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SUMMARY

Evaluation of the rotating multicylinder method for the measurement
of droplet"size distribution, volume"median droplet size, and liquid"
water content in clouds shoved that small uncertainties in the basic
data eliminate the distinction between different cloud droplet"size
distributions and are a source of large errors in the determination of
the droplet size. Calculations of the trajectories of cloud droplets
in an incompressible"air flow field around a cylinder were performed on
a mechanical analog constructed for the study of the trajectories of
droplets around aerodynamic bodies. Many data points were carefully
calculated in order to determine precisely the rate of droplet impinge"
ment on the surface of a right circular cylinder.

Matching curves for obtaining droplet"size distribution, volume"
median droplet size, and liquid"water content from flight data were
computed from the results of the droplet"trajectory calculations. An
evaluation is presented of the rotating multicylinder method for the
measurement of droplet"size distribution, volume"median droplet size,
and liquid"water content in clouds. Because of the insensitivity of
the multicylinder method to changes in conditions in clouds, and the
inaccuracies in obtaining flight data, errors as large as 70 percent
in the determination of the volume"median droplet size are possible if
the flight speed is 200 miles per hour and the actual volume"median
droplet diameter in the cloud is 30 microns.

INTRODUCTION

As part of a comprehensive aircraft ice"protection research program,
the NAGA has undertaken an investigation of the impingement of water
droplets on aerodynamic bodies. Previous investigators have calculated
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the water"droplet trajectories for right circular cylinders (references 1
to 5) and for airfoils (references 6 to 8). The trajectory results on
airfoils have Ъееп applied to the design of equipment for the protection
of aircraft components against ice formation. The calculations of water"
droplet impingement on cylinders have occasionally been used for the
same purpose hut are most useful in connection with flight instruments
used in the study of droplet size and distributions in icing clouds.

A commonly used technique for measuring the liquid"water content
and droplet"size distribution in icing clouds is described in reference 9 о
as the rotating multicylinder method. Several right circular cylinders w
of different diameters are exposed from an airplane in flight to the
supercooled droplets in a cloud, as shown in figure 1. An assembled set
of rotating multicylinders is shown in figure 2. In the usual procedure
for obtaining the cloud"droplet data, the multicylinders are extended
through the airplane fuselage during the exposure run and then are
retracted for disassembling and weighing. It is assumed that all those
supercooled droplets that strike the cylinders freeze completely on the
cylinders. The liquid"water content and droplet"size distribution are
determined by a comparison of the measured weight of ice collected on
each of the cylinders with the droplet"impingement results obtained from
calculated water"droplet trajectories for the same cylinders.

The mechanical operation of the rotating multicylinder method is
reliable, because it lacks technical complexity and is adaptable to
flight use. The meteorological data obtained with the multicylinder
method have been the only data available in the design of ice"protection
equipment for aircraft. An important disadvantage of the method lies
in its insensitivity in discriminating among the different droplet"size
distributions.

Trajectories of 'droplets in a compressible"air flow field around a
cylinder were calculated (reference 4) in order to evaluate the effect
of the compressibility of air on the trajectories of cloud droplets.
Trajectories in an incompressible flow field were also calculated during
the investigation reported in reference 4 for comparison with those
obtained in a compressible"air flow field. Some difference was found
between the trajectories in the incompressible flow field and the results
presented in references 1 to 3, in which the trajectories were also cal"
culated for an incompressible flow field around a cylinder. Also, a
considerable difference was found to exist among the references cited.
Because of the differences in the existing literature, a recalculation
of the trajectories in an incompressible flow field around a cylinder
was undertaken at the ИАСА Lewis laboratory.
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In reference 1 the forces acting on the water droplet were calcu"
lated from Stokes

1
 law for slow translatory motion of a small sphere in

an incompressible viscous fluid. The forces acting on the water droplet
were calculated more precisely in reference 3 Ъу the use of the experi"
mentally determined drag coefficient for a sphere in terms of the
Reynolds number. The calculations for the trajectories were performed
in reference 1 Ъу a step"by"step integration of the second"order non"
linear differential equations that describe the motion of the droplets
around a cylinder. The calculations presented in reference 3 were made
more accurately with the use of a differential analyzer.

The method used in reference 3 for calculating the water"droplet
trajectories has been used for calculating the data presented herein.
Many more data points were carefully calculated for the results pre"
sented herein than were calculated for the data in reference 3, in order
to determine more precisely the rate of impingement of droplets on the
surface of the cylinder. Accuracy was emphasized in all the calcula"
tions, because the sensitivity of the rotating multicylinder method in
its application does not permit wide tolerances in the theoretical data.
Curves were established over a wide range of the variables in order to
determine whether the impingement on cylinders follows rules that might
be available for extension in future studies to other aerodynamic bodies.

SYMBOLS

The following symbols are used in this report:

a droplet radius, ft (3.048ХЮ
5
 microns)

CD drag coefficient for droplets in air, dimensionless

D drag force, lb

d droplet diameter, microns (3.28X10~
6
 ft)

E collection efficiency based on cylinder radius, dimensionless

2
К inertia parameter, 5" — = — , dimensionless

L cylinder radius, ft

Re local Reynolds number with respect to droplet, 2ap
a
v/n, dimensionless

free"stream Reynolds number with respect to droplet, 2ар
а
и/ц,

dimens ionle s s

time, sec
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U free"stream velocity, ft/sec

u local air velocity, ratio of the actual local air velocity to the
free"stream velocity, dimensionless

v local droplet velocity, ratio of the actual droplet velocity to the
free"stream velocity, dimensionless

v local vector difference between velocity of droplet and velocity of
air, ft/sec

W rate of water collection per unit span of cylinder,
slugs/(sec)(ft span)

Wo local rate of water impingement, slugs/(sec)(sq ft)

w liquid"water content in the atmosphere, slugs/cu ft

x,y rectangular coordinates, ratio of actual distance to cylinder radius
L, dimensionless

P local impingement efficiency, dy
Q
/d0, dimensionless

в impingement angle on cylinder, deg or radians as noted

ц viscosity of air, slugs/(ft)(sec)

p density, slugs/cu ft

Т time scale, tU/L, dimensionless

Ke
0
2 18p

 2
LU

Ф —^— = , dimensionless

Subscripts:

a air

m maximum

о volume median

w water

x horizontal component

у vertical component
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со weighted

О free"stream condition

Prime superscript applied where velocity terms are in ft/sec

ANALYSIS

Derivation of Equations of Motion

As a cylinder moves through a cloud, the amount of water inter"
cepted by the cylinder is dependent on the inertia of the cloud droplets.
In order to obtain the extent of impingement and the rate of droplet
impingement per unit area on a cylinder, the cloud"droplet trajectories
with respect to the cylinder must be determined. The differential equa"
tions that describe the droplet motion have been stated in reference 3
and are derived in the following paragraphs.

From the conventional forms of the equations for the drag force
of a body in a fluid

D = C
D
 | р

а
ла

2
 v"

2

and for Reynolds number

2ap v
Re = —

Ц

there is obtained

D = —"— jta|iv

for a sphere having a relative velocity v with respect to the fluid.
The equation of motion of a water droplet in terms of its x"component
in a rectangular coordinate system is

3, k̂dtajpv

? \ dv1 П TJo (11 t
2 afPw U ]_x ^L_ _ D^ ^ux "
9 \i LI dt TT2 ~ 24 U
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where the velocity terms with the prime superscript have the dimensions
of feet per second. In dimensionless terms the equation of motion for
the x" component becomes

dv
v
 C"pRe "i

зг • тя
and for the y"component becomes

dv
y

cv

dT 24 К

where

The Reynolds number Re can be obtained conveniently in terms of the
free"stream Reynolds number

(4)
p"

such that

The term C"pRe/24 containing the coefficient of drag for the drop"
lets, required in equations (l) and (2), may be obtained from tables in
references 3 or 6. The values presented in references 3 or 6 were
obtained from experimental wind"tunnel data on the drag forces on spheres,
presented in reference 10. As the relative motion between the droplets
and air approaches zero as a limiting value, the value of Cj)Re/24
approaches unity as the limiting value, and Stokes' law for the drag
forces acting on the water droplets applies.

The air velocity components (reference 11) for a cylinder in a
uniform, potential, and incompressible flow in two dimensions and with"
out circulation are

(6)

•̂  (x
2
 + y

2
)
2
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Equations (l) to (6) are written in dimensionless form in order to
maintain the number of calculations at a minimum and to simplify the
presentation of the results. The equations apply to the motion of drop"
lets in a plane perpendicular to the axis of the cylinder, which is
located at the origin of the rectangular coordinate system, as shown in
figure 3. At an infinite distance ahead of the cylinder, the uniform
air flow carrying the cloud droplets is assumed to Ъе approaching the
cylinder from the negative x"direction and parallel to the x"axis.
All the distances appearing in the equations and in the figures are
ratios to _the cylinder radius L, which is assumed to be the unit of
distance. The velocities appear as fractional parts of the free"stream
velocity U. Time is expressed in terms of the cylinder radius and free
stream velocity, such that

In this manner the unit of time is the time required for a droplet to
travel a distance L at velocity U. The Reynolds number is expressed
with respect to the droplet radius.

The differential equations (l) and (2) state that the motion of a
droplet is governed by the drag forces imposed on the droplet by the
relative motion between the droplet and the air moving along the stream"
lines around the cylinder. The droplet momentum tends to keep the drop"
let moving in a straight path, while the drag forces tend to force the
droplet to follow the streamlines. For very small droplets and slow
speed, the momentum of the droplets parallel to the direction of the
free"stream motion is small, and the drag forces are large enough that
little deviation from the streamlines occurs; whereas, for large droplets
or high speed, the momentum is large enough to cause the droplets to
deviate from the streamlines. In accordance with the statement of equa"
tions (l) and (2) and the definition of the parameter К in equation (3),
the trajectories depend on the size of the cylinder, the radius of the
droplet, the airspeed and the air viscosity as first"order variables.

The more important assumptions that have been necessary in order to
solve the problems are:

(1) At a large distance ahead of the cylinder (free"stream condi"
tions) the droplets move with the same velocity as the air.

(2) The droplets are always spherical and do not change in size.

(3) No gravitational force acts on the droplets.
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Method of Calculation

The differential equations of motion (equations (l) and (2)) are
difficult to solve Ъу ordinary means because the actual values of the
velocity components of the droplet relative to the air and the term con"
taining the coefficient of drag are not known until the trajectory is
traced. These values are determined as the trajectory of a droplet is
developed, because their magnitude depends on the position of the drop"
let in the flow field. Simultaneous solutions for the two equations
of motion were obtained with the use of a mechanical analog based on the
principle of a differential analyzer. A description of this analog and
the method of solution for the droplet trajectories are presented in
appendix A. The answers were obtained in the form of plots of the drop"
let trajectories with respect to the cylinder, as shown in figure 4. The
second quadrant section of the cylinder is outlined. The ordinate scale
was expanded approximately four times the abscissa scale with appropriate
gearing in the analog (appendix A) in an effort to obtain the maximum
accuracy in the determination of the points of impingement of the drop"
lets on the cylinder surface.

Before the integration of the equations of motion could be performed
with the analog, the velocity of the droplets at the start of the inte"
gration had to be determined. As has been postulated in the assumptions,
at an infinite distance ahead of the cylinder, all the droplets have
vertical and horizontal components of velocity that are the same as those
of the free"stream air. At finite distances ahead of the cylinder, the
droplets have velocity components and positions varying between those
pertaining to the undisturbed free stream and those pertaining to the
air streamlines. A study of the air streamlines showed that only a
gradual deviation of the air streamlines from the free"stream velocity
takes place up to approximately 5 radii ahead of the cylinder center
line. A large rate of change of air motion takes place between x = "5
and the cylinder surface. The equations of motion (equations (l) and (2))
were linearized by an approximation and solved between x = "co and
x = "5 by the method presented in reference 3 and

1
 discussed herein in

appendix Б. The trajectories of the droplets impinging on the cylinder
are shown in figure 4 plotted from x = "5 to the point of impingement
on the cylinder surface. The analog starting conditions at x = "5, as
calculated by the linearized equations, were estimated to be as accurate
as the expected accuracy of the analog (appendix B).

The trajectories shown in figure 4 are representative of operating
conditions which result in values of К = 4 and Reg = 63.246 (equa"

tions (3) and (4)). The topmost trajectory (A) is tangent to the cylin"
der and determines the maximum extent of impingement of droplets for the
conditions given for figure 4. All droplets having trajectories below
this tangent trajectory strike the cylinder; whereas, all droplets having
trajectories above this line will miss the cylinder.
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The impingement of droplets on the third quadrant of the cylinder
(fig. 3) is identical to the impingement on the second quadrant, except
that the trajectories are mirror images of the trajectories shown in
figure 4. The amount of water impinging on the cylinder is the total
water in those droplets bounded by the second" quadrant tangent trajectory
and the third" quadrant tangent trajectory. If the cloud of droplets is
assumed to be uniform at a large distance ahead of the cylinder (free"
stream conditions), the water intercepted by the cylinder per unit time
is the water contained in a volume of cloud of unit depth and length but
with a width that has twice the value of yQ

 m
, the ordinate at infinity

of the tangent trajectory.

For the conditions of К and Reg applicable to the trajectories

shown in figure 4, the tangent trajectory (A) also determines the cylin"
der collection efficiency, which is defined as the ratio of the actual
water in the droplets intercepted by the cylinder to the total water in
the volume swept out of its path by the cylinder. For a cloud composed
of droplets all uniform in size the collection efficiency is equal to
У0

 m
 in magnitude, because in the trajectory calculations the ordinate

У0
 m
 is given as a ratio to the cylinder radius.

The tangent trajectories were computed in order to obtain the water
intercepted by the cylinder and the cylinder collection efficiency. The
trajectories intermediate between the x"axis and the tangent trajectory
were computed in order to obtain the distribution of the water on the
cylinder surface. The tangent trajectories also determine the angle of
maximum extent of impingement. The angle of maximum extent of impinge"
ment is denoted by 0

m
 (fig. 4), and the angle of impingement of the

intermediate trajectories is denoted by 0. The accuracy in determining
0
m
 was approximately ±1.5°.

Trajectories for droplets with low inertia hovered along the surface
of the cylinder over large circumferential distances. The crowding
together of the trajectories near the cylinder for very low values of К
did not permit the il.5° accuracy to be maintained for values of К < 1
with the same scale factors shown in figure 4. For values of К < 1 the
scale factors of the cylinder were increased such that the trajectories
were plotted with respect to a cylinder 40 inches in diameter. For these
low values of К the ordinate scale was not distorted with respect to
the abscissa scale. A small section of the cylinder surface with the
trajectories of droplets impinging on it is shown in figure 5. Although
only the portion of the trajectories from x = "2 up to the cylinder
surface is shown in figure 5, the trajectories were calculated by the
machine: from x = "5 and the starting conditions at x = "5 were
obtained as explained in appendix B. An attempt was made to increase
the ease in locating the point of tangency by calculating a trajectory
slightly below the tangent trajectory and running the trajectory through
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the cylinder (trajectories B, fig. 5). The trajectory near the tangent
trajectory defined the tangency Ъу cutting the cylinder at two definite
points, such as a secant line. This method of determining the tangent
is accurate only if trajectory В is very near the tangent trajectory.
The increase in scale factor permitted an accuracy of ±1.5° to be
obtained for 0

m
 for К = 0.5, and ±2° for К = 0.25.

Method of Presenting Data

Series of trajectories, such as those shown in figure 4, computed
for several combinations of values of К and Reg, permit the evaluation
of area, rate, and distribution of water"droplet impingement on cylinders.
The data are presented herein in terms of dimensionless parameters in
order to generalize the" presentation of the data and to gain in flexi"
bility in the application of the data to experimental and analytical
studies. Examples involving dimensions and flight conditions are used
herein whenever the examples are aids in clarifying the presentation of
the data. Typical values of dimensions and flight conditions are used
in most of the examples given; however, because of the nature of the
dimensionless parameters, a large number of combinations of values
of the variables, such as free"stream velocity, cylinder size, droplet
size, and others (equations (3) and (4)), would apply to the particular
value of the dimensionless parameter illustrated by the example. A
system of equations for the evaluation of dimensionless parameters in
terms of variables with units commonly employed in aeronautics is pre"
sented in appendix C.

The results are often presented herein as functions of the param"
eter K. The parameter К has been termed the inertia parameter,
because its magnitude directly reflects the external force required on
a droplet to cause a deviation from the original line of motion of the
droplet. A dimensionless parameter cp, defined as

was adopted in reference 3 for the presentation of the data and is also
employed herein. The parameter Ф is valuable in that cp is not a
function of droplet size. The parameter cp is an important concept in
the interpretation of icing"cloud measurements in which the droplet size
is not measured directly and is an unknown which must be calculated
(appendix D) . In the interpretation of icing"cloud measurements in which
cylinders of different diameters are exposed to the supercooled droplets
from an airplane in flight, cp may be considered to be a function of alti"
tude through its dependence on air density p and viscosity ц. for each
cylinder size and a given flight speed.
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The magnitude of cp is a measure of the deviation from Stokes
1
 law

for the forces acting on the water droplets. Stokes
1
 law was derived

for slow translatory motion of a small sphere in an incompressible
viscous fluid and applies precisely in the limiting value of ф = 0,
when the free"stream Reynolds number is zero or the droplet motion rela"
tive to the cylinder approaches zero as the limit (equation (7)).

RESULTS AND DISCUSSION

Collection efficiency. " The collection efficiency as a function of
the inertia parameter К and the parameter ф is presented in figure 6.
For the conditions in which a cylinder is moving through a cloud of drop"
lets that are all uniform in size, the total rate of water interception
per foot span of the cylinder is

W
m
 = 2EmLUw (8)

The collection efficiency increases with increasing values of K. The
primary variables in the inertia parameter К (equation (3)) are the
droplet size, the free"stream velocity, and the cylinder size. The
range of variation of water density or air viscosity over the range of
temperature changes in the ordinary atmosphere from sea level to
30,000 feet is small compared with the range of variation possible with
the other variables in equation (3).

The collection efficiency increases with increasing droplet size
and free"stream velocity, because an increase in the free"stream momentum
of the droplet with respect to a cylinder increases the forces necessary
to force the droplet around the cylinder. An increase in the cylinder
size decreases the collection efficiency, because the large cylinders
cause the air streamlines to start moving around the cylinder a greater
actual distance (not in terms of ratio to cylinder radius) ahead of the
cylinder than the small cylinders. The greater distance ahead of the
cylinder in which the streamlines are moving around the large cylinder
permits the air drag forces to act on the droplets for a long time t
in seconds, thus causing a smaller portion of the droplets that are in
the path of the cylinder to impinge on the cylinder.

For the conditions in which Stokes ' law applies for the drag force
( Ф = 0) , the values of figure 6 for collection efficiency are very nearly
the same as those presented in reference 3. The results of figure 6 and
reference 3 are both lower than those presented in references 1 and 2,
again for ф = 0. The calculations for the work presented in refer"
ences 1 and 2 were not made with differential analyzers, nor were the
conditions at the start of the trajectories determined by the method
presented in appendix B. The differences may result from either the
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method of calculation or the assumptions at the starting conditions.
The calculations of reference 2 included only values of К less than 2.
The results of figure 6 differ somewhat with those of reference 3. For
ф = 10,000, the results of figure 6 are higher than those in reference 3
by 0, 8, 7, 2, and 0 percent for К = 1, 4, 16, 36, and 256, respectively.
The calculated points shown in figure 6 are presented in table I. Cor"
responding points obtained from curves given in reference 3 are also
given in table I for comparison. Wo calculations were made in refer"
ences 1 and 2 for values of Ф other than zero. Although a few calcu"
lations were made in reference 5 for ф = 16,000, the results are not
comparable with either the results presented herein or in reference 3,
because the starting conditions and method of computation were not the
same.

The expanded ordinate scale used with the analog permitted the cal"
culations presented herein for the collection efficiency to be read
accurately within ±0.002 unit for values of ЕШ between 0.20 and 1.00.

The accuracy in obtaining ЕШ for values of К = 0.5 and 0.25 was

±0.003 and ±0.004, respectively, because the accuracy in the determina"
tion of the tangent trajectory was not as good for the low values of K,
as was stated in a previous section. The values shown in figure 6 for
К = 0.5 and 0.25 are averages of two or more check calculations.

Maximum angle of impingement. " The maximum angle of impingement is
given in figure 7 as a function of К and ф. The maximum angle of
impingement, in radians, increases with increasing values of the inertia
parameter. The shapes of the curves in figure 7 are similar to those in
figure 6 on the collection efficiency. As was discussed in the section
titled Method of Calculation, the accuracy in determining 0

m
 was ±1.5°

for conditions in which К = 0.5. The curves of figure 7 were faired
through averages of readings by several observers of the original
trajectory plots. In the low values of К (К < 1) two or often more
than two check analog calculations were made. A comparison of the angle
of impingement given by the curves of figure 7 with the results of
reference 3 is made in table I.

Tangential"velocity components. " The tangential"velocity components
of both the air and those droplets that are tangent to the surface of the
cylinder are presented in figure 8 in the form of a velocity hodograph.
The vertical and horizontal components of the air velocity at the surface
of the cylinder can be found from the outermost velocity hodograph. The
graduations denote the angle в measured clockwise on the cylinder from
the "x ordinate to the +y ordinate (fig. 3). The velocity components
of those droplets that impinge tangentially to the cylinder (trajectory A,
fig. 4) can be found from the hodograph enclosed by the air hodograph.
A line passing through the 0,0 ordinates of the hodograph and a given
position angle 9 on the air hodograph will give the velocity direction
of both the air and the droplets at that point on the cylinder, because
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both the air and the droplet velocities are tangent to the cylinder. The
values of the inertia parameter К that correspond to the .calculated
points are shown at each point. Apparently, the velocity components for
all droplets, regardless of the combination of op and K, can be repre"
sented by one curve. This relation between v

v
 and v

x
 was also noted

for airfoils in reference 7.

The method for obtaining the vertical and horizontal component
velocities of both the air and the droplets is illustrated for the exam"

ple involving a cylinder !„• inches in diameter moving with a free"streamи
velocity of 125 miles per hour at 10,000 feet NACA standard altitude
conditions through a cloud composed of uniform droplets 20 microns in
diameter. For these conditions К = 3.6 and ф = 1000. The maximum
angle of impingement, which corresponds to the point on the cylinder
where these droplets impinge tangentially, is found in figure 7 to be
1.172 radians or 67°. The vertical component of droplet velocity v

y

at the point of tangency on the cylinder is 0.41 and the horizontal
component v

x
 is 0.96, both values being given in figure 8 as ratios

to the free"stream velocity. The air velocity components u
v
 and u

x

are 0.72 and 1.69, respectively, times the free"stream velocity.

At the cylinder angle 0
m
 of 90°, all the horizontal droplet veloc"

ities must be unity, which is the free"stream velocity, because only the
droplets with infinite inertia will be tangent to the 90° point on the
cylinder.

Impingement of intermediate trajectories. " The starting ordinate
УО at infinity of any trajectory, including the trajectories between
the tangent trajectory and the x"axis such as shown in figure 4, can be
found in figure 9 for any given angle of impingement on the cylinder.
The starting and ending positions of the trajectories are shown in fig"
ure 9 for the five different values of Q? studied. For each value
of ф, curves for several values of К are presented. The choice of
the particular values of K, shown in each figure, was governed by the
gearing available for the analog.

The amount of water impinging between any two given points on a
cylinder moving through a uniform cloud can be found from the results
given in figure 9. For example, if the amount of water impinging between
the x"axis and a point в = 45° = 0.785 radian must be known for a

1—inch cylinder moving with a free"stream velocity of 130 miles per hour

through a cloud composed of 20"micron droplets, the value of y
n
 to be

used in the relation

W = UwLy
Q
 (9)
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can Ъе found in figure 9(c) for ф = 1000 and К = 4. The value of VQ

is found to Ъе 0.53 and is the value used in equation (9). The amount
of vater impinging between two points, where one of the points is not
on the x"axis, is found by using the relation

W = UwL (y
Q)2
 " у

од
) (9a)

The angle 0 is given in radians in figure 9 because radians permit a
convenient conversion of the data of figure 9 in the determination of
local rates of water impingement discussed in a subsequent section.

An analysis of the data points shown in figure 9 reveals that all.
the points fell on sine curves, with amplitude and period depending on
the values of К and ф studied. The reason for this behavior is not
apparent from a study of the equations of motion (equations (l) and (2)),
which are very nonlinear and do not permit a formal solution. However,
this behavior of the data can be used advantageously in that curves of
y
n
 as a function of 9 for values of ф and К in addition to those

curves given in figure 9 are possible with the aid of the expression

The following examples illustrate the use of equation (10). If the
curve of yn as a function of 9 for ф = 100 and К = 2 is desired

(shown in fig. 9(b) without calculated points), the amplitude and period
that determine the terminus of the desired curve are obtained from fig"
ures 6 and 7, respectively. The value of VQ

 m
 = Ещ = 0.493 is found

in figure 6, and the value of 0
m
 = 1.092 is found in figure 7. These

values of VQ
 m
 and 0

m
 are the terminus values and a measure of the

amplitude and period, respectively, of the desired sine curve for
ф = 100 and К = 2. Other points along the desired curve are obtained
by solving equation (10) over a range of values of 0 from 0 to 9"̂ .

If a knowledge is required of the amount of water impinging between
0 = 40° = 0.698 radian and 0 = 50° = 0.873 radian on a cylinder for
which the operating conditions were К = 6 and Ф = 3000, the value of
(y. _ _ у„ ",) required in equation (9a) is found by the interpolation

of the curves presented in figures 6 and 7. The value of y
Q
 = Ещ

is found from figure 6 to be 0.66. The value of 0
m
 is found from

figure 7 to be 1.255. The values of 0/0
m
 required for use with equa"

tion (10) are 0.698/1.255 = 0.556 and 0.873/1.255 = 0.696 for the
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two points of interest on the cylinder. The value of (y
0
 о " y_ .,)/\ Uj £ (jj j_

for use in equation (9a) is

0.66 sin ( 0.696 - sin J 0.556
U

= 0.080

The dashed lines in figure 9 are the loci of the termini of the
sine curves.. These dashed lines are cross plots of the curves given in
figures 6 and 7. The accuracy in determining the dashed lines is the
same as the accuracy for figures 6 and 7 . The accuracy in obtaining the
intermediate points was usually much better, because the points where
the intermediate trajectories intercepted the cylinder were much better
defined than were those of the tangent trajectories (figs. 4 and 5).
The tolerances are approximately ±0.001 for yQ and ±0.012 radian for 0.

Local rate of droplet impingement. - The local rate of water impinge-
ment per unit of area on the cylinder surface located at a given angle в
can be determined from the relation

dy
n

W = Uw
 =

 uwp (11)

provided 9 is measured in radians. The magnitude of the term dyQ/d0

is the fractional part of the maximum water that could impinge on a local
area of the cylinder, if all the trajectories were parallel to each other
and the cylinder surface were projected into a plane perpendicular to the
trajectories. A value of

dy

°
indicates that the intensity of impingement on a local area of the
cylinder is the maximum possible for the liquid"water content present
in the cloud. For a uniform cloud composed of droplets all of the same
size the value of 3 is obtained from the slope of the curves of y

0

as a function of в presented in figure 9. Curves of (3 that corres"
pond to the data of figure 9 are presented in figure 10. The rate of
droplet impingement is highest at the stagnation point (0 = 0) .

Curves of 3 as a function of 9 in addition to those curves
given in figure 10 can be found from the relation

e
m
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where 9 is measured in radians. This relation applies on the assump"
tion that the curves in figure 9 are sine curves for which the amplitude
is characterized by y

o
 and the period Ъу в . The values of

y
0
 = E and 0

m
 are obtained from figures 6 and 7, respectively.

EVALUATION OF ROTATING MULTICYLDTOER METHOD

An important application of droplet"trajectory data with respect to
cylinders has been in the measurement of droplet size in icing clouds.
Several cylinders of different diameters are exposed from an airplane in
flight to the supercooled droplets in the icing cloud (fig. l). It is
assumed that all the supercooled droplets that strike the cylinders
freeze completely onto the cylinders. The liquid"water content and
droplet"size distribution in the cloud are determined by a comparison
of the•measured weight of ice collected on each of the cylinders with
the amount of droplet impingement obtained from the calculated water"
droplet trajectories for cylinders of the same size and for the same
flight atmospheric conditions. This technique of analyzing icing clouds
is described in references 3 and 9 and in appendix D.

Droplet"size distribution patterns. " The data presented in figures 4
through 10 apply directly only to clouds composed of droplets all of
which are uniform in size. In a cloud in the earth's atmosphere, the
water droplets are often not of uniform size. For a cylinder exposed
in a cloud with a given droplet"size distribution pattern, the trajectory
data in the figures cited are used to compute other curves that are
applicable to the distribution pattern under consideration.

Five different droplet"size distribution patterns have been defined
in reference 3 for convenience in the classification of clouds. The
table of distribution patterns, reproduced herein as table II, was
adopted to cover some of the range encountered in nature. Although the
five distributions given in table II are not the only probable patterns
existing in clouds, these five distributions are used herein to evaluate
the sensitivity and the accuracy that can be expected from the rotating
multicylinder method. The method of evaluation applied to these patterns
can be used for a similar study of other droplet"size distribution
patterns. The droplet,"size ratios given in table II are the average
radius of the droplets in each group to the radius a of. the volume"

median droplet size. (The amount of water in all the droplets of a
diameter greater than the volume"median droplet diameter is equal to
the amount of water in all the droplets of smaller diameter. Volume"
median droplet diameter is often referred to as "mean"effective drop
diameter." The subscript о refers to the volume"median condition.)
The different distribution patterns have been labeled with the first
five letters of the alphabet. A cloud with an A distribution is com"
posed of droplets which are all uniform in size. In a cloud with a



NACA TN 2904 17

В distribution, 30 percent of the water is contained in the droplets
having the volume"median droplet diameter, 20 percent of the water is
contained in droplets with a diameter 0.84 as large as the volume"median
droplet diameter, and another 20 percent of the water is contained in
droplets with a diameter 1.17 times as large as the volume"median drop"
let diameter. The remaining water is distributed as follows: 10 percent
in droplets with a diameter 0.72 as large as the volume"median diameter,
10 percent in droplets 1.32 times as large as the volume"median diam"
eter, 5 percent in droplets 0.56 as large, and 5 percent in droplets
1.49 times as large as the volume"median diameter. A similar inter"
pretation applies to the other distributions listed in table II.

Over"all weighted collection efficiency. " In a cloud composed of
droplets of many different sizes, a cylinder of a given diameter will
collect some droplets of every size; however, the collection efficiency
with the smaller droplets will be les.s than with the larger droplets.
For any assumed droplet"size distribution in the cloud, such as distri"
bution В in table II, an over"all weighted collection efficiency for a
cylinder can be calculated from the results of figure 6 by adding
together the weighted collection efficiencies that are appropriate to
each droplet"size group in the В distribution. For example, 30 percent
of the water in all the droplets in the cloud is assumed to be processed
by the cylinder at the collection efficiency pertaining to the volume"
median droplet; 20 percent of the water in all the droplets in the cloud
is assumed to be processed by the cylinder at the lower collection effi"
ciency that applies to droplets with diameters 0.84 as large as the
volume"median droplet diameter, and so forth. The over"all weighted
collection efficiency for each cylinder in the set of cylinders exposed
from the airplane can be calculated for the assumed distribution. A
different curve of over"all weighted collection efficiency as a function
of cylinder diameter will exist for each assumed droplet"size distribu"
tion.

Comparison curves. " The droplet"size distribution prevailing in a
cloud at the time of measurement can be found by comparing the shape of
a curve of cylinder diameter as a function of the measured ice accumulated
per unit area in flight on each cylinder (fig. 11) with the shape of the
calculated curves of cylinder diameter as a function of over"all weighted
collection efficiency. Sets of calculated curves for comparison are
shown in figure 12 for the droplet"size distributions A through E of
table II. The detailed method of calculation of these curves, which
differs slightly from that presented in reference 3, is discussed in
appendix D. The ordinate in figure 12 is the reciprocal of the inertia
parameter (l/K)_ as applied to the volume"median droplet size, and the
abscissa is the over"all weighted collection efficiency E^. The amount
of ice accumulated per unit of cylinder area is directly proportional to
the over"all weighted collection efficiency. The comparison is valid
provided that the actual droplet"size distribution prevailing in the
cloud during the cylinder exposure was one of the assumed distributions
for which comparison curves are available.
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The term (l/K)
Q
, rather than the diameter of the cylinders in a

set of cylinders, is used for the ordinate, because (l/K)
o
 is directly

proportional to the cylinder diameter through the relation

(12)

The direct proportionality between (l/K)
o
 and L applies to the data

obtained during one run, because all the different sized cylinders in
the set of cylinders are exposed to the same air viscosity, free"stream
velocity, water density, and volume "median droplet diameters in the
cloud. The use of (l/K)

o
 as ordinate permits the use of the curves

in figure 12 for a large number of combinations of different flight
conditions.

In the preceding explanation of a method for obtaining the droplet "
size distribution in the cloud, it was tacitly assumed that another
method was also available for obtaining the volume"median droplet size.
A method has been devised which takes into consideration the volume"
median droplet size by combining the parameter ф and the inertia
parameter К into another parameter

/2p a U\
2

(Кф)
0
= "" E (Re

0
)
0

2
 (13)

The only unknown quantity in this parameter is the volume"median droplet
size a

o
. In order to cover the more probable conditions of airplane

speed, air viscosity and density, and volume"median droplet size, values
of (Kcp)

0
 ranging from 0 to 10,000 were chosen for the calculations and

are presented in figure 12. After the flight data involving cylinder
size and ice collected (fig. 11) are matched to one of the curves in
figure 12, the value of {l/K)

o
 in figure 12 corresponding to a cylinder

with radius L of unity is noted when figures 12 and 11 are super"
imposed. The volume"median droplet size is computed from equation (12)
for the particular (l/K)

o
 obtained from figure 12 and the known flight

conditions. A more detailed procedure for obtaining the droplet"size
distribution and the volume"median droplet size is discussed in appen"
dix D.

The liquid"water content is obtained by extrapolating the icing
rate measured by the set of cylinders to an infinitely small cylinder
with unity collection efficiency. This procedure, as described in
appendix D, determines the ice collected by a cylinder that collects
all the water in its path.
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Matching flight data. " A manner for plotting flight results involv"
ing the cylinder diameter as a function of the ice accumulated on each
cylinder in grams per second per square inch of frontal area is illus"
trated in figure 11. The data plotted in figure 11 for the four cylin"

ders used in flight (diameters of 3, ~L—, "̂ , and •$ in.) are shown in

figure 13 matched to some of the curves taken from figure 12. The method
used for matching the data is described in appendix D. In order to
simplify the illustration, only portions of the best fitting curves of
figure 12 are shown superimposed on the data in figure 13. The ordi"
nates of figure 12 are not shown, except that the value of (l/K)

0
 where

L = 1 is given on each of the curves taken from figure 12.

A practical difficulty arises in matching the flight data with the
curves of figure 12. The difficulty is caused by the scattering of the
measured data due to errors in the measurements, by the difference
between the assumed theoretical distributions on which the curves of
figure 12 are based and the conditions actually prevailing in the nat"
ural cloud during the time the cylinders were exposed, and by the inher"
ent extreme insensitivity of the rotating multicylinder method to
differences in droplet"size distributions even if the preceding diffi"
culties were not present. The possible errors in measurement include
those caused by errors in measuring flight speed, exposure time, and air
temperature, differences between the exposure time of the large cylinder
and the small cylinder due to the time required to extend and retract
the set, losses in the accumulated ice while disassembling the cylinders
prior to weighing, failure of droplets to freeze on the cylinders, and.
errors in weighing. Another error that determines the accuracy of the
final answer is the expected, error in the calculation of over"all
weighted collection efficiency plotted in figure 12. This error has
been determined to be as large as 2 percent (appendix D). Experience
in obtaining flight data has shown that the accrued, error from all
sources can be maintained below ±10 percent but seldom can be expected,
to be less than ±5 percent.

The hypothetical data points of figure 11 were chosen to fit pre"
cisely the curve for the В distribution given in figure 12(e) (volume"
median droplet diameter for the data of fig. 11 was assumed to be
20 microns). If the data were flight data taken in a cloud in which the
droplet sizes were defined by а В distribution and the volume"median
droplet size were 20 microns, the data would probably not fit the
В distribution of figure 12(e) precisely, but each point would deviate
by an amount which depended on the accrued error related to the care in
measuring. The braces in figure 11 indicate the range of a ±5"percent
error, and the brackets indicate the range of a ±10"percent error. In
the analysis of the flight data, the magnitude of the accrued error will
affect the answers obtained and will determine the sensitivity of the

multicylinder method.
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Expected errors in analysis of flight data. " An attempt is made
herein to evaluate the sensitivity of the multicylinder method when
errors of known magnitude are present in the flight data. The expected
error in the calculation of over"all weighted collection efficiency
plotted in figure 12 could Ъе shown graphically in terms of the width
of the lines used to plot the curves of figure 12. When the calculated
curves of figure 12 are superposed on the flight data of figure 11 for
comparison, the error in calculating over"all collection efficiency can
Ъе added to the error in measuring and "both errors included in the range
indicated by the braces (or brackets) and termed an accrued error. <

Three sections of different curves taken from figure 12(e) are
shown in figure 13 to come within the ±5"percent range of accrued errors.
The following is an illustrative example in the interpretation of the
material presented in figure 13: If measurements were made simultaneously
by a large number of careful observers who kept the accrued error within
±5 percent at a true airspeed of 200 miles per hour in a cloud in which
the volume"median droplet size was actually 20 microns in diameter and
the droplet"size distribution was defined by the Б distribution of
table II, the final answers reported by the"observers would vary from
17 to 25 microns for the diameter of the volume"median droplet and from
an A distribution to an E distribution.

The type of analysis described with the use of figure 13 was made
to cover a range of true flight speed up to 400 miles per hour and to
cover actual volume"median droplet sizes up to 30 microns in diameter.

A set of four cylinders with diameters of 3, 1—, "^, and ̂  inches was

assumed for the analysis. The other secondary variables assumed were
an altitude of 10,000 feet and air viscosity of 3.436X10~

7
 slugs per

foot"second. The errors that can be expected in the final answers of
the volume"median"droplet size for accrued errors of ±5 and ilO percent
(including the expected error in the calculations for the theoretical
data of fig. (12)) are shown in figures 14(a) and 14(b), respectively.
The ordinate is the error possible in reporting the actual volume"median
droplet size in a cloud. An upper and lower limit are shown in the fig"
ures. Usually, it is possible to have a larger magnitude of error in
reporting the size too large than the magnitude of error in reporting
the size too small. For example, in a cloud in which the droplet size
was actually 30 microns in diameter and the true airspeed was 200 miles
per hour (accrued error = ±5 percent, fig. 14(a)), the answer reported
would be within the limits of 25 and 40 microns. The lower limit error
is approximately 18 percent, and the upper limit error is approximately
35 percent.

Doubling the sizes of the cylinders has the same effect on error as

halving the flight speed. If a set of cylinders of 6", 2—", 1", and
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—inch diameter were used at a flight speed of 200 miles per hour, the

expected error can Ъе found from the curves of figure 14 for a flight
speed of 100 miles per hour. The expected error in the final results
increases rapidly with increasing droplet sizes and flight speeds. The
value of the multicylinder method in clouds consisting of volume"median
droplet sizes at>ove 30 microns in diameter is questionable, if the air"
plane speed cannot Ъе maintained below 100 miles per hour.

о
э The accuracy in the determination of the droplet"size distribution

is very much subject to personal discrimination as well as to errors in
measurements. The same measured data resolved by different observers
often result in large differences in the typing of the distributions.
If ±5"percent accrued error in measurements is assumed, the insensitivity
of the multicylinder method does not permit an A distribution to be
distinguished from an E distribution with data taken at flight speeds
above 150 miles per hour.

Careful determinations of liquid"water content are usually not in
error by more than ±5 percent, provided the size of the smallest cylinder
is 1/8 inch in diameter or less and the measuring errors are less than
±.4 percent. The error in determining liquid"water content is usually
1 percent larger than the total errors in the measurements, because the
curves of figure 12 are accurate only within il perc'ent at low values
of (1/K)

0
.

Lewis Flight Propulsion Laboratory
National Advisory Committee for Aeronautics

Cleveland, Ohio, September 5, 1952
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APPENDIX A

SAMPLE MACHINE SETUP FOR CALCULATING WATER"DROPLET TRAJECTORIES

Principle of operation. " The water"droplet trajectories were com"
puted on a mechanical analog which was fundamentally a differential
analyzer constructed for solving the equations of motion (equations (l)
and (2)). Although the operational theory and technique of preparing a
problem for solution on a mechanical differential analyzer have been
reported (references 12 to 14), the principles of operation of the
mechanical analogy are reviewed herein, and a machine setup together
with all the pertinent computations involved for a representative tra"
jectory are presented.

The mechanical analog, shown in figure 15, consists of a number of
computing units interconnected by a system of shafts and gears. Each
unit performs mechanically one of the operations involved in the solu"
tion of the differential equations, such as integration and algebraic
addition. The computational process of the analog is purely kinematic
and not dynamic; any interruption in the solution or change of rate of
solution by the operator does not affect the final result. The machine
can evaluate only particular numerical solutions of particular equa"
tions in which all coefficients have numerical values and for which
numerical initial conditions are known. A formal solution cannot be
obtained from the machine.

The principal unit of a differential analyzer is the integrator,
six of which are on the analog shown in figure 15. When an expression
is integrated on a differential analyzer, the integrating unit provides
a continuously variable rate of change of the variables and derivatives,
thereby preserving the essential feature of the calculus. Thus, if the
magnitude of the independent variable т were measured by the number
of revolutions of a driving shaft arranged to drive a second shaft
through a coupling gear ratio N, a rotation dT of the driving shaft
will result in a rotation NdT of the driven shaft. If the coupling
ratio changes while the driving shaft is rotating, the total rotation
у of the driven shaft is

у =J NdT

A continuously variable coupling ratio that can pass through zero
and provide for positive and negative signs is achieved with a modified
Kelvin disk integrator, shown in figure 16. The rotation of the hori"
zontal disk, the axis of which is fixed, is transferred to the roller
through a pair of balls. The coupling ratio between the disk and the
roller may be changed by varying the position of the balls across the
diameter of the disk. If the point of contact between the balls and
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the disk is a distance r) from the center of the disk and if the disk

rotates an amount dT, the roller will rotate through "3 dT turns,
л

where X is the radius of the roller. In the integrators used on the
analog, the distance т\ is varied by means of a lead screw that dis"
places the ball carriage across the diameter of the disk.

For convenience, all quantities are expressed in terms of shaft
rotations. The expression for the rotation of the roller previously

derived as г" Гт)3т is rewritten in terms of the rotation of the shaft

that drives the disk, the lead screw shaft that displaces the ball
carriage, and the integrator roller. The number of turns | of the
integrand shaft required to produce a linear displacement т] of the
ball carriage is equal to т]/р, where p is the effective pitch of the
lead screw. The radius of the roller, the pitch of the lead screw,
and other gear ratios permanently installed in the integrator to facil"
itate the driving of the lead screw are collected together in a term
referred to as the integrator constant Г. The expression for the rota"

tion of the roller becomes FJ |dT.

Large torques cannot be transmitted through the integrator without
slippage between disk, balls, and roller. Very low torques are imposed
on the integrators. The torque required to drive the gear trains,
shafts, and other computing elements in the mechanical circuit beyond
the integrator is obtained from a torque amplifier placed in the circuit
immediately after the integrator.

Algebraic additions are performed by mechanical gear differentials,
which operate in principle similarly to the differentials used to drive
the rear wheels on conventional automobiles. The purpose of the differ"
entials used in the analog is to combine two rotating inputs into one
rotating output, which for the analog differentials is one"half the
algebraic sum of the inputs. A high"precision spur"gear differential
with practically instantaneous response is used in the analog.

Sample computation of gearing required. " The problem of constrain"
ing the basic computing elements (integrators, differentials, and input
intelligence) to solve the differential equations (equations (l) and
(2)) is approached in three steps. The first step is the preparation
of a pictorial diagram showing how the various computing units are inter"
connected, without regard to scale factor. A pictorial diagram for the
solution of equation (l) is shown in figure 17. A similar diagram is
used to solve equation (2). In order to adapt the equations of motion
to a convenient form for the analog, equation (l) is rewritten as
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2Z. = i fl?a
v
 dT (Al)

dT К J
 x

where

C
D
Re
 f dxV s _±L_ and a

x
 = U

Y
 " —

24
 x

 \
 x
 dT,

The second step is the introduction of appropriate gear ratios into
the pictorial diagram to provide proper scale factors between each com"
puting element. These gear ratios are introduced as ratios
n"i, no, . . . n

n
 to each integrand shaft of the integrators and to the

inputs and outputs of each differential. The purpose of the gear ratios
is to ensure that the ranges of the derivative functions introduced as
integrand quantities to the integrators do not exceed the mechanical
translation limits of the ball carriage and to provide equal scale fac"
tors for quantities being added in a single differential adding unit.
A schematic diagram that aids in evaluating the gear ratios is shown
in figure 18.

The constant coefficients preceding each variable quantity in fig"
ure 18 represent the number of revolutions a particular shaft must make
to represent one unit of that particular quantity. For example, shaft
number 1 has a coefficient An]_ and the variable is u

x
, which may be

interpreted as An^_ revolutions of shaft number 1 representing one unit
of u

x
.

The coefficients A, B, and С are scale factors for the sources of
intelligence fed to the machine. The input chart, from which the intel"
ligence required by the machine for the local air velocity u

x
 is fed

to the machine by an operator, was drawn to a size such that 96 revol"
utions of the input"chart lead screw represent one unit of u

x
; there"

fore, A = 96. The coefficient В was chosen to equal 128 revolutions
of the independent"variable drive motor to represent one unit of time.
The coefficient С was chosen to equal 8 because of convenience in using
available gearing. The resultant quantities, shown in the two columns
at the extreme right of figure 18, are evaluated from the equations of
constraint to be presented.

In order that the variables u
x
 and dx/dT be added algebraicly

in the differential, the number of revolutions of the u
x
 input shaft

(shaft 1, fig. 18) per unit of u
x
 must equal the number of revolutions

of the dx/dT shaft (shaft 2) per unit of dx/dT at the input to the
differential. This equality suggests a need for the gear ratio n*
between shafts 2 and 8.

Equation (Al) may be written in terms of the constant coefficients
shown in figure 18 such that
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n
4

f} V

dx
 =
 ABC

 г

dT 512 1 2 3 b J x

П П П П d T
d?

 =
 5122346

This expression is obtained from figure 18 by equating the motion of
shaft 8 with the motion of shaft 7 after the motion of shaft 7 has passed
through the gear ratio ng. From a comparison of equation (A2) with
equation (Al)

1 "Dp

К = 5Т2
П
2
П
3
П
4
П
6 (

А3
)

In order to assure that the integrand of integrator I (fig. 18)
does not exceed the limit of translation of the ball carriage /

An,n

because the integrand lead screw can make 192 revolutions within the
mechanical limits. Two other equations of constraint can be obtained
by applying the same constraint to the integrand of integrators II and
III, respectively:

Cn
3
 u

m
 < 48 (A5)

and

Anin5
 (** <

 192
 (A6)

~

The input chart from which the u
x
 intelligence is fed to the

machine is wrapped around one of the two input drums, as shown in fig"
ure 15. The x"coordinate of this chart is laid off around the circum"
ference of the drum. The x"displacement of the droplet from the start"
ing point (5 radii ahead of the center of the cylinder) must not exceed
one revolution of the drum. The equation that defines this constraint
is

AB
 П
1
П
5
П
7

32 n
4

 X
range —

The maximum and minimum values of all the variables appearing in
equations (A3) to (A7) must be known or intelligently estimated. For
the example presented herein, the following excursions of the variables
were assumed:
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О < x < 5

О < и., < 2

0 < а
х
 < 1

1 < и < 6

J

(AS)

The results presented in figure 9 cover a range of values of К
from 0.25 to 320. Several machine setups were required to solve that
large range of variation in K. For this example, the range of К is
limited from 1/2 to 4. The changes in К are made by changing the
gear ratio ng. In order to cover the range of values of К assigned
to this machine setup without requiring inconveniently large gear ratios
for ric, a value of К = 1 is assigned to equation (A3) when ng = 1.
With these values of К and ng, equation (A3) reduces to

n n n TV — RI9 (AQ^П

0
п. n rib " oj"<s \ •"••?;

The gear ratio ny can Ъе obtained from the simultaneous solution
of equations (Аб) and (A7). The ratio chosen was

1 I 1 ̂  (Ъ \
 ?/
2 SП

7
 =
 opqn

 =
 (олпДц'Ji^ Ь because this ratio was easily formed with the

available change gears. The input and output chart scales were such
1920

that five units of x were equal to revolutions of the drums.

The ratio nj = 1 is obtained from equation (A5). The relation

П
1
П
2
П
5 ̂ (A10)

is obtained from expressions (Аб) and (A9)
equation (A4),

1
8

From this relation and

which required (from expression (AlO)) that n"jiip = 4. The gear ratios
Пт= 4 and По = 1 are taken as such by choice because of ease in
applying these ratios in the machine. From equation (A9), гь = —.
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A similar computational procedure is done for equation (2). The
gear trains for the solutions of equation (l) and (2} are combined in
a plan view, as shown in figure 19, in which the computed gear ratios
are shown in position. The plan view of figure 19, which is the third
step, is very similar to the actual machine setup (fig. 15) and is used
to assemble the final setup.

The values of u
x
 and u

y
 are fed to the machine continuously

by the operators from the two end input drums shown in figure 15. The
droplet trajectories (fig. 4) are plotted by the machine on the center
drum on a sheet of acetate in order to minimize errors caused by
changes in humidity and temperature during the calculations. The
y"ordinate is scaled to four times the x"ordinate in order to gain
accuracy in reading the у and 0 values. The values of C"rjRe/24
are varied continuously during the computation of the trajectories
and are determined with the use of equation (5) and tables in refer"
ences 3 or 6. The values of (u

x
 " v

x
) and (u

y
 " v

y
) are obtained

from counters on the machine during the calculations.
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APPENDIX В

STARTING CONDITIONS OF TRAJECTORIES AT LARGE VALUES OF "x

For practical reasons the integration of the differential equations
of motion (equations (l) and (2)) cannot be started with the NACA analog
from an infinite distance ahead of the cylinder. The equations are
therefore linearized by an approximation up to a convenient distance
ahead of the cylinder. The method of linearizing the equations is pre"
sented in reference 3 and results in the following expressions:

М(Р)УО
x x

M(p) =

_ X

" ~K

The symbols for these expressions are the same as those used in refer"
ence 3. The exponential integral Е"^("р) is tabulated in pages 1
through 9 of reference 15. The y"ordinate of the droplet is found by
adding Лу to y

Q
.

For the studies of the trajectories discussed herein, the integra"
tion of equations (l) and (2) with the NACA analog was always started
at x = "5 . The accuracy of the preceding linearized starting equa"
tions was checked by integrating equations (l) and (2). for К = 32, 16,
and 4 with the NACA analog from x = "50 to x = "5. The difference
in results was within the expected accuracy of the analog. The pre"
ceding linearized starting equations were found to be invalid for values
of К less than 0.5. For values of К less than 0.5, the equations
gave values of v

y
 greater than the corresponding values of Uy and

values of v smaller than the corresponding values of u . For values
of К less than 0.5, the starting conditions at x = "5 were assumed
to be the same as those conditions prevailing for the air streamlines.
This assumption is valid, because the droplet inertias are very small.
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APPENDIX С

CONVERSION OF PRACTICAL FLIGHT UNITS INTO DBffiNSIONLESS

PARAMETERS K, cp, AND Re
Q

The following relations are presented to aid in the interpretation
of free"stream velocity (airplane speed), cylinder diameter, air vis"
cosity, air and water density, and droplet diameter in terms of the
dimensionless parameters K, cp, and R€Q used in this report:

К = 4.088ХКГ
11
 (Cl)

Re
n
 = 4.813X10 I—"О \ ц

d = 1.564X10
5
 (C3)

where

D cylinder diameter, in.

d droplet diameter, microns

Ещ collection efficiency (fig. 6), dimensionless

К inertia parameter, dimensionless

a
Ф = 0.567 "2— (C4)

КФ = 2.316X1Q"
11
 (— ̂") (C5)
\ ^ /

p = 0.0412 j
5
" (C6)

W
m
 = 2.745X10"

2
 ̂ DUw (C?)

Wg = 0.3294 Uwp (C8)

м
w = 3466 "̂  (C9)
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M_ ice accumulation for cylinder with E^ = 1.0, g/(sq in.) (sec)

p absolute atmospheric pressure, in. Hg

Re
Q
 free"stream Reynolds number with respect to droplet

T
a
 air temperature, °R

U true flight speed, mph

W
m
 rate of water interception, lb/(hr)(ft span)

Wo local rate of water interception, lb/(hr)(sq ft)

w liquid"water content, g/cu m

|3 local impingement efficiency, dimensionless

|j. air viscosity, slugs/(ft) (sec)

p air density, slugs/cu ft

ф altitude parameter, dimensionless

(The density of water was assumed to be 62.46 lb/cu ft; and the acceler"
ation due to gravity, 32.17 ft/sec

2
.)
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APPENDIX D

METHOD OF CALCULATING CURVES OF (l/K)
o
 AGAINST Е

Ш
 FOR DIFFERENT

ASSUMED DROPLET"SIZE DISTRIBUTIONS AND USE OF CURVES

IN ROTATING MULTICYLINDER METHOD

In the rotating multicylinder method of measuring droplet"size
distributions and liquid"water content in a cloud, several cylinders of
different diameters are exposed simultaneously from an airplane in
flight to the supercooled droplets in the cloud. During the exposure
time all the cylinders are subjected to the same conditions of flight
speed U, air viscosity u, air density p , water density p , and
cloud droplet sizes and number approaching the cylinders from the
undisturbed cloud. The variable among the cylinders is the cylinder
size L and, consequently, the collection efficiency of each cylinder.
An increase in L will decrease К (equation (3)) for any given
droplet size a and thereby decrease the collection efficiency of the
cylinder for that particular droplet size (fig. 6). Each successively
larger cylinder in the exposed set of cylinders will collect a smaller
percentage of the droplets of any one given size. The КФ parameter
defined by equation (13) is constant, because it does not contain L.

In a cloud composed of droplets of many different sizes, a cylinder
of a given diameter will collect some droplets of every size; however,
the collection efficiency for the smaller droplets will be less than
for the larger droplets. For any assumed droplet"size distribution in
the cloud, such as distribution В in table II, an over"all collection
efficiency for a cylinder can be calculated from the results of fig"
ure 6 by adding together the weighted collection efficiencies that are
appropriate to each droplet"size group in the В distribution.

The procedure for obtaining the over"all weighted collection effi"
ciency (fig. 12) is explained with the use of a sample calculation for
the В distribution of table II and an assumed (КФ)

О
 of 200 (equa"

tion (13)). The over"all weighted collection efficiency of one cylin"
der in a group of cylinders is given as the final result in table III.
As a basis for beginning the computation, a value of 1/K =4.0 is
assigned to those droplets in the volume"median group size. (This par"
ticular value of 1/K is chosen arbitrarily and will define one point
on the curves of (l/

K
)
0
 against Е

Ш
 for (КФ)

О
 = 200 of fig"

ure 12(b). A value of the collection efficiency for К = 1/4.0 is
found in figure 6 and is given in the fifth column of table III. The
required value of Ф is obtained from the original assumption that
(Кф) = 200; therefore, Ф = 800 for (l/K) =4.0. The weighted
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collection efficiency is found by taking the product of the percentage
water in each size group (column 3) and the collection efficiency of
column 5. The weighted collection efficiency is recorded in column 6.
The effect of the variation of the group size on 1/K is obtained by
dividing the value of 1/K assigned to the volume"median droplet size
(l/K =4.0 in this example) by (a/a )

2
, because the droplet radius

appears to the second power in equation (3). The change in К with
the change in droplet size is recorded in column 4. A value for the
collection efficiency is found from figure 6 for each value of К in
column 4. The value of Ф remains the same as for the volume"median
droplet size (cp = 800) because the droplet size does not enter into
the definition of cp (equation (?)).

The weighted collection efficiency is again the product of the
values in column 3 and the collection efficiency of column 5. The sum
of the individual weighted collection efficiencies of column 6 is the
over"all weighted collection efficiency. The sum at the bottom of
column 6 in table Ill(a), in combination with the assigned value of
(I/K)

O
 to the volume"median droplet size, defines one point on the

B"distribution curve of figure 12(b).

In order to obtain another point for the B"distribution curve of
figure 12(b), a different value is .assigned to 1/K for the volume"
median droplet size; for example, in table Ill(b) (l/K) = 1.0 as
compared with (l/K) =4.0 in table III(a). The lowering of the value

of (l/K)
o
 has the same effect as decreasing the cylinder size L

when the physical dimensions of the volume"median droplet size, air"
plane speed, water density, and air viscosity are maintained constant
(equation (3)), as is actually the physical condition when a set of
different"sized cylinders are flown simultaneously through a cloud.
The procedure for computing the values in columns 4, 5, and 6 is the
same as was described for table Ill(a). The only exception is that
the value of cp is now changed to 200 in order to maintain
(КФ)

0
 = 200 for (l/K)о =1.0. The value of cp is maintained at 200

during the calculations for table Ill(b).

The calculations of reference 3 apparently are different from those
described herein, in that in the calculations of reference 3, cp appears
to have been allowed to vary to conform with maintaining Кф constant
during the calculations for the weighted collection efficiency. The
value of Ф cannot be permitted to vary during the calculations of the
over"all weighted collection efficiency, because airplane speed, cylin"
der size, air density, air viscosity, and water density are not variables
during that phase of the calculations.

The over"all weighted collection efficiencies, which are the sums
at the bottom of column 6 in table III, are tabulated in table IV for
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the values required to draw the curves of figure 12. The values of
table IV are subject to a tolerance error caused by the limit of accur"
acy in obtaining the collection efficiencies from the trajectories com"
puted with the analog. The expected error in determining the collection
efficiency for droplets with low inertia was much greater than for
those with large inertia. The expected root mean square error of the
over"all weighted collection efficiencies of table IV, based on the
expectation of individual random errors, was determined from the follow"
ing expression:

ДН =V(0.05)
2
(Aa)

2
"4"(0.10)

2
(Ab)

2
+(0.20)

2
(Ac)

2
+(0.30)

2
(Ad)

2
+(0.20)(Ae)

2
+(0.10)

2
(Af)

2
+(0.05)

2
(Ag)

2

where Да, ЛЬ, and so forth are actual errors in determining the respec"
tive collection efficiency. The expected root mean square error in
the curves of figure 12 has been determined to be somewhat less than
1 percent for values of Е

ш
 near 1.0 and approximately 2 percent for

values of E
m
 near 0.01.

The droplet"size distribution and volume"median droplet size in a
cloud are determined by comparing the measured values obtained from a
set of rotating multicylinders with curves of figure 12. On log"log
paper of the same scale factor as that in figure 12, the measured
weight of ice accumulated per unit of projected cylinder area is plotted
as the abscissa and the cylinder diameter is plotted as the ordinate
(fig. 11). The curve of figure 12 that best fits the data of figure 11
is found by superimposing the data of figure 11 on the curves of fig"
ure 12 and shifting the two sheets, one with respect to the other, hor"
izontally and vertically (not rotated). The horizontal and vertical
shifting is permitted, provided the plots are on log"log paper, because
E^ and the amount of ice per unit projected cylinder area are propor"
tional and because (l/K)

Q
 is proportional to the cylinder diameter

2L. The matching of the curves must also fulfil the condition that
equations (3) and (13) must be satisfied simultaneously. The value of
(l/K) in figure 12 corresponding to a cylinder with radius L of
unity is noted while figures 12 and 11 are superimposed. For these
values of (l/K) and L, a value of a can be found from equa"
tion (3), because p , ц, and U are known flight measurements. The

calculated value of a
Q
 is used to determine the value of (Kcp)

o

from equation (13). If the value of (КФ)
О
 determined by this method

does not correspond with the (Кф)
0
 sheet of figure 12 used for the

matching, a different match must be found on a different (Кф)
0
 curve

sheet. A method for approximating and interpolating is described in
reference 9.
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After the curve that best fits the data has been found , the droplet"
size distribution of the cloud is found by noting the letter on the
curve in figure 12. The volume"median droplet size is that value which
satisfies equations (3) and (13) simultaneously. The liquid"water con"
tent of the cloud is determined by noting the value of ice accumulation
where the ordinate Е

Ш
 = 1.0 crosses the abscissa of figure 11 while

figures 12 and 11 are superimposed . This procedure has the effect of
extrapolating the icing rate measured by the set of cylinders to an
infinitely small cylinder with unity collection efficiency. The value
of ice accumulation Мщ of the abscissa where Ещ = 1.0 is substituted
in the following relation:

M_
w = 3466 "

where Мщ is in grams per square inch per second and U is in miles
per hour in order to obtain w in grams per cubic meter.

REFERENCES

1. Glauert, Muriel: A Method of Constructing the Paths of Raindrops of
Different Diameters Moving in the Neighborhood of (l) a Circular
Cylinder, (2) an Aerofoil, Placed in a Uniform Stream of Air; and
a Determination of the Rate of Deposit of the Drops on the Surface
and the Percentage of Drops Caught. R. & M. No. 2025, British
A.R.C., 1940.

2. Ranz, W. E.: The Impaction of Aerosol Particles on Cylindrical and
Spherical Collectors. Tech. Rep. No. 3, Eng. Exp. Station, Univ.
111., March 31, 1951. (Contract No. АТ(30"3)"28, U.S. Atomic
Energy Commission.)

3. Langmuir, Irving, and Blodgett, Katherine В.: A Mathematical Investi"
gation of Water Droplet Trajectories. Tech. Rep. No. 5418, Air
Material Command, AAF, Feb. 19, 1946. (Contract No. W"33"038"ac"
9151 with General Electric Co.)

4. Brun, Rinaldo J., Serafini, John S., and Gallagher, Helen M.:
Impingement of Cloud Droplets on Aerodynamic Bodies as Affected
by Compressibility of Air Flow Around the Body. NACA TN 2903, 1953,

5. Kantrowltz, Arthur: Aerodynamic Heating and the Deflection of Drops
by an Obstacle in an Air Stream in Relation to Aircraft Icing.
NACA TN 779, 1940.



NACA TN 2904 35

6. Bergrun, Norman R.: A Method for Numerically Calculating the Area
and Distribution of Water Impingement on the Leading Edge of an
Airfoil in a Cloud. NACA TN 1397, 1947.

7. Bergrun, Norman R.: An Empirical Method Permitting Rapid Determin-
ation of the Area, Rate, and Distribution of Water-Drop Impingement
on an Airfoil of Arbitrary Section at Subsonic Speeds. NACA TN
2476, 1951.

8. Brun, Rinaldo J., Serafini, John S., and Moshos, George J.: Impinge-
ment of Water Droplets on an NACA 65̂ -212 Airfoil at an Angle of
Attack of 4°. NACA RM E52B12, 1952.

9. Anon: The Multicylinder Method. The Mount Washington Monthly Res.
Bull., vol. II, no. 6, June 1946.

10. Wien, W. , and Harms, F. eds.: Handbuch der Experimentalphysik
Teil 4, Bd. 4, Akademische Verlagsgesellschaft M.B.H., (Leipzig),
1932.

11. Glauert, H.: The Elements of Aerofoil and Airscrew Theory. The
Macmillan Co. (New York), 1944.

12. Bush, V.: The Differential Analyzer. A New Machine for Solving
Differential Equations. Jour. Franklin Inst., vol. 212, no. 4,
Oct. 1931, pp. 447-488.

13. Kuehni, H. P., and Peterson, H. A.: A New Differential Analyzer.
A.I.E.E. Trans., vol. 63, May 1944, pp. 221-227.

14. Crank, J.: The Differential Analyser. Longmans, Green & Co.,
1947.

15. Jahnke, Eugen, and Emde, Fritz: Tables of Functions. Dover Pub.,
4th ed., 1945.



36 NACA TN 2904

TABLE I " COMPARISON WITH RESULTS OF REFERENCE 3

ф

о

100

1 000

in nnn

5Q 000

К

0 25
50

]_
4

16
40
320

0 50
1
4
40

0 50

4.
1 R

4
16

0 5
т

16
320

Re
Q

п

n

n

0" ""о

7 071
10
20
63 246

22 361
31 623
63 246
126 49

7Л 71 1

100
200
400

158 114
223 607
447 214
894 427
4000

ЕВ

NACA

Г) DSl

205
380
741
920
957
995

0 157
.309
.680
924

0 116
250
616
ДТП

П П7Л

.157

.480

.755

0 038
105
378
682
940

a

Lang"
muir

Г) П4"?

186
380
722
909
962
997

0 127
.296
.639
928

0 090
228
568
806

0 053
.156
.441
.710

0 035
097
340
615
912

r

NACA

0 330
716
980

1 379
1 518
1 538
1 557

0 601
.865

1.291
1 522

0 504
760

1 20
1 445

0 385
.595
1.060
1.345

0 267
45
916

1 258
1 515

n

Lang"
muir

0 688
991

1 365
1 517
1 546
1 567

0 565
.857

1.253
1 504

0 483
719

1 147
1 391

0 384
.597
.997

1.286

0 314
494
873

1 169
1 470

v
j

NACA

П 1 Rl

573

817
1 039
1 018
1 014
т nns

0 445
.717

1.022
1 018

0 329
617
980

1 036

0 195
.441
.890
1.035

0 085
266
762

1 nflQ

1 020

с

Lang"
muir

0 523
827

1 008
1 002

.915

.993

0.494
.877

1.039

V,

NACA

О 43R
658
547
198
054
036
016

0 650
.612
.295
050

0 596
650
382
133

0 482
.650
.500
.239

n ^i п
549
584
327
058

У

Lang"
muir

0 635
542
211
055

.793

.326

•

0.725
.567
.304
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TABLE II " FIVE ASSUMED DISTRIBUTIONS OF DROPLET SIZE

(REFERENCE 3)

Total liquid
water in each
size group
(percent)

5
10
20
30
20
10
5

a/a
0

Distributions

A

1.00
1.00
1.00
1.00
1.00
1.00
1.00

В

0.56
.72
.84

1.00
1.17
1.32
1.49

с

0.42
.61
.77

1.00
1.26
1.51
1.81

D

0.31
.52
.71

1.00
1.37
1.74
2.22

Е

0.23
.44
.65

1.00
1.48
2.00
2.71

The size is expressed as the ratio of the average drop radius in
each group to the volume"median drop radius a

Q
.

Example of interpretation: 30 percent of the liquid"water content
of any cloud is contained in droplets which have a radius a

o
" In.the

case of the В distribution, 20 percent of the liquid"water content is
contained in droplets which have a radius smaller than the volume"median
radius a

o
. Ъу a ratio a/a

o
 = 0.84 and another 20 percent in droplets

which have a radius larger than a
Q
 by a ratio a/a

o
 =1.17. A similar

interpretation applies to the remaining values.
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TABLE III " SAMPLE CALCULATIONS FOR Е
Ш
 FOR

DISTRIBUTION В AND (Кф)
о
 = 200

(a) (l/K)
o
 for volume"median droplet size

assigned value of 4.0; Cp = 800

Group

1
2
3
4
5
6
7

a/a
0

0 56
72
.84

1.00
1.17
1.32
1.49

Percent
water in
each size
group

5

10
20
30
20
10
5

к

0 079
130
.177
.250
.343
.435
.555

E
m

0.003
.027
.065
.100
.140

Е

0.0006
.0081
.0130
.0100
.0070

= 0.0387

(b) (l/K)
o
 for volume"median droplet size

assigned value of 1.0; ф = 200

Group

1
2
3
4
5
6
7

a/ a
о

0.56
.72
.84

1.00
1.17
1.32
1.49

Percent water
in each size
group

5
10
20
30
20
10
5

К

0.314
.518
.706

1.000
1.370
1.740
2.270

E
m

0.068
.158
.225
.301
.384
.444
.515

E

0.0034
.0158
.0450
.0903
.0768
.0444
.0258

2= E
m
 = 0.302
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TABLE IV " VALUES OF WEIGHTED COLLECTION EFFICIENCY

DROPLET"SIZE DISTRIBUTIONS A, B, C, D, AND E

FOR

(i/к)

4
2
1
.5
.2
.1
.05
.02
.01

Е
ш

(КФ)
0
 = 0

А

0.051
.205
.380
.566
.789
.885
.932
.963
.978

В

0.069
.204
.374
.555
.768
.870
.925
.961
.976

с

0.085
.211
.373
.549
.750
.854
.918
.957
.977

D

0.107
.225
.379
.542
.732
.836
.898
.951
.972

E

0.126
.241
.384
.536
.713
.815
.885
.940
.965

(КФ)
0
 = 1000

4
2
1
.5
.2
.1
.05
.02
.01

0.019
.109
.251
.460
.714
.830
.908
.953
.971

0.029
.109
.252
.452
.697
.816
.899
.953
.972

0.038
.122
.259
.423
.677
.800
.892
.949
.973

0.050
.138
.271
.447
.661
.783
.876
.943
.967

0.065
.154
.283
.447
.643
.763
.862
.933
.962

(КФ)
0
 = 10,000

4
2
1
.5
.2
.1
.05
..02
.01

0.008
.057
.157
.350
.645
.778
.865
.920
.952

0.013
.060
.163
.356
.630
.764
.857
.920
.950

0.017
.072
.172
.357
.615
.748
.849
.918
.955

0.023
.083
.188
.362
.599
.731
.830
.909
.946

0.034
.092
.202
.368
.591
.713
.816
.899

.939

(Кф)
0
 = 200

А

0.027
.135
.298
.493
.761
.874
.925
.960
.976

В

0.039
.138
.302
.486
.740
.859
.919
.959
.975

с

0.050
.146
.306
.482
.721
.846
.910
.955
.976

D

0.066
.165
.315
.480
.703
.826
.901
.948
.971

E

0.083
.182
.319
.477
.686
.805
.878
.938
.963

(Кф)
0
 = 3000

0.013
.085
.218
.409
.687
.815
.884
.945
.968

0.020
.090
.225
.416
.668
.797
.878
.940
.966

0.027
.100
.235
.410
.652
.785
.867
.938
.970

0.039
.111
.244
.415
.641
.766
.855
.921
.964

0.048
.130
.251
.413
.623
.746
.839
.918
.954

~̂А. Jb*"̂
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Botating multicylinder set

Figure 1. - Eotating multicylinder set extended through top of airplane fuselage.
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Transition
pieces

Quick"assembly nut

•£-In. cylinder
о

"In. cylinder

Thumb nut dowel

Flange

1"i"In. cylinder
4

3"In. cylinder

Extending mast

Driving shaft

Figure 2. " Assembled set of rotating multicylinders.
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Ice accumulation, g/(sq In.)(sec)
.06

Figure 11. " Ice accumulation on set of
cylinders. Speed, 200 miles per hour; air
viscosity, 3.436X10"

7
 slugs per foot"second)

altitude, 10,000 feet.
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.06 .08 .10 .2 .3 .4 .6
Over"al l weighted collection e f f i c i e n c y , Е ш

(а) (Кф)0, О .

Figure 12. " Over"all weighted collection efficiency plotted against
reciprocal of Inertia parameter for volume"median droplet size for
five cloud"droplet"size distributions.

.
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l.o

.10

.08

I•\I

•02 .Ot .06 .08 .10 .2 .3
Over"all weighted collection efficiency, Е

ш

(b) (K«P)
0
, 200.

Figure 12. " Continued. Over"all weighted col lect ion e f f i c i e n c y plotted against
reciprocal of Inertia parameter for volume"median droplet size for f ive cloud"
droplet"siz e distributions.
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.03 .04 .06 .08 .10 .2 .3
Over"all weighted collection efficiency, E

(с) (КФ)
0
, 1,000.

Figure 12. " Continued. Over"all weighted collection efficiency plotted against reciprocal of
Inertia parameter for volume"median droplet size for five cloud"droplet"slze distributions.
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Over"all weighted collection efficiency, E^

(d) (КФ)
0
, 3,000.

Figure 12. " Continued. Over"all weighted collection efficiency plotted against reciprocal of
Inertia parameter for volume"median droplet size for five cloud"droplet"size distributions.
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.03 .04 .06 .06 .10 .2 .3
Over"all weighted collection efficiency, Е

ш

(•) (!»)_, 10,000.

.8 1.0

Figure 12. " Concluded. Over"all weighted collection efficiency plotted against reciprocal of Inertia
parameter for volume"median droplet alze for five cloud"droplet"size distributions.
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(1/K)

0
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.210
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0
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.04

Figure 13. " Comparison of flight data with calculated impingement
curves of figure 12(e). (КФ)

О
, 10,000. Braces indicate range

of ±5"percent error; brackets indicate range of ilO"percent error.
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(a) Allowed error In measurement, ±5 percent.

Figure 14. " Expected errors In determination of volume"median droplet
size.
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Figure 14. " Concluded. Expected errors in determination of
volume"median droplet size.
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Figure 16. - Principle of integrator.
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