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TECHNICAL NOTE 2646

INVISCID FLOW ABOUT ATRFOTILS AT HIGH SUPERSONIC SPEEDS

By A. J. Eggers, Jr., and Clarence A, Syvertison
SUMMARY

Steady flow about curved airfolls is investigated analytically at
high supersonic speeds. Assuming air behaves as an ideal diatomic gas,
it 1s found that small pressure disturbances emanating from the surface
of an airfoil are almost completely gbsorbed in the leading-edge shock
wave (or a shock weve emanating from any other location on the surface),
provided the flow deflection angles are not too close to those corre-~
gponding to shock detachment. This result is found to be essentially
independent of Mach number. As a consequence, it is shown that within
the limitations of the assumption of ideal gas flow, the shock-expansion
method may be used with good accuracy to predict pressgure distributions
on curved airfoils at arbitrarily high Mach numbers. This observation
is verified with the aid of the method of characteristics applied to a
10~-percent-thick biconvex airfoil at 0° angle of attack., It is further
shown that the shock-expansion method can be easily employed to con=-
gstruct the entire flow field about a curved airfoil, accounting for
shock-wave curvature and resulting entropy gradients in the flow.

An spproximation to the shock-expansion method for thin airfoils
at high Mach numbers is also investigated, and is found to yield pres-
sure distributions in error by less than 10 percent at Mach numbers
above 3 and flow deflection angles up to 25°., This slender-airfoil
method is relatively simple in form and thus may prove useful for some
englneering purposes., To this end, tables are presented to facilitate
its use.

Effects of caloric imperfections of air manifest in disturbed flow
fields at high Mach numbers are investigated, particular attention being
given to the reduction of the ratio of specific heats from 1.4 toward
1.0. So long as this ratio does not decrease appreciably below 1.3, 1t
is indicated that the shock-expansion method, generalized to include
effects of these imperfections, should be substantially as accurate as
for ideal gas flows. This point is checked by comparing pressure distri-
butions predicted by the generalized shock-expansion method and a gen-
eralized method of characteristics., Both methods are employed in forms
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applicable for local air temperatures up to about 5000° Rankine, corre-
sponding, for slender airfoils, to Mach numbers up to the order of the
so=called escape Mach mumber. Caloric imperfections caused reductions
in the pressure coefficients below those predicted for flows of an
ideal gas. In turn, there is- a general reduction in force and moment
coefflcients up to 10 percent.

The slender-airfoil method is modified to employ an average value y
of the ratio of specific heats for a particular flow field. This sim=-
plified method has essentially the same accuracy for imperfect gas
flows as 1ts counterpart has for ideal gas flows.

An approximate flow analysis is made at extremely high Mach numbers
vhere it is indicated that the ratio of specific heats may approach
close to 1. It is found that® the shock-expansion method may be in con=-
slderable error as disturbances incident on the leading-edge shock wave
are no longer largely absorbed in the wave, In this case, however, the
Busemann method for the limit of infinite free-stream Mach number and
specific heat ratio of 1 appears to apply wilith reasonable accuracy.

INTRODUCTION

Small-disturbance, potential-flow theories have been employed
widely, and for the most part successfully, for predicting the pressures
(and velocities) at the surface of an airfoil in steady motion at low
supersonic speeds. Thus the linear theory of Ackeret (reference 1) has
proven particularly useful in studying the flow about relatively thin,
sharp-nosed airfoils at small angles of attack, while the second-order
theory of Busemann (reference 2) has found application when thicker
airfoils at larger angles of attack were under consideration., At high
free-gtream Mach numbers the range of applicability of any potential
theory is seriously limited, however, due to the production of strong
shocks by even the relatively small flow deflections caused by thin
airfoils. The assumption of potential flow is invalidated, of course,
by the pronounced entropy rises occurring through these shocks.

This limitation on potential theories was early recognized and led
to the adoption (see reference 3) of what is now commonly called the
shock-expansion method. The latter method derives its advantage over
potential theories principally by accounting for the entropy rise
through the oblique shock emanating from the leading edge of a sharp=-
nosed airfoil. Consequently, so long as the disturbed air behaves
essentially like an ideal gas, and so long as entropy gradients normal
to the streamlines (due to curvature of the surface) do mot signifi- -
cantly influence flow at the surface, the shock-expansion theory should
predict the pressures at the surface of an airfoil with good accuracy -
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it is tacitly assumed, of course, that the flow velocity is everywhere
supersonic, and that the Reynolds number of the flow is sufficiently -
large to minimize viscous effects on surface pressures. :

The departure of the behavior of air from that of an ideal gas at
the temperatures encountered in flight at high supersonic speeds has
been the subject of some investigation in the case of flows through
oblique shock waves. In reference U, the effects of thermal and caloric
imperfections on the pressure rise across an oblique shock wave was
investigated at sea~level Mach numbers of 10 and 20 and it was found
that these effects decreased the rise by less than 5 percent for maximum
temperatures up to 3000° R (corresponding to flow deflection angles up
to 24°). This decrease was found to be due almost entirely to caloric
imperfections or changes in vibrational heat capacities of the air pass-
ing through the shock wave. The changes in temperature and density of
the air passing through the wave were affected to e considerably greater
extent. Subsequently, an investigation was carried out by Ivey and
Cline up to Mach numbers as high as 100 (reference 5) using the results
for normal shock waves obtained by Bethe and Teller considering effects
of dissociation (reference 6). As would be expected, the pressures
were found to be affected to a somewhat greater extent at the higher
Mach numbers,

The extent to which flow in the region of the leading edge of an
airfoil departs from the simple Prandtl-Meyer type has also been inves-~
tigated at high supersonic ailrspeeds. If the surface is curved, for
example, to give an expanding flow downstream of the leading edge,
expansion waves from the surface will interact with the nose shock wave,
thereby curving it and yielding a nonisentropic flow field. This flow
field may be characterized not only by disturbances emanating from the
surface but also by disturbances reflecting to some extent from the
shock wave back toward the surface. The manner in which these phenomena
dictate shock-wave curvature and surface pressure gradient in ideal gas
flows at the leading edge has been treated by Crocco (reference T7) and
more recently by Schaefer (reference 8), Munk and Prim (reference 9),
and others. In the cases considered by Munk and Prim it was found that
surface pressure gradients were less (in absolute value) than those
obtained assuming Prandtl-Meyer flow at the higher Mach numbers (i.e.,
Mach numbers greater than about 3) although generally by no more than
about 10 percent, Since curved airfoils are likely to be of fundamen-
tal interest at high flight speeds (see, e.g., reference 10), these
phenomena would appear to merit further investigation, particularly as
regards their influence on the whole flow field. In addition 1t would
appear desirable to consider effects of gaseous imperfections through- -
out the field.
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Such an investigation has therefore been undertaken in the present
report using the method of characteristics to accurately obtain flow
fields, and as a basis for obtaining the more spproximate methods of
analysis. The method is employed in a generalized form which allows
caloric imperfections as well as entropy gradients in the flow to be
considered at temperatures up.-to the order of 5000° R ~ thermal imper-
fections are neglected as being unimportant in atmospheric air flows
(see reference 4), A 10-percent-thick biconvex airfoil is treated at
Mach numbers from 3.5 to infinity, and the results are compared with
the predictions of the shock-expansion method, including a simplified
form of the method appliceble to slender airfoils at high Mach numbers,
and a generalized form of the method including effects of caloric
imperfections.

SYMBOLS
a local speed of sound, feet per second
e chord, feet
C,» C, characteristic coordinates (C, positively inclined and Cp
negatively inclined with respect to the local velocity
vector)
Ca section drag coefficient
Cy section 1ift coefficient
Cm section moment coefficient (moment taken about leading edge)
Cp pressure coefficient (?E_:jﬁ%)
2 1o)
Cp specific heat at constant pressure, foot-~pounds per slug CR
Cv specific heat at constant volume, foot-pounds per slug SR
M Mach number (ratio of local velocity to local speed of sound)
P -static pressure, pounds per square foot
q dynamic pressure, pounds per square foot

R gas constant, foot-pounds per slug °R
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8,n rectangular coordinates (in streamline direction and normal
to streamline direction, respectively)

T temperature, °R

+ time, seconds

v resultant velocity, feet per second

X,y rectangular coordinates

e/ angle of attack, radians unless otherwlse specified

B Mach angle, arc sine (}%), radians

V4 ratio of specific heats <§-§>

(Average value of ¥ is 7g.)

5 flow deflection angle, radians unless otherwise specified
0 molecular vibrational energy constant, °R (5500° R for air)
p massg density, slugs per cubic foot
(o] shock-wave angle, radians
w ray angle for Prandtl-Meyer flow, radians

Subseripts
0 free~stream conditions

é’g’ }- conditions at different points in flow fileld
’ LN X )

i ideal gas quantities
N conditions just downstream of shock wave
S conditions on streamline

Superscript

- " vector quantities —
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DEVELOPMENT OF METHODS OF AWALYSTS

Method. of Characteristics

Two-dimensional rotational supersonic flows have been treated by
numerous authors with the aid of the method of characteristics, and
various adaptations of the method have been found which are especially
sulted for studying particular types of such flows. In the case of
steady flows in which atmospheric air does not behave as an ideal dia-
tomic gas, a very familiar and simple form of the compatibility equa-
tions may be employed. To illustrate, consider the Euler equation

- .
pap=-eradp (1)

the continuity equation

div (pV) =0 (2)

.

and the equation for the speed of sound (evaluated af constant entropy)

2 _ dp
a2 = 3 (3)

Rewriting equations (1) and (2) in the form of partial differential
equations and transforming the resulting expressions to the character-
istic or C;, Cz coordinate system, there is obtained, upon combination
with equation (3), the following relations for steady flow :

ctg B ‘> <:56 -0
pV2 BCJ_ 802 BCJ_ 302 (ll.)
and
ot (Ze2)(Z-B)-e
pve acl oCsz dC1 acg (5)

A simple addition or subtraction of equations (4) and (5) then yields
the compatibility equations (see, e.g., reference 11)

2 V2 tan 2 (6)

aC1 - oC;
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and

—— = pV2 tan B —
; Ie =p B S0, (7

Now, in reference I both caloric and thermal imperfections of air were
considered and 1t was found that the latter imperfectionsl have & neg-
ligible effect on shock processes in atmospheric air., It may easlily be
shown that this conclusion also epplies to expansion processes, and for
this reason caloric imperfections, only, are considered in detail in
the present paper., These imperfections become significant in air at
temperatures greater than about 800° R and first manifest themselves as
changes in the vibrational heat capacities with temperature. Thus, the
specific hesats, Cp and cy, and their ratio, 7, for the gas also change.
The equation of state remains, however,

p = pRT (8)
and the specific heats are still related to the gas constant by the
expression

cp -~cy =R (9)

Furthermore, it readily follows from the differential energy equation

and these expressions that the speed of sound is given by the simple
relation

a2 = yRT (10)

Combining equations (8) and (10) and noting that sin B = a/V there is
then obtained
7P

pvZ =
sin® B

(11)

Hence, on combining this equation with equations (6) and (7), it is
apparent that the familiar compatibility equations

dp _ =2 35
d3c; sin 2B ¢ (12)

1 Thermal imperfections usually appear in the form of intermolecular
forces and molecular-size effects, and may be accounted for with
additional terms in the equation of state.
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and

B _ 22 %X . (13)
dC, sin 2B A€Cp

also hold for the more genmeral type of flow under consideration. These
equations are basic, of course, to two~-dimensional characteristics
theory, and, as will be shown later, form a convenient starting point
for developing simpler theories of two-dimensional supersonic flow.

In order to apply equations (12) and (13), it is evident that the
manner in which % and B or M are connected to p or 8 must be known.
Relations implicitly connecting these variables at temperatures up to
the order of 5000° R may be readily obtained from the results of refer-
ence It by simply eliminating the terms therein accounting for thermal
imperfections, Thus we have as a function of the local static tempera-
ture and free-stream conditions

@) (Y

7 =74 (1%)
2 /T
1+ (74 = 1) (-:-) s
. - (e0/T 1) |
and

2 (1) | 7oMo® | 71 T\ 6 1 1
-2 2 (28 (o)

7 \T 2 75 -1 * T, +T0 /T 7 /T

(15)

For isentroplc flow along a streamline, the pressure is related to the
temperature by the expression .

D _ ¥y |
) (16)
. 7:[
where eQ/T -1 <l> 71"1
¥y (T) = . T (17
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If there is a shock wave in the flow,® in particular a nose or leading-
edge shock, then the following additional relations obtained with
equations (8), (10), and (15) and the conditions for continuity of flow
and conservation of momentum along a streamline through the shock are
also reguired:

g;— = % (L4 py®) — Tﬁf’ (l+7oMo2)+/ [(1+7NMN2)-— % (1+70Moa)r+ 4 %‘;—
| (18)

I
sin®c = 7°T°M°§ (19)

() -

and

tan & = —= = \ (20)

tan 0y M7 1

(Pn/Po) -1

Using the local static temperature as a parameter, the term
2ypfsin 2 B 1in equations (12) and (13) may now be evaluated with equa-
tions (14) through (17).  Egquations (18) through (20) define the initial
conditions downstream of a leading-edge or other shock wave in the flow
field. Thus, equations (12) through (20) provide all the information
necegsary to calculate the flow about an airfoll by means of the method
of characteristics. As described in detail in sppendix A, the calcula-
tion is of three general types; namely, (1) calculation of conditions at
a point in the flow field between the shock and the surface; (2) calcula-
tion of conditions at a point on the surface; and (3) calculation of
conditions at a point jJust downstream of the shock. Case (1) entails
‘the use of both compatibility equations, while case (2) entails the
use of the compatibility equation for a second-family characteristic

2TP there are no shock wayes , then the subseript- N in equation (16)
can, of course, be replaced with the subscript o.
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line in combination with the equation of the alrfoil surface, and

cagse (3) involves the compatibility equation for a first-family line
in combination with the obligque shock equations. With the aid of the
three general types of calculations the entire flow field gbout an
girfoil can be built up numerically using e computing procedure working
from the leading edge downstream, In cases where changes in the vibra-
tional heat capacities with temperature are neglected, the calculations
are of course simplified since 7 of the gas can be consldered con-
stant, and temperature, pressure, and density ratios are simply the
ideal gas functions of Mach number.,

Shock~Expansion Method

General.~ This method of calculating supersonic flow of an ideal
gas at the surface of an airfoil is well known, entailing simply the
calculation of flow at the nose with the obligue shock equations and
flow downstream of the nose with the Prandtl-Meyer equations. Deter-
mination of airfoil characteristics in this manner requires a small
amount of time, of course, compared to that involved when the method of
characteristics is used, hence the advantage of the former method. The
questions arise, however, as to exactly what the simplifying assumptions
underlying the shock-expansion method are, and what form the method
takes (for calculative purposes) when the gas displays varying vibra-
tional heat capacities,

The matter of simplifying assumptions may perhaps best be con-
sidered by employing equetions (12) and (13), the basic compatibility
equations, If these expressions are resolved into the streamline
direction and combined, noting that

?.Pi__.l_<_3_1>. e 2
ds 2 cos B \OC; * dCo (21)
and

® _ _ 1 3% as>

38 2 cos B \3C, * oC, (22)

there is then obtalned the relation

1 - 3B /ac,
dp BfoC, \ 2p B
== — (23)
Os 1 +'88/acl sin 2 B Js

3 /3c2
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defining the gradient of p along 8. If flow along streamlines down-
stream of the nose is of the simple Prandtl-Meyer type, however, we
have

op 2yp B

08 sin2 B ds (%)

Hence it is evident that the requirement for this type of flow is

35 f3c,
35 /oCa

<<1 ' (25)

Equation (25) is, of course, simply an approximate statement of a well-
known property of Prandtl-Meyer flows; namely, that flow inclination
angleg are essentially constant along first-family Mach lines, It fol-
lows from equation (12) that if equation (25) holds, then the pressures
will also be essentially constant along these lines. It does not folw-
low, however, that the Mach number will be constant, or for that matter
that the first-family characteristic lines will be straight (as is the
case for isentropilc expansion flows gbout a corner). In fact, it may
easily be shown that the Mach number gradient along C; 1s proportional
to the local entropy gradient normal to the streamlines, and that the

Cy lines are curved according to the change in M, Thus we see that
there 18 really only one basic assumption underlying the shock-expansion
method; namely, disturbances incident on the nose shock (or for that
matter any other shock) are consumed almost entirely in changing the
direction of the shock.® Within the limitations of this assumption it
is evident that the method provides & relatively simple means for cal-
culating the whole flow field about an airfoil, including effects of
shock-wave curvature (see appendix B). In general, of course, the
valldity of this assumption can only be checked by comparison of calcu-
lations using this method with those using the method of characteristics.

The shock-expansion method for a calorically imperfect diatomic gas
is readily deduced from the equations previously obtained. For example,
flow conditions at the leading edge of an airfoil can be evaluated with
the oblique shock-wave expressions (equations (18) through (20)) and the
expression for comservation of energy (equation (15)). The variation
of flow inclination angle with pressure along the surface is then

8Tt is interesting to note that the assumption of Thomas (reference 12)
that pressure is a function only of flow deflection angle and entropy
is equivalent to this agsumption. It follows, of course, that the
most general solution obtainable with Thomas's series representation
of the pressure is that given by the shock-expansion method.

—- - e e e i - ———————— e ————— - - -
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obtained by graphically integrating equation (24); namely,

85 - Oy =\/PPN §1%;%Ji.¢p (26)

where the variables 7, p, and B are evaluated using equations (14)
through (17), employing the static temperature as a parameter. When
extreme accuracy is not essential, this rather tedious calculation can
be avoided and a relatively simple algebralc solution of the flow down-
stream of the nose can be employed.? The details of this solution are
presented in appendix C., In the special case of flow at high supersonic
speeds about slender airfoils, the whole calculation becomes particularly
simple and warrants special attention.

Slender airfoils.~ If it is assumed that the local surface slopes
are small compared to 1 and in addition that the free-stream Mach number
is large compared to 1, it follows that o and B are everywhere small
compared to 1, In this case equation (2L4) takes on the approximate form

dp

= ypM (27)
@ ig

Furthermore, if it is assumed that ¥ 1s constant at an average value
7g Tor a particular flow field (this assumption appears reasonable
since in the temperature range up to 5000° R the change in ¥ is less
than 10 percent as shown in reference 4), then the Mach number and
pressure may be related by the simple expression

Va1
SEICIRC @)

Equations (27) and (28) combine to yield the differential equation

(7a+1)
7é.MN< > (pN> ® (29)

which readily integrates (between N and S) to the form

4 The tebulated results of Noyes (reference 13) may also prove useful in
this case for Mach numbers up to 3.
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- .
R IO G
Now denoting
72'1 My = £(MBy) (31)
and
z—% = & (By) (32)

there is obtained from the oblique shock equations, simplified to con-

form with this analysis,

£(ModY) = o N - (33)
/ <Mo 7a'1>< 273 Mo2072 -1>
and
g(Mdy) = gyaMOE;jz +—1(7a—l) (34)
where
Mooy = 1+—1 o ++/ 1 +<7a+1 N>2 (35)

With equations (30) through (35) the pressures on the surface of an
alrfoll may easily be obtained. In terms of pressure coefficient we

) @] e

or

Cp = &(Mcdy) l:l-f(Mosn) (1 - :—;)] Zﬁ?l -1 (37)

2
YeMo 2
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The advantage of these slender-airfoil expressions lies, of course, in
their relative simplicity and thus the ease of calculation which is
inherent to them, It may be noted in thls regard that the functions
£(M,Byy) and g(M,By) can be calculated once and for all with equations

(33), (34), and (35), provided the variation of 7y, with My is known.

This calculation has been carried out for a constant value of ¥ equal
to 1.k, and average values of 7 assuming T, = 500° R.5 The results
are presented in table I.

It should also be noted that the slender-airfoil expressions of
the shock~expansion method satisfy the hypersonic similarity law for
airfoils first deduced by Tsien (reference 14).® A necessary condition
for the validity of these expressions is thus satisfied; however, the
accuracy of the shock~expansion method, whether for slender airfoils or
otherwlse, remains to be investigated. Such an investigation is now
undertaken with the aid. of the method of characteristics, )

INVESTIGATTON OF FLOW ABOUT ATRFOILS
AND DISCUSSION OF RESULTS

This study is divided into two parts: first, a consideration of the
effects of Mach number assuming air behaves as an ideal diatomlc gas;
and second, a consideration of the combined effects of Mach number and
gaseous imperfections, with principal emphasis in the latter regard
placed on the caloric imperfections previously discussed.

Ideal Gas Flows

The effects of Mach number of primary interest here are, of course,
those which result from interaction between the leading-edge (or other)
shock wave and small disturbances originating on the surface of an ajr-
foil. Some insight into the nature and extent of these effects can be
obtained in the region just downstream of the shock wave without regard

SFor a given value of Ty, Ty, to the accuracy of this analysis, 1s the
ideal gas function of Mydy. Thus, knowing Ty, 7y can be determined.
Nty
2

SThis fact was employed by Limnell (reference 15) to obtain an expression
for pressure coefficient equivalent to equation (37) for the case of
constant 7, and to obtain explicit solutions for the 1ift, drag, and
pitching-moment coefficients of several airfoils at hypersonic speeds.

The average value of 7 used 18 Y5 = 75(MBy) =
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for the shape of the airfoll producing the shock. To this end it is
®/oc;  dpfoca
3% /32 dp/dC2

which may be termed "the disturbance strength ratio" since in the region
under conslderation it 1s a measure of the ratio of strengths of distur-
bances reflected from the shock weve to disturbances incident on the
wave. Thils ratio may be evaluated with the expression

convenient to consider the ratio

(see equation (25))

3% /dc; <siiygpNeN ) ! > sin (By + Oy = 0) (38
36 /ocs < 2YNPN ! ) sin (By - 8y + 0) 3)
sin 2 BN a5

which is easlly obtained with the compatibility equations and the
oblique shock-wave equations as shown in appendix D. This calculation
has been carried out for Mach numbers from 3.5 to e (7g = 1l.4) and

Plow deflection angles approaching those corresponding to shock detach-
ment (i.e., My ® 1) and the results are presented in figure 1. It is
evlident that except near My # 1, the ratio is small (in absolute value)
compared to 1 throughout the entire range considered ~ this observation
also applies, of course, at lower supersonic Mach numbers, Thus it is
indicated that almost all of an incident disturbance is generally
absorbed in the shock wave, provided the air behaves like an ideal dia-
tomic gas.” This result is substantially the same, of course, as that
which 1s assumed in deriving the shock-expansion method of calculating
flows about airfolls, and therefore yields some credence in the method
for high Mach number as well as low Mach number applications.

As an over-all check on the shock~-expansion method, surface pres-
sure distributions calculated thereby are compared in figure 2 with
those obtained with the method of characteristics for a lO~percent~thick
biconvex airfoll (a = 0°) operating at free-stream Mach numbers of 3.5,
5, Te5, 10, 15, and . Predictions of the slender-airfoil approximation
to the former method for high supersonic speeds are also ghown. There
18 no apparent difference between the pressure distributions given by
the method of characteristics and the shock-expansion method up to a

7"This result is contrary to that obtained by Lighthill (reference 16)
who reports that for hypersonic flows, a disturbance is reflected
from a shock wayve with opposite sign but essentially undiminished
strength., Lighthill's conclusion appears to be based on an incorrect
eveluation of his results for the case of very high Mach numbers.

e e e e e e ——— e e ————— v e o s e
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Mach number of 10. At Mach numbers of 10, and above, however, the
latter method predicts pressures which are slightly low downstream of
the nose, becoming progressively lower with increasing Mach number.
Thig result would be deduced from figure 1 where it is observed that,
at the Mach numbers under consideration, expansion waves incident on
the nose shock are reflected back toward the surface as compression
waves of relatively small but increasing strength with increasing Mach
number. The effect of these waves does not become pronounced even at
infinite Mach number (see Fig. 2(f)) and the shock-expansion method is
thus substantiated as being & reliable simplified method for predicting
the flow about airfoils at high supersonic speeds, agaln, so long as the
air behaves as an ideal diatomic gas. The further simplified slender-
airfoil method also appears to be a good approximation over the entire
range of Mach numbers,® although, as would be expected from the assump-
tions made in its development, it is in somewhat greater error than the
shock-expansion method at the lower Mach numbers.

The relatlve accuracy at high Mach numbers of the slender-airfoil
method, linear and second-order potential theories msy be seen in
figure 3. As might be expected, the slender-airfoil method is more
accurate than linear theory at both Mg = 5 and 15, and more accurate
than second-order theory at My = 15. It is perhaps surprising to note, -
however, that at the lower Mach number of 5 the slender-airfoil method
is also somewhat superior to the second-order theory.

The pressure distributions of figures 2 and 3 have been employed to
calculate the zero-lift drag of the bicomvex ailrfoil, and the results of
these calculations, along with additional predictions of linear and
second-order theory, are shown in figure 4. Predictions of the shock-
expansion method are, of course, in best agreement with those of the
method of characteristics; while the slender-airfoil method, although
slightly less accurate than the shock-expansion method, is apparently
superior to both linear and second-order theory at Mach numbers above 3,

The preceding findings verify that so long as the disturbance
strength ratio is small compared to 1, the flow along streamlines is
essentially of the Prandtl-Meyer type. If we choose, on the basis of

these findings, a maximm absolute value for §§Z§g£ of 0.06 (note

3B /3¢, 3% /3C5
~———— for the cases presented in fig. 2 was
35 fac,

8The hybrid expression for pressure coefflicient obtained by Ivey and
Cline (reference 5) gives reasonably good results also, although not
as accurate as the slender-alrfoil method at the higher Mach numbers
under consideration,

the maximm value of
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approximately 0.06 at M, = »), the region in which the shock-expansion
method is appliceble can readily be obtained from figure 1., The upper
boundary line of this region is shown in figure 5 and it is evident
that it lies only slightly below (about 1° in general) the line corre=-
sponding to shock detachment given approximately by the My = 1.0 Iline.
Almost the entire region of completely supersonic (ideal gas) flow is
then covered by the method.® (See shaded area of fig. 5.)

The question naturally arises concerning the corresponding range
of applicability of the slender-airfoll method. This question may be
answered in part by comparing separately the predictions of the method
for oblique shock flows and expansion flows with those of the exact
oblique shock equations and Prandtl-Meyer equations. Such a comparison
is shown in figure 6 in terms of the percentage error in the pressure
coefficlents predicted by the slender-airfoil method. As would be
expected, this method does not exhibit good accuracy over the wide
range of applicability of the shock~expansion method; however, it is
Indicated that it should predict pressure coefficients with less than
10-percent error down to Mach numbers as low as 3 for airfoils producing
flow deflections up to as high as 25°.

As a further check on the utility of the slender-airfoil method,
the pressure coefficients on the 10-percent-thick biconvex airfoil have
been calculated with this method and the shock-expansion method at a
Mach number of 10 and angles of attack up to about 300.lo The results
of this calculation are shown in figure T (see fig. 2(d) for a = 0°)
where it is seen that the agreement is reasonably good even at the
highest angle of attack. This fact is reflected in figure 8 showing
the force and moment coefficients for the airfoil as & function of arngle
of attack, Little difference is observed in the force coefficients as.
calculated by the two methods, while the moment coefficilents display

more pronounced but nevertheless small differences at the higher angles
of attack.

8Tf it is required as by Rand (reference 17) that the entire flow field
be of the true Prandtl-Meyer type (i.e., that all flow properties be
constant along first-family Mach lines and not just o and p), then
the range of applicability of the shock-expansion method would be
appreciably smaller. However, it has been shown that this restriction
is not necessary.

10Thegse conditions are within the range of applicebility of the shock-
expansion method as defined in figure 4; hence the use of the method
as a base of comparison seems Justified. Since the shock~expansion
method is far less tedious to apply than the method of characteristics,
it will be employed as such a base in subsequent calculatlions whenever
the conditions being investigated have been determined to be within
1ts range of applicabllity.
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From these and previous considerations, the ranges of applicability
of the shock-expansion and slender-airfoll methods for ideal supersonic
gas Tlows are reasonsbly well esteblished. It remains now to determine
the manner and extent to which gaseous imperfections in the flow at
higher supersonic speeds may alter these ranges, and the reasons
therefor.

TImperfect Gas Flows

As a first step toward investigating the effects of gaseous imper=-
fections on the high Mach number flows under consideration, it is con-
venient to extend our consideration of the disturbance strength ratio

35/3C;

95

eqézgeto 1.4 (the value for an ideal diatomlc gas), the disturbance
strength ratio is small at arbitrarily large Mach numbers, provided the
flow deflection angles are not too close to those for shock detachment.
One of the most important effects of gaseous imperfections is, however,
to decrease 7 of the disturbed air below this value due to the excita-
tion of additional degrees of freedom (e.g., vibrational) in the mole~-
cules at the high temperatures encountered at high Mach numbers. Indeed,
at arbitrarily high Mach numbers it might be expected that ¥ of the
disturbed air would approach 1, since the number of degrees of freedom
may effectively become very large (see, e.g., references 3 and 6). In
this case, however, the extent of the disturbance flow fleld is decreased
to a layer at the surface of the body which is negligibly thin compared
to that for the case of ideal gas flow. Thus it is apparent that signi-
Picant changes in the flow about airfoils at high Mach numbers may
result from decreases in 9 of the disturbed air; hence the effects of
such decreases on the disturbance strength ratio would appear to warrant
attention.

. It is recalled that when air exhibits a constant value of v

A detailed analysis of these effects is impractical at the present
time due to the limited range over which the variation of y with tem~
perature is known. However, some knowledge of these effects can be
gained by repeating the ideal gas calculations for constant values of
7y between 1.k and 1.0.1' Such calculations have been carried out at

1lSince the enthalpy is negligibly small compared to the mass kinetic
energy of the undisturbed fluid at the high Mach numbers of interest
and, hence, 7 of this fluid does not influence the flow, this approach
corresponds to employing an average value of 7 for the disturbed
fluid. Since only flows of dense air are considered here, heat-
capacity-lag phenomena are neglected (see references 5 and 6).
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35 /ac,
3B /3Cs
for a gilven 7y, and the results are presented in figure 9. It is seen

that except near shock detachment, the disturbance strength ratio
increases with decreasing 7y, &pproaching 1 as 7y approaches 1. This

infinite Mach number since In this case has its maximm value

increase is slow at first; for example, the value of §§Z§EL 1s still
38 /oC
less than 0.1 at 7y = 1.3. It might therefore be expected that the
shock-expansion method would continue to apply with reasonable accuracy
so long as ¥ of the disturbed flow is not appreciably less than this
value. This point has been checked with the methods developed pre-~
viously for analyzing the flow of a calorically imperfect diatomic gas
8t local air temperatures up to about 5000° R (note 7 has a value
only slightly less than 1.3 at this temperature). In particular, the
pressure distribution on the lower surface of the biconvex airfoll at
Mo = 10, a=19,9°, and T = 500° R (T~4000° R at leading edge) has
been calculated with both the method of characteristics and the shock~
expansion method.l? The results of these calculations are presented in
figure 10 and it would eppear that the conclusions drawn from figure 9
pertaining to cases where 7y 1s of the order of 1.3 or greater are
substantiated., Pressures in the expansion flow about the upper surface
are not influenced (due to the low temperatures) by caloric imperfections
and hence are the same as shown in figure T(b).

Shown also in figure 10 is the pressure distribution obtained by
the shock-expansion method for an ideal gas (74 = 1l.4t). It is apparent,
on comparing this pressure distribution with the other distributions,
~that although the effect of caloric imperfections on the disturbance
strength ratio is small, the pressures are appreciably reduced by the
increase in specific heats. The extent of this reduction is more com-
pletely illustrated in figure 11 where the lower surface pressure distri-
butions on the biconvex airfoil are presented for Mo=10 and To =500° R,
at o =09 10°, 19.9°, and 30°. As one might expect, the reduction in
pressures Increases with angle of attack (due to the corresponding
increase in static temperature of the disturbed air). The pressure
coefficients calculated with consideration for the imperfections in the
gas are less on the lower surface (up to 6 percent at the léading edge
and 15 percent at the trailing edge) than those calculated assuming the
gas béhaves 1deally. The upper-gsurface pressures are again unaffected

12For added ease of calculation the expansion method of appendix C was
employed. This method is also employed in all subsequent calculations
of this type since it has been found to yield results differing by
less than 1 percent from those obtained by the more tedious graphical
integration method.
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by the caloric imperfections of air in all the cases presented (except
at o = O°) since thls surface experiences lower pressures and hence
lower temperatures. They are therefore the seame as shown in figure 7.
Shown also in figure 11 are the pressure distributions calculated with
the slender-airfoil method for ¥ = 7q. The accuracy of this simpli=~
fied method is substantially the same as was previously observed for
the corresponding method in the case of ideal ges flows, although the
local error may be greater than the reduction in pressure coefficients
due to the caloric imperfections of air. This error is somewhat com~
prensating, however, in its effects on the force and moment coefficients,
as wlll be seen.

The force and moment coefficients, corresponding to the lower-
surface pressure distributions shown in figure 11 and the upper-surface
distributions of figure 7 are presented in figure 12, The reduction in
the lower-surface pressures leads, of course, to & general reduction in
all three coefficients (up to about 10 percent for « = 30°). The
slender-airfoil method again predicts these coefficilents with surprising
accuracy. ‘

In order to further assess the accuracy.of the slender-airfoll
method some additional calculations were carried out for the biconvex
airfoil at a = 0° and M, = 20 and 30. The pressure distributions for
these cases were calculated by the shock-expansion method, slender=-
airfoil method (¥ = y4), and slender-airfoil method (7 = 74). These
results are presented in figure 13 and it is observed that the use of
7g Tather than y; Improves the accuracy of the slender-airfoil method.
Tge extent of this improvement in the case of drag coefficlient is shown
in figure 14 - it would appear that predictions of the slender-airfoil
method (7 = y,) and shock-expansion method are in as good agreement as
for ideal gas flows (see fig. 4). On the basis of these and previous
results, it may be concluded then that not only does the shock-expansion
method retain its range of applicability when air exhibits caloric
Imperfections provided ¢y of the disturbed air is not appreciably less
than 1.3, but also the slender-airfoil method (7 = 7,) retains its
range.

It would be surprising indeed, however, if this conclusion con-
tinued to apply as 7y of the disturbed fluid approached 1 since, as

C
discussed previously, 557545 is not small compared to 1 in this case,
Ca
but would appear, in fact, to approach 1. This matter may be investi-
gated in the same manner as the effect of Ty on the disturbance
strength ratio was investigated, namely, by using the ideal gas relation-
ships in combination with appropriate velues of 7.
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The 1limiting case of infinite free-stream Mach number and 7y = 1.0
(for the disturbed fluid, see footnote 11) has already been investigated
by Busemann (reference 18) and more recently by Ivey, Klunker, and Bowen
(reference 19). 1In this case, as pointed out previously, the shock wave
emanating from the leading edge remmins attached to the surface down-~
stream of the leading edge (this is easily verified with the oblique
shock—wave equations) and the disturbance flow field is confined to an
Infinitesimally thin layer adjacent to the surface., In addition, the
velocity along a streamline downstream of the sghock is constant, as may
easlly be shown with the compatibility equations. Surface pressures
therefore become & simple function of airfoil geometry,

=2 8in2 Ba + 2 5o 05 ¥
Cp = 5 + 2 cos Bg —= A 5in 5gdx (39)

varying, to a first approximation, directly with the square of the com-
ponent of free-gtream veloclty normel to the surface (i.e., the flow is
approximately of the Newtonian corpuscular type). With this theory
then, and the method of characteristics, we can get an idea of both the
extent to which extreme changes of ¥ from 1.4 toward 1 will alter
surface pressures, and the accuracy with which the shock-expansion
theory predicts the alterations. To this end, figure 15 is presented
showilng the pressure distributions gbout the biconmvex airfoll at

Mp = o as calculated by the several methods for different values of 7.
It is observed that, whereas the shock-expansion method agrees very
closely with the method of characteristics for ¥ = l.k, there is a
large difference at 7 = 1.05. This, of course, is precisely what one
would expect from the previous discussion of the disturbance strength
ratlo. On the other hand, if the two characteristic solutions and the
Bugsemann method are considered in order of decreasing 7, it is indi-
cated that the characteristics solutions approach the Busemann theory
as y approaches 1, For ¥ = 1.0 and My = o the shock-expansion
method, in turn, predicts a discontinuous pressure distribution with a
pressure coefficient equal to that of the Busemann theory at the leading
edge but a pressure coefficient of zero at all polnts downstream of the
leading edge. Hence it may be concluded that when the free-stream Mach
number approaches infinity and 7 approaches 1, the Busemann method
rather than the shock~-expansion method for calculating the flow about
airfoils should be employed.

CONCLUDING REMARKS

The flow about curved airfolls was investigated analytically at
high supersonic speeds first assuming air behaves as an ideal gas, and
then assuming air behaves as a thermally, although not necessarily
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calorically, perfect gas. (Caloric imperfections had previously been
observed to be of predominant importance in free f£light, at least for
local air temperatures up to the order of 5000° R.) It was found that
8o long as air exhibits no imperfections (i.e., behaves as an ideal
distomic gas) small disturbances originating on the curved surface of

an alrfoil are almost completely absorbed in the shock waye emanating
from the leading edge (or any other location on the surface), provided
the flow deflection angles are not too close to those corresponding to
gshock detachment. This result is essentially independent of Mach number,
and is consistent with the early calculations of Crocco concerning sur-
face pressure gradient at the leading edge of en airfoil, It was con-
cluded that in ideal gas flows the shock-expansion method for determining
flow conditions at the surface of an airfoil would apply with good
accuracy at arbitrarily high Mach numbers. This conclusion was verified
by the excellent agreement found between pressure distributions on a
10-percent-thick bicomnvex airfoil at 0° angle of attack calculated with
the shock-expansion method and the method of characteristics., It was
further shown that the former method can be easily employed to construct
the entire flow field gbout an airfoll in a manner that would account
for shock-wave curvature and entropy gradients resulting therefrom,

A high Mach number approximation to the shock-expansion method for
thin airfoils was also investigated, and was found to apply with good
accuracy at Mach numbers above 3 and flow deflection angles up to 25°.
The essential feature of this slender-airfoil method is, of course, its
simplicity, and for that reason it may prove useful for some engineering

purposes.,

Effects of caloric imperfections were first investigated qualita-
tively considering the reduction in the ratio of specific heats from
1.4 toward 1.0. It was found that as the ratio decreased, the extent
to which disturbances reflected from a shock wave 1ncreased In the
limit as the ratio approached 1, the reflection was complete, and the
shock wave became tangent to the surface of the airfoil. So long as the
ratio did not decrease appreciably below 1. 3, however, it was found that
less than 10 percent of a disturbance was reflected; hence the simple
shock-expansion method might be expected to continue to apply. This
matter was checked quantitatively for the biconvex airfoil with the aid
of a generalized method of characteristics including effects of caloric
imperfections (up to local air temperatures of the order of 5000 R,
corresponding to a ratio of specific heats of about 1. 3). It was found
that the shock-expansion method was substantially as accurate as for
ideal gas flows, provided it was also generalized to include effects of
these imperfections. The principal effect of the reduction in specific
heat ratio was to reduce the pressure coefficients below their ideal
gas values by as much as 15 percent. The reduction in force and moment
coefficients was somewhat smaller, being about 10 percent. Similarly
it was found that the slender-airfoil method, modified to employ an
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average value of the ratio of specific heats for a particular flow i
field, exhibited essentially the same accuracy as the analogous method
for ideal gas flows. Thus it is indicated that the generalized shock-
expansion method and its slender-airfoil counterpart can be applied
with good accuracy up to very high free-flight Mach numbers, If the
flow deflection angles are less than about 120, these Mach numbers are
of the order of the so-called escape Mach number (i.e., Mach numbers

as high as 30 to 35).

At even higher Mach numbers where the ratio of specific heats is
expected to decrease appreciably below 1.3, and in fact perhaps to
approach 1, it was not possible to obtaln an accurate check on the pre-
viously discussed qualitative considerations. It was undertaken, how-
ever, to compare the pressure distributions on the biconvex airfoil
predicted by the Busemann method (for the limit of the ratio of specific
heats approaching 1 and Mach number approaching infinity) with those
predicted by the shock-expansion method and the method of characteris-
tics at infinite Mach number (employing a constant ratio of specific
heats of 1.05). As was expected, the shock-expansion method was in
very poor agreement with the method of characteristics, whereas the’
Busemann method was in relatively good agreement., It is therefore
indicated that for extremely high Mach numbers (something in excess of
the sea-level escape Mach number) the Busemann theory mey apply.

Ames Aeronsutical Iaboratory
Natiopal Advisory Committee for Aeronautics
Moffett Field, Calif., Jan. 9, 1952
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APPENDIX A
METHOD OF CHARACTERTSTICS FOR TWO-DIMENSIONAL FLOW

OF A CALORICALLY IMPERFECT GAS

In the application of the method of characteristiecs for a calori-
cally imperfect diatomie gas to the particuler problem of analyzing the
flow about curved two-dimensional airfolls, many of the calculations
are identical to those encountered in the solution of any problem where
characteristics theory is employed. Since the details of these calcu-~
lations are well known and well reported (see, e.g., reference 11),
they will not be repeated here.

A lattice-point system with an initial-value, numerical computing
procedure will be used. The form of the compatibility equations to be
employed was developed previously;lS3 however, it 1s convenient for pur-
poses of calculation to substitute the pressure ratio, p/qo, into these
equations and to rewrite them as difference equations. Equations (12)
and (13) are thus reduced to the following forms

(p/ag)g = (p/ay), = -2a(dc - Ba) (A1)
and
(1>/qo)C - (p/qo)B = xg (8¢ - 8g) (42)

where

_ 27(p/a,) .
o= sin 2B (43)

It is also convenient to employ several. reference curves. These curves
can be divided into two groups. The general reference curves consist of
7 and ¥(T) as a function of temperature, T. Equations (14) and (17) are

19This form of the compatibility equations (in ‘p and 8 coordinates)
was also used in obtaining some of the characteristics solutions for
ideal gas flows. The majority of these solutions were carried out,
however, with the compatibility equations in B, 5, and entropy
coordinates, since it was found that greater accuracy was usually
obtained for a given net size. In general, the net size employed
yielded pressures at from 30 to 35 surface points on an airfoil with
& maximum error in the corresponding pressure coefficients equal to
less than 1 percent of the pressure coefficient at the leading edge.




NACA TN 2646 : 25

used to determine these curves. A second set of shock-wave reference
curves consisting of p/qo, 0, and 8 as a function of temperature, T,
are determined by use of equations (18) through (20) - the values of T,

and My are presumed known.

In the computations three types of points are encountered. These
are (1) & point in the flow field betwben the shock wave and the air-
foil surface, (2) a point on the airfoil surface, and (3) a point just
downstream of the shock wave. Each one of these types of points
requires a slight¥y different computing procedure and they will be con-~
sidered in order. ‘ o

vF-
Point in the Flow Field Between the Shock Wave
and the Airfoil: Surface

Figure 16(a) shows a schematic diagram 6f the system of points to
be considered in these calculations. Point C is the unknown point at__
the intersection of the first-family characteristic line passing through
polnt A and the second~family characteristic line passing through
point B. Six quantities are known at both points A and B, and the
problem is to calculate these same quantities at point C. These quanti~
ties are x, ¥, 5, p/qo, T, and Ty. The first five quantities are of
obvious significance. The sixth, Ty, is defindd as the static tempera-~
ture, Just downstream of the shock wave, on the streamline passing
through the point C.

The physical coordinates of the point C (xg, ¥g) mey be determined
by standard procedures such as those given in reference 11, In order to
determine the quantity &, it is necessary to solve equations (Al) and
(A2) simultaneously; thus

' xa + A

(Ak)

¢

Equation (Al) or (A2) is then used to obtain (p/dg)s »
There remains only the problem of determining Tn a.nd'TNC at
point C. The temperature TNC is obviously constant along the stream-

line through C. This quantity may therefore be calculated in the same
manner as the entropy is calculated in similar flow fields for ideal gas
processes (see, e.g., reference 11)..Furthermore, since the flow along
streamlines downstream of the shock wave is isentropic, equation (16)
mey be applied in the form
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(p/30) ¥(Tyg)
= (A5)
(P/QO)NC ¥ (Tg)

The pressure, (p/qo)NC » 18 defined in a mammer abalogous to Ty, , and

mey thus be determined using the shock-wave reference curves and the
known value of TNC- Similarly, W(Tﬁc) may be determined from the

general reference curves. The only unknown in equation (A5) then is
¥(T¢) which may now be calculated. Once V¥ (Tp) is determined, Tp may
be determined by again using the general reference curves. All six
quantities, x;, ¥g, B¢, (p/qo)c, To, and TNC have now been determined.

Point on the Airfoll Surface

Figure 16(b) shows & schematic diagram of the points to be con-
sidered in these calculations. The physical coordinates of point C,
(%c> ¥g), are Tirst calculated by solving simultaneously the equation
of the second-family Mach line passing through point B and the equation
of the airfoll surface. When x; and yo have been determined, 8, 1s
readily obtained from the equation of the airfoil surface. Equation (A2)
is then applied to determine (p/qo)c.

Since the airfoll surface is a streamline,TNc is constant along the

surface and may be evaluated at the leading edge. The temperature, T,

may then be determined using equation (A5) and the previously described
procedure. All six quantities, xg, yg, (p/qo)c, 8¢, Tg, and Ty, , are
thus determined.

In the special case of the first point on the airfoll surface
downstream of the leading edge, the pressure ratio is calculated using
the procedure of reference 9. This procedure is easily shown to be
applicable to calorically imperfect gas flows providing the oblique
shock-wave egquations of the present paper are employed.

Point on the Shock Wave

Figure 16(c) shows a schematic diagram of the points to be con-
sidered in these calculations. The phys;cal coordinates of point C
(xC, yb) are first calculated by solving simwltaneously the equation
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of the first-family Mach line passing through point A and the equation
of the shock wave linearized at point D, the last known point on the

wave. The variation of p/q, with & along the shock wave may be
approximated by the relation

(P/qo)c - (P/qo)D = ‘—1—%/&’1 'N (8o - 8p) | (A6)

a(r/a,)
In this equation _____/E_q__

is the rate of change of p/qo with &
N
along the downstream side of the shock wave evaluated at point D.

Because of the complicated nature of the shock-wave equations, it is
a
generally easier to evaluate —(—zéio—z-l graphically or numerically
N

from the shock-wave reference curves. Equations (Al) and (A6) are
solved simultaneously for ©&q , thus

hp By * -——R'd(zéq )lN 8p + (p/a5), - (p/a0)

d(p/a,)
Ry

o= (A7)

p

When 8¢ has been calculated, Ty, and in turn (p/q_o)c, may be deter-

mined from the shock-wave reference curves. Since pdint C in this case
is just downstream of the shock wave, Ty and TNC are ldentical.

The six quantities, xg, ¥, (P/‘lo)c’ 8¢y Tg» and Ty, have now been
determined.
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APPENDIX B
SHOCK-EXPANSTION METHOD FOR CALCULATING THE FLOW

FIFLD ABOUT AN ATRFOIL

s

An initial value pracedure which is similar to, although markedly
simpler than, that associated with the method of characteristics may
be employed to carry out thig calculation.l4 To illdstrate, consider

the sketch:
First family (C,) Mach //
| ' Streamlines
Shock wave /
' : \Air_fjoi/ surface
Mo M
—_—

- o

With the oblique shock-wave and expansion equations, all fluid proper-
ties at points M, A, C, and so forth on the airfoil surface may be cal~
culated in the usual mAnner.. If the point A is chosen close to M, the
first-family (C;) Mach line connecting A to point B on the shock wave
may be considered./straight and inélinqd.at an e to the free-stream
direction equal to Bp + 83.’% Similarly, the segment MB of the shock

wave may be considered straight and inclined at the angle oy to the
stream direction. 'Thus the point B in the flow field, may easily be
determined. The direction of BD (a segment of €he streamline passing
through B) is the same as the tangent to the surface at A, and the
attitude of the segment BE of the shock wave is fixed by this direction.
The locations of points D and'E in the flow field are thus fixed once
point C is chosen.'® The construction of the remainder of the filow field
follows in a similar fashion. Having determined the shapes of the
streamlines, the fluid propertieg along these lines are, of course,
determined in the same manner as those ailong the surface.

14Tt is clear, of course, that an "average value" procedure could also
be employed. Such a procedure would, in fact, be the more desirable
in some cases, since a coarser net may be used, —

1
SThe point C should, of course, be chosen close to A..




NACA TN 2646 29

Tt is important to note that this method is applicable to the
determination of the flow not only in the region adjacent to the air-
foil (whether the'surface be concave or convex) but also in the region

downstream of the alrfoil; hence it may, for example, prove useful in
downwash studies and the like, ’
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APPENDIX C
APPROXTMATE SOLUTION FOR PRANDTL~MEYER FLOW

OF A CALORTICALLY TMPERFECT GAS

The following solution is obtained with an analysis similar to
that used in Meyer's original paper (reference 20). A schematic dia-
gram of the subject flow field is shown in figure 17. It is evident
that the change in flow-inclination angle for Prandtl-Meyer flow can
be written as follows

8y -8 = (By - B) + (wy - w) (c1)

Since the flow 1s isentroplc, a given value of the local pressure will
determine the Mach angle, B. The problem then is to evaluate the
angle, w. To this end the veloeclity components tangential and normal
to the first-family Mach lines may be expressed in the usual manner in
terms of a potential ¢, thus

T or
109
8 = ; -B—w (03)

It is clear, however, that these components are functions of w only;
hence it is convenient to define a new veloclty potential which is a
function of ® alone. Such a potential is

ow) = = (ck)

r

The veloclty components may then be written in terms of this new
potential.,

u=90 (c5)
C6)

a= ‘bw

The resultant velocity is given by the expression

V= 02+ 92 ' (cT)
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Equation (15) for'conservation of energy may be written in terms of the
local temperature as follows:

v2 4+ 2 < )RT + 2RT <__9ﬂ1_ = A2 (c8)
71-1 ef/T.1.

The constant, A, is evaluated at the conditions exlsting upstream of the
expansion region; namely,

= V@ + ( 7 )RTN + 2RTy <G%§N> (c9)

Equations (CT7) and (C8) are then combined to yield

®2 4 9,2 = -2RT < 7, 9//T >+ AZ (c10)
71"1 ee T"’l

It was shown previously, however, that

2 .. 7RT (C:Ll)

Equations (C6), (C10), and (Cll) may therefore be combined to obtain
the following relationship:

¢2+®w2|:l+g< 1y 6/\T >]=A2 (c12)
7 \7-1 8/T

or

(e[ 22 () v
2 + @y {71-1 + =i 5771 A (c13)

From the imperfect gas relationship for 7 we have

O] T/‘T

7 l+<7i-l>< ) (G/T

(cik)




32 NACA TN 2646

Substituting this relstion into equation (Cl3) there is then obtained

i o [0 _
°2+°‘°2[7iz+;;F(a>]-Aa (015)
where .
.y (8/m)efT [ __‘?_/E_]
F<9-> _ 6/ [l+ (74 l)Jee/T-l) 1+ (ee/T_l) (c16)
T/ (P L, (r1-1) (8/m)%e0/T
’ 75 (ee/T_l)z
Now
2. &2 (c17)

For every value of T/6 there is thus a particular value of a2/74R6.
The function F(8/T) is therefore uniquely determined for any value

of a2 since 74R6 18 of course a constant. With this point in mind,
let

F(e/T) = G(a2/74R0) (c18)

Figure 18 shows G(a2/7;R@) Flotted as a function of a2/y;R0. This
curve is approximated with the following simple relation:

. 2 0.1%
G(a2/7,R8) = 0.38 -2— + 0.71 - C1
(a2/74R0) 3-7139 T YT (c19)
for 0.18 a2 1.0 ‘
- < 7iRe < -
and
a(a2/74R8) = 0 (€20)
a2 '
for 0 < < 0.18

7139
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Equation (C19) is also plotted in figure 18 to show the accuracy of this
approximation. Consider first the case when G is glven by equa-
tion (C19) which is written in the form

G(a2/7;RO) = £a® + p + 1 s%- (c21)
Where obviously
£ = 0.38/74R6
po=0.71 (ca2)
1 = -0.1% (7139)

Equation (C21) is substituted into equation (Cl5) and with equations (C18)
and (C6) the following expression results: -

2 ., ( 714l | 2u > - 2n 2
= + | ==+ = ) 0,2 + 0 + — A~ =0 c2
71t 7i-1 71/ ° 71 (c23)

In order to simplify this equation the following substitutions are made:

2
Da=<7_it£+§u + 2 a2 2 ) (cak)
711 73 7y - 71
AGRA)
sin®y = 1 e L (c25)
gin®t = (026)
and
2 2
0,7 = Zcogr (1) (c27)

z g

- . e e e ———
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Equation (c23) then- reduces to

4 cos bk gin2 7 L4 sin® v

cos* T (Tw)* + -2 cos2 T ()2 + = -0z =0 (C28)
This equation 1s solved for T, thus

Tw =/?_. 1 (cos T - cos v)*/2 (c29)

Dcos T

or

dw = ]12)- cos T 4Tt (030)

(cos T - cos v)1/2

This expression is readily integrated to obtain the following equation
relating ®w +to the local velocity:

W - Wy =~/T{2 [E(k,z) - E(k,zN)] - [F(k,z) - F(x, zN)]} (c31)

where
E elliptic integral of the second kind
F elliptic integral of the first kind

kX sin g (modulus)

sin T/2

z sin~t
sin v/2

> (amplitude)

The procedure for calculating corresponding velues of the pres-~
sure, p, and the deflection angle, &5, is straightforward with the aid
of the preceding equations and may be summarized as follows:

Calculate A2, equation (C9)
Calculate D2, equation (C24)
Calculate Vv, equation (C25)

Assume a value of T, less than T
Calculate p, equations (16) and (17)
Calculate V2, equation (C8)
Calculate 7, equation (C1k)

. L]

~ A\ W o




NACA TN 2646

8-
9.
10.
11.
12‘
130

Calculate
Calculate
Calculate
Calculsate
Calculate
Calculate

35

a2 (or ®,%), equation (C11)

M and, in turn, 8 from V and a
u2 (or ¢2), equation (CT)

T, equation (C26)

w, equation (C31)

8, equation (Cl)

This procedure is followed so long as the quantity az/yiRe is
greater than 0,18.
than approximately 1000° R.) For values of az/yiRG less than or equal
to 0.18 (or temperatures less than about 1000° R) G is set equal to zero
(see equation (C20)). In this case equation (C15) reduces to the same
form as for an ideal gas, and therefore the well-known ideal gas rela-
tlonships can be used.

(This is equivalent to the temperature being greater
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APPENDIX D

EVALUATION OF THE DISTURBANCE STRENGTH RATIO

Consider the element of an oblique shock wave shown in the accom-

panying sketch

95/3Cy

is a measure of the ratio of

It is evident that the ratio
3 /3¢,
strengths of reflected and incident disturbances, respectively, since
all disturbances incident on the_wave between points D and C must
travel along first-family characteristics which cross Cs between
D and A, while all disturbances reflected from the shock wave in this
region must travel along second-family characteristics which cross C;
between A and C. This ratio, termed the disturbance strength ratio,
may be evaluated locally just downstream of the shock wave in the fol-
lowing menner. The points D and C are chosen sufficiently close
together so that the difference in pressure between these points may
be written

Do -Pp = %Ace + g—g;ml (p1)
or
2o - Bp= = | (ogop) (p2)

N




NACA TN 2646 37

where % - is the rate of change of pressure with flow deflection

angle on the downstream side of the wave. Now the change in deflection
angle between D and C 1is given by the relation

0% o))
Be-8p = 5gg M2 + 5g; A0 (93)
Thus equations (D2) and (D3) combine to yield
_ B
be=Pp l <302 ACo + BCJ_ AC1> (Dk)

But the compatibility equations (equations (12) and (13)) combine with
equation (D1) to gilve

o _ 2rwy 3 ) D
PC™D = Tin opy \ 3c, e aclml (p3)

Equeting the right-hand members of this and the previous expression and
rearranging, there is then obtained

(-2 )
98/3c; _ \sin 2Py l ( mz) (D6)
98/3C> ( 27NPR dp >

sin 2py 5|y

The ratio % follows from the sine law, however; thus the disturbance
1
strength ratio is given by the relation

35/dc _ (27NPN a—l > sin (By+dy-0)
66/602 <827NPN +d_P| > sin (By-Bpy+0)

in 2By

(D7)

which holds for both ideal and calorically imperfect gas flows.
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If the shock wave is attached to the airfoil at the leading edge
(or more properly if MNgfl), this expression may be used with equa-
tion (23) to determine the surface pressure gradient at that point. A
calculation analogous to this for ideal gas flows has already been car-
ried out by Crocco, Schaefer, Munk and Prim and others as discussed pre-

viously.
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TABLE I.- TABLE OF FUNCTIONS FOR SLENDER-ATRFOIL METHOD

7 =7 Y = 74 (Tg = 500°R)
MOy
gMody) | T(MeBy) | 75 | 8(MoBy) | £(MsBy)
0 1.000 |0 1.4%00 | 1.000 | O
05| 1.072 | .009901 | 1.k00| 1.072 .009897
10| 1.148 | .01961 1.k00| 1.149 | .01959
A5 1.230 | .02912 1.h00| 1.230 .02909
20| 1.316 | .03845 1.400| 1.316 .038k1
25| 1.%06 | .ok760 1.%00 | 1.406 04755
.30 1.502 | .05656 1.399 | 1.502 .05649
.35 | 1.604 | .06537 1.399 | 1.603 L0652k
40| 1.710 | .07393 .| 1.399 | 1.710 .07380
A451 1.823 | .08235 1.399( 1.822 .08220
50 1.94%1 | .09058 1.399 | 1.9k0 .09040
55| 2.065 | .09863 1.399 | 2.06k .09841
60| 2.195 | .1071L 1.399 | 2.194 L1062
65| 2.332 | .J11k2 1.399 | 2.330 .1139
L7010 2.4k | L1217 1.399 | 2.473 .1213
S5 2.62Lh | L1290 1.398 | 2.622 .1286
80| 2.780 | .1362 1.398 1 2.777 .1356
B85 2.943 | L1431 1.398 | 2.939 1425
.90 { 3.112 | .1499 1.398 | 3.108 L1492
95| 3.289 | .1565 1.398 | 3.284 1557
1.00| 3.%73 | .1630 1.397 | 3.466 .1620
1.1 3.862 | .1753 1.396 | 3.8%2 1740
1.2 4.280 | .1869 1.396 | L.266 .1853
1.3 h.728 | .1978 1.395| L4.708 .1958
1.4 5.206 | .2064 1.3931 5.179 .2056
1.5 5.715 | .2178 1.392| 5.679 2147
1.6 6.256 | .2269 1.391| 6.207 .2232
1.7 6.827 | .2354 1.389 | 6.764 .2309
1.8 7-431 | .2433 1.388 | T7.349 .2381
1.9 8.066 | .2507 1.386 | 7.962 24T
2.0 8.73k | .2577 1.38% | 8.605 .2508
2.1 9.411 | .2646 1.382 | 9.27h .2564
2.2 |10.17 2702 1.380| 9.973 .2616
2.3 | 10.93 .2759 1.378 | 10.70 .2664
2.4 | 11.73 .2812 1.376 | 11.46 .2709
2.5 |12.56 .2862 1.374 | 12.24 2749
2.6 |13.k2 .2908 1.372 | 13.06 .2788
2.7 (1k.32 .2951 1.370 | 13.90 .2823
2.8 |15.25 2992 1.369 [ 1477 .2856
2.9 |16.21 .3030 1.367 | 15.68 .2887

“‘ﬂiﬂ!”
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TABLE I.- CONTINUED

7 =7 7 = 7 (To = 500°R)

&
o

T(MBy)|  7a | 8(Mody)|E(MoBy)

[ - . L]
OPAFNOPAFNODRENO BDNAENO

*

; 7’1% 9\0\0\0\0\\)1\11\)1\)1\)1 FEFEFERFOWWWLWW
. L] .

L ] * [ L] L[] L . * . . * * L]
OVUVOWVMOUIOVIOUWIOUVOUIO O KN

G RREEERREEEE 00 oo

0.3066 | 1.365 | 16.61 | 0.2916
.3130 | 1.362 | 18.56 .2968
.3187 | 1.360 | 20.64 .3015
.3237 | 1.358 | 22.83 -3057
.3280 | 1.356 | 25.16 .3094
.3322 | 1.35% | 27.60 .3128
.3358 | 1.352 | 30.17 .3158
.3389 | 1.351 | 32.86 .3186
3118 | 1.350 | 35.68 .3211
3443 | 1.349 | 38.63 .3234
3466 | 1.349 | k1.70 .3255
L3487 | 1.348 | 4h.91 .3275
.3506 | 1.347 | 48.23 .3292
.3523 | 1.347 | 51.68 .3309
.3539 | 1.346 | 55.26 -3323
.3553 | 1.346 | 58.96 -3337
.3566 | 1.346 | 62.79 .3350
.3578 | 1.345 | 66.77 .3363
-3589
.3600
.3610
.3618
.3626
.3633
.3640
3647 -
.3661
-3673
.368L
.3693
.3701
-3707
.371h
-3719
.3723
3727
.3731
.3735
.3738
.3740
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TABIE I.- CONCLUDED

2
=]

7 = 74 (T, = 500°R)

Ta

g(Mydy)

£ (My8y)

] L] . . . . .

O O~1I0\NFEEwwh NDHEER

OOOS)g\.ﬁ.g‘UIOCDO\-F‘RgO\Om-QO\
e o e L
cNoNoNoNoNeNoNoNoNoRoNoRNeNoNoNoRoNe o,

=
g S

W87.7 | .37h9
546.5 | .3752
608. <3755
674.2 | .3757
815.3 | .3761
969.8 | .376L
1138 .3766
1319 .3768
151k 3770
2060 3772
2690 3TTh
3hok 3775
hooo 3776
6050 3777
8233 3778
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(a) Point in field.

v ‘

Airfoil surface
Ce

(b) Point on surface.

(c) Point on shock wave.

Figure [6,— Diagram of point system in the method of characferistics for the
two - dimensional flow of a calorically imperfect gas.
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