Z)_jz_ P06 ~ % PrPePro -

2 2 1 2\1 -
5 %000 - 20,0 * (c + L o )-1: . =0 (21)

Here, c2 is again given by equation (3), where now q? = ¢x2 + @rz + fﬁ Qee.

Inserting expansion (19) into potential equation (21), and ordering terms

in powers of b and €, one obtains in orders b and b2

and (9); in order 62,

equations (8)

=0 (22)

M
|_l
(@]
=
o]
H (-
'_I
Sy

in order eeb,

2 11 11
Py = Ppp -~

11

1 11 _
Pr - ;§'¢96 -

R

M . )
- Ey +1) + (7 - 1)3]1%310 + 22y, 10 + 29,100 cos & (23)

Equation (22) is the well-known equation for the linearized poten-
tial Qlo. The term ;%'Qeelo has been omitted since, as is well-known,
T

the linearized potential does not depend on 6. Equation (23) for the

"interaction potential" @ll is inhomogeneous and, since its right~hand

side involves 8 explicitly, @ll certainly depends on 6. Expanding

ol into a Fourier series (since the problem is symmetric in 6, otl
is obviously a cosine Fourier series) there is obtained:
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il = E{:-@nll(x,r)cos nod (24)
n=0

Substituting equation (24) in equation (23), it is found that the Fourier
coefficients satisfy the differential equations

2 11 11 11 | p2 11
B o, "%, "r®, T 5% < Y nfEl (25)

2 11 11 1 11 1 11 _ Mo
B lex - err i er + 2 ®y =% S(x,r) (26)

where
5(x,r) = [(7 +1) + (7 - l)Bﬂmmlo + 2910 4 oxp 10 (27)

It will be shown in the next section that the boundary conditions can be
satisfied only by meking @nll =0 for n # 1. Hence the interaction

potential reduces to

Qll = Qlll(x,r)cos 0 (28)

Boundary Conditions

The flow velocity must be tangential to the body at its boundary,
hence

9. = ef'(x)py (29)
for
r = ef(x)

Inserting expansion (19) in equation (29) and teking account of equa-
tions (5), (10), and.(1l), the boundary condition becomes:
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oo
bxcose+b(2~——n'cos)+ecpr +b<—:2§ %r11008n9+--.-=
. n=0

ef'(x)(Uo + br cos 6 + M-Q r° cos6 + € q>xlo +
O

[o2] -
be j{: @nxll cos n@ + . . .) (292)
n=0

for

r = ef'(x)

To be able to order the terms of equation (29a) in an appropriate
manner, it has to be known how cpxlo, cprlo, cpxll, and cprll depend
on € for r = ef(x). '

This knowledge is gained by considering solutions of the differ-
ential equation

s%n-wrr-%wr»f:—zw =0 (30)

which vanish to the left of the cone r = x/B and tend to zero as one
approaches infinity along a characteristic r = x/B + Constant. It is
shown in appendix B that such solutions are given by

¥omo—Ll fx5TEX-§)+V(x-§)2—szr2:‘ [x_g)_\/(x_'—ﬂi—]
“nt Jo

2nr n. )2 _ Barg

(s.) ag (31)
(x-¢
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vhere g(¢) is an arbitrary, n times differentiable function which is
identically zero for ¢ < O, and that, as r —> O,

o(f%) nfo

=3
]
[}

(32)

It may now be shown how the boundary conditions for @lo, @ll, and

so forth can be determined successively in a unique way. First, @10

satisfies equation (30) with n = O; hence ero = 0(1)

T
and €2¢r10 is of the order ¢ for r = ef(x). Matching terms in ¢

in equation (29a), one now gets the condition

for r ——9~0,

linm 1o t0 = Upr(x)£(x) (33)
r—0 ‘

This condition determines @l© uniquely (see the section "Solution of
Boundary-Value Problems"). Next consider @gll which also satisfies

equation (30) with n = 0. Using equations (32), the term b62¢0 11 0(be)
r -

as T = €f(x); since there are no other terms of this order in equa-

tion (29a), -one must set @011 = 0, which of course is a solution of

"equation (25). Now; the terms beewnrll for n >1 are of the order

be'™ end become infinite as ¢ —> 0, unless ¢nll = 0 for all values

of n greater than 1. This proves the statement made at the end of the
section "Differential Equations." The potential mill does not satisfy
equation (30) but is a solution of an equation with the same left-hand side

with a nonvanishing right-hand side. Thus Qlll is obtained by adding

to an expression of the type of equation (31) a particular solution of
equation (26). It is shown in the section "Solution of Boundary-Value
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Problems" that it is possible to find such a particular solution with
the r derivative of highier order than L for =r —> 0. Hence the

2
11 - - 11_ o2
singularity of Py is that of ¥ for mn = 1, that is, P =0 )
T r

ags r —> 0, and the term

beecpl 11 cos 6 = —:';2- lim (rchl 11) cos 8 +
’ ECTI e

Terms venishing to higher order

The only term of this order in equation (29a) is bx cos 6 and so one
gets the condition:

N (2o 11) = -xt>(x) (34)

Grouping the matched and unmatched terms in equation (29a) and
substituting r = e¢f(x) wherever r appears explicitly, equation (29a)
now reads:

lim (r2q)lrll) +

1 (nprlo) - Uof(x)f'(lee + Zo) e s

lim
£1(x) |r —>0

xfa(xﬂb cos 8 + I::E- xf(x)bze + 12—0 xf(x)b%e cos 20 - f! (x)f(:nc)b»s2 cos 8 -
) )

M M
20 £1(x) £2(x) P63 - 2 £1(x) £5(x)boeS cos 20 + | €% L0 -
2cq 2c .T

(¢}

€ s 10 2 11 b 11
(=) r1_>1mo (prr ﬂ + Ee cplr - 200 = l_i;uo (rgcplr Elco? o -

€3cpxlof' (x) - e3bf'(X)CP1xll cos @+ ...=0 (35)

~
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The first two brackets in equation (35) are zero, by virtue of the
imposed boundary conditions (33) and (34). All the unmatched terms are
of higher order in ¢ and b and can be disregarded. In particular,.
the terms in the last two sets of brackets are of order higher than ¢
and b, respectively, whereas the last two terms are of the order

3 log € and €2b, respectively, as may be seen by equations (32).
These terms could be matched only by considering higher approximations
to o.

The preceding discussion mekes clear how to proceed with higher-
order approximations. The various terms in the expansion all satisfy
equations of the type of equation (30) with nonhomogeneous terms. At
each step only a finite number of Fourier coefficients will be con-
sidered. The singular behavior of these Fourier coefficients becomes
worse with the order of the coefficients, but this is in turn compen-
sated by an appropriately large exponent of € 1in the expansion, thus
making the coefficients appropriately small at the boundary of the body.

Solution of Boundary-Value Problems

The solution of equation (22) with boundary condition (33) is the
well-known expression for the linearized disturbance potential of the
Ké rmsn-Moore problem, which is used herein in the form given by Courant
and Friedrichs (see reference 2)

x-Br
10 _ _ k'(&) dat
v -Uok/; 2 22 (36)
VQX -&) -Br

where

k(x) = £ £2(x)

This is exactly the solution V¥ of equation (31) with n = 0 and
g(x) = % Uok'(x). Clearly, using equation (B6b) of appendix B,

lim (rmrlo) = 2g(x) = Ugf(x)f'(x). It is assumed that:
r—30

£(0) = £(21) =0 (37)
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This implies that

k(O) = k(l) =0
(372)

k'(0) = k'(1) =

Using formulas (Bl) and (BY) of appendix B, upon setting n = O and
g(x) = %Uok'(x), it follows that:

U Jf‘x—ﬁr kr(€) at
0 \f 2.2

- ¢)?

10

I

fX/BI‘ k''(x - BrT) 4T
= U,

1 Va2 -1

> (38)
xBT (x - £)K(E) at
0 VZ% - 5)2 -

- UoBh/NX/Br Tk(x - BrT) ar

T2 -1 \J

To solve equation (26) for @ 11 gubject to boundary condition (34),
1

one must first find s particular solution of equation (26) and edd to it
an appropriate solution of equation (26) with the right-hand side equal
to zero (homogeneous case), such that the sum satisfies the required
boundary condition, equation (34). It is verified in appendix C that a
particular solution of equation (26) is given by

U
10 - 20
? T

* 2 1
(cplll) = _Cg rpl0 + x1o, 10 + ,9_%2*_) r2p 10 (39)
B
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It is observed that:

lim r2(¢lll)* =0 (%0)
r—>0 T

0(10g, r), 9,10 = 0(10g, r), 9,10 = O(%)’

O(j$>, in virtue of equations (32) with n = O.
I

This follows, since @lO

10 _ 1 10
Prx™ = O(;)’ and  Qp..

*x
Hence the appropriate solution of the homogeneous equation (¢111> must
satisfy the same boundary condition as that imposed on ¢lll itself;

*¥%
(@lll) is now immediately found, since it satisfies equation (30) with
n= 1, and

lim r2(¢111):* = —xf2(x) = - 2xk(x)

By equation (Bfa), appendix B, the desired solution is obtained from
formula (31) with n =1 and g(x) = -2xk(x). Hence:

(@111)** _ gfx‘ﬁr (x - &) [x(s) +exr(e)] a ()
. 0 \/(x_g)e_ﬁara

Using equations (39), (41), (36), and (38), there is finally obtained

11

(q’lll)* * (‘plll)**
x-Br [{:'(g) + 2kt ()] a

_ §) 2r2

l‘-fx-ﬂr (x - g)[:zk(g) + 28k'(g) + Prikt(e)] a
*Jo \/7(}{ _ §,) 2 2

2 x/Br E&'(x - Br7) + xk''(x - Br'rﬂ ar
e [ .

fo/sr 7 [2(x - prr) + 2(x - Brr)k'(x - Br) + Prik''(x - prr)| ar )
1

LA
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where
N
M + 1
P=_-°—(7—_)
%2

Differentiating, one gets:

/ﬂ ot - 11y -
cplxu- -—Mozr‘/;x I: (x - BrT) + xk!''"(x Br‘rﬂ d‘r+

V21
ﬁ‘fX/a T@'(x - Br7) + 2(x - Bro)k''(x ~ Brr) + Prik't'(x - Br-rz ar .
1 V'ra_ 1
- 2 p.a o Tt
(2 - %) ==—x"(0) (43)
x -BT

x/B k'(x - Brr) v1(x - prv)| - Brr|k''(x - Brr) + xk'''{x - BxT)|r &
q;.lrlln_uoaL/; r{[ x IT) + xk X ] rrl: x rT) + X rr]} 1'+

‘ Ve2 _ 1
ﬁ‘/—\x/Br iZPer"(x - Brt) ~ B-raE&k'(x -~ Br7) + 2(x - Brr)k!'(x - Prr) + Prikti(x - Br-rﬂ} ar
1 V2 _ 1
(- 12) =2 x1(0) (k)
Va2 - p22

and obviously:

~~
2,1 = 91,11 cos 6
cpxll = (p]-xll cos @ ? ()4_5)
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COMPUTATION OF VELOCITIES, PRESSURES, AND FORCES
Velocity Components on Surface of Body
Denote by u, v, and w the axial, radial, and circumferential
velocity components, respectively, and split each one into three parts,
due to the basic potential, the first-order disturbance potential, and

the interaction potential. The first of these are computed immediately

from equstion (12), whereas the computations involved in evaluating the
others are carried out in appendix D.

In the following relations it is important to have all terms arranged
in the proper order of magnitude. In view of relation (20)

€2 loge € << B < ¢

one has

15> e >>F > @ log, € > € > b > €3 log, ¢ >> Te? log, € >> Be2 >> B2e >> 5262

& >> T2 >> e log, ¢ > & log2e >> et log, ¢ L (46)

3 2

>> e

e3 loge € > ¢

Up- to terms in b€2, one now has, by differentiating equation (12),

. -

Upgsic = Uo + beV2k(x) cos 6 + . .

Vpggic = DX co8 6 + ... . > (47)
Wpagic = -Px sin 6 + . . .
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Using formulas (D8) and (D9) of appendix D:

[k Jos .
X [k''(x - 0) - k'*(x)|do
29,10 = ¢® loge eUk''(x) - GQUO{/O ( > +

k't (x) log, %k(i)}+ Terms of order et loge €

G2q9r10 = I—J\é?__ﬁ;—:){+ €’ log, erB (x krri(x) -

x xEnt(x_o—)_k”'(x):l do  k'1(0)
ans L a e
1Tt 2 l
wcafie 5 4

S (48)

Gchelo = g
Using formulas (D10) to-(D12) of appendix D:
~
bechlllco_se= \/(x)+2xk()cose+...
X 2k(x)
bechlrll cos @ = -bx cos O + be2 loge € K3M°2 - 2)k'(x) +
(21-102 _ 1)1Ek"(x):| cos 6 + bezQ(x) cos 6 + . . . > (49)

pe2(} 9tt) = -ve(L 9y 11) sin 0

it

-bx sin 6 - be? logg <-3|:(3MO2 - 2)k'(x) +

(EMO2 - l)xk"(x{' sin 0 - be“Q*¥(x) sin 6 + . . . J
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From equations (47), (48), and (49) one obtains:

= Upggic T Y3isturbance

X 1 - _ et
Uy + 62 logg €Uk''(x) - €2Uo[;]q k''(x-0) - k') 45,

]

0 a
k't (x) lo §¢:z£: + 2be V2k(x + xk! (x) cos @ +
B ke(x) VEk(x)
Terms of order &% log, € (50)

At present all one needs to know about w and v is that

W = -2bx sin 9 + -{:}» b€2 log, ¢ + Terms of higher order (51)

and that

_ U () {} 3.
Vo= € =+ €” loge € + Terms of higher order (52)
T

It is immaterial whether one knows what the above braces actually
represent.

Now consider again boundary condition (29a)

9. = ef'(x)p, for r = ef(x)

or

Substituting u and v obtained in equations (50) &and (52), it is now
observed that the unmatched term of lowest order is proportional to

€3 log, €. It may be easily verified by use of the method f the sec-
tion "Boundary Conditions" that introducing a new term in the potential,
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to cancel this term in the boundary condition, will result in the addi-
tion to u of a term of order eh logeee; higher-order corrections will
introduce in u terms of still higher order. Consequently, formula (50)

for u is certainly correct to the order be loge € (see rela-
tions (46)). The same cannot be said about formulae (52) for v and
formula (51) for w. In these equations, higher-order potentials will

introduce corrections of order 3 loge €, so that the method yields

expressions for v and w correct, on the body, only to order €3 log, €.
This is already sufficient to carry out the computation of the pressure

field near the axis, correct to the order bs2 log, € (see next section).
On the other hand, one can easily find a better formmla for v, on the
body, than the previous one. 1Indeed, using the boundary condition and the
present knowledge about u, the expression

¢ Ex)

Vek(x)

v =

u (53)

is correct to the order be3 log, €, hence definitely to the order be=.

The quantity

_1(y 2 2) )
S = —2-(U0 -~ g
vhere -
q° = u® + v2 + w2 (54)

is of importence in the evaluation of pressure on the body, drag, and
lift. ©Since the expansion for u begins with a term of order unity,
this quantity may be camputed at best to an order not higher than or
equal to el 1oge26.' Using equations (50), (53), and (51) one easily
finds:
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X in _ _ tt
S = -¢° logg GUogk"(X) + eroz‘{;/n K (x 63 k! (x) do +
0]

X' ) - 12(2x2 gin20) 5 . . . . (55
2k(x) 81 + _ )
5

correct to order be“ log, «.

Pressure, Drag, Lift, and Pitching Moment
Using formula (16) for the excess pressure, one finds
&p = p S

(56)
P = Do + PoS

correct to the order be2 log, €.

The drag is the x component of the pressure force integrated over

the body surface. The surface element of the body is ELEELE£3 vwhere 6
co

8 a
is the azimuth angle and a, the local angle of attack. Then the element
of the drag force is

dD = pr tan a dx 4o
Since
pr tan a = peaf(x)f'(x) = e2pk‘(x)

one gets:

1 2%
D = ¢ dx k! (x) d6 57
efo fop> (57)
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As

j;x k'(x). dx = 0

fx k' (x)k' ' (x) dx = O
0

21
J/‘ cos 6 d8 =0
0]

only terms in 62 and in b2 of S, equation (55), contribute to the
drag. Thus, one obtains

D = Dl + Do (58)

Here

A X
Dy = —2ﬂde02€hb/\ dxk/h k' (x)k'*(0) loge (x - o) do (59)
0 0]

is the well-known formula for the drag in the linearized theory (see
reference 2, section 153; for a simpler computetion, see appendix E) and

1 2n
Dp = -py€=b? f dx f 2x%k'(x) sin0 do
0 0

1
= hnpoeebQ\/; xk(x) dx (60)

where Do represents the effect of the inhomogeneity of the flow.
Observing that

nEf(xﬂg ax = GEEﬂk(x)] ax = av
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is the volume element of the body, one may write:

Dy = 2p FVb° (61)
where X 1s the distance of the nose of the body from its center of
mass and V = 2zt52L/HZ k(x) dx is the volume of the body. Formule (58)

0]

for the drag is correct to the order boslL loge €.

The 1ift is the y component of the pressure forces integrated
over the body surface. The element of 1ift is

dL

-pr cos 6 dx df

i

-epV2k(x) cos 6 dx db

All terms of p contribute nothing to the 1lift, except for the term

in eb (see equations (55) and (56)). Thus .
JA 2n 1
L = hpOUobGEJ/‘ dxu/\ [%(x) + E'Xk'(*i] cos20 a9
0 0 )
= poUoVb (62)

an expression which is correct to the order be3 loge «.

The element of the pitching moment sbout the nose is:

a

p cos 6 rx dx 4P

epV2k(x)x cos 6 dx d8

Again, all terms of p contribute nothing to the moment, except for the
term b (see equations (55) and (56)). Hence

n 1 72ﬂ
M= -hpoUobeek/p dxk/n [%k(x) + %-xzk'(x§] cos®6 @0 = 0 {63)
0 0

an expression which is correct to the order be3 loge €-
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Validity of Results - Physical Interpretation
As was stated at various points in the text, the derivations do not
yield results which are all correct to the same order of magnitude. For
clarity, the main conclusions are listed again.

The main assumption on orders of magnitude is that

€2 log, € K b << ¢

The potential and velocity components away from the body are determined
to the order be2. They contain terms of orders

15> b > €2 > b2 > be?

On the body they are determined as follows:

(1) The u component of velocity is determined to the order

be? loge € and contains terms of orders

1> 62 lOge € >> 62'>> be

(see formula (50)).

(2) The v component of velocity is determined to the order
be3 lbge € and contains terms of orders

€ >> 63 1oge € >> €3 >> b62

(see formula.(53)).

(3) The w component of velocity is determined to the order b and
contains only a term in b (see formula (51)).

(4) The pressure is determined to the order b62 loge € and contains
terms of orders

2 2

1 >> ¢ logg € > € >> be >> b2

(see formulas (56) and (55)).
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The drag is determined to the order belL loge € and contains terms

of orders 6lL >> b262(see formula (58)). Both the 1ift and the pitching
moment are determined to the order be3 log., €, the former containing
the only term of order b62 and the latter being zero to this order.

0f the two drag terms, the one proportional to el is the wave
drag of the body, in the representation by Courant and Friedrichs.

One might anticipate from general physical considerations that a
"horizontal-buoyancy" term will occur which should be equal to the
product of volume and pressure gradient in the x—direction. From equa—~
tions (18) it can be seen that for the assumed basic field, the x gra-
dient of the pressure, up to order b, is zero. Therefore no drag term

of the order be? may be expected. WNote that in order to compute the

€2

drag, the expression for the pressure has to be multiplied by » since

the surface element is proportional .

The second drag term occurring in equation (58), of order b2e2,
can be seen to originate from two different terms in the velocity poten-
tiaI. One contribution comes from the so-called interaction poten-

tial mll, having as a factor b€2; @ll itself is shown to be propor-
tional to 1/r. The corresponding pressure term turns out to be propor-

tional to (erl)a and is thus proportional to b2 near the axis, so

that the drag term becomes of order b°e2. The other contribution origi-

nates from the potential coefficients P+ and ¢P2 of the basic field,

which are proportional to b and b2. Since the basic field has no
singularity on the axis, the corresponding velocities and pressures do
not change their order, as the body surface is approached. Therefore,

also, these.terms will make contributions to the drag of order b2e2.

A drag term of ordsF be3 which could be anticipated from contri-

butions of ¢P1 (proportional to b) and of o1 (proportional to be2)
can be shown to vanish when the pressure distribution is integrated over
the body surface.

As seen from equation (62), the 1ift consists only of one term which
is proportional to beg. The origin of this term can be traced back to

contributions from qpl as well as ¢ll; ¢pl leads to a pressure term
which is proportional to ¥ so that the whole expression for the pres-
sure on the surface becomes proportional to be and the 1lift expression

becomes proportional to b€2; qﬁl leads to a pressure term which is
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proportional to Qxll and is thus altogether of order be, hence again
a 1ift term of order be® results.

One might expect that 1lift terms of order be, bee, and €3 occur,
in analogy to the corresponding result for two-dimensional bodies. But
it can be shown that the respective expressions vanish when the corre-
sponding pressure terms are integrated over the body surface.

The moment about the nose of the body has been shown to vanish, up
to order be3 loge €. This peculiar result, which holds for an arbitrary

body contour, must be attributed to the very special basic field that has
been chosen.

New York University
New York, W. Y., November 5, 1951




NACA TN 2837 29
APPENDIX A
CHARACTERISTIC CONDITION

It must be postulated that the total disturbance potential
290 + pelgll - (A1)

vanishes at the "characteristic surface,” the equation of which may be
written in the form

r=ox) = 290 0P 5. .. (a2)
where
29 (x) = x/8, (3)

and 302 = Mbe - 1. Inserting equation (42) into disturbance poten-

tial (A1) and using a Taylor expansion, there is obtained, neglecting
higher-order terms,

equloE{;Q(o) (xil + be? {E)rloE;Q(o)(xﬂ Q(l)(x) + cpllE;Q(o)(le} =0

Hence:

90 E;n(o)(xﬂ =0 (Ak)
and

\eroEf;ﬂ(o)(le oD (x) + QJ]‘IE:;O(O)(XH =0 (a5)
Using the notation of appendix D,
0o _ _ 1
90 = -UoTo(k!) (6)

quO = UoBoIy (k')

q;l = CO8 6@111
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or
qyll _ RYIR= ty 2 11
= cos 6|Ms2rIp(k') - xmMx=Ip(k'') + 2BoI1 (k) +

2BoxIy (k') + PBor211(k") - 2302r12(k'] (A7)

(See equation (L42).) It is easy to prove that all the integrals In(g)
approach zero when x approaches B,r. In the present case, only the
special values n =0, 1, and 2 are needed. Now

/BoT g(x — BorT)
I~(g) =\/\X = 3T
0%8 1 V2 - 1

B — BorT
I(e) ‘fX/ ” Tg(x Porm) o g (48)

—-l

/Po¥ . 12g(x - BorT)
I.(g) =f a
28 1 V2 -1

Put x/Bor = 1 + 6. Then

j“x/ﬁor g(x - Borm) ar <Gfl+8 ar
- 1 1 \’72 -1

logel:l+5 +\[(1+6)2 _:l

where G = lg(x - BOrT)Ima.x is always finite. The above expression goes

to zero if ® —> 0. Similarly,

lll(s)l <G lw—:z-d—T—=G\/(1+8)2-l
Vi2 - 1

llo(g)l
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approaches zero if & —> 0 and

lIe(g)l <Glj11+5

d
Y S LI
VTE -1
where Gy = ng(x - Bor'r)lmax is finite. Also this integral approaches
zero if & —> 0. Hence, all the integrals Ip(g)

tions (AL4) and (A5) vanish for r = x/Bo = (ﬁo)(x), meaning that the
characteristic condition is fulfilled.

occurring in equa-
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" APPENDIX B

PROPERTIES OF THE FUNCTION V¥ DEFINED BY EQUATION (31)

Tt is shown first that equation (31) satisfies equation (30). The

Br

differentiation of V¥ is carried out easily after introducing T =

as a new integration variable. One obtains then

- BrT) dr (B1)

¥ =- pY \/pX/Br (T + \72 - 1)n + (T - Vr? - l)n (™) (x

o
2 nlv,y 2 _1

and it follows that

‘ 2
By - Yy mE W Y

I

o n
zz_}f LX/BT (T + \,1-2 - l)‘[:;_("'_— T2-_ l) E(Tz _ 1)g(n+2) (x - prr) +

1
2
= dr -

g e e prr) + el -Br'r—zl

(x s i - g2 B2r2)n . (x NV 52r2‘)n 2~ 2.2 G(n+1) (o) -

Bn+2rn+2

(x + Vo2 - #22) - (x - V2 - szre)n 22 (o)

Bn+2rn+2

(B2)

n
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Now, one may verify that the integrand on the preceding page,

('r + |12 - 1)n + (T -2 - l)n -(12 _ (nt+2) % - +
- [ g (x - Brr)

T (n+l)
I‘_Bg (X—BI‘T) +B21‘2

g(n) (x - Br'rﬂ =

ar

-d—{;‘—rKT + \"r2 - l)n + ('r - \l72 - l)lj\l'r2 -1 g(n+l) (x - BrT) +

= (T + \/-r_a-_l)n - (‘r N 1)Ij8(n) (x - prr)

per2

50 that the right-hand side is identically zero and equation (30) is
satisfied by V. Differentiating equation (Bl) with respect to x
and r and transforming back to the original varisble of integration &,

one obtains

1 j;x‘ﬂr Ex - &) + Y(x - £)2 - B2r2:|n + Ex -§) - Y(x - 8)° - Berz:ln g(n*'l)(g) at

¥x = - 02 - 2
L G (e E RS
' g 2 (0) (B3)
20yPn! Va2 - 22

L fx-Br Ex - &) + \/(X - §)2 - Bgre:ln N
0

Vp = = :
onpntlyy \/(x _ 12 . 22

-0 Vo o2 -22]

Vix - €)% - g22

(x - £)g® 1) (g) ae +

x (x+ﬁ2-ﬁﬁf+(x-ﬁ2-@ffgmum(m)
plyDtly \ Vi@ - 2,2
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As T —>0, the integrands in equations (B3) and (B4) remain finite
and continuous over the full range O < & < x - Br, except in the case
of ¥, for n = 0. Hence

X X -1
1im (I‘nllfx) =_n%_f (x - g)n—lg(n+l) (&) at - ';T' z(®) (0)
r—»0 0 H

n!

- X -
e M 262 (¢) ae
0

=-%g'(X) n >0 (B5)
ER L i,fox (x - B (2) at + 22 g (0)

r—>0 n

B S RN S I )
S cx AR ORE

g(x) n>0 (B6a)

X
1im (rq:r) = 2]1) gt(t) at + 2g(0) = 2g(x) n=0 (B6b)

r—>0
provided that g(0) =g'(0) = . . . = g(n_l)(o) = 0. It follows then that
¥y = '% 8'(X)I—]:n‘ o
n >0 (BT)
1
Y. = g(:r)rrl+l + .

where the dots indicate terms of higher order in r as r —>0. It is
shown in appendix D that, for n =0, V¥, 1s of the order of 1oge r.

That ¥, ¥y, and V¥, venish for x < Br is obvious, since the
integrands then become identically zero. It may also ‘be verified that
both ¥y and V. are proportionmal to \/—l? as one lets r tend to
infinity along a characteristic x = Br + Constant.
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APPENDIX C

VERIFICATION OF EXPANSION (39) AS A PARTICULAR

SOLUTION OF EQUATION (26)

It is to be verified that expansion (39)

2
M S(y + 1)

245 10
e T (c1)

* M
((plll) = E% rcplo + xrq>xlo +

is a solution of the nonhomogenous equation (26)

1 1
;‘Pr"‘;é'q?

_ Mo 2 10 10 10
= {E7 +1) + (7 - l)ﬁ]rcpXX + 29,7 + 2xQ, (c2)

One has

L(p) = Beqaxx - Ppp -

0] 2 0]
L(req’rl ) =B I'2q)rx:\{l - recPrrrlo - 5I'cPrrlo - 3CPrlo

10 1 10 2 10 10
- 00 - 1 @20) v kr(pRa, Y0 - 0,20 -

It
o
™W
o

(c3)

1]
1
=
™
N
H
§
]
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L(r¢;0 + xrq&lo + %_r2¢}10) =

p2rq 10 - rp 10 - 30,20 + 82w, 10 + 2p2r 0,10 -
et 1® - 30010 — 28, -

r(Beqaxxlo S 0 -1 (prlo) N xr(BE‘Pxxlo -9 10 -

1919 - 201 - 2xq. 0 -

29,10 - 2xq, 10 | (ch)

since Baq&xlo - ¢Erlo - l-q510 =0 (ef. equation (22)). Since

I'CPlO+XI‘CPlO+

re

1o+(7+l)+32(7-l) +2q 10
r

rg'® + g0 + 5 1% v @

From equations (C3) and (C4) it follows then that

* M . - . . o
11y _ _o 2 10 10 10
completing the verification.

* ‘
Expression (C1l) for (@111) was found by guessing that equa-
tion (C2) has a solution of the form

o = Arpl0 + Brzq&lo + erq&lo

and determining the constants A, B, and C.
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APPENDIX D
COMPUTATION OF VELOCITY COMPONENTS ON SURFACE OF BODY

In order to evaluate the velocity components at the body, one must
find the dependence on ¢. of integrals of the type

x/rB n - b 4 n
In(g) = Toglx - BrT) 4 = 1 og(x - o) ao (1)
n\& L/; k/;

V2 - 1 r (gr)™ 2 _ 62,2

for n=0, 1, and 2,%as r = e€f(x) and € —> 0. Using the identities

T=—B—1r-(X-ABrr) -a

2 =L _lx - Br)® - 2x(x - Brr) + Xﬂ
(sr)Q[

it is seen immediately that

T

1,(g) El;EIo(g) - Io(xgﬂ

1
1,(8) = (Br)eEEIO(@ - 2xtg(xg) + To(+2a)

> (D2)

~/

In order to get that part which does not vanish as ¢ —> 0, the expres-
sion for Iy 1is needed up to the terms in r2.

Write R = fr and integrate

- ‘ - 0) d
”"*\Io(g) =‘jpx §£fL__El__E (D3)
e YR g2 - R?
. \\\\;
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three times by parts. Since the successive integrals of —‘/___——l—_— are
2 2
c= - R

log, (0 + Voe - R2>
o logg (c+\ﬁ:2-R2)—\/;2-R2

2 2

o= , R ( Vo2 2) 3 2 _ g2

(?+—)+—)loge c + Yo - R -EO'O' - R
one easily finds that

I5(g) = &(0) logg (x + V2 - Re) - g{x -R) logg R +

g’(O)E loge (x +\/;2 - R2) - \,/x2 - R2| - g'(x - R)R loge R +

g”(O)li(ﬁ + 115-) log, (x 2 - R2) - % W2 - R{l - % g''(x - R)R® log, R +

2

R3LX/R g (x - RT)K%QHF%) log, R('r +\IT2 - 1) - -ﬁ—'rd-re —EI ar

in the last part the original variable of integration T has been used.
Expanding the brackets in the above integrand in inverse powers of T
(L<T <o as R —>0), one gets

2
T 1 =241 1
(—-2 + Tf) loge 2RT - -E- + i + Terms of order ——T2 or higher
The contribution of the unwritten terms of the integral is of order R3

and may be neglected. Keeping terms up to : , one now gets, after
simplifying the integral by successive integrations by parts,

2

Io(e) = E;(x) + R{- g”(Xi\ log, 2 - %E(O) - xg'(Oﬂ(%)

T .
gilM’Ht_/"'b/; E(X—O’)+%—g"(x_oﬂ%g_

-
==

=

g'(x)R +

4'/

A
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Now

* glx - o) *glx - 0) - glx)
A——-—g = dc:j; g = gx dcr+g(x)loge

R
f glx - o) - g(x) i
0

(o)

X
R

The first integral is finite; the second integral yields

g (IR - K gri(x) + .

Similarly,

do +

R2 x_—.___g"(x’c)dg=ﬁfxg'.'(1<-0)-g"(X)
b Jg g Ldg

2
% g''(x)R" log,

Hence, finally,

Is(e) =j;x g('x =.0) - glx) 4 +I—f-fox g''(x - 0) - g""(x) 4 ,

ag g

2 2
E(x) + RT g"(x{' log, -eif— - %E(O) - xg'(0) lxig- +
% g"(nf)R2 ‘ (Dk)

Replacing R = Br = Bef(x) = EBVQk(x), one now gets, using equations (D4)
and (D2), ‘

io(g) = ‘E(X) lOge € +Lx*g(x - 0'())'\- g(x) g +

"g(x) loge (% k(ex) )+ Terms of order 62~loge €+ . . . (D5) .
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1 * k(x)
= —_— do —_—g' -
I;(g) " 2k(x)/; g(o) do + (e loge G)B\} = &'(x)

GBVIE(QX)" |Z)x g (x - Uc)r -g'(x) 4o, §£{_0)_ g

gx(x)(loge %\% + %):] + ... (D6)

X

Io(g) = 1 og(x - o) do - + g(x) log, ¢ +
2 2 2 €
2B7ke 0

%[f" g(x - o) - gx)
0 o
g(x)(loge %J]-:(Lx_) - %ﬂ ... (p7)

Using formulas (D5), (D6), and (D7), the integrals occurring in the
velocity components, equations (38) and (42) to (45), are evaluated by

mere substitution. There are obtained, as r = e\jak(x),
UoTo [k 1 (x)]

X 111 _ _ Yt i
Uok! '(x) logg € - Uol;[ k' (x Uzr LIMC RPN
0

10

Px

k''(x) logg %‘%+ Terms of order o log, € + . . . (D8)
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= UOBIIE_{”(X] 1 Ugllz(x) + ¢ log, € U p2 ,k(x) Kt (x) -

k(X) X klll(x - ) - klll x T
GUOBE"T {/:) UO, (x) do + k_}(_(l)_ +
k' (x) log, %\Ec% + %:l} + ... (D9)

q;lxll = -Mo2\2Kk(x) e{%lo E«:"(xﬂ + xIp Ec”'(x)]} +

hﬂlllz{'(xﬂ + 2311@('{({] + @Bk(x)eélllg"'(xﬂ +
(P ) Moz) xe\’2k(x)

‘/x2 - B2c22k(x)

= —[\IEk(x 4 2k (x):l + ¢ log, € ‘ (D10)

2k(x)

kl!(o)

erll —_ _MOQIOEE'(XZ] - MOQXIOE%'l(Xi] +
Moeﬁ\bk(x) EIIE{H(XZI +
Mo2V2k(x) xeTy [kt (x)] + 2PpVRK(x) €13k’ (x)] -

4gPrp [ (x) | - 25212@:“({] - 2Pp2K(x) 62I2E'”(XZ] -

(P - M)xxrr(0) + . . .

= - GLQ + B3M02 - E)k'(x) + (2M02 - l)xk"(xﬂ loge ¢ + Q(x) + . . .

(D11)
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where

¥ x'(x - o) - k'(x) , 7 1
Q(x) = -(3402 - 2){J; X 2 dos + k (x)Eoge %J:ﬂ_;)_ - Ej} -
*x --0)k''(x - 0) - xk''(x) e 71
(8»102 - 1) {/;) K do + xk''(x) |logg % ) 2]} +

(p - Sux'(x) + §McBxx1(x)

3 o o] -] - .
2B 28 7 (=)
eV2k(x) IIE(X) * eV2x(x) Il[ =
0 S
PBY2K(x) eIy [k *(x)] (p12)
= 32_ +K3MOQ - 2)k'(x) + (a.go2 - l)xk' (%) loge € + Q*(x) + .
€
N,

Where

Q*(x) = -(312 - e){f" Ko o)tk g
0
1 2 1
<6 E°ge Bl * {I} —

xk' ! (x) |1oge ¥ kgx) + %:l} + (P - %Moe)k‘(x) + %— M 2xk" ' (x)

Dots indicate terms which either vanish as € —> 0 or tend to zero
faster than the last term considered. In the above five formulas the
fact that k(0) = k'(0) = 0 was used (see equation (37a)).
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APPENDIX E
DERIVATION OF FORMULA FOR DRAG IN LINEARIZED THEORY

Formula (59) for D is the well-known expression for the drag of

the linearized theory. For the sake of completeness, a simple deriva-
tion of this formula is given. From equations (57), (56), and (55),

f K (x) {f k"(x-c)—k"(x)
2¢ o2k

]|

BYk(x) | Mx(x)

2npgUq

k''(x) loge
Since

() 2 [k ()]’ 1M if2_
k (x)k (X) loge%k(x) - %—k'g—— {E( ):l loge B k( }

and k'(0) = k'(1) = 0, the above integral reduces to

A X 11 (]
I =\/; K () ‘]2 k''(x - cl - k't (x) 4o + k' '(x) log, x| ax

Now, the bracket above

kat - g) - k'
JF (x ) (x) do + k'"(x) loge x =
0

o

[%"(x - g) - k"(xg] logg ©

X X
JF k'''(x - 0) loge 0 = k''(0) log, x +\/P k''"*(x - o) log, o do =
0 0}

X
+ k"' (x) log, x +
0

%X
di.x'f k''(x - o) log, 0 do
0




L

s0, after integrating by parts,

H
[

A b
—d/\ ka"(X)k/ﬁ k''(x -'0) log, o do
0 0

1 b'e
[ [T n (o) 10g, (x - 0) a0
0 0

which is the desired result.
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