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INvIscn) FLOW AINUT

By A. J. Eggers,

Steady flow about curved

AIRFOILS AI HIGH SUPERSONIC SPEEDS

Jr., and Cl=ence A. Syvertson

airfoils is investigated analytically at
high mrpersonic speeds. Assuming air behaves as = ideal &atomic- gas,
it is found that small pressure disturbances emanating from the surface
of an airfoil are almost completely absorbed in the lead@ -edge shock
wave (or a shock wave emanating from any other location on the surface),
provided the flow deflection angles are not too close to those corre-
sponding to shock detachment. This result is found to be essentially
independent of Mach nuniber. As a consequence, it is shown that within
the limitations of the assumption of ideal gas flow, the shock-e-ion
method may be used with good accuracy to predict pressure distributions
on curved airfoils at arbitrarily high Mach nrmibers. This observation
is verified with the aid of the method of characteristics applied to a
10-percent-thickbiconvex airfoil at 0° angle of attack. It is further
shown that the shock+ansion method can be easily employed to con-
struct the entire flow field about a curved airfoil, accounting for
shock-wave curvature and resulting entropy gradients in the flow.

An appro-tion to the shock-expansionmethod for thin airfoils
at high Mach nmibers is also investigated, and is found to yield pres-
sure distributions in error by less than 10 percent at Mach nunibers
above 3 and flow deflection angles up to 25°. This slender-airfoil
method is relatively simple in form and thus may prove useful for some
engineering proposes. To this end, tables are presented to facilitate
its use.

Effects of caloric imperfections of air manifest in disturbed flow
fields at high Mach nunibersare investigated,particular attention being
given to the reduction of the ratio of specific heats from 1.4 toward
1.0. So long as this ratio does not decrease appreciably below 1.3, it
is indicated lihatthe shock-expansionmethod, generalized to include
effects of these @erfecticms, should be substantially as accmate as
for ideal gas flows. This p&t is checked by comparing pressure
butions predictedby the”generalized shock-mansion method and a
ersllizedmethod of characteristics. Both-metho& are employed in
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2 NACA TN 26k6

applicable fourlocal air temperatures up to about 5(130° Rankine, corre-
sponding, for slender airfoils, to Mach numbers up to the order of the
so-called escape Z&ch number. Caloric imperfections caused reductions
in the pressure coefficientsbelow those predicted for flows of an
ideal gas. In turn, there’is-a general reduction in force and moment
coefficients up to 10 percent.

The slender-drfoil method is modified to employ an average value
of the ratio of specific heats for a particular flow field. This sim-
plified method has essentially the same accuracy for imperfect gas
flows as its counterparthas for ideal gas flows.

An appr~te flow analysis is made at extremely high Mach nuuibers
where it is indicated that the ratio of specific heats may approach
close to 1. It is found that’the shock-qansion method nwy be in con-
siderable error as disturbances incident on the leading-edge shock wave
are no longer largely absorbed in the wave. ih this case, however, the
Busemann method for the limit of infinite free-stream Mach nuniberand
spectiic heat ratio of 1 appears to apply with reasonable accuracy.

Small-disturbance,

INTROIXJCTEON

potential-flow theories have been employed
widely, and for the most pm successfully, for predicting tie Press~es
(and velocities) at the surface of an airfoil in steady motion at low
supersonic speeds. !Thuathe linear theory of Ackeret (reference1) has
proven particularly useful in studying the flow about relatively thin,
sharp-nosed airfoils at small angles of attack, while the second-order
theory of Busemann (reference2) has found application when thicker
airfoilk at larger amgles of attack were under consideration. At high
free-stream Mach numbers the range of applicability of any potential
theory is seriously limited, however, due to the Production of stiong
shocks by even the relatively small flow deflections causedby thin
airfoils. lEe assumption of potential flow is invalidated, of cowse~
by the pronounced entropy rises occurring through these shocks.

This limitation on potential theories was esrly recognized and led
to the adoption (see reference 3) of what is now commonly ctied the
shock-e@ansion method. The latter method derives its adwazrtageover
potential theories principallyby accounting for the entropy rise
through the oblique shock emanating from the leading edge of a sharp-
nosed airfoil. Consequently, so long as the disturbed air behaves
essentially like an ideal gas, and so long as entropy gradients normal
to the streamlines (due to curvature of the surface) do not signifi-
csatly influence flow at the surface, the shock-~ansion theory should
predict the pressures at the surface of an airfoil with good accuracy -
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it is tacitly assumed, of course,
supersonic, and that the Reynolds
large to mimhmize viscous effects

that the flow
muiber of the

3“

velooity is everywhere
flow is sufficiently

on surface pressmes.

The deputie of the behavior of air from that of an ideal gas at
the temperatures encountered in flight at high supersonic speeds has
been the subject of some investigation in the case of flows through
oblique shock waves. In reference 4, the effects of thermal and caloric
~erfections on the pressure rise across an oblique shockwave was
investigated at sea-level Wch numbers of 10 and 20 and it was found
that these effects decreased the rise by less than 5 percent for mm5mum
temperatures up to 3(X30° R (correspondingto flow deflection angles q
to Pko). This decrease was found to be due almost entirely to caloric
imperfections or changes in vibrational heat capacities of the ah pass-
ing through the shock wave. The changes in temperature and density of
the air passing through the wave were affected to a considerably greater
extent. Subsequently, an investigationwas carried outhy IveY ~d
Cline up to Mach nuders as high as 100 (reference 5) using the results
for normal shock waves obtained by.Bethe and Teller considering effects
of dissociation (reference 6). As would be expected, the pressures
were found to be affected to a somewhat greatir extent at the higher
Mach nunbers.

The extent to which flow in the region of the leading edge of an
a~oil departs from the simple Prandt144eyer lqpe has also been inves-
tigated at high supersonic airspeeds. If the surface is curved, for
eqle, to give an expanding flow downstream of the leq edge>
expansion waves from the swface wiU interact with the nose shock wave,
thereby curving it and fielding a nonisentropic flow field. !IMs flow
field may be characterized not only by disturbances emanating from the
surface but also by disturbances reflecting to some extent from the
shock wave back toward the s~ace. The manner in ~ich these phenomena
dictate shock-wave curvature and surface pressure gradient in ideal gas
flows at the leading edge has been @eatedby Crocco (reference 7) and
more recentl.yby Schaefer (reference8)? Munk and Prim (reference 9),
and others. In the cases considered byhfunk andPrti it was found that
surface pressure gradients were less (in absolute value) than those
olrbxtnedassuming Prandtl-Meyer flow at the higher Mach numbers (i.e.,
Mach numbers greater than about 3) although generalllyby no more than
about 10 percent. Since curved afioils are likely to be of fundamen-
tal interest at high flight speeds (see, e.g., reference 10), these
phenomena would appesr to merit further investigation,particularly as
regsrds theti influence on the ti.oleflq field. In addition it wo~
appesr desirable to consider effects of gaseous iqierfections through-
out the field. ,,

.-..
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report using the method of
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has therefore been undertaken in the present
characteristicsto accurately obtain flow

fields,and ‘asa basis for obtaining the more approximat& methods of
=QY=s. The method is employed in a generalized form which allows
csloric imperfections as well as entropy gradients in the flow to be
considered at temperatwes up -tothe order of ~00° R - thermal imper-
fections are neglected.as being unimportant in atmospheric air flows
(see reference 4). A 10-percent-thickbiconvex airfoil is treated at
Wch n’mibersfrom 3.5 to infinity, and the results are compared with
the predictions of the shock—expansion method, including a simplified
form of the method applicable to slender airfoils at high Mach numbers,
and a generalized form of the method including effects of caloric
imperfections.

SYME!J31S

a

c

c13 %

cd

c~

cm

Cp

Cp

‘%

M

P

~

R

local speed of sound, feet

chord, feet

characteristic coordinates
negatively inclined with
vector)

section

section

section

drag coefficient

lift coefficient

moment coefficient

/n -
pressme coefficient ( ~

per second

(Cl positively inclined and C=
respect to the local velocity

(moment taken about leading edge)

Po
–)

\%)/

specific heat at cons-t pressure, foot-pounds per slug OR

specific heat at constant volume, foot-pounds per slug %

llachnumber (ratio of local.velocity to local speed of sound)

static pressure, pounds per square foot

-c PressWe, pounds per square foot

gas constant, foot-pounds per slug %
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s,n

T

t

v

x>Y

a’

P

7

‘8

e

P

u

(JJ

o

A,B,
C,D...}

i

N

s

rectarq@ar coordinates (in streamline direction and norn&l
to streamline direction, respectively)

temperature, %

time, seconds

resultant velocity, feet Qer second

rectangular coordinates

angle of attack, radians unless otherwise specified

()Mach angle, arc sine ~ ,radians
M

()Cpratio of specific heats
~

(Averageval.w of 7 is 7a.)

flow deflection angle, radians unless otherwise specll?ied

molecular vibrational.energy cons&nt, % (5500° R for air)

mass density, slugs per cubic foot

shock-wave angle, radians

ray angle for Fmndtl-Me~r flow, radians

free-stream

Subscripts

conditions

conditions at different points in flow field

ideal gas quantities

conditions just downstream of shock wave

conditions on streamline

Superscript

vector quantities /’

-———— —-— .—— — -- —._.-. _ .——. —-.— ____ __



6 NACJIm 26k6

DEVELOPMENT OF MRTHODS OF ANAIZSIS

Method Of ChW&2teriStiCS

Two-dimensionalrotational supersonic flows have been treated by
numerous authors tith the aid of the method of characteristics,and
vsmious .%dap&tions of the method have been found which sre especiaUy
suited for stud@ng partic@ types of such flows. In the case of
steady flows in which atmospheric air does not behave as an ideal &La-’
tomic gas, a very familiar and simple form of the compatibility equa-
tions may be employed. To illustrate, consider the Euler equation

Cm
‘== - grad

the continuity equation

a.iv(pfi)= o

and the equation for the speed of sound

a2 _ ~P
*

P (1)

(2)

(ewluated at constant entropy) ‘

(3)

Rewriting equations (1)”and (2) in the “formof psrtial differential
equations and transforming the result~ expressions to the charac&r-
istic or Cl, C= coordinate system, there is obtained, upon coribination
with equat40n (3), the following relations for steady flow: “

and

?(%’%)+($-90
A simple addition
the compatibili~

or subtraction of equations (4)
eqmtions (see, e.g., reference

.,

(4)

(5)

and (5) then yields
xl)

(6) i
.

..— -. —.
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and

(7)

Now, in reference 4 both caloric and thermal imperfections of air were
considered and it was found that the latter imperfections1 have a neg-
ligible effect on shock-processes in atmospheric air. It may easily %e
showd that this conclusion also applies to expansion processes, md for
this reason caloric imperfections, only, are considered in detail in
the present paper. These imperfections%ecome significant in air at
temperatures greater than about 830° R and first manifest themselves as
changes in the vibrational heat capacities with tempera-. Thus, the
specific heats, Cp and ~, and their ratio, y, for the gas also change.
The equation of state remains, however,

p=pRT (8)

and the specific heats are still related to the gas constant by the ‘
expression

Cp -CV=R (9)

Fwthermore, it readily follows from the differential energy equation
and these expressions that the speed of sound is given by the simplq
relation

82 = 7RT (lo)

Ccmibiningeqmtions (8) and (10) and noting that sin f3= a/V there is
then obta-ined .

ZP
pv== — (n)

sin2 p

Hence, on ccmibiningthis equation~th equations (6) and”(7), it is
apparent that the familim compatibility equations

& -27p b—=— —
acl sin 2P acl

(X2)

‘Thermal imperfections us- appe= in the form of intermolecular
forces andmolec~-size etiects, and maybe accounted for with
additional terms in the equation of state.

. —— .. — — —— . ..——____ ,.- _ .— —
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and

b 2~ &—=— . . (13)
af+ sti 2 f3acz

also hold for the more general type of flow ~der consideration. ~ese
equations are basic, of course, to two-dimensional-@aracteristics
theory, and, as will be shown later, form a convenient starting Po~t
for developing s~ler theories of two-dimensional supersonic flow.

In order to apply equations (1.2)and (13), it is evident that the
manner in which 7 and f3or M are connected to p or 5 must be lmown.
Relations @licitly connecting these variables at temperatures up to
the order of ~“ R may be readily obtained from the results of refer-
ence 4 by simply e15m5nating the terms therein accounting for thermal
imperfections. Thus we have as a function of the local static tempera-
ture and free-stream conditions

.

7 = Y~

.

(14)

and

( )[–+* (l-~)+&(ee~o-,-*JI2 To 7*2
M2=– —

7T 2

(15)

For isentropic
teqerature by

where

flow along a streamline, the presswre is related to the
the expression .

7f

.- . .

(16)

(17)

,.
. . .

__— —. --———--
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If &ere is a shock wave in the flow,2 in
edge shock, then the followtng additional

9

particul= a nose or leading-
relations obtained with

equtions (8), (10), smd (15) and the conditions for continui-& of flow
and conservation of momentum along a streamline through the shock are
also required

P.

[ 11

& = $ (1+7*’)- $ (1+7*’)+ (1+7*)- ~ (1+7~2) 2+ k :

(18)

sin’%

and

tanb~ 1

tan a Y*a

(=-1

(19)

(20)

Using the local static temperature as a parsmeter, the term
2xp/sin 2 ~ in eqpations (12) and (13) may nuw %e evaluated with equa-
tions (14) through (17)● “ Equations (18) through (20) define the initial
conditions downstream of a leading-edge or other shock wave in the flow
field. Thus, equations (12) through (20) provide all the information
necessary to calculate the flow about an airfoil %y means of the method :
of characteristics. As described in detail in appendix A, the calcula-
tion is of three general ~es; namely, (1) calculation of conditions at
a point in the flow field between the shock and the surface; (2) calcula-
tion of conditions at a point on the surface; and (3) calculation of
conditions at a point just downstream of the shock. Case (1) entails
the use of both compatibili~ equations, while case (2) entails the
use of the compatibili@ equation for a second-family chsxacteristic

‘If there are no shock waves, then the stiscrip% N in equation (16)
can, of course, be replaced with the subscript o.

–---——
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line in conibinationwith the eqpation of the a~oil surface, and
case (3) involves the compatibili~ equation for a first-family line
in combination witi the oblique shock equations. With the aid of the
three general t@pes of calcuktions the entire flow field a%out an
@oil can be built w numerically using a computing~ocedure working
from the leading edge downstream. In cases where changes in the vibra-
tional heat capacities with temperature are neglected, the calculations
sre of course simplified since 7 of the gas can be considered con-
stant, and temperature, pressme, and density ratios are simply the
ideal gas functions of Kch nuder.

Shock-l@ansion Method

General.- This ~thOa of calculating supersonic flow of an ideal
gas a~uzface of an a-oil is well lmown, entailing SiTQIY the
calculation of flow at the nose with the oblique shock equations =d
flow downstream of tie nose with the Prandtl-Meyer eqx%tions. Ileter-
mination of airfofi characteristics in this mmner requires a small
amount of time, of course, compared to that involved when the method of
ch~acteristics is used, hence the advantage of the former method. lhe
questions arise, however, as to ~tly what the simplifying assumptions
underlying the shock-eqansion method are, and what form the method
takes (for calculative purposes) when the gas displays vsm@ng vibra-
tional.heat capacities.

The matter of simplifying assumptions may perhaps best be con-
sidered by employing equations (12) and (13), the basic compatibility
equations. If these expressions are resolved into the sla?eamline
direction and combined, noting that

a?
z= 2:s,(%+%)

there is then obtainea the relation

—

(21)

(22)

(23)

— ———— -—



defining the gadAent of p along s. If fluw along streamlines down-
-cam of the nose is of the simple Frandtl-Meyer type, however, we
have

a? 2yp b

z= sin2j3X’
(24)

Hence it is evident that the requirement for this type of flow is

(25)

Eqpation (25) is, of course, shnply an approximate statement of a weXL-
known proper@ of Prandtl-Meyer flows; namely, that flow inclination
amgles are essentially constant along first-familymch lines. It fol-
lows from equation (12) that if equation (25) holds, then the pressures
will also be essentially constant along these lines. It does not fol-
low, however, that the Mach number will be constant, or for that matter
that the first-family characteristiclines will be straight (as is the
case for isentiopic expansion flows a%out a corner). In fact, it may
easily be shown that the l&ch nunber gradient along Cl is proportional
h the local entiopy gradient normal to the streamlines, and that the
Cl lines sre cmved according to the change in M. Thus we see that
there is really only one basic assumption underlying the shock-~ansion
method; namely, disturbances incident on the nose shock (or for that
matter any other shock) are consumed almost entirely in changing the
direction of tie shocks Within the limitations of this assumption it
is evident that the method provides a relatively simple means for cal-
culating the whole flow field about an atifoil, including effects of
shock-wave curvat’me (see appendix). In general, of course, the
validi~ of this assmption can onlybe checkedby comparison of calcu.
lations using this method with those using the method of characteristics.

The shock~ansion method for a calorically imperfect diatomic gas
is readily deduced from the equations Previously obtained. For example,
flow conditions at the leading edge of an airfoil can be evaluated with
the oblique shock-wave expressions (equations (18) through (20)) and the
expression for conserw3tion of energy (equation (15)). ‘I%evariation
of flow inclination angle with pressure along the surface is then

‘It is interesting to note that the assumption of Thomas (reference 12)
that pressure is a function only of flow deflection amgle and entropy
is equivalent to this assumption. It folhws, of course, that the
most general solution obtainable with Thomasfs series representation
of the pressure is that given by’the shock~ansion-method. - -

,

—-—...—_.—. .—..
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obtained by graphically integrating equation (24); nsnely,

(26)

where the variables 7, pt and p sre evaluated using equations (14)
through (17), employbg the static temperature as a parameter. When
extreme accuracy is not essential, this rather tedious calculation can
be avoided and a relatively simple algebraic solution of the flow down-
stream of the nose can be employed.4 The details of this solution are
presented in ap’pendixC. In the special case of flow at high supersonic
speeds about slender airfoils, the whole calculation becomes particularly
simple and warrants special attention.

Slender airfoW. - If it is assmned that the local swface slopes
are small compared to 1 and in addition that the free-stream Mach number
is large compared to 1. it follows that a and 6 are everywhere small
compared to 1. In thi~ case equation (24) take~ on the ajjroxinate form

(27)

Furthermore, if it is assumed that 7 is constant at an average value
7a for a particular flow field (this assumption appears reasonable
since in the temperate range up to ~00° R the change in 7 is less
than 10 percent as shown in reference 4), then the Mach number and
pressure may be related by the simple expression

7a-1

()
M=% > ‘a

P
(28)

Equations (27) and (28) combine to yield the differential equation

(29)

which readily integrates (between N and S) to the form
\

4 The tabulated results of Noyes (reference 13) may also prove useful in
this case for Mach numbers upto3.

Ii

— .— — .
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Now denoting

and

.

*=[’-(9N%)(+)]=

%—
“Po = g (%bN)

there is obtained from the oblique shock
form with this -iS,

13

(’30)

(31)

(32)

equations, simplified to con.

J ~2uN2 +

dM&) =

where

and

ya+l
M@N ‘~~8N+ j~+@@Nj2

With equations (30) through (35) the pressures on the
airfoil my easiJy be obtained. In terms of pressure
have

or

(33)

(34)

(35)

surface of an
coefficient we

(36)

— ——— -———— — —.—
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Be advantage of these slendereirfoil expressions lies, of coume, in
their relative simplicity and thus the ease of calculation which is
inherent to th~ It may be noted in ibis regsrd that the functions
f(M@N) and g(M&N) can be calculated once and for all with equations

(33), (34), ~ (35), prtided the =iation of 7a with M& is known.

This calculationhas %een csrried out for a constant value of 7 equal
to 1.4, and average values of 7 assuming To = 500° R.5 The results
sre presented in table I.

It should also be noted that the slender-irfoil expressions of
the shock-~ ion method satisfy the hypersonic similarity I&w for
airfoils ftrst deducedby Tsien (reference 14).6 A necessary condition
for the mlidi~ of these expressions is thus satisfied;however, the
accuracy of the shock-expansionmethod, wheth= for slender airfoiM or
otherwise, remains to be investigated. Such an investigation is now
undertaken with the aid,of the method of characteristics.

INVESTIGATION OF ILOW ABOUTAIN?OIIS
AND DISCUSSION OF RESULTS

This study is divided into two pm%s: ftist, a consideration of the
-ects of Mach number assuming air behaves as an ideal diatomic gas$
and second, a consideration of the cotiined effects of Mach nuuiberand
gaseous imperfections,with principal emphasis in the latter regard
placed on the caloric imperfectionspreviously discussed.

Ideal Gas Flows

The effects of Mach nmiber of prm interest here ae, of course$
those which result from interaction ’betweenthe leading-edge (or other)
shock wave and small disturbances originating on the surface of an air-
foil. Some insight into the nature and e-nt of these effects can be
obtained in the region just downstream of the shock wave without regard

%or a given value of To, ~, to the accwacy of ~is ~Fis~ is the

ideal gas function of M@E. ~~, h- ~, 7N C~ be *te*@d.
7N+7i

The average value of 7 used iS 7a ‘ Ya(M&N) ‘ ~“

‘This fact was employed by Linnell (reference 15) to obtain an expression
for pressure coefficient equivalent to equation (37) for the case of 1
constant 7, and to ob~in e~licit solutio~ for tie lfltY @W~ ~
pitching-moment coefficients of several airfoils at hypersonic speeds.
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fa the shape

convenient to

of the airfoil producing the shock. To this end it is

~Pcl . afic’ (see equatiOn (25))consider the ratio - - —.-
&/&!* ap/ac.

which may be termed ‘%he disturbance strength ratio” since in the region
under consideration it is a measure of the ratio of strengths of distur-
bances reflected from the shock wave to disturbances incident on the
wave. This ratio may be evaluated with the expression

(38)

which is easily obtained with the compatibility equations and the
oblique shock-wave equations as shown in appen~ D. This calculation
has been carried out for l&ch nunibersfrom 3.5 to = (7N = 1.4) and

flow deflection angles approaching those corresponding to shock detach-
ment (i.e., ~ z 1) and the results are presented in figure 1. It iS
evident that except nea ~ * 1, the ratio is small (in absolute value)
compared to 1 throughout the entire range considered - this obsemation
eiMo applies, of couse, at lower supersonic lkch nunibers. Thus it is
indicated that almost aKl of an incident disturbance is generally
absorbed in the shock wave, provided the air behaves like an ideal dia-
tomic gas.7 !lhisresult is substantially the same, of course, as that
which is assumed in deriving the shock-expansionmethod of calculating
flows about airfoils, and therefore yields some credence in the method
for high Mach nuniberas well as low Mach number applications.

As an over-all check on the shock-e~nsion method, surface pres-
sure distributions calculated thereby sre compared in figure 2 with
those obtained with the method of characteristicsfor a 10-percent-thick
biconvex airfoil (m = 0°) operating at free-stieam Mach nunhrs of 3.5,
5, 7.5, 10, 15, - m. Wedictions of the slendera~oil approximation
to the former method for high supersonic speeds are also shown. Tlm?e
is no apparent difference between the pressure dis~ibutions given by
the method of characteristicsand the shock-eqansion method up t-oa

7This result is contrary to that obtained by Lighthill (reference 16)
who reports that for hypersonic flows, a disturbance is reflected
from a shock we with opposite sign but essentially undhinished
strength. LighthillTs conclusion appesrs to be based on sn incorrect
evaluation of his results for the case of very high Mach nuuibers.

-—. . —---- ..—— -. ..__ __ ___ .—-. —.. . .



16

lkch mmiber of 10. At
latier method predicts

Mach nmibers of
pressures which

the nose, becodng progressively lower
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10, and above, however, the
are slightly low downstream of ‘
with increasing Mach number.

This res~t would-~ deduced from fi’gure1 where it is obsemed that,
at the Mach numbers under consideration,expansion wves ticident on
the nose shock are reflected back toward the mu’face as compression
waves of relatively smll but increasing strength with increasing Mach
nuniber. The effect of these waves does not become pronounced even at
infinite Mach nuniber(see fig. 2(f)) and the shock-~ansion method is
thus substantiatedas being a reliable simplified method for predicting
the flow about airfoils at high supersonic speeds, again, so long as the
ah behaves as an ideal diatomic gas. The further simplified slender-
airfoil method also appears to be a good approximation over the entire
-e of lkch nuuibers,8 although, as would be expected from the assump-
tions made in its development, it is in somewhat greater error than the
shock-expansionmethod at the lower Mach nunibers.

The relative accuracy at high Mach nuuibersof the slender-airfoil
method, linear and second-orderpotential theories may be seen in
figure 3. As might be expected, the slender-airfoilmethod is more
accurate than linear theory at both ~ = 5 and 15, and more accurate
than second-o@er theory at ~ = 15. It is perhaps surprising to note, ~
however, that at the lower l@ch number of 5 the slender-airfoilmethod
is also somewhat superior to the second+rder theory.

The pressure distributionsof figures 2 and 3 have been en@oyed to
calculate the zero-lift drag of the biconvex airfoil, and the results of
these calculations, along with additional predictions of linear and
second-order theory, are shown in figure k. Predictions of the shock-
expansion method are, of course, in best agreement with those of the
method of characteristics;while the slender-a~oil method, although
slightly less accurate than the shock-expansionmethod, is apparently
s~erior to both hear and second-order theory at Mach nunfbersabove 3.

The preceding findings verify that so long as the disturbance
strength ratio is small compared to 1, the flow along streamlines is
essentially of the Prandtl-Meyer me. If we choose, on the basis of

‘ml Of 0.06 (notethese find3ngs, a maxhmnn absolute value for —

spc~ h~c~
the maximum value of — for the cases presented in fig. 2 was

&/ac2

%he hybrid expression for pressure coefficient obtained by Ivey and
Cline (reference5) gives reasonably good results also, although not
as accurate as the slender-airfoilmethod at the higher l&ch numbers
under consideration.

_—. . — ———— .—.——
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approximatdy 0.06 at ~ = w), the

method is applicable can readily be

region in which the shock~ion
obtained from figwe 1. The upper

boundsz’yline of this region is-shown in figure 5 and it is evident
that it lies only slightly below (about 1° in general) the line corre-
sponding to shock detachment given approximately by the ~= 1.0 line.
Almost the entire region of completely supersonic (ideal gas) flow is
then covered by the method.g (See shaded area of fig. 5.)

The question naturaKly arises concerning the correspondingrange
of applicabili~ of the slender-airfoilmsthod. This question may be
answered in part by compsxing separately the predictions of the method
for oblique shock flows and expansion flows with those of the exact
oblique shock equations and Prandtl-Meyer equations. Such a comp=ison
is shown in figure 6 in terms of the percentage error in the pressure
coefficientspredicted by the slender-airfoilmethod. As would be
e~ected~ this method does not exhibit good accuracy over the wide
range of applicabili~ of the shock~ansion method; however, it is
indicated that it should predict pressure coefficients with less than
10-percent error down to Wch numbers as low as 3 for airfoils producing
flow deflections up to as high as 25°.

As a further check on the utili~ of the slender-irfoil method,
the pressure coefficients on the 10-percent-thickbiconmx airfoil have
been calculated with this method and the shock~ansion method at a

O 10 me resti~Mach rnmiberof 10 and angles of attack up to about 30 .
of this calculation are shown in figure 7 (see fig. 2(d) for a = 0°)
where it is seen that the agreement is reasonably good even at the
highest angle of attack. This fact is reflected in figure 8 showing
the force and moment coefficients for the airfoil as a function of angle
of attack. Little difference is observed in the force coefficients as.
calculatedby the two methods, while the moment coefficients display
more pronounced but nevertheless small differences at the higher angles
of attack.

*If it is required as by Rand (reference17) that the entire flow field
be of the true Prandtl-Meyer type (i.e., that all flow properties be
constant along first-family Mach lines and not just 8 andp), then
the range of applicability of the shock+qion metiod wouldbe
appreciably smaller. However, it has been shown that this res~iction
is not necessmy.

lWl%ese conditions are within the range of applicabili~ of the shock-
expansion method as defined in figure 4~ hence the use of the method
as a base of comparison seems justtiied. Since the shock-expansion
method is far less tedious to apply than the method of characteristics,
it will be employed as such a base in subsequent calculationswhenever
tie conditions being investigatedhave been determined to be within
its range of applicability.

..————— ——— .—— - ——.. — .———._——
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Worn these and Trev-iousconsiderations, the ranges of applicability
of the shock~ansion and slender-airfoilmethods for ideal supersonic
gas flows are reasonably well established. It remains now to determine
the manner and extent to which gaseous @erections in the flow at
higher swersonic speeds may alter these ranges, and the reasons
therefor.

As a first step
fections on the high

Tmperfect Gas Flows

toward investigating the effects of gaseous imper-
l&ch nuriberflows under consideration, it is con-

venient to extend & consideration of the disturbance strength ratio
hpc~

It is recalled that when air Wibits a constant value ~f 7
%2”
equal to 1.4 (the value for an ideal diatomic gas), the distmbance
strength ratio is small at arbitisrily large Mach numbers, provided the
flow deflection angles are not too close to those for shock detachment.
One of the most ~ortant effects of gaseous imperfections is, however,
to decrease 7 of the disturbed air below this value due to the excita-
tion of additional degrees of freedom (e.g., vibrational) in the mole-
cules at the high temperatures encountered at high Mach nunibers. Indeed,
at arbitrarily high l&ch numbers it might be expected that 7 of the
distibed air would approach 1, since the number of degees of freedom
may effectively become very large (see, e.g., references 3 and 6). in
this case, however, the extent of the disturbance flow field is decreased
to a layer at the ,~ace of the body which is negligibly thin compared
to that for the case of ideal gas flow. Thus it is apparent that signi-
ficant changes in the flow about airfoils at high Mach nunibersmay
result from decreases in 7 of the disturbed air; hence the effects of
such decreases on the disturbance strength ratio would appesr to warrant
attention.

A detailed analysis of these effects is impractical at the present
the due to the limited range over which the variation of 7 with tem-
perature is lnmwn. However, some knowledge of these effects can be
gained by repeat= the ideal gas calculations for constit values of
7N between 1.4 and 1.0.11 ‘Suchcalculationshave been carried out at

llSince the enthalpy is negligibly small compared to the mass ktietic
energy of the undisturbed fluid at the high Mach nunibersof interest
~d~ hence~ 7 of this fluid does not influence the flow, this approach
corresponds to employing an average value of 7 for the distmbed
fluid. Since only flows of dense ah are considered here, heat-
capaci~-lag phenomena are neglected (see references 5 and 6).

—— —— —-—.— .——
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a@c~
infinite l&ch nunibersince in this case — has its maximum value

%pcz
for a given 7N, and the results are presented in figure 9. It iS seen

that except near shock detachment, the disturbance strength ratio
increases with decreasing 7N, approaching 1 as YN approaches 1. This

b@21 is s-tin
increase is slow at first; for example, the value of —

bpc*
less than O.lat YN= 1.3. It might therefore be expected that the
shock~~ansion method would continue to apply with reasonable accuracy
so long as 7 of the disturbed flow is not appreciably less than this
value. This point has been checked with the methods developed pre-
viously for analyzing the flow of a calorically imperfect diatomic gas
at local air temperatures up to about No R (note 7 has a value
only slightly less than 1.3 at this temperature). In particular, tie
pressure distribution on the lower surface of the biconvex airfoil at
~=10, a=19.9°, and To = mOOR (~*~OOOR at leading edge) has
been calculated with both the method of characteristics and the shock-
e~ansion method.12 The results of these calculations are presented in
figure 10 and it would appe~ that the conclusions drawn from figure 9
pertaining to cases where yN is of the order of 1.3 or greater are
substantiated. Pressures in the expansion flow about the upper surface
are not influenced (due to the low temperatures) by caloric imperfections
and hence are the ssme as shown in figure T(b).

.

Shown also in figure 10 is the pressure distribution obtainedby
the shock-e~ansion method for an ideal gas (7i = 1.4). It is appment,

on comparing this pressure distributionwith the other distributions,
that although the effect of caloric @erections on the disturbance
strength ratio is small, the pressures are appreciably reduced by the
increase in specific heats. The extent of this reduction is more com-
pletely illustited in figure llwhere the lower-surface pressure dislri-
%utions on the %iconvex airfoil are presented for ~=10 and To=5000 R,
at a = 0°, 10°, 19.9°, and 30°. As one might expect, the reduction in
pressmes increases with angle of attack (due to the corresponding
increase in static temperature of the disturbed air). The pressure
coefficients calculated with consideration for the imperfections in the
gas sme less on the lower surface (up to6 percent at the tiading edge
and 15 percent at the trailing edge) than those calculated assuming the
gas behaves ideally. The upper-surface pressures are again unaffected

12For added ease of calculation the expansion method of appendix C was
employed. This method is also employed in all subsequent calculations
of this type since it has been found to yield results differing by

!. less than lpercent from those obtainedby the more tedious graphical
integration method.

.
__—.A . — –—

--——. —-
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by the caloric imperfections of air in all the eases presented (except
at a= 0°) since this surface experiences lower pressures and hence
lower temperataes. They are therefore the same as shown in figure 7.
Shown also in figure 11 are the pressure distributions calcuJatedwifi
the slender-airfoilmethod for 7 = 7a. The accuracy of this simpli-
fied method is stistantially the same as was previously olmened for
the correspondingmethod in the case of ideal gas flows, although the
local error may be greater than the reduction in pressure coefficients
due to the caloric imperfections of air. This error is somewhat com-
pensating, however, in its effects on the force and moment coefficients,
as will be seen.

The force and moment coefficients, corresponding to the lower-
surface pressure distributions shown in figure 11 and the Upper-stiace
distributions of figure 7 are presented in figme 12. The reduction in
tie lower-stiace pressures leads, of course, to a general reductim in
all three coefficients (up to about 10 percent for a = 300). The
slender+irfoil method again predicts these coefficientswith s~rising
accuracy.

In order to further assess the accuracy-of the slender~irfoil
method some additional calculationswere carried out for the biconvex
airfoil at a = ooti~=20ti 30. The pressure distributions for

these cases were calculatedly the shock~xpansion method, slender-
a&foil method (7 . 7a), and slender-airfoilmethod (7 = 7i). These

results sre presented in figure 13 and it is observed that the use of
rather than 7i improves the accuracy of the slender-airfoilmethod.

he extent of this movement in the case of drag coefficient is shown
in figure 14 - it would appear that predictions of the slender-airfoil
method (7 = 7a) md shock-expansionmethod are in as good agreement as
for ideal gas flows (see fig. 4). On the basis of these and previous
results, it may be concluded then that not only does the shock~ansion
method retain its range of applicabili~ when air exhibits caloric
imperfectionsprovided 7 of the disturbed air is not appreciably less
than 1.3, but also the slender-airfoilmethod (7 = 7a) retains its
-e.

It would be surprising indeed, however, if this conclusion con-
tinued to apply as y of the distur%ed fluid approached 1 since, as

h/at=
discussed previously, — is not small comp-d to 1 in this case,

bpc.
but would appear, h fact; t: approach 1. This matter may be investi-
gated in the same manner as the effect of 7N on the disturbance

stiength ratio was investigated, namely, by using the ideal.gas relation- .,

ships in combinationwith appropriate values of 7.
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The limithg case of
(for the disturbed fluid,

infinite free-stream

see footnote 11) has

a

Mach nwnber and 7 = 1.0
already been investigated

by Busemann (~ference 18) and more recently by Ivey, Klunker, and Eowen
(reference19). In this case, as pointed out previously, the-shock ware
emanating from the leading edge remains attached to the surface down-
stream of the lealing edge (this is easily verified with the oblique
shock-wave equations) md the disturbance flow field is confined to an
infinitesimallythin layer adjacent to the surface. Ih addition, tie
velocity along a streamline downstream of the shock is constant, as may
easily be shown with the compatibility equations. Smface pressures
therefore become a siqle function of airfoil geometry,

(39)

varying, to a first approximation, directly with the sq,usmeof the com-
ponent of free-stream velocity normal to the surface (i.e., the flow is
approximately of the Newtonian corpuscular type). With this theory
then, and the method of characteristics,we can get an idea of both the
extent to which extreme changes of y from 1.4 toward 1 will alter
surface pressures, and the accuracy with which the shock~ansion
theory predicts the alterations. To this end, figure 15 is presented
showing the pressure distributions about the biconvex airfoil at

m=” as calculated by the several methods for different values of 7.
It is observed that, whereas the shock~ansion method agrees very
closely with the method of characteristicsfor 7 = 1.4, there is a
large difference at 7 = 1.o5. This, of course, is precisely what one
would expect from the ‘previousdiscussion of the disturbance strength
ratio. On the other hand, if the two characteristic solutions and the
Busemann method are considered in order of decreasing 7, it is indi-
cated that the characteristics solutions approach the Busemann theory
as 7 approaches 1. For 7 = 1.0 and ~ = = the shock+xpnsion
method, in turn, predicts a discontinuouspressure distributionwith a
pressme coefficient equal to that of the Busemann theory at the leading
edge but a pressure coefficient of zero at all points downstream of the
leading edge. Hence it may be concluded that when the free-stieamldach
number approaches inf~ty and 7 approaches 1, the Busemann method
rather than the
airfoils should

shock+xpansion method for calchting the flow about
be employed.

CONCLUDING REMARKS

,.
The flow about cwed airfoils was investigated &nalyticall.yat

high
then

supersonic speeds first assuming ah behaves as an ideal gas, and
assming ah behaves as a thermally, although not necessarily
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calorically,perfect gas. (Caloric @erections had previously been
observed to be of predominant iqyxrtmce in free flight, at least for
local air temperaturesup to the order of 5000° R.) It was found that
so long as air exhibits no imperfections (i.e., behaves as-an ideal
tiatomic gas) small disturbances originating on the curved surface of
an airfoil.are almost completely absorbed in the shock wave emanating
from the leadhg edge (or any other location on the surface), provided
the flow deflection angles are not too close to those corresponding to
shock detachmnt. This result is essentially independent of Mach nunber,
and is consistent with the early calculations of CrOcco concerning sur-
face pressure gmitient at the leading edge of an a~oil. It was cc)n-
clu&d that in ideal gas flows the shock~ion method for determining
flow conditions at the surface of an airfoil would apply with good
accuracy at arbitrarily high Mach numbers. This conclusion was verMied
by the excellent agreement found between pressure disizributionson a
10-’percent-thickbiconv~ airfoil.at 0° angle of attack cs2culated with
‘theshock-e~ansion method and the method of characteristics. It was
further shown that the former method can be easily emplo~d to construct
the entire flow field about an atioil. in a manner that would account
for shock-wave c~ture and entropy gradients resulting therefrom.

A high Mach nuniberapprcccbmtion to the shock~sion method for
thin atifoils was also investigated, and was found to ap@y with good
accuracy at Mach numbers above 3 and flow deflection angles up to 25°.
The essential featme of this slender-a3rfoilmethod is, of course, its
s@lici~, and for that reason it may prove useful for some engineering
purposes.

Effects of caloric imperfectionswere first investigated qualita-
tively considering the reduction in the ratio of specific heats from
1.4 toward 1.0. It was found that as the ratio decreased, the extent
to which disturb~ces reflected from a shock wave increased. In the
limit as the ratio approached 1, the reflection was complete, and the
shock wave became tangent to the surface of the airfoil.. So long as the
ratio did not decrease appreciably belw 1.3, howver, it was found that
less than 10 percent of a distibace was reflected; hence the simple
shock-expansionmethod might be expected to continue to apply. This
matter was checked quantitativelyfor the biconvex airfoil with the aid
of a generalized method of characteristics incltiirg effects of caloric
@erections (up to local air temperatures of the order of 5CK10°R,
corresponding to a ratio of spectiic heats of about 1.3). It was found
that the shock~ansion method was substantially as accurate as for
ideal gas flows, provided it was al,sogeneralized to include effects of
these imperfections. The principal effect of the reduction in specific
heat ratio was to reduce the pressure coefficientsbelow their ideal
gas values by as much as 15 percent. The reduction in force and moment
coefficientswas somewhat smaller, being about 10 percent. Shlilarly
it was found that the slender-airfoilmethod, modified to employ an

—
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average value of the ratio of specific heats for a particular flow
field, exhibited essentially the same accuracy as the analogous method
for ideal gas flows. Thus it is tndicated that the generalized shock-
expansion method and its slender-airfoilcounterpart can be applied
with good accuracy up to very high free-flight Mach numbers. If the
flow deflection angles are less than about 12°, these Mch numbers are
of the order of the so-cald.edescape Mach numiber(i.e., ~ch numbers
as high as 30 to 35).

At even higher Mach nunbers where the ratio of specific heats is
expected to decrease appreciably below 1.3} and in fact perhaps to
approach 1, it was not possible to obtain an accurate check on the pre-
viously discussed qualitative considerations. It was undertaken, how-
ever, to compare the pressure distributions on the biconvex atifoil
predictedby the Busemann method (for the limit of the ratio of specific
heats approaching 1 and Mach number approaching infinity) with those
predicted by the shock+xpansion method and the method of characteris-
tics at infinite Mach nwiber (employinga constant ratio of specific
heats of 1.05). As was expected, the shock~ansion method was in
very poor agreement with the method of characteristics,whereas the”
Busemann method was in relatively good agreement. It is therefore
indicated that for extremely high Mach nmbers (something in excess of
the sea-level escape Mach number) the Busemann theory may apply.

Ames Aeronautical Laboratory
National Advisory Committee for Aeronautics

Moffett Field, Calif., Jan. 9, 1952
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AwENmx A

METEOD OF CHARACTERISTICSFOR TWO-DIMENSIONALFLOW

OF A CALORICALLY IMPERFECT GAS

In the application of the method of characteristicsfor a c&Lori-
cally imperfect diatomic gas to the particular pro%lem of analyzing the
flow about curved two-nsional airfoils~ many of the calculations
are identical to those encountered in the solution of any problem where
characteristicstheory is employed. Since the ~~~ of ~ese c~cu-
lations are wdl lwwn and well reported (see> e.g.~ reference l-l)z
they fi not be repeated here.

A lattice-point s@em with an initial-value,numerical computing
procedure wXU be used. The form of the compatibility eqyations to be
employed was developed previously;Is however, it is convenient for pur-
poses of calculation to mbstitute the pressure ratio, p/~, into these
equations and to rewrite them as difference equations. Equations (X2)
and (13) are thus reduced to the following forms

(P/@ - (P/qo)A = ‘~A(~C - 5A)

and

(P/9& - (p/qo)B = hB (5C - bB)

(Al)

(A2)

where

~ . 27(p/~)

sin 2p (A3)

It is also convenient to employ several.reference curves. These curves
can be divided into two groups. The general reference curves consist of
7 and $(T) as a function of temperate, T. Equations (14) and (17) are

%Ihis form of the compatibility equations (in “p and 8 coordinates)
was abo used in obtaining some of the characteristics solutions for
ideal gas flows. The majori~ of these solutions were c~ied out,
however, with the compatibility equations in p$ b, and entropy
coordinates, stice it was found that greater accuracy was usually
obtained for a given net size. In general, the net size employed
yielded pres~s at from 30 to 35 surface points on an airfoil with
a maxhum error in the correspondingpressure coefficients equal to
less than 1 percent of the pressure coefficient at the leading edge.

.

,,

—. ——. —-———.
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used to determine
curves consisting
are determinedby

these curves. A second set of shock-wave reference

of P/qof a, and 6 as a function of temperature, l!,
use of equations (18) through (20) - the values of TO

and ~ are presumed bum.

In the computations three types of points are encountered. These
are (1) a point M the flow field betw!en the shock wave and the air-
foil surface, (2) apoint” onthe’airfoil surface, and (3) a point just
downstream of the shockwave. Each one of these.types of points
requires a slight%y different computing procedure and they will be con-
sidered in order. ;,

7-”

Point in the Flow Field Between’the Shock Wave
and the AirfoilISurface

Fi@rre 16(a) shows a schematic diagram ~f the system of points to
be considered in these calculations. Point C is the unknown point at_
the intersection of the first-family characteristic line passing through
point A and the second-family characteristic line passing through
point B. Six qutities are known at both points A and B, and the
problem is to calculate these same quantities at point C. These quti-
ties are X, Y, 6, P/~, T, and ~. The first five quantities are of
obvious significance. The s&h, ~, is defindd as the static tempera-
ture, just downstream of the shock wave, on the streaml~e Pass@3
through the point C.

The physical coordinates of the point C (~, yc) may be determined
by standard procedures such as those given in reference il.’ In order to
determine the quanti~ 5c, it is necessary to solve equations (Al) and
(A2) simultaneously;thus

(A4)

Equation (Al) or (A2) is then used to obtati (P/~)c ●

There remains only the problem of determining Tc and’TNC at

point C. The temperature NC is obviously constant along the stream-

line through C. This qvanti~ may therefore be calculated in the same
manner as the entropy is calculated in similar flow fields for ideal gas
processes (see, e.g., reference U). .Furthermore, since the flow along
streamlines downstream of the shock wave is isentiopic, eq~tion (16)
may be applied in the form
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(Pl%)c *(TNc)

(P/%)Nc = $(TC)

MACA TN 2~6

(w)

The pressure, (P/~) , is defined in a manner analogous to
NC

TNC , and

may thus be determined using the shock-wave reference curves and the
lamwn value of ~C . S~arlY, V (TNC) may be determined from the

general reference curves. The only unknown in equation (A5) then is
$ (Tc) which may now be calculated.- Once ~ (TC) is
be determined by again using the general reference
q~tities, ~, Yc, ~c) (P/~)C ~ TcS and TNC have

Point on the Airfoil Surface

Figure 16(b) shows a schematic diagram of the

aeteriiied, TfJ may
cmves. All six
now been determined.

points to be con-. .
sidered in these calculations. The physical coofinates of point C,
(XC, YC), are f~st c~c~ted by SOIV@ S~*OUSXT the eq~tion
of the second-famil.yMach line passing through point B and the equakion
of the airfoil.surface. When ~ and yc have been determined, 5C is
readily obtained from the equation of the airfoil sm’face. Equation (#Q)
is then applied to determine (p/~) c .

Since the airfoil surface is a streamline,~c is conStant alOllgthe

surface and may be evaluated at the leading edge. The temperature, Tc,

may then be d.eterudnedusing equation (A5) and the previously described
procedure. m six quantities, ~, Yc, (P/%)c Y ~c~ Tc~ and %C t me
thus determined.

In the special case of the first point on the airfoil surface
downstream of-the leading edge, the
the procedure of reference 9. ~is
applicable to calorically imperfect
shock-wave equations of the present

Point on the

-e 16(c) shows a schematic
sidered in these calculations. ‘Ibe

pr&sure ratio is calculated using
procedure is easily shown to be
gas flows providing the oblique
paper are employed.

Shock Wave

diagram of the points to be non-
physical coordinates of point C

u
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.

of the first-fami@ Mach line passing through point A and the equation
of the shock wave linearized at point D, the last lmown point on the
wave. The miation of p/qO with 6 along the shock wave may be
approximated by the relation-

(IAJC - (P/%)D = INPJ%)(8C-bD)
N

(A6)

d(p/~)
In this equation —

G

along the downstream side

I is

N
of the

the rate of change of p/~ tith 5

shock wave evaluated at point D.
Eecause of”the complicated natme ,ofthe shock+mve equations, it Is. .

d(p/Q
generally easier to evaluate

& I graphically or numerically

from the shock-wave reference curves. &uations (fl) and (A@ are
solved shul~ously for 5C , thus

When f5c has been calculated, TC ,and in turn (p/~) ~ ,may be deter-

mined from the shock-wave reference cmwes.
is just dc?wnstreamof the shock wave, Tc and

determined. ‘

Since pobt C in this case

‘NC are identical.

and ~c have now %een

. ..— .—-. .——- ——-.— ——.—— —... . .—. — .— . . --
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APPENDIX B

SHOCK-EXPANSIONMETHOD FOR CALCUIA’ITNGTEE FLOW

FJJ32DABOUT AN AIRFOIL

f’

An initial value p?fbcedurewhich is similar to, although markedly
simpler than, that associated with the method of characteristicsmay
he employed to csxry out thiq calculation.14.To iX&trate, consider
the sketch:

First fumily rc,) Mach

\

line

-@

Streamlines
bE-

Shod wave

D
B.\

Ac N
M*

Airfpil surface
> M

r)
With the oblique shock-wave and expansion equations, all fluid proper-
ties at points M, A, C .m~@ so forth ‘onthe airfoil surface may %e cal-
culated in the usupl m$nner.. If the point A iS chosen close to M, the
ftist-family (Cl) Yach:line cofiectin& A to point“B on &e shock wave
may he con@dered~straight’and intlti@. at an -e to the free-stream
direction equal to PA + b~=

b

S~ly, the segment MB of the shock
wave may be considered strai ht and inclined at the angle aM to the
stream direction. !lhusthe, oint B in the flow .fiel@may “easilybe
determined. The direction of BD (a segment of &ie streamline passing
through B) is the same as the-tangent to the-surface at”A, and the
attitude of the segment BE of the shock wave is fixed.by this dtiection.
The locations of qoints’D and\E in the flow field are thus fixed once
point C is chosen.15 The co~tiuction of the remainder of the flow field
follows in a similar fashion. Having determined the shapes of the
streamlines, the fluid properties along these lines arez of course,
determined in the same manner as t%ose along the surface.

.,

lAIt is clear, of course, that an ‘rave:ragev’aluet~procedure could also
be employed. Such a ~oce~e would, in fact,,be the more desirable

15 in some cases, since a coarser net may be wed. , ~
The point C should, of course, be chosen close to A.

,, .
---

I

—. — –—.—— —.
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It is importamt to note that this method is applicable to the
determination of the flow not only in the region adjacent to the air-
foil (whether thetsurface be concave or convex) but also in the region
downstream of the airfoil; hence it may, for example, Trove useful b
downwash studies and the ltie.

1

.,

. .

,.
,,~.. .

.
.

,’

,’

!{

..z .-— .—— — ..—4 .. —.— — _ ___



30 NACA TN 2646

APPEND3X c

APPROXIMATE SOLU’ITONFOR PRKKOTL-MEYER

OF A CALORICALLY IMPERFECT GAS

The followhg solution is obtained with an -is similar to
that used in Meyer$s original paper (reference20). A schemtic dia-
- of the subject flow field is sh- h fi~e 17. It is etident
that the change h flow-inclinationangle for Frandtl-Me~r flow can
be written as follows

Since the flow is isentiopic,
determine the Mach angle, ~.

(l+J-B)+(qJ -

a given value of
The problem then

angle, W. To this end the velocity components

(J.)) (cl)

the local pressure will
is to evaluate the
tangential and normal

to the ftist-famiQ Mach lines may be expressed in the usual manner in
terms of a potential q, thus

~=w
(C2)—

z

(C3)

It is clear, however, that these components are functions of o only;
hence it is convenient to define a new veloci~ potential which is a
function of (JIalone. Such a potential.is

(C4)

The velocity components may then be written in terms of this new
potential.

U.@ (c 5)

a =,au (C6)

The resultant velocity is given by the expression

~2 . &’ + amz (C7)

.

—— -——
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Equation (15) for’conservationof ener~ may be written in terms of the
local temperature as follows: .

V2+2 (+, +2R, (--&)=A2 (c8)

The constant, A, is evaluated at the conditions existing upstream of the
expansion region; namely,

A2=V$+
()

27i

()

e/TN
— RTN + 2RTN _
7i-1 el~-l

e

Equations (C7) and (C8) are then combined to yield

(C9)

(Clo)

It was shown previously, however, that

a2 = 7RT (Cll)

Equtions (c6), (C1O), and (Cll) may therefore be combined to obtain
the following relationship:

[( 7i + 19/T&+@w2 1+; —
~ )1.A2 (m)

7i-1 e6’IT-1

or

{- [
F+hz -+~ ~-l+ 7;;1

7i-1 (:)-]} ‘A2 (cl,,

From the imperfect gas relationship’for 7 we have

(C14)

.- —..—— . —.— -—. ._—— — — .-—.——— .
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Substituting this relation into equation (C13) there is then obtained

where

[

7i+l + 2&’ + @u2 —
( )1—F e =A2

7i-1 7i Y

,

S(@m@~+ ‘/T1 + (7#) ee/T 1
eeiT-l)1

-1+ (~i-l) (e/T)2ee/T
7i (ee/T-1)2

Now

m a2—=—
7iQ yiRe

(C15)

(c16)

(C17)

For
The
of
let

every value of T/~ there is thus a particular value of a2/7iRe.
function F(8@) is therefore uniquely determined for any value
a2 since 7iR0 is of course a constant. With this point in mind,

F(e/T) = G(a2/7iRe) (c18)

Figure 18 shows G(as/7iRO) p’lottedas a function of aa/7iR@. This
curve is approximatedwith the following simple relation:

G(aa/7iRe)

a2
— < 1.0
7iRf3

G(a2/7iRG) = O

a2
for O < — <0.18

7iR6

= 0.38
a2 0.14

—+o.71-— (Cly)
7iR8 a2/yiR0

.

(C20)

-.
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Equation (C19) is also plotted
approximateon. Consider first
tion (Cl~) which is written in

33

in figure 18 to show the accuracy of this
the case when G is given by equa-
the form

G(a2/YiRe) = ~a2+p+q* (C21)

Where obviously

E = 0.38/yiR61

p = o.71
\

(C22)

Equation
and (c6)

In order

(C21) is substituted into equation (C15) and with equations (c18)
the following expression results:

(C23)

to simplify this equatiorithe following substitutions are made:

‘2=(-+9+&(A2-& (c24)

(C25)

(c26)

and

—E
Yi

_.— .. . .... . . . . . . .. . . . ..-. —_— ~— ..——.. ——
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Equation (c23)

COS4T (Tw)4+

then reduces to

4 Cos v 4 sin2 T 4 sin2 v
COS2 T (TU)2 + = o (c28)

D D2 – D2

This -equationis solved for T@, thus

f

21
TO = .— (COST- Cos V)l’2

D COS 7

or

dfJl=
f

COS 7 dT
~

(COS T - Cos v)l/2

This expression is readily integrated to obtain
relating fJIto the local veloci~:

rr 1 r

the

(C29)

(C30)

following equation

fl)- ~= fi;21E(k,z) - E(k,zN)~ - lF(k,z) - (F k, ZN)] j (C3~)
Cl-

where

E elliptic integral

F elliptic integral

k SiIl: (modulus)

of the second kind

of the first kind

z ‘fi-l(::;;)@’@itide)
The procedwe for calculating correspondingvalues of the pres-

swe, p, and the deflection angle, 5, is straightforwardwith the aid
of the preceding equations and may be summarized as follows:

1. Calculate A2, equation (C9)
2. Calculate D2, equation (c24)
3. Cslculate V, equation (C25)
4. Assume a vslue of T, less than TN
5. calculate p, equations (16) and (17’)
6. Calculate V2, equation (c8)
7. Calculate 7, equation (C14)

.
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8. Calculate aa (or 0U2), equation (Cll)
9. Calculate M and, in turn, ~ from V and a
10. Calculati u2 (or 02), equation (C7)
S1.. calctite T, equation (c26)
12.
13.

Calculate u, equation (C31)
Calculate b, equation (Cl)

!lhisprocedure is followed so long as the quantiw a2/7iRe iS
~eater than 0.18. (T!hisis equivalent to the temperature being ~eater
than approximately 1000° R.) For values of a2/yiRe less than or equal

to 0.18 (or temperatures less than about 1000° R) G is set equal to zero
(see equation (C20))0 In this case equation (C15) reduces to the same
form as for an ideal.gas, and therefore the well-known ideal gas rela-
tionships can%e used.

.

.

.

— - -.—. -- --——————— — --—- ..-— — —z— -..——.
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EVALUATION OF

Consider the element
panyhg sketch

APPENDIXD

THE DISTURMNCE STRENGTE RNECO

o,fan oblique shock wave shown in the accom-

a5pc~
It is evident that the ratio — is a measure of the ratio of

a@2
strengths of reflected and incident disturbances, respectively, since
&Ll disturbances incident on the-wave between”points D and C must
travel along ftit-f amQy characteristicswhich cross C= between
D and A, while all.disturbances reflected from the shock wave in this
region must travel slong second-family characteristicswhich cross Cl
between A and C. This ratio, termed the disturbance strength ratio,
may be evaluated locally just downstream of the shock wave in the fol-
lowing manner. The points D and C are chosen sufficiently close
together so that the clifference in pressure be-en these points may
be written

or

PC-%=: I (5C+))
N

(Dl)

(D2)

— .— .
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dp Iwhere ~ ~ is the rate of change of pressure

angle on the downstream side of the wave. Now

37

with flow deflection

the
a@le between D and C is given by the relation

ab ab
6c-~=~LC2+&Cl

Thus equations (D2) and (D3) combine to yield

change in deflection

(D3)

(D4)

But the compatibili~ equations (equations (12) snd (1.3))conibinewith
equation (Dl) to give

(D5)

Equating the right-hand members of this and the pretious expression and
rearranging, there is then obtained

(LC2

z ) (D6)

&?
The ratio — folloys from the sine law, however; thus the disturbance

Ac~
strength ratio is given by the relation

which holds for both ideal and calorically.imperfect gas flows.

(D7)

—...-—--. .. . . . . .—.. —.-——— ——— ~ — —--—. .. . . . . .. . -. —..— —.
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If the shock wave is attached to the airfoil at the leading edge
(or more properly if MNZ1), this expression may be used ~th equa-
tion (23) to determine the surface pressure ~adient at that point. A
calculation analogous to this for ideal gas flows has already been csr-
ried out by Crocco, Schaefer, Munk and Prim and others as discussed pre-
viously.

——— — -
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TABLE I.- TABLE OF FUNCTIONS FOR SLENDER-AIRFOIG METHOD

41

.

.

%%

o
.05
.10
.15
.20
.25
.30
-35
.40
.45
.50
●55
.60
.65
● 70
●75
.80
.85
.90
-95

1.00
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9

7=7.

1.000
1.01’2
1.148
1.230
1.36
1.406
1.502
1.604
1-710
1.823
1.941
2.065
2.195
2.332
2.474
2.624
2.780
2.943
3.112
3.289
3.473
3.862
4.280
4.728
5.206
5.715
6.2%
6.827
7.431
8.066
8.734
9.411
10.17
10.93
lJ.73
E.56
13.42
14.32
15.25
16.21

L

fo’fo~)

)
.009901
.01961
.02912
.03845
.04760
.05656
.06537
.07393 ,
.08235
●09058
.09863
.1o71
.=42
.1217
.1290
.1362
.1431
.1499
.1565
.1630
●1753
.1869
.1978
.2064
.2178
.2269
.23*
.2433
.2507
.2577
.26k6
.2702
.2759
.28x2
.2862
.2908
.2951
.2992
.3030

Y = Ya (TO = 500%)

Ya

1.400
1.400
1.400
1.400
1.400
1.400
1.399
1.399
1.399
1.399
1.399
1 ● 399
1.399
1.399
1.399
1.398
1.398
1.398
1.398
1.398
1.397
1.396
1.396
1.395
1.393
1.392
1.391
1.389
1.388
1.386
1.384
1.382
1.380
1.378
1.376
1.374
1.372
1.370
I.369
1.367

d%%)

1.000
1.072
1.149
1.230
1.Q6
1.406
1.502
1.603
1.710
1.822
1.940
2.c64
2.194
2.330
2.473
2.622
2.777
2.939
3.108
3.2&
3.466
3.852
4.266
4.708
5.179
5.679
6.207
6.764
7.349
7.962
8.605
9.274
9*973

10870
11.46
32.24
13.06
13.90.
14.77
15.68

9
.009897
.01959
. @909
.03841
.04755
.05649
.06524
.07380
.08220
.09040
.09841
.1062
.1139
.1213
.1286
.1356
.1425
.1492
.1557
.1620
.1740
.1853
.1958
.2056
.2147
.2232
.2309
.2381
.2@F7
.2508
.2564
.2616
.2664
.2709
.2749
.2788
.2823
.28$
.2887

.. ——— — ._ —-_ —--- —.——
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TABLE I.- CONTINUED

MACA m 26k6

%%

;::
3.4
3.6
3.8
4.0
4.2

U
4.8
5.0
5.2
5.4
5.6
5.8

::;
6.4

2::
7.0

;::
7.6
7.8
8.0
8.5
9.0
9=5

10.0
10.5
11. o
U.5
12.o
12.5
13.0
13.5
14.0
14.5
15. o

7 = 7~

17.21
19.30
21.52
23.88
26.38
29.00
31.76
34.65
37.68
40.84
44.14
47.56
51.13
%.82
58.66
62.62
66.73
70.96
75-33
79.83
84.47
89.24
94.15
99.19

104.4
109.7

“X23.5
138.2
153.8
170.2
187.4
205.4
224.3
244.1
264.7
286.1
308. j
331.4
355.4
380.2

0.3066
.3130
.s87
=3237
.3280
.33=
.33X
.3389
.3418
.3443
.3h66
.3487
.3506
.3523
.3539
.3553
.3566
-3578
-3X9
.3600
.3610
.3618
.3626
.3633
.3640
.3647
.3661
.3673
.3684
.3693
.3701
.3707
.3714
.3719
.3723
.3727
.3731
●3735
.3738
.3740

Y = 7a (T. = 5CQ9R)

1.365
1.362
L 360
1.358
1.356
1.354
1.352
1.351
1.350
1.349
1.349
1.348
1.347
1.347
1.346
1.346
1.346
1.345

3(%%)

16.61
18.56
20.64
22.83
25.16
27.60
30.17
32.86
;’J.6$

41:70
44.91
h8.23
51.68
55.26
58.96
62.79
66.77

0.2916
.296d
.3015
.3057
.3094
.3128
*3J-X
.3186
●W
.3234
.3255
.3275
.392
.3309
.3323
.3337
.3350
.3363

‘+&$”

.
.

—.—
———
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m

16.0
17.0
18.0
19.0
20.0
22.0
24.0
26.0
28.0
30.0
35.0
40.0
45.0

%;
70.0
80.0
90.0

100.0
m

TABLE I.- CONCLUDED

7=71

/3(%%)

432.3
487.7

546.5
608.6
674.2
815.3
969.8
u38
1319
1514
2060
2690
3404
4202
6050
8233
10750
13610
16800

m

?(Mo~)

o● 3745
.3749
=3752
.3755
.3757
.3761
.3764
.3766
.3768
.3770
.3~2
.3774
●3775
.3776
-3777
.3778
.3778
.3779
● 3779
.3780

7 = 7a (T. = 500~)

7a Em&J

43
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