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ON THE DEVELOPMENT OF TURBULENT WAKES 

FROM VORTEX STREETS 

By Anatol Roshko 

SUMMARY 

Wake development behind circular cylinders at Reynolds numbers from 
40 to 10,000 was investigated in a low-speed wind tunnel. Standard hot­
wire techniques were used to study the velocity fluctuations. 

The Reynolds number range of periodic vortex shedding is divided 
into two distinct subranges. At R = 40 to 150, called the stable range, 
regular vortex streets are formed and no turbulent motion is developed. 
The range R = 150 to 300 is a transition range to a regime called the 
irregular range, in which turbulent velocity fluctuations accompany the 
periodic formation of vortices . The turbulence is initiated by laminar­
turbulent transition in the free layers which spring from the separation 
points on the cylinder. This transition first occurs in the range 
R = 150 to 300. 

Spectrum and statistical measurements were made to study the velocity 
fluctuations. In the stable range the vortices decay by viscous diffusion. 
In the irregular range the diffusion is turbulent and the wake becomes 
fully turbulent in 40 to 50 diameters downstream. 

It was found that in the stable range the vortex street has a periodic 
spanwise structure. 

• 
The dependence of shedding frequency on velocity was successfull y 

used to measure flow velocity . 

Measurements in the wake of a ring showed that an annular vortex 
street is developed. 

INTRODUCTION 

It is always difficult to determine precisely the date and author 
of a discovery or idea. This seems to be the case with the periodic 
phenomena associated with flow about a cylinder. Although the effect 
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of wind in producing vibrations in wires (aeolian tones) had been known 
for some time, the first experimental observations are due to Strouhal 
(reference 1) who showed that the frequency depends on the relative air 
velocity and not the elastic properties of the wires. Soon after, 
Rayleigh (1879, references 2 and 3) performed similar experiments. His 
formulation of the Reynolds number dependence demonstrates his remarkable 
insight into the problem. 

These earliest observations were concerned with the relations 
between vibration frequency and wind velocity. The periodic nature of 
the wake was discovered later, although Leonardo da Vinci in the fifteenth 
century had already dr awn some rather accurate sketches of the vortex 
formati on in the flow· behind bluff bodies (reference 4). However, 
Leonardo's drawings show a symmetric row of vort ices in the wake. The 
first modern pictures showing the alternating arrangement of vortices 
in the wake were published by Ahlborn in 1902 (reference 5); his visual­
i zation techniques have been u sed extensively s ince then. The importance 
of this phenomenon, now known as the KRrman vortex street, was pointed 
out by Benard (1908, reference 6). 

In 1911 K~rmdll gave hi s famous theory of the vortex street (refer­
ence 7), stimulating a widespread and lasting series of inve stigations 
of the subject. For the most part these concerned themselves with 
experimental comparisons of real vortex streets with ~rman's idealized 
model, calculations on the effects of various disturbances and configura­
tions, and so on. It can hardly be said that any fundamental advance in 
the problem has been made s ince Karman's stability papers, in which he 
also clearly outlined the nature of the phenomenon and the unsolved 
problems. Outstanding perhaps is the problem of the pe riodic vortex­
shedding mechanism, for which there is yet no suitable theoretical 
treatment. 

However, the results of the many vortex-street studies, especially 
the experimental ones, are very useful for further progress in the prob­
lem. Attention should be drawn to the work of Fage and his associates 
(1927, references 8 t o 10), whose experimental investigations were con­
ducted at Reynolds numbers well above the ranges examined by most other 
investigators. Their measurements in the wake close behind a cylinder 
provide much useful information about the nature of the shedding. More 
recently Kovasznay (1949, reference 11) has conducted a hot-wire inves­
tigation of the stable vortex street (low Reynolds numbers), to which 
frequent reference will be made. 

Vortex-street patterns which are stable and well-defined for long 
distances downstream actually occur in only a small range of cylinder 
Reynolds numbers, from about R = 40 to 150, and it is to this range 
that most of the attention has been given. On the other hand, as is 
well-known, periodic vortex shedding also occurs at higher Reynolds 
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numbers) up to 105 or more, but the free vortices which move downstream 
are quickly obliterated) by turbulent diffusion, and a turbulent wake 
is established. 

The present interest in the vortex street is due to some questions 
arising from the study of turbulent flow behind cylinders and grids. 
Such studies are usually made at Reynolds numbers for which periodic 
vortex shedding from the cylinders or grid rods might occur. However) 
the measurements are always taken downstream far enough to insure that 
the periodic velocity fluctuations are obliterated and the flow is com­
pletely turbulent. There are several important consequences of this 
limitation. 

First, the energy of the velocity fluctuations is quite low compared 
with the energy near the cylinder, and especially low compared with the 
dissipation represented by the form drag. In attaining the developed 
downstream state there is evidently not only a rapid redistribution of 
energy among the spectral components but also a large diSSipation. 
Second, the theories which describe these downstream stages do not relate 
the flow to the initial conditions except very loosely in terms of 
dimensionless parameters, and it is usually necessary to determine an 
origin empirically (e.g., mixing-length theory or similarity theories). 

On the other hand, there is evidence that some features are perma­
nent, so that they must be determined near the beginning of the motion. 
One such feature is the low-wave-number end of the spectrum which (in 
the theory of homogeneous turbulence) is invariant. 

Another is the random element. It has been pointed out by Dryden 
(references 12 and 13) that in the early stages of the decay of isotropic 
turbulence behind grids the bulk of the turbulent energy lies in a 
spectral range which is well approximated by the simple function 

A 2 2' characteristic of certain random processes. Liepmann (refer-
1 + B n 
ence 14) has suggested that such a random process may be found in the 
shedding of vortices from the grids. 

In short, there has been no description, other than very qualita­
tive, of the downstream development of wakes which, over a wide range 
of Reynolds number) exhibit a definite periodicity at the beginning •. 
The measurements reported here were undertaken to help bridge this gap. 

The main results show the downstream development of the wake, in 
terms of energy, spectrum, and statistical properties. This develop­
ment is quite different in two Reynolds number ranges, the lower one 
extending from about 40 to 150 and the upper ) from 300 to 104 (and prob-

ably 105), with a transition range between. The lower range is the 
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region of the classic vortex street , stable and regular for a long dis­
tance downstream. The fluctuating energy of the flow has a discrete 
spectrum and simply decays downstream witpout transfer of energy to 
other frequencies. Irregular fluctuations are not developed. In the 
upper range there is still a predominant (shedding) frequency in the 
velocity fluctuations near the cylinder, and most of the energy is 
concentrated at this frequency; however , some irregularity is already 
developed, and this corresponds to a continuous spectral distribution 
of some of the energy. Downstream, the discrete energy, at the shedding 
frequency, is quickly dissipated or transferred to other frequencies, 
so that by 50 diameters the wake is completely turbulent, and the energy 
spectrum of the velocity fluctuations approaches that of isotropic 
turbulence. 

All other features of the periodic shedding and wake phenomena may 
be classified as belonging to one or the other of the two ranges. This 
viewpoint allows some systematization in the study of wake development. 

In particular, it is felt that the possibilities of the vortex 
street are by no means exhausted. A study of the interaction of periodic 
fluctuations with a turbulent field seems to be a fruitful approach to 
the turbulence problem itself. It is planned to continue t he present 
work along these lines. 

From a more immediately practical viewpoint an understanding of the 
flow close to a bluff cylinder is important in at least two problems, 
namely, structural vibrations in members which themselves shed vortices 
and structural buffeting experienced by members placed in the wakes of 
bluff bodies. Many of these are most appropriately treated by the statis­
tical methods developed in the theories of turbulence and other random 
processes (reference 15). These methods are easily extended to include 
the mixed turbulent-periodic phenomena associated with problems such as 
the two mentioned above. 

The research was conducted at GALCIT under the sponsorship and with 
the financial assistance of the National Advisory Committee for Aeronautics, 
a s part of a long-range turbulence study directed by Dr. H. W. Liepmann. 
His advice and interest throughout the investigation, as well as helpful 
discussions with Dr. Paco Lagerstrom, are gratefully acknowledged. 

SYMBOLS 

A,B constants 

alb major and minor axis, respectively, of correlation ellipse 
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drag coefficient 

form drag coefficient 

outside diameter of ring 

cylinder dimension 

distance between free vortex layers 

diameter of ring-supporting wire 

wake energy 

components of wake energy due to periodic fluctuations 
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energy spectrum 

energy spectra of discrete energy 

continuous energy spectrum 
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Itabsolute tt moment of probability density 

shedding frequency 

probability distribution function 

probability density 

area under response characteristic 

tangential velocity in vortex 

Reynolds number 

response characteristic of wave analyzer 

Reynolds number based on ring diameter 

time correlation function 

space correlation function 

distance from vortex center 

radius of vortex 

Strouhal number, based on cylinder dimension (nldjDo) 

Strouhal number) based on distance between free vortex 
layers (nldfjDo) 

time scale 

time of averaging 

time 

local mean velocity in x-direction 

mean stream velocity 

mean velocity at vortex center 

I 

I 

I 

I 
I 

I 

I 
I 
I 

I 

I 

I 
I 
I 

I 

I 
I 
I 



~ 
I 

---

I 
L 

MeA TN 2913 
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T 

cp 
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components of velocity fluctuation 

periodic velocity fluctuations, at frequencies nl and n2 

random velocity fluctuation 

peak root-mean-square value of velocity fluctuation 

velocity of vortex relative to the fluid 

reference axes and distance from center of cylinder 

flatne s s factor of probability distribution (M4/Mz2) 
strength (circulation) of a vortex 

Dirac delta function 

positive number 

distance between two points, measured in z-direction 

dimensionless frequency (~o n) 

dimensionless "time" in life of vortex 

dummy variable 

kinematic viscosity 

a value of u 

density 

skewness of probability distribution (M3/~3/2) 

time interval 

dimensionless spectrum (
UoFLr(n)) 

half band width of wave analyzer 
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GENERAL CONSIDERATIONS 

Except for the parameters directly related to the shedding frequency, 
the quantities measured were essentially those that are standard in 
turbulence investigations (cf. references 12 to 14). These are briefly 
reviewed below with some modifications required to study the periodic 
features . 

Reference Axes 

The origin of axes is taken at the center of the cylinder (fig. 1); 
x is measured downstream in the direction of the free-stream velocity, 
z is measured along the axis of the cylinder, which is perpendicular 
to the free-stream velocity, and y is measured in the direction per­
pendicular to (x,y); that is, y = 0 is the center plane of the wake. 
The free-stream velocity is Do and the local mean velocity in the 
x-direction is D. The fluctuating velocities in the x, y, and z 
directions are u, v, and w, respectively. The flow is considered 
to be two-dimensional; that is, mean values are the same in all planes 
z = Constant. 

Shedding Frequency 

The sheddingl frequency is uBually expressed in terms of the dimen­
sionless Strouhal number S = nldjDo' where nl is the shedding fre-

quency (from one side of the cylinder), d is the cylinder diameter, 
and Do is the free-stream velocity. The Strouhal number S may depend 
on Reynolds number, geometry, free-stream turbulence level, cylinder 
roughness, and so forth. The principal geometrical parameter is the 
cylinder shape (for other than circular cylinders, d is an appropriate 
dimension). However, cylinder-tunnel configurations must be taken into 
account, for example, blockage and end effects. In water-channel experi­
ments surface effects may have an influence. Dsually the geometrical 
configuration is fixed, and then S is presented as a function of 
Reynolds number R. 

Instead of Strouhal number it is sometimes convenient to use the 
dimensionless parameter F = nld2 /v, where v is the kinematic viscosity. 

L:rb.e term "shedding" is used throughout this report, for convenience; 
it is not meant to imply anything about the mechanism of the formation of 
free vortices. 
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Energy 

The experiments to be described are concerned mainly with the 
velocity fluctuation in the wake, and especially with the corresponding 
energy. 

The energy of the velocity fluctuation at a point in the fluid is 

lp(u2 + v2 +~) per unit volume, where (u,v,w) is the fluctuating 
2 
velocity and the bar denotes an averaging (see the section "Distribution 
Functions"). In these experiments only the component u was measured, 
and the term "energy" is used to denote the energy in that component 
only. 

The energy intensity is defined as (ujDo)2. Since the mean flow 
is two-dimensional the intensity does not vary in the z-direction. At 
any downstream position in the wake it varies in the y-direction, normal 
to the wake. The integral of the intensity over a plane normal to the 
free stream (per unit span) is called the wake energy E: 

(1) 

The velocity fluctuation in the wake of a shedding cylinder displays 
a predominant frequency (as well as harmonics) which is the shedding 
frequency. However, except in a mnall Reynolds number range, the fluctua­
tion has random irregularities "superimposed" on it; that is, it is not 
purely periodic, in the mathematical sense. However, it is convenient 
to speak of the "periodic" and "random" or turbulent parts of the 

fluctuation. 2 The energy may be written 

(2) 

where is that portion of the energy contributed by the random 

(turbulent) fluctuation, u12 is contributed by the periodic fluctua-

2" tion at the shedding frequency nl' and u2 corresponds to twice the 

shedding frequency nZ = 2nl' (The center of the wake feels the 

2A turbulent fluctuation is an irregular variation, with respect to 
time, which is characterized in particular by its randomness and absence 
of periodiCity (cf. reference 13, p. 9). 

J 
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influence of vortices from both sides and 

least near the "beginning" of the wake. 
be negligible.) 

nz is prominent there, at 

Higher harmonics are found to 

Equation (2) is a kind of spectral resolution, in which u12 and 

u2Z are the energies at the specific frequencies nl and nZ. This 

type of resolution is called a discrete, or line, spectrum. But Ur2 

is not a discrete spectral component for it is the energy in the turbu­
lent part of the fluctuation and contains "all" frequencies. It has a 
continuous frequency distribution of energy, for which a slightly dif­
ferent definition of spectrum is appropriate. This is postponed until 
the following section. 

Corresponding to equation (2), an equation may be written for the 
wake energy E and its turbulent and periodic components: 

E 

Of particular interest will be the fraction of discrete energy 
(El + EZ)/E at various stages of wake development. 

Correlation Functions; Spectrum 

Definitions.- The time correlation function of the fluctuation u(t) 
is defined by 

Rt(T) u(t)u(t + T) 

uZ 

where T 1s a time interval. The time scale is then defined by 

T = 100 

Rt dT 

The Fourier transform of Rt defines another flIDct10n 

F(n) 

(4) 

(5) 

(6) 
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Then, also 

~(T) = l oo F(n) cos 2:rr TIT dT 

For r 0, eQuations (4) and (7) give 

Rt(O) = loo F(n) dn = 1 (8) 

where F(n) is defined as the energy spectrum; that is, F(n) dn is the 
fraction of the energy in the freQuency interval n to n + dn. It is 
the fraction of energy "per unit freQuency," as contrasted with the dis­
crete energy spectrum discussed in the section "Energy." 

In studies of isotropic turbulence, at Reynolds numbers corre­
sponding to those in the present experiments, it is found that the 
energy spectrum is well represented by the form 

F(n) A 

or, what amounts to the same thing, that the correlation function is of 
the form 

If the normalizing factor K = uo/L is used in eQuation (10), L being 
a characteristic length, then eQuation (6) gives 

4 (lla) 

which may be conveniently written in terms of the dimensionless parameters 

cp UoF(n)/L (12a) 

and 
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Then 

cp 4 
(llb) 

It is clear from equations (5) and (10) that L is a length scale 
related to the time scale by 

Equation (llb) is used as a convenient reference curve to compare 
the measurements reported below. 

Periodic functions.- The energy spectrum F(n) is particularly 
well suited to turbulent fluctuations, for which the energy is con­
tinuously distributed over the frequencies. For periodic fluctuations 
the discrete, or line, spectrum is more appropriate, but in the present 
"mixed" case it is convenient to write the discrete energy, also, in 
terms of F(n). This may be done by using the Dirac delta function o(n). 
Thus the energy at the shedding frequency nl is 

(14) 

that is, 

(15) 

Then the mixed turbulent-periodic fluctuations in the wake of a shedding 
cylinder are considered to have an energy spectrum which is made up of 
continuous and discrete parts (cf. equation (2) and appendix A): 

(16) 

that is) 

F(n) 
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Space correlation function' hase relations.- The correlation func-
tion defined in eQuation describes the time correlation. Another 
correlation function which is useful in the present study is one which 
relates the velocity fluctuations at two points in the wake, situated 
on a line parallel to the cylinder. This is defined by 

Rz ( S) u(z,t)u(z + s,t) 

u 2 
(18) 

where S is the distance between the two points. The corresponding 
scale is 

(19) 

The function Rz should be particularly sui ted to studying turbulent 
development. Close to the cylinder it should reflect the regularity 
connected with the periodic shedding, especially in a regular, stable 
vortex street, in which there are no turbulent fluctuations. When there 
are turbulent fluctuations and, especially, far downstream where there 
is no more evidence of periodicity, Rz should be typical of a turbulent 
fluid; that is, the correlation should be small for large values of S. 

The function Rz may be obtained by standard techniQues applied to 
the two signals uCz,t) and u(z + ~,t). One well- known visual method 
is to apply the signals to the vertical and horizontal plates, respec­
tively, of an oscilloscope and to observe the resulting "correlation 
figures" (or ellipses) on the screen (reference 16 ). If the signals 
u(t) are turbulent fluctuations then the light spot moves irregularly 
on the screen, forming a light patch which is elliptic in shape. The 
correlation functi on is gi ven by 

(20) 

where a and b are the major and minor axes of the ellipse. 

If u(z,t) is a periodic function, in both time and space, then 
the correlation figure is an elliptical loop (Lissajous figure) whose 
major and minor axes again give Rz according to eQuation (20). Such 
a case would exist if the wake had a spanwise periodic structure . Then 
Rz ( t ) would be periodic. A special case of this is Rz ( ~ ) = 1, as would 
be expected in a vortex street, provided the vortex filaments are st raight 
and parallel to the cylinder and do not "wobble." 
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Distribution Functions 

Random functions.- The probability density p(s) of a randum func­
tion ur(t) is defined as the probability of finding ur in the interval 
(s,s + ds). It may be found by taking the average of observations made 
on a large number (ensemble) of samples of ur(t), all these observations 
being made at the same time t. This is called an ensemble average. If 
ur(t) is a stationary process, as in the present case, then appeal is 
made to the ergodic hypothesis and the ensemble average is replaced by 
the time average, obtained by making a large number of observations on 
a single sample of ur(t). The probability density p(s) is the number 
of times that ur is found in (s,s + ds) divided by the total number of 
observations made. In practice, time averages are more convenient than 
ensemble averages. The averaging time Ta must be large enough so that 
a statistically significant number of observations are made. This imposes 
no hardship; it is sufficient that Ta be large compared with the time 
scale T. If necessary, the error can be computed. 

Experimentally, p(s) may be determined by the principle illustrated 
below: 

u 

s + 6s~--~~~~----------------------------~~----~~~ 
S --4-~----~--------------------------~~------~~~ 

n 
L t. 

l 

P (s ) "" 1 
"" Ta 

(21) 

ti 6~ 

Idur/dtl 
(22) 

The most elementary application of this principle is a graphical one 
using a photographic trace of ur(t). More conveniently, electronic 
counting apparatus is employed (see the section "Statistical Analyzer"). 

The statistics of ur(t) are usually described in terms of the 
moments of p(s) and certain functions derived from the moments. The 

t 

_J 



-=~~- -~--. ------

NACA TN 2913 

moment of order k is defined as 

Another useful definition is 

where Nk is equal to 
symmetrical, then Mk 

Mk for even values of k. If p(s) is 
is 0 for odd values of k but Nk is not. 

15 

(24) 

From the definition of p(s) it follows that Mo = ~: p(s) ds = 1; 

s will be normalized by requiring that M2 = 1/2, that is, the mean­
square value ur 2 = 1/2. 

Three useful functions derived from the moments are 

c (25) 

Skewness 
M 

a = Mz~72 (26) 

Flatness 

Periodic functions.- The above definitions may be extended to the 
case of a periodic function Ul(t). The probability density can be 
completely determined from a single wave length of ul(t); that is, it 
is sufficient to take Ta equal to the period. This complete a priori 
information is a basic difference between periodic and random functions. 3 

3For a periodic function the ergodic principle may not be invoked; 
the ensemble average and the time average are not the same (unless the 
members of the ensemble have random phase differences). It is the time 
average that is computed here, for comparison with the experimental 
results, which are also time averages. 
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If Ul(t) is measured experimentally then ti(;) in equation (21) 
can also be measured. If ul(t) is given in analytic form then ti(~) 
may be calculated from equation (22). Thus the distribution densities 
for simple wave shapes are easily calculated. Table I gives the prob­
ability densities and moments for the triangular wave, sine wave, and 
square wave. Also included is the Gaussian probability density, which 
is a standard reference for random functions . 

The moments of the probability densities of these wave shapes are 
shown in figure 2. The moments for the random function increase much 
faster than those for the periodic functions. This results from the 
fact that the maximum values of a periodic function are fixed by its 
amplitude, while for a random function all values are possible. 

The probability density of a function which is partly periodic and 
partly random is expected to display the transition from one type to the 
other. The tendency toward the random probability density should be 
strong. For instance, random fluctuations in the amplitude of a sine 
wave result in a large increase in the higher moments. It is interesting 
to study the relation between probability functions and spectra} partic­
ularly the case where most of the energy is discrete but the fluctua­
tion amplitude is random. 

EXPERIMENTAL DATA 

Wind Tunnel 

The experiments were all made in the GALCIT 20- by 20-inch low­
turbulence tunnel (fig. 1). The turbulence level is about 0 .03 percent. 
The wind velocity may be varied from about 50 centimeters per second 
(1 mph) to 1200 centimeters per second (25 mph). 

Cylinders 

The cylinders used in the experiments varied in diameter from 
0.02 35 to 0.635 centimeter. Music wire or drill rod was used. The 
diameter tolerances are about 0.0002 centimeter. The cylinders spanned 
the tunnel so that the length in all cases was 50 centimeters (20 in.); 
the cylinders passed through the walls and were fastened outside the 
tunnel. 

J 
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Rings 

Some studies were made of the flow behind rings. These were made 
up of wire. Each ring was supported in the tunnel by three thin support 
wires, attached to the ring circumference at 1200 intervals. Table II 
gives the dimensions of the rings used (where d is the wire diameter, 
D, the ring diameter, and ds, the diameter of the support wire) . 

Velocity Measurements 

Velocities higher than about 400 centimeters per second were 
measured with a pitot tube, calibrated against a standard. The pres­
sures were read on a precision manometer to an accuracy of about 
0.002 centimeter of alcohol. Velocities lower than 400 centimeters per 
second were determined from the shedding frequency of a reference cylinder 
(0.635 cm), as explained in the section "Use of Shedding Frequency for 
Velocity Measurements ." 

Fluctuating velocities were measured with a hot-wire anemometer 
(1/20 mil platinum). Only u(t), the fluctuating velocity in the flow 
direction, has been measured so far. The hot - wire was always parallel 
to the cylinder. 

Traversing Mechanism 

The hot-wire was mounted on a micrometer head which allowed it to 
be traversed normal to the wake and positioned to 0.001 centimeter. 
The head was mounted on a horizontal lead screw which allowed traversing 
in the flow direction, in the center plane of the tunnel. The posi­
tioning in this direction was accurate to about 0.01 centimeter. The 
horizontal lead screw could be turned through 900 to allow traversing 
parallel to the cylinder, for correlation or phase measurements (section 
"Space correlation function; phase relations"). For this purpose, a 
second micrometer head with hot-wire could be set up in a fixed position 
along the line of traverse of the first hot-wire. Then correlations 
could be measured between this point and the movable one . 

Electronic Equipment 

The hot-wire output was amplified by an amplifier provided with 
compensation up to 10,000 cycles per second. The amplifier output could 
be observed on an oscilloscope screen or measured on a Hewlett-Packard 

Model 400c vacuum-tube voltmeter. Values of u2 were obtained by reading 
the root-mean-square voltage on the voltmeter . (This voltmeter is 
a ctually an average - read ing meter; it reads true root -mean- square values 
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only for a sine wave. A few of the indicated root-mean- square values, 
for turbulent velocity fluctuations, were checked against true root­
mean-square values as obtained from the statistical analyzer (see the 
section "Statistical Analyzer"); these may differ up to 10 percent, 
depending on the wave shape, but, at present, no corrections have been 
made, since the absolute values were not of prime interest.) Usually 

only relative values of u2 were required, but absolute values could 
be determined by comparing the voltage with that obtained by placing 
the hot-wire behind a calibrated grid. 

The frequencies of periodic fluctuations were determined by 
observing Lissajous figures on the oscilloscope; that is, the amplifier 
output was placed on one set of plates and a known frequency on the 
other. This reference frequency was taken from a Hewlett-Packard Model 
202B audio oscillator, which supplied a frequency within 2 percent of 
that indicated on the dial. 

Frequency Analyzer 

Spectra were measured on a Hewlett - Packard Model 300A harmonic 
wave analyzer. This analyzer has an adjustable band width from 30 to 
145 cycles per second (defined in appendix A) and a frequency range 
from 0 to 16,000 cycles. The output was computed directly from readings 
of the voltmeter on the analyzer. It was not felt practicable to read 
output in the frequency range below 40 cycles; therefore, the continuous 
spectrum was extrapolated to zero frequency. 

To determine the discrete spectrum in the presence of a continuous 
background some care was required. In such cases the analyzer reading 
gives the sum of the discrete spectral energy and a portion of that in 
the continuous spectrum, the proportions being determined by the response 
characteristic of the wave analyzer. The value in the continuous part 
was determined by interpolation between bands adjacent to the discrete 
band and subtracted out to give the discrete value, as outlined in more 
detail in appendix A. 

Statistical Analyzer 

The statistical analyzer, designed to obtain probability functions, 
operates on the principle described in the section "Distribution Functions;" 
here u(t) is a voltage signal. A pulse train (fig. 3) is modulated by 
u(t) and is then fed into a discriminator which "fires" only when the 
input pulses exceed a certain bias setting, that is, only when u(t) > ~. 
For each such input pulse the discriminator output is a pulse of constant 
amplitude. The pulses from the discriminator are counted by a series of 
electronic decade counters terminating in a mechanical counter. 
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The complete analyzer consists of 10 such discriminator-counter 
channels, each adjusted to count above a different value of ~. It will 
be seen that the probability function obtained is the integral of the 
probability density described in the section "Distribution Functions;" 
that is, 

p(~) = Probability that u(t) > ~ 

It is possible to rewrite the moments (section "Distribution Functions") 
in terms of p(~), a more convenient form for calculation with this 
analyzer. These are also shown in table I. 

More complete details of the analyzer and computation methods may 
be found in references 17 and 18. 

RESULTS 

Shedding Frequency 

Since Strouhal's first measurements in 1878 (reference 1) the 
relation between the shedding frequency and the velocity has been of 
interest to many investigators. Rayleigh (reference 2, p. 413) pointed 
out that the parameter nld/Uo (now called the Strouhal number S) should 
be a function of the Reynolds number. Since then there have been many 
measurements of the relationship (reference 19, p. 570). One of the 
latest of these is the measurement by Kovasznay (reference 11), whose 
determination of S(R) covers the range of R from 0 to 104. Kovasznay 
also made detailed investigations of the vortex-street flow pattern at 
low Reynolds numbers. He observed that the street is developed only at 
Reynolds numbers above 40 and that it is stable and regular only at 
Reynolds numbers below about 160. 

The present measurements of S(R) are given in figures 4 and 5. 
Except at Reynolds numbers between 150 and 300, the scatter is small, 
and the measurements agree with those of Kovasznay. The large number 
of cylinder sizes used results in overlapping ranges of velocity and 
frequency so that errors in their measurement should be "smeared" out. 
It is believed that the best-fit line is accurate to 1 percent. 

The measurements are corrected for tunnel blockage but no attempt 
is made t o account f or end effects. With the cylinder sizes used no 
systematic variations were detected. 
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Nature of Velocity Fluctuation s 

It was observed, as in Kovasznay's work, that a stable, regular 
vortex street is obtained only in the Reynolds number range from about 
40 to 150. The velocity fluctuations in this range, as detected by a 
hot-wire, are shown on the oscillograms in figure 6, for a Reynolds 
number of 80 . These were taken at two downstream positions, x/d = 6 
and 48, and at several values of y/d. (The relative amplitudes are 
correct at each value of x/d, but the oscillograms for x/d = 48 are 
to a larger scale than those for x/d = 6.) The frequencies and ampli ­
tudes are quite steady; it is quite easy to determine the frequencies 
from Lissajous figures (section "Electronic Equipment"), which, of course, 
are also steady. 

Another example, at R = 145, is shown in figure 7(a). (The double 
signal was obtained for correlation studies and is referred to later in 
the section "Spanwise Correlation and Phase Measurements." The dotted 
nature of the trace is due to the method of obtaining two signals on one 
screen, using an electronic switch.) 

At Reynolds numbers between about 150 and 300 there are irregular 
bursts in the signal. An example is shown in figure 7(b), at R = 180 
and x/d = 6 . The bursts and irregularities become more violent as R 
increases. It is rather difficult to determine the frequency . The 
Lissajous figure is unsteady because of the irregularit y, but, in addi­
tion, the frequency, as well as it can be determined, varies a little. 
This is the reason for the scatter in this Reynolds number range. Two 
separate plots of S(R) obtained in two different runs are shown in 
figure 8. They illustrate the erratic behavior of S(R) in this range. 

At Reynolds numbers above 300, signals like that in figure 7(c) 
were obtained (near the beginning of the wake) . This is typical of the 
velocity fluctuations up to the highest value of R investigated (about 
10,000) . There are irregularities, but the predominant (shedding) 
frequency is easy to determine from a Lissajous figure. The Lissajous 
figure in this case is n~t a steady loop, as it is at R = 40 to 150, 
but neither is it so capricious as that at R = 150 to 300, and the 
matching frequency is quite easily distinguished from the nearby 
frequencies. 

At x/d = 48, in this range, all traces of the periodicity have 
disappeared and the fluctuations are typically turbulent. 

Regular and I rregular Vortex Streets 

The above observations show that there are three characteristic 
Reynolds number ranges, within the lower end of t he sheddi ng range. 
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These will be called as follows: 

Stable range 40 < R < 150 

Transition range 150 < R < 300 

Irregular range 300 < R < 10,000+ 

As noted above, the actual limits of these ranges are somewhat in doubt 
and may depend on configuration, free-stream turbulence, and so forth. 
Also the upper limit of the irregular range is undoubtedly higher than 
10,000. (Periodic fluctuations in the wake have been observed up to 
the critical Reynolds number, about 200,000, but the present measurements 
did not extend beyond 10,000 . ) 

In addition to the differences in the nature of the velocity fluc­
tuations, the ranges are characterized by the behavior of the Strouhal 
number: In the stable range S(R) is rapidly riSing, in the irregular 
range it is essentially constant, and in the transition range it is 
"unstable." 

It will be seen in the further results presented below that all 
phases of the wake development are different in the two ranges, stable 
and irregular, and that they are indeed two different regimes of peri­
odic wake phenomena. 

Relation of Shedding Frequency to Drag 

The relation between the Strouhal number S(R) and the drag coef­
ficient en(R) has often been noted (reference 19, p. 421). Roughly, 
r~sing values of S(R) are accompanied by falling values of en(R) 
and vice versa. 

The relation to the form drag is even more interesting. The total 
drag of a cylinder is the sum of two contributions: The skin friction 
and the normal pressure. At Reynolds numbers in the shedding range the 
skin-friction drag is "dissipated" mainly in the cylinder boundary layer, 
while the pressure drag (or form drag) is dissipated in the wake. It 
may, then, be more significant to relate the shedding frequency to the 
form drag, both of which are separation phenomena. The R-dependence of 
the pressure drag coefficient Gnp, taken from reference 19, page 425, 
is shown in figure 5. It has several interesting features: 

(a) CDp is practically constant, at the value CDp = 1. 

(b) The minimum point A is at a value of R close to that at which 
vortex shedding starts. 
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(c) The maximum point B is in the transition range. 

(d) In the irregular range Cnp(R) is almost a "mirror reflection" 
of S(R) . 

Since the drag coefficient is an "integrated" phenomenon, it is 
not expected to display so sharply detailed a dependence on R as does 
the Strouhal number, but these analogous variations are believed to be 
closely related to the position of the boundary-layer separation point, 
to which both the shedding frequency and the pressure drag are quite 
sensitive . 

Use of Shedding Frequency for Velocity Measurements 

The remarkable dependence of the shedding frequency on the velocity 
and the possibility of accurately measuring S(R) make it possible to 
determine flow velocities from frequency measurements in the wake of a 
cylinder immersed in the flow. At normal velocities the accuracy is as 
good as that obtainable with a conventional manometer, while at veloc­
ities below about 400 centimeters per second it is much better . (For 
instance, at a velocity of 50 cm/sec the manometer reading is only about 
0.001 cm of alcohol . ) In fact, in determining S(R) in the present 
experiments, this method was used to measure the low velocities by 
measuring the shedding frequency at a second reference cylinder of large 
diameter . The self-consistency of this method and the agreement with 
Kovasznay's results are shown in figure 4. 

For velocity measurements it is convenient to plot the frequency­
velocity relation ~n terms of the dimensionless parameter F (see the 
section "Shedding Frequency") as has been done in figures 9 and 10. 
The points on these plots were taken from the best -fit line in figure 4 . 
They are well fitted by straight lines 

(la) F 0.212R 4.5 50 < R < 150 

(lb) F 0 . 212R 2·7 300 < R < 2000 

which correspond to 

(2a) S 0.212(1 21.2/R) 50 < R < 150 

(2b) S 0.212(1 12.7/R) 300 < R < 2000 

Line (2b) has been plotted in figure 4 to compare with what is considered 
the best- fit line. The agreement is better than 1 percent. If line (2b) 
is extended up to R = 10,000, the maximum error, relative to the best­
fit line, is 4 percent. 

-
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The plot 

observed and 
found on the 

of F(R) 

F = nl d2/v 
F(R) plot 
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is used as follows : The shedding frequency is 

is calculated (v is easily determined); R is 
and the velocity 

Sometimes, as in the present experiments, 
is calculated from R = Uod/V. 
only R is required. 

Wake Energy 

From the velocity traces on the oscilloscope (figs. 6 and 7) it is 
clear that in the regular range the fluctuating velocity u(t) is purely 
periodic while in the irregular range some of the fluctuations are random. 
This difference is illustrated in figure 11 which shows the distribution 

of energy intensity (u/Uo )2 across the wake at two Reynolds numbers, one 
in the regular range, at R = 150, and one in the irregular range, at 
R = 500. Only half the wake is shown for each case; the one at R = 150 
is plotted on the left side of the figure and the one for R = 500, on 
the right. 

The total energy intensity (u/Uo )2 at each point was determined 
directly from the reading on the root-mean-square voltmeter (see the 
section "Electronic Equipment"). The components at the frequencies nl 
and n2 were determined by passing the signal through the wave analyzer. 
The curves in each half of figure 11 satisfy the equalities 

R 150 

R = 500 

The values of (u/Uo )2, (Ul/Uo )2, and (U2/Uo )2 were obtained by 

measurement (and at R = 150 are self-consistent) while (ur/Uo )2 was 
obtained by difference. The absolute values indicated are somewhat in 
doubt since the vacuum-tube voltmeter is not a true root-mean-square 
meter but are believed accurate to about 10 percent. 

The particular feature illustrated in figure 11 (already obvious 
from the oscillographs) is the absence of turbulent energy at R = 150 
as contrasted with the early appearance of turbulent energy at R = 500. 
This contrast is typical of the regular and irregular ranges. 

I 

J 
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The measurements shown were made at 6 diameters downstream, but 
the same features exist closer to the cylinder. In fact, fluctuations 
in the flow can be detected ahead of the cylinder. They display the 
typical characteristics in the t wo ranges. 

Downstream Wake Development 

The downstream development for the case of figure 11 (but R = 500 
only) is shown in figure 12. The distribution of t otal energy intensity 

(u/Uo)2 is shown on the left of the figure and the discrete energy 

intensity (Ul/Uo)2, at the shedding frequency, is shown on the right. 
Traverses were made at 6, 12, 24, and 48 diameters downstream. The 
discrete energy decays quite rapidly and is no longer measurable at 

48 diameters. (Note that the plot of (ul/uo )2 at 24 diam is shown 

magnified 10 times, for clarity.) A plot of (u2/Uo )2 has not been 
included since it can no longer be measured at even 12 diameters. The 

distribution of (ur /Uo )2 may be obtained from these curves by difference. 

Figure 13 p r e sents the downstream wake development in another way. 
The wake ene rgy E was calculated by integration of curves like those 
in figure 12 (cf. the section "Energy"); that is, 

Figure 13 is a plot of the energy ratio (El + E2)/E, that is, the ratio 
of the discrete energy relative to the total energy. 

In the irregular range the energies were computed in this way at 
R = 500 and 4000 (two cylinder sizes in each case) and R = 2900 (one 
cylinder). Figure 13 shows that the decay in all these cases is similar 
and the wake is completely turbulent at 40 to 50 diameters. 

The value of x/d for which El/E becomes zero was determined 
for a variety of cylinders, varying in size from 0.06 to 1.3 centimeters 
and at Reynolds numbers from 200 to 10,000. The value was found to lie 
between 40 and 50 in all cases but closer t o 40. A precise determina­
tion is difficult (and not important) because of the asymptotic approach 
of El/E to zero (E2 is already zero at less than 12 diam). 

In contrast with this, the stable range (R = 50 and 100 in fig. 13) 
has no development of turbulence before 50 diameters. The plots for 
R = 150 and 200 illustrate the rather spectacular transition from the 
stable range to the irregular. 
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For R = 50 and 100 the energy ratio remained constant at unity up 
to x/d = 100. Beyond that the energy intensity is so low that the tunnel 
turbulence cannot be neglected. 

Measurements of Spectrum 

Figure 14 shows spectrum measurements at 6, 12, 24,- and 48 diameters 
downstream at a Reynolds number of 500, in the irregular range. The 
lateral position y/d chosen for the measurement at each x/d is the 

one for which (Ul/Uo)2 is a maximum (cf. fig. 12). The method of 
plotting is as follows. The curve through the experimental points is 
the continuous spectrum Fr(n) , plotted in normalized coordinates. The 
discrete energies Fl = o(n - nl) and F2 = o (n - n2) are indicated 
by narrow "bands" which should have zero width and infinite height but 
are left "open" in the figure. The relative energies represented by 
the areas under the continuous curve and under the delta functions, respec-

tively, are marked in the figure with values of ur 2/u2 and u12/u2, 

u2 2Ju2 . 

To normalize 

Uo ( 

the continuous spectrum the dimensionless parameters 

cP = - Fr n) and 
L 

L 
T) = - n 

Uo 
are used. In each case the curve 

4 cp is included for reference. 
1 + (2fCT])2 

The normalizing coefficient 

was determined as follows: 

(a) Fr(O) was found by extrapolation of the measured values to 
n = O. 

(b) Fr(O) and the other values of Fr(n) were normalized to make 

J F(n) dn = 1. 

(c) L Uo ( was found from - Fr 0) 
L 

4. 

In short, the measured curve and the reference curve were made to agree 
in CPr(O) and in area. This requirement determines L. 

In these coordinates the shedding frequency shows an apparent 
increase downstream; this is because the normalizing parameter L 
increases. For x/d = 48 the shedding frequency (i.e., nl) is marked 
with a dash; it contains no discrete energy at this value of X/d. 

L 
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The "bumps" in the continuous spectrum, near nl and n2, indicate 
a feeding of energy from the discrete to the continuous spectrum. The 
portion of the spectrum near n = 0, which is established early and which 
contains a large part of the turbulent energy, seems to be unrelated to 
the shedding frequency (cf. fig. 15). As the wake develops the energy 
in the bumps is rapidly redistributed (part of it decays) to smooth the 
spectrum, which, in the fully developed turbulent wake at 48 diameters, 

tends toward the characteristic curve ~ = 4 2" 
1 + (2rcT]) 

In figure 16 the spectrum for x/d = 12 and y/d = 0 .8 is plotted 
together with the one at y/d = O. The curves are similar at low fre­
quencies (large eddies) and at high frequencies; they differ only in 
the neighborhood of the discrete band . (The slight discrepancy between 
this figure and fig . 14 is due to the fact that they were measured at 
two different times, when the kinematic viscosity v differed. This 
resulted in different values of nl at the same R.) 

A similar downstream development is shown in figure 15 for R = 4000. 
Here the spectrum at x/d = 6 is smoother than that in the previous 
example (fig. 14). This effect may be due not so much to the higher 
Reynolds number as to the fact that the shedding frequency is closer to 
the low frequencies; that is, the shedding frequency is "embedded" in 
the low- frequency turbulent band. It seems to result, at 48 diameters } 
in a much closer approach to the reference curve . 

Figure 17 shows the spectra at 48 diameters for three cylinders and 
several values of y/d. It is remarkable that R = 4000, d = 0.477 cm 
agrees better with R = 500, d = 0 .190 cm than with R = 4000} 
d = 0.953 cm . This seems to bear out the above remark about the rela­
tive influence of R and nl, for the respective shedding frequencies 
are 565, 440, and 144 . 

Final ly it may be noted that values of ur 2 , which in figure 11 
were obtained by difference, check well with the values computed from 

u r
2 = JI Fr(n) dn (before normalization of Fr(n)). 

Spectra for the regular range are not presented, f or they are simple 
discrete spectra . 
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Spanwise Correlation and Phase Measurement~ 

The function Rz was not measured, but the main features of the 
spanwise correlation4 are illustrated in figures 7 and 18. 

Figure 7 shows three examples) in each of which simultaneous signals 
were obtained from two hot-wires at x/d = 6 and y/d = 1 and separated 
by 50 diameters ~panwise. The two signals were obtained simultaneously 
on the oscilloscope screen by means of an electronic switch. This 
accounts for the dotted traces. 

At R = 145 (fig. 7(a)) the correlation is perfect but there is a 
phase shift. At R = 180 (fig. 7(b)) the correlation is still good but 
the individual signals occasionally break down. The breakdowns are 
uncorrelated at this distance of 50 diameters. At R = 500 (fig. 7(c)) 
each signal still shows a predominant frequency. There is some variation 
in phase between the two signals. The amplitude irregularities appear 
to be uncorrelated. 

Figure 18 shows the correlation figures obtained by placing the 
signals of the two hot-wires on the horizontal and vertical plates, 
respectively) of the oscilloscope. 

For R = 80 and Sid = 100 a steady Lissajous figure is obtained, 
showing that the periodic fluctuations at the two points (100 diam apart) 
are perfectly correlated (but they are not in phase). 

For R = 220 and 500 there is good correlation only at small values 
of tjd, that is, only when the two hot-wires are in the same "eddy)" so 
to speak. For R = 500 the figures are similar to those obtained in 
fully developed turbulence. 

In obtaining these correlations a remarkable phenomenon was observed. 
The stable vortex street (that is, R < 150) has a periodic spanwise 
structure. This was shown by the phase shifts on the Lissajous figure, 
as the movable hot-wire was traversed parallel to the cylinder. From 
the phase coincidences observed, the wave length parallel to the cylinder 
was about 18 diameters at a Reynolds number of 80. It has not been deter­
mined whether this periodicity structure is due to a "waviness" in the 
vortex filaments or whether the vortex filaments are straight but inclined 
to the cylinder axis. 

4In the remainder of this section a distinction is made between the 
terms "correlation function" and "correlation." The former refers to 
the function defined in the section "Space correlation function; phase 
relations" while the latter is used in a looser, descriptive sense. 

~\ 

\ 
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Statistical Measurements 

A few amplitude distribution functions were measured and are shown 
in figure 19. One measurement is in the stable range; the other shows 
downstream development in the irregular range. 

The table in figure 19 shows values of c and a computed from 
these curves. The behavior, of course, is as expected, but the numerical 
values are of some interest . These values (and the curves) show that at 
R = 100 the signal was practically triangular but had rounded "tops," 
At R = 500 the downstream development of r andomness is shown by the 
tendency of c and a toward the Gaussian values. 

The distribution is in fact not Gaussian, as may be seen in the 
figure, for its skewness cr is Quite high. 

Vortex Rings 

The flow behind wire rings was briefly investigated. The dimensions 
of the rings used are given in table II. 

With the rings of diameter ratio Did = 10 vortices are shed from 
the wire in almost the same way as from the straight wire, and there is 
apparently an annular vortex street for some distance downstream. The 
Strouhal number, measured from R = 70 to 500, is lower than that for 
the straight wire (about 3 percent at R = 500 and 6 percent at R = 100). 

Fluctuating velocity amplitudes were measured in the wake at several 
downstream positions . The results for the largest ring, measured along a 

diameter, are shown in figure 20. It should be noted that V u2 rather 
t han ·the energy has been plotted here (cf. fi g . 11); only relative val ­
ues were computed . Close behind t he cylinder the wake behind the wire 
on each side of the ring is similar to that behind the straight Wire, 
but the inside peaks are lower than the outside peaks. This may be 
partly due to the interference of the hot -wire probe, for a similar 
effect, much less pronounced, was noticed in the measurements behind a 
straight wire. 

Farther downstream there was some indication of strong interaction 
between the vortices, f or a peak could not be followed "smoothly" down­
stream. However, t he investigations were not continued f a r enough t o 
rea ch conclusive results. At about 40 diamet ers downstream the flow 
became unstable . 

-
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The ring with Did = 5 behaved somewhat differently. The observed 
frequencies gave values of Strouhal number as shown in table III. The 
table shows values of S and R based on the wire diameter, as well 
as values of SD and Rn based on ring diameter. Between R = 153 
and 182 there is a sudden increase in S, and at higher Reynolds numbers , 
in what corresponds to the irregular range, the shedding is similar t o 
that from a straight wire ; while in the stable range the shedding is at 
a much lower frequency. From the observations made it seems likely that 
in the stable range the ring acts like a disk, shedding the vortex loops 
observed by Stanton and Marshall (reference 18 , p. 578 , and reference 20). 
Stanton and Marshal do not give their frequency-velocity observations 
except at the critical Rn, where shedding first starts. They observed 
t his to be at about RD = 200, with a corresponding SD of 0.12. 

Again, these experiments were too incomplete to warrant definite 
conclusions, but the difference in behavior for Did = 10 and Did = 5 
is interesting. This behavior is similar to that observed by Spivack 
(reference 21) in his investigation of the frequencies in the wake of a 
pair of cylinders which were separated, normal to the flOW, by a gap. 
He found that when the gap was just smaller than 1 diameter instability 
occurred. For larger gaps the cylinders behaved like individual bodies, 
while for smaller gaps the main frequencies were, roughly, those corre­
sponding to a single bluff body of dimension equal to that of the combined 
pair, including the gap. 

DISCUSSION 

The most significant results of this investigation may be discussed 
in terms of the Reynolds number ranges defined in the section "Regular 
and Irregular Vortex Streets," namely, the stable range from R = 40 to 150, 
the transition range from R = 150 to 300, and the irregular range above 
R = 300. 

Stability 

The transition range from R = 150 to 300 displays the character­
istics of a laminar-turbulent tranSition, and it is instructive to compare 
the stability of the flow around the cylinder with boundary-layer sta­
bility. The flo ',{ in the irregular range has turbulent characteristics J 

while in the stable range it is essentially viscous. 

The Reynolds number regimes may be described as follmrs: Below 
R = 40 the flow around the cylinder i s a symmetric, viscous configura­
tion, with a pai r of standing vortices behind the cylinder. At about 
R = 40 this symmetr ic configuration ' becomes unstable. It changes to a 
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new, stable configuration which consists of alternate periodic breaking 
away of the vortices and formation of a regular vortex street. The 
instability at R = 40 is not a laminar-turbulent instability; it 
divides two different ranges of stable, viscous flow. In either range, 
disturbances to the stable configuration will be damped out. 

On the other hand, the transition range from R = 150 to 300 
involves a laminar-turbulent transition. To understand how this transi­
tion is related to the vortex shedding, it is necessary to know something 
about the formation of the vortices. Involved in this formation is the 
circulating motion behind the cylinder as shown in the following sketch. 
A free vortex layer (the separated boundary layer) springs from each 
separation point on the cylinder. This free layer and the backflow behind 
the cylinder establish a circulation from which fluid "breaks away" at 
regular intervals. 

Shear layer rTur~ulent] 
~a.nunar -

--~'" 
( ,> " 

( -)/ 
'-_/ 

./ -- ~ -- --
The laminar-turbulent transition is believed to occur always in 

the free vortex layer; that is, the circulating fluid becomes turbulent 
before it breaks away . Then each vortex passing downstream is composed 
of turbulent fluid. 

The point in the free vortex layer at which the transition occurs 
will depend on the Reynolds number. This transition was actually observed 
by Schiller and Linke (reference 18, p. 555, and reference 22) whose 
measurements were made at cylinder Reynolds numbers from 3500 to 8500 . 
The distance to the transition point, measured from the separation point, 
decreased from 1.4 diameters to 0.7 diameter, and for a given Reynolds 
number these distances decreased when the free-stream turbulence was 
increased. Dryden (reference 23) observed that at some value of R, 
depending on free-stream turbulence and GO forth, the transition point 
in the layer actually reaches the separation point on the cylinder. 
This point then remains fixed and vortex shedding continues, essentially 
unchanged, up to Reynolds numbers above 100,000, that is, up to the 
value of R for which transition begins in the cylinder boundary layer 
ahead of the separation pOint. It is quite likely that even above this 
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critical value of R t he phenomenon is essentially unchanged) but now 
t he vor tex ~ayers are much nea r er toget he r and t he vort i ces a r e diff used 
in a much shorter downstream distance . 

In summary) vortex f ormation in the stable range occurs without 
laminar-turbulent transition . The circulating fluid breaks away peri­
odically) and alternately from the two sides, forming free "viscous" 
vortices which move dOvmstream and arrange themselves in the familiar 
vortex street. In the irregular range transition occurs in the circu­
lating fluid before it breaks away, and the vortices are composed of 
tur bulent fluid. The transition range corresponds to the similar range 
in boundary-layer stability, and it displays a similar intermittency. 
The values R = 150 and 300 used to define the range are expected to 
be different in other experiments, depending on wind-tunnel turbulence, 
cylinder roughness, and so forth. 

Shedding Fre~uency 

The Strouhal number and Reynolds number dependence is different in 
the t wo ranges. In the stable range S(R) is rapidly riSing, while in 
t he i r regular range it is practically constant. 

Fage and J ohansen, who investigated the structure of the free vortex 
layer s springing from the separation points on various bluff cylinders 
(reference 9), made an interesting observation on the relation of t he 
shedding fre~uency to the distance between the vortex layers. This 
di stance increases as the cylinder becomes more bluff, while the shedding 
fre~uency decreases. In fact, if a new Strouhal number S' is defined 
in terms of the distance d' between the free vortex layers (instead 
of the cylinder dimension d), then a universal value S' ~ 0.28 is 
obtained for a variety of (bluff) cylinder shapes. The measurements of 
reference 9 were made at R = 20,000) but it is believed that the simi­
larity exists over the whole irregular range. It does not extend to the 
stable range. To check this point the shedding fre~uency was measured 
in the wake of a half cylinder placed with the flat face broadside to 
the flow. It was found that S(R) was rising for Reynolds numbers below 
300 and then became practically constant at the value S 0 .140. For a 
similar case, at R = 20,000, Fage and Johansen found S = 0 .143 . 

The universality of the constant S' is useful in systematizing 
the shedding phenomena (at least in the irregular range). It indicates 
that ,.hen the circulating fluid behind the cylinder is turbulent then 
the formation of free vortices is similar for a variety of bluff shapes 
and over a wide range of Reynolds numbers . 

Finally, the relation between Strouhal number and form drag coef­
ficient has been mentioned in the section "Relation of Shedding Fre~uency 
to Drag." In the irregular range the slight variations in S(R) reflect 
slight variations of Cop and so, probably) of the separation point. 

--) 
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However, constancy of CDp is not enough to insure a fixed separation 

point. For instance, CDp remains practically constant down to Reynolds 

numbers below the shedding range, but the separation point there is 
farther back than it is at higher Reynolds numbers. It would seem worth 
while, and fairly easy, to measure the position of separation as a func­
tion of Reynolds number over the whole shedding range, that is, to com­
plete the data available in the literature. 

Downstream Development 

The way in which the wake develops downstream is Quite different 
in the stable and irregular ranges. 

When the circulating fluid breaks away before the occurrence of 
transition in the free vortex layers (i.e., below R = 150) then the 
free vortices which are formed are the typical viscous vortices. There 
is no further possibility for the fluid in them to become turbulent. 
The vortices simply decay by viscous diffusion as they move downstream 
(see the section "Spread of Vortex Street" in appendix B). 

When turbulent transition does occur, then the vortices which are 
formed consist of turbulent fluid. They diffuse rapidly as they move 
downstream and are soon obliterated, so that no evidence of the shedding 
freQuency remains. This development to a completely turbulent wake takes 
place in less than 50 diameters. In terms of the decay of the discrete 
energy (fig. 13), the development is roughly the same for Reynolds numbers 
from 300 to 10,000. This again indicates a remarkable similarity over 
the whole irregular range. 

The stable and irregular ranges are also characterized by the dif­
ference in the energy spectra of the velocity fluctuations. It has been 
pointed out that in the irregular range a continuous, or turbulent, part 
of the spectrum is established at the beginning of the wake development. 
This turbulence is a result of the transition in the free vortex layers 
and might be expected to be independent (at first) of the periodic part 
of the fluctuation, which results from the periodic shedding. Indeed, 
most of the energy at first is concentrated at the shedding freQuency nl 
(some at ~), and it may be represented as a discrete (delta function) 
part of the spectrum, within the accuracy of the measurements (cf. 
appendix A). However, the continuous and discrete parts are not entirely 
independent, as shown by the bumps near nl and n2 (fig. 14). This 
may be regarded as a result of energy "feeding" from the discrete to the 
continuous parts of the spectrum, and it proceeds in a way which tends 
to ·smooth the spectrum. Such transfer of energy between spectral bands 
is a process depending on the nonlinear terms of the eQuations of motion. 
The "activity" in the spectrum, at any stage of its development, may be 
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regarded as an equilibrium between the nonlinear and the viscous terms. 
It is an important problem in the theory of isotropic turbulence. 

The spectr al activity near the frequency of discrete energy might 
be looked upon as a simplified case in which a single band has an excess 
of energy and the spectral energy flow is unidirectional, that is, out 
of it into the adjacent bands. However, the nonhomogeneous character of 
the field involved (the wake) reduces the Simplicity, for it i s necessary 
t o take account of energy transfer across the wake. One interesting 
possibility is to superimpose a homogeneous (isotropic) turbulent field, 
by means of a screen ahead of the shedding cylinder, and t o study the 
effect of this field on the spectral activity near the discrete band. 
Although the wake will still introduce nonhomogeneity (not even counting 
the periodic part of the motion), it may be possible to arrange the 
r elative magnitudes to give significant results from the simplified model. 

To study such problems the technique for measuring the spectrum 
(appendix A) near the frequency of discrete energy will be improved. 

To summarize , it is suggested that the initial development of the 
spectrum might be regarded as f ollows. The continuous and the discrete 
parts are established independently, the one by the transition in the 
vortex layers and the other by the periodic shedding. The turbulence 
due t o the transition is the "primary" turbulent field and its spectrum 
i s the typical, continuous (turbulent) spectrum. (It has been noted in 
the section "Measurements of Spectrum" that the low-frequency end of the 
spectrum is established early; it would contain only energy of the primary 

f i eld. 5 ) The discrete part of the spectrum is embedded in the turbulent 
part, and it thereby is "excited" into s-pectral transfer. Some of its 
energy i s transferred to the adjacent frequency bands resulting, initially, 
i n the development of bumps in the continuous spectrum. Subsequently, as 
t he spect r al transfer proceeds, the spectrum becomes smooth. 

The above discussion is an abstract way of saying that the vortices 
are diffused by a turbulent fluid (instead of a viscous one). The dif­
fusion involves the nonlinear processes typical of turbulence; the study 
of these processes, in terms of spectrum, is an important problem. 

There is a similar case of turbulent, periodic structure in the 
flow field between two cylinders, one of which rotates. Taylor's dis­
covery of the periodic structure of the flow is well-known (reference 24). 
When the inner cylinder rotates, it is possible to obtain a steady, regular 

5In the theory of homogeneous turbulence it is shown that the low­
frequency end of the spectrum is invariant, a property related to the 
Loi t sianski invariant. 
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arrangement of ring vortices) enclosing the inner cylinder, and having, 
alternately, opposite directions of circulation . Above a critical value 
of the speed of rotat'on this laminar, periodic structure becomes unstable 
and the fluid becomes turbulent, but alternate ring-shaped vortices still 
exist at speeds several hundred times the critical speed (reference 25). 

Statistics 

The probability distribution functions (fig . 19 ) display the 
characteristics which are expected, from the other observations . The 
contrast between the functions at R = 100 and R = 500, that is, in 
the stable and irregular ranges, respectively, is ~uite evident. In 
the irregular range, even at x/d = 6, where most of the energy is 
discrete, there is a marked irregularity in the fluctuation, as shown 
by the high value of ~ . 

However, these descriptions are little better than ~ualitative, and 
it is hoped to obtain more interesting results by extending these sta­
tistical methods. Of particular interest in the development of random 
from periodic motion would be the relation between the probability dis­
tributions and the spectra. For instance, it is plain that a purely 
periodic function (discrete spectrum) will have a probability distribu­
tion with finite cutoff, while development of random irregularities in 
the function's amplitude is strongly reflected in (1) a "spreading" of 
the distribution function to higher values of ~ and (2) the appearance 
of a continuous spectrum. However, the relation between the two is not 
uni~ue; that is, the spectrum does not give (complete) information about 
the probability distribution, and vice versa . It is not clear what the 
correspondence is and whether useful relationships may be obtained, pos­
sibly for restricted classes of functions. 

Suggestions for Future Investigations 

Some further lines of investigation indicated by these experiments 
are summarized below. 

(a) The transition from the stable to the irregular range should 
be investigated with controlled disturbances, for example, cylinder 
roughness and free-stream turbulence. It is expected that the limits 
of the transition range (roughly R = 150 to 300 for the experimental 
conditions here) will be lower for higher free-stream turbulence or 
cylinder roughness. The critical cylinder Reynolds numbers should be 
related to corresponding numbers for the transition point in the free 
vortex layers (based on distance from separation point or on the thick­
ness of the layer )-. 
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Such studies of stability to different disturbance amplitudes and 
frequencies are well- known in the case of the boundary layer. A varia­
tion of the experiments of Schubauer and Skramstad (reference 26)} who 
used an oscillating wire in the boundary layer to produce disturbances 
of definite frequencies} would be to use a second shedding cylinder. 

(b) A study of the spectral development in the neighborhood of a 
discrete band} the effect of a turbulent field on its activity} and so 
forth (discussed in the section "Downstream Development") may be the most 
fruitful continuation of these experiments. So far} the problem has been 
approached only in the theory of isotropic turbulence} where it has not 
advanced much beyond the similarity considerations of Kolmogoroff} and 
ve~ little is known about the form of the spectral transfer function. 

Interactions between discrete bands} for example} at slightly dif­
ferent frequencies} can be studied by the use of two or more cylinders 
arranged to "interfere" with each other (some such studies have been 
made by Spivack (reference 21) but not from this viewpOint)} or possibly 
by using one cylinder having diameter changes along its span. 

(c) Townsend has recently used the concepts of intermittently 
turbulent flow and local isotropy in his investigations of the turbulent 
wake and has obtained a new description of its structure (reference 27). 
His studies were made at downstream distances of 80 diameters or more} 
so that the wake was fully turbulent. Probably the structure he describes 
is essentially the same up to the beginning of the fully developed wake 
(about 50 diam)} but then there is the question of how it is related to 
the earlier developments. The most obvious "early developments" are the 
turbulent transition in the free vortex layers and the periodic shedding. 
(Although the shedding frequency is no longer distinguished far down­
stream) it is prominent in the early spectral developments and thus has 
an influence on the downstream wake.) 

Such studies will involve considerably more detailed investigations 
of the wake structure than were made here} possibly along the lines of 
Townsend's experiments and the classical measurements of energy balance 

across the wake. The other two components of the energy v2 and w2 

will be needed. 

(d) The nature of the circulating flow behind the cylinder and the 
formation of free vortices} that is} the shedding mechanism} should 
receive further attention. 

(e) The spanwise periodic structure of the vortex street should 
be investigated} beyond the ve r y cursory observations made here. In 
particular} a study of the stability of single vortex filaments seems 
important. 

- -, 

_J 
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(f) Measurements of the fluctuating forces on the cylinderJ due 
to the sheddingJ would be interesting and should have immediate practical 
applications. There seems to be very little information about the magni­
tude of these forces. It might be obtained either by direct measurement 
of forces (on a segment) or pressures (with pressure pickups) or inferred 
from measurements of the velocity fluctuations close to the cylinder. In 
addition to the magnitude of the force or pressure fluctuations J their 
spanwise correlation is of prime importance. 

CONCLUSIONS 

An experimental investigation of the wake developed behind circular 
cylinders at Reynolds numbers from 40 to 10JOOO indicated the following 
conclusions: 

1. Periodic wake phenomena behind bluff cylinders may be classified 
into two distinct Reynolds number ranges (j oined by a transition range). 
For a circular cylinder these are: 

Stable range 40 < R < 150 

Transition range 150 < R < 300 

Irregular range 

In the stable range the classicalJ stable Karman streets are formed; 
in the irregular range the periodic shedding is accompanied by irregular J 
or turbulentJ velocity fluctuations. 

2. The irregular velocity fluctuation is initiated by a laminar­
turbulent transition in the free vortex layers which spring from the 
separation points on the cylinder. The first turbulent bursts occur 
in the transition range defined above. 

3. In the stable range the free vortices J which move downstreamJ 
decay by viscous diffusionJ and no turbulent motion is developed. In 
the irregular range the free vortices contain turbulent fluid and diffuse 
faster; the wake becomes fully turbulent in 40 to 50 diameters. 

4. A velocity meter based on the relation between velocity and 
shedding frequency is practical. 

5. In the stable range a spanwise periodic structure of the vortex 
street has been observed. 
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6. An annular vortex-street structure has been observed behind rings 
having a diameter ratio as low as 10 . 

California Institute of Technology 
Pasadena, Calif., May 29 , 1952 
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APPENDIX A 

EXPERlMENTAL ANALYSIS OF SPECTRUM 

These notes supplement the brief descriptions in the sections 
"Fr equency Analyzer" and "Measurements of Spectrum." 

Analyzer Response 

Consider the response of a spectrum analyzer} such as that used in 
the present experiments } to a mixed periodic-random input} and in particu­
l ar consider the problem of inferring the input from the output. 

The input } an energy or power} has a random and a periodic component: 

(Al) 

The corre spondi ng spectr a are defined by 

(A2 ) 

wher e 

and 5(n) is the Dirac delta function. 

The response characteristic of the analyzer may be obtained by 
considering the effect of a periodic input. When the analyzer setting 
nA coincides with the input frequency nl the output is a maximum} 
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and when the setting is moved away from nl the output falls off. The 
response characteristic is 

Output at setting nA 
R(nl - nA) = ----------­

Output at setting nA = nl 

The output spectrum G(nA) of the analyzer is related to the input 
spectrum F(n) by (cf. reference lS) 

(A4) 

(A5) 

Since R(n - nA) is sharp, that is, almost a delta function (see the 
section "Half Band Width," Fr(n) may be considered to be constant over 
the significant interval of integration in e~uation (A5). Then 

(A6) 

where 

(A7 ) 

is the area under the response characteristic. 

E~uation (A6) gives the output for a mixed periodic-random input. 
It is re~uired to find the separate terms which make up this sum. The 
procedure is outlined in the section "Separation of Discrete Energy" below. 
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Hall Band Width 

The resol ution of the analyzer is determined by its hall band 
width ill . This is defined as the number of "cycl es off resonance" at 
which the output falls off to 0 . 01 percent; that is 

0 . 0001 (AS) 

For an ideal analyzer the response characteristic would be a delta 
function) but even with hall band widths from 30 to 145 (which is the 
range of the analyzer used here) the characteristic is ~uite sharp) rela­
tive to the fre~uency intervals of interest. The values 30 to 145 seem 
~uite high) but they are a little misleading because of the high attenua ­
tion used to define ill . For example) if the response - characteristic 
half band width ill is 30 cycles per second it has a total width of only 
6 cycles per second at 50 percent attenuation. 

Separation of Discrete Energy 

To separate the discrete energy u12 from the continuous spectrum 
the following procedure is used. 

At nl + ill and nl - ill (see sketch) the contribution from u12 is 

--
nl + ill 

~J 
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only 0 . 01 percent, so the measured points there are assumed to lie on the 
continuous spectrum. It is assumed at first that the continuous spectrum 
between these points may be determined by interpolation, and its value 

at nl is calculated. Then u12 is determined by difference and the 

last term in e~uation (A7) is calculated, since the form R(n) is known . 
The first term in e~uation (A6 ) then gives the values of G(nA) in the 
vicinity of nl; these should check the measured values . 

If, however, the continuous spectrum within the band width has a 
bump, then the above calculation is not self - consistent, and the true 

values can be determined by successive estimates of u12 . 

In principle the method is satisfactory, but in practice the 
accuracy is low because in the regions of interest, that is, near peak 
fre~uencies, it depends on the differences of relatively large ~uantities. 
One of these, R(n), is known precisely, but the precision is difficult 
to realize since the settings on the analyzer cannot be read accurately 
enough. For the spectral investigations discussed in the section 
"Downstream Development " the techni~ue will be improved . 

J 
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APPENDIX B 

NOTES ON VORTEX-STREET GEOMETRY AND SHEDDING FREQUENCY 

The regularity of the vortex shedding and its sensitivity to 
velocity changes have undoubtedly intrigued everyone who has investigated 
the flow past bluff bodies. However, as Karman pointed out in his first 
papers on the vortex street, the problem is inherently difficult, 
involving as it does the separation of the boundary layer from the 
cylinder, and there is yet no adequate theoretical treatment of the 
mechanism. 

The following notes may be useful as a summary of the interesting 
features of the problem. They are based largely on the literature but 
include some results obtained during the present experiments. Chapter XIII 
of reference 19 has a very useful review and list of references. 

Idealized Karman Street 

" / Karman's theory treats a double row of potential vortices, infinite 
in both directions. The distance between the rows h and the spacing 
of the vortices in each row I are constants. The vortices have strength 
(circulation) r which, with the geometry, determines the velocity V 
of the street relative to the fluid. The theory shows that the configura­
tion is stable when the rows are staggered by a half wave length and the 
spacing ratio is 

¥ = 0.281 (Bl) 

The circulation and velocity relative to the fluid are then related by 

r 
VI 

2.83 (B2) 

Two of the parameters (h, I, G and V) must be determined from some 
other considerations. In the real vortex street they must be related 
to the conditions at the cylinder. 

Real Vortex Street 

The real vortex street, even in the stable range, differs from the 
idealized one in the following points: 

I 

~ 



NAeA TN 2913 43 

(1) The street is not infinite. It starts shortly downstream of 
the cylinder and eventually loses its identity far downstream. However, 
the classical vortex-street patterns extending for 10 or more wave lengths 
should be a good approximation . 

(2) The vortex spacing is not oonstant. In particular, the lateral 
spacing h increases downstream. 

(3) The real vortices must have cores of finite radius. These grow 
downstream, so that the vortices diffuse into each other and decrease 
their circulation. For the same reason the velocity V is expected to 
differ considerably from the theoretical value, since it is strongly 
dependent on the configuration. 

Related to these considerations is the way in which the vortices 
are first formed. At Reynolds numbers below the shedding range a sym­
metrical pair of eddies is formed at the back of the cylinder. As the 
Reynolds number increases these two eddies grow and become more and more 
elongated in the flow direction, until the configuration is no longer 
stable and becomes asymmetric. Once this occurs the circulating fluid 

breaks away6 alternately from each side to form free vortices which flow 
downstream and arrange themselves into the regular, stable vortex street. 

In the irregular range the process is similar, except that the fluid 
is turbulent (because of the transition in the free vortex layers). 

Downstream Vortex Spacing 

In the flow past a stationary cylinder the frequency with which 
vortices of one row pass any point is given by 

This must be the same as the shedding frequency 

SUo/d 

Two useful expressions result: 

d 

(B4) 

(B5) 

6Fossibly the breaking away should be regarded as primary, resulting 
in asymmetry. 

_J 
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or 

V 1 -
S2 (B6) 

Do d 

In a real vortex street, V~O far downstream and then 2 1 Or, d~S· 
if slid is known from measurements, then V/Do may be computed. 

An example of measured values of lid is shown in figure 21. These 
were taken from the streamline plot obtained by Kovasznay (reference 11) 
at R = 53 (for which S = 0.128). There is a little scatter but lid 
does approach the constant value lis = 7.8. 

The scatter, while relatively unimportant in the case of lid, 
gives very low accuracy for values of V/Do calculated from e~uation (B6). 
These have also been plotted in figure 21. It is surprising that some 
of the values, near the cylinder, are negative (corresponding to values 
of l id higher than lis); it is believed that this results from the 
combined difficulty of estimating the vortex centers, especially near 
the cylinder, and the sensitivity of e~uation (B6). (However, it must 
be noted that negative values of V are not impossible. Negative V 
simply means that the vortex velocity is directed upstream relative to 
the fluid, while it is still downstream relative to the cylinder. Such 
a possibility exists at low values of xld, where the mean velocity at 
the edges of the wake is considerably higher than Do.) 

Another way to obtain V/Do is to assume that the vortex centers 
move with the local mean velocity . Kovasznay's paper includes measure­
ments of mean velocity profiles. From his results the mean velocity 
along the line of vortex centers u* has been determined and from it 
V D* 
-- - 1 - -- has been calculated . The result is plotted in figure 21. Do - Do 
Near the cylinder it does not agree with the values obtained by the 
previous method; it is believed that this is principally due to the 
difficulties mentioned above and that the determination of V/Do from 
1 - (D*/Do) is more accurate. 

Lateral Spacing 

The lateral spacing, at least initially, must be determined by 
conditions near the cylinder. The way in which this spacing increases 
downstream is discussed, for the stable range, in the section "Spread 
of Vortex Street." 
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In the irregular range, the dependence of the shedding frequenc y 
on the distance between the free vortex layers, noted by Fage and Johansen 
(see the secti on "Shedding Frequency"), leads to an interesting estimate 
of the initial lateral spacing of the free vortices. The maximum dis­
tance d' between the free vortex layers, instead of the cylinder dimen­
sion d, may be used to define a new Strouhal number 

Fage and Johansen found that, whereas S varies conSiderably with 
cylinder shape, S' is practically constant for a variety of bluff 
cylinders. Now the initial lateral spacing h' of the free vortices 
will be roughly t he same as d', possibly a little smaller: 

h' d' - = (1 - E)-
l l 

Then, comparing with equations (B6 ) and (B7), 

h ' 1 - E 
--....,--....,--- S' 
1 - (V/Ua ) 

From the measurements of Fage and J ohansen, S' ~ 0 . 28 . The factor 

_--=.:;l_-_E,"--_ ~ 1. Thus equation (B9 ) give s h'l l 0.28; that is, the 

(B7 ) 

(B8) 

(B9) 

1 - (V/Uo ) 
spacing ratio agrees with Kinman's value, at least close t o the cylinder. 

Shedding Frequency 

There is yet no adequate "theory of t he periodic vortex shedding, 
and it is not clear what is the principal mechanism which determines 
the frequency. 

The downstream spacing ratio is related to the shedding frequency 
by equation (B3) and to the l ateral spac i ng by a stability criterion 
(e . g., Karman's value of 0 . 28 for the idealized street). It might be 
considered that the shedding frequency is determined by the spacing 
requirement, or, conversely, that the shedding is primary and determines 
the downstream spacing . The latter viewpoint seems the more plausible 
one; that is, the shedding fre quency is established by a mechanism which 
depends on features other than the vor tex spacing. It is necessary to 



I 

~ 

46 NAeA TN 2913 

obtain a better understanding of the flow field near the cylinder . One 
of the elements involves the problem of separation, particularly the 
nonstat1onary problem. Another that requires more study is the flow 
field directly behind the cylinder. 

With a better knowledge of these, and possibly other, features it 
may be possible to set up a model of the shedding mechanism. In the 
meantime it is not cl ear whether the vortex spacing requirement is 
decisive in determining the frequency. 

De stabilization7 of Shedding 

The following experi ment illustrates the dependence of the periodic 
shedding on "communication" between the free vortex layer s, that i s , on 
the flow f i eld directly behind the cylinder. A thin flat plate wa s 
mounted behind the cylinder in the center plane of the wake (fig . 22). 
It wa s completely effecti ve in stopping the periodic shedding. Spectrum 
measurements in the flow on one s ide of the plate are shown in figure 22 . 
At R = 7500 no significant fre quencies could be separated out from the 
continuous background. At R = 3200 there were several predominant 
frequencies (all higher than the shedding fre quency for the cylinder ) , 
but , by the time the flow r eached the end of the plate, 5 diameters 
downstr eam, it was completely turbulent. (The shedding frequency nl 
for the cylinder is marked in the figures . ) 

The important effect , on the shedding, of the flow field direct ly 
behind the cylinder is apparent . Probably an even shorter length of 
plate would be effective in destabilizing the periodic shedding , and 
there may be a most effective posit ion for such an interference element. 
Kovasznay r emarks that the hot -wire probe used in investigating the 
vortex street must be inserted from the side , f or if it lies in the 
plane of the street it has a strong de stabilizing influence. 

A more complete study of the destabilization of shedding by such 
interference devices may be quite useful from a practical viewpoint. 
Structural vibrations and f ailures are often attributed to the per i odic 
forces set up on members exposed t o wind or othe r flow (smoke stacks , 
pipe lines, st ructural columns, t o ment ion a few). In many case s it 
might be possibl e t o destabilize the vor t ex shedding by addition of 
s imple interference el ements or by i ncorporat ing t hem in t he original 
designs. In the case where one member is buffeted by the wake of another 
the same principle might be applied. 

7The stability considered in this section is not with respect to 
laminar- turbulent transition; it concerns the stabil ity of the periodic 
shedding (cf. the section "Stability"). 

l 
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Spread of Vortex Street 

It has been observed by most investigators that the spacing ratio 
h/l is Karman's value (0.28) close to the cylinder but increases rapidly 
downstream. The increase of h/l is mainly due to the increase of h, 
since I changes very little (fig. 21). In the stable range this is 
the result of viscous diffusion of the real vortices. 

Hooker (reference 28) has made an interesting analysis. First, a 
real vortex has a core of finite radius; its center is the point of zero 
velocity and maximum vorticity. Hooker shows that in a vortex street, 
where the velocity field of the other vortices must be taken into account, 
the points of zero velocity and maximum vorticity do not coincide. The 
point of maximum vorticity is unchanged but the point of zero velocity 
is farther away from the center of the street. As the vortex decays, 
the point of zero velocity moves farther out, its distance from the 
center of the street increasing almost linearly with time. Thus the 
spacing based on vorticity centers remains constant, while the spacing 
based on velocity centers increases linearly. Hooker's calculation of 
the linear spread checks fairly well with some pictures taken by Richards 
(reference 29) in the wake of an elliptical cylinder having a fineness 
ratio of 6 :1 and the major diameter parallel to the free-stream velocity. 

However, the spread of the wake is not always observed to be linear. 
Among the different investigators there is a large variation of results, 
apparently dependent on the experimental arrangement. In Richards' 
experiment the cylinder was towed in a water tank and the vortex patterns 
were observed on the free surface. 

In Kovasznay's experiment the cylinder was mounted in a wind tunnel, 
the arrangement being similar to the one used here (see the section 
"Experimental Data"). On his plot of the streamlines at R = 53 the 
downstream spread of the vortex street is parabolic rather than linear. 
It is possible to fit his results by a somewhat different application 
of Hooker's idea, using decaying vortex filaments. 

Each vortex in the street is considered to behave like a single 
vortex filament carried along by the fluid, its decay or diffusion being 
the same as if it were at rest. The decay of such a vortex is described 
by a heat equation, whose solution is (reference 30, p. 592): 

(BIO) 

where q is the tangential velocity at the distance r from the center 
and at the time t. The circulation is f. This is essentially a vortex 
with a "solid" core and potential outer flow joined by a transition 

I 
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region in which the velocity has a maximum value. This maximum velocity 
is 

q* = O.72(r/2:rrr*) (Bll) 

and occurs at the radial distance 

r* = 2.24(vt)1/2 (B12 ) 

Here r* is defined as the vortex radius. 

Thus the radius increases as and the maximum velocity decreases 
-1/2 as t . In 

distance x. 
the vortex street, the time t is replaced by the downstream 
Since the vortices move with the velocity U* rather than 

Uo x * Uo, the dimensionless time e = -- - is appropriate, where U also 
U* d 

varies downstream (see the section "Downstream Vortex Spacing"). 

When a pattern of such vortices is superimposed on a uniform flow, 
it is possible to calculate the velocity fluctuation at a point, because 
of the pattern passing over it. 

Now the following hypothesis is added. It is assumed that the 
vortex radius r * is equal to the width h of the street. Then the 

width of the street increases as xl / 2 • 

A second result follows. The maximum velocity fluctuation (observed 
by a hot -wire, say) will occur on the line of vortex centers and will have 
the amplitude 

u* = ! q* 
2 

(B13) 

that is, the hot-wire encounters instantaneous velocities varying from 
U* (because of vortex centers passing over it) to U* + q* (due to the 
fields of vortices on the other side of the street) . Relations (Bll) 
and (B12) then give the downstream behavior of the maximum fluctuation 
amplitude. 

The results may be smmnarized as follows: 

(a) Wake width h ~ el / 2 . 

(b) The maximum amplitude of fluctuation u * occurs on the line 
of vortex centers (so there are two maximum points across the wake). 
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(c) u * ~ e-l / 2 . 

(d) u* = O. 36 ( r/2nh). 

A comparison of the above predictions was made with calculations 
based on Kovasznay's measurements which include profiles of velocity 
fluctuation amplitude (cf. fig. 11) as well as the streamline plot. 
The following comparisons were obtained) item by item: 

(a ' ) The time variation of hid) determined from the vortex 
centers on the streamline plot is shown in figure 21. The parabola 

hid = 0.59(e - 6)1/2 is shown for comparison. 

(b ' ) The line of maximum velocity fluctuation lies slightly inside 

the line of vortex centers and is fitted by h*/d = 0.53(e _ 6)1/2. 

(c l
) The time variation of u * is also plotted in figure 21 . 

(Actually Kovasznay's maximum root-mean-square values u'm are plotted, 
but these should differ from u* only by a constant factor.) The curve 

U'm/Uo = 0.26(e - 6) -1/2 is shown for comparison. The points could be 
fitted better) but the curve was chosen again to have the origin e = 6. 

(d') A comparison with (d) may be made by estimating the strength 
r of the vortices. Such a consideration) in fact) led to the present 
model) for it was found that the magnitude of the observed velocity 
fluctuations could be accounted for only by assuming that the radius 
of the vortex core is about equal to the width of the street. This 
observation had already been made by Fage and Johansen (reference 8)) 

for R ~ 2 X 104 . If the free vortex layer is represented by a velocity 
discontinuity U = Uo to U = 0 then the circulation is Uo per unit 
length and "the circulation" flows with the velocity Uo/2 . On the 
other hand) the rate at which circulation enters one side of the street 
is nlr) where r is the circulation per vortex .8 Therefore 

r 

For Kovasznay's example) S ~ 0 .13) so r ~ 4Uod . Then) comparing 
with (d)) the maximum fluctuation in the initial part of the wake is 

8The velocity at the outer edge of the layer is actually about 1.5Uo , 
but experiments indicate that only about half the vorticity 
layer goes into individual vortices . Therefore, the value 

fair estimate. 

of the shear 
Uod/2S is a 
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~ 0 . 2 11 
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0 . 2 

assuming h ~ d at this low Reynolds number . The largest value of 
u'm!Uo in Kovasznay's example is 0.14 at x/d = 7, corresponding to 
u*/Uo ~ 2 . The order of magnitude of this estimate is quite sensitive 
to the size of the core relative to the width of the street; if the core 
is assumed to be much smaller, the calculated velocity fluctuations are 
much larger than those observed. Also, if the cores were very small 
compared with the width of the wake, four peaks instead of ~o would be 
observed in t he profile of the velocity fluctuation amplitude . 
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TABLE II 

RING DIMENSIONS 

Ring d D d s Did (em) 

1 0.168 1.59 0.030 9 . 5 

2 .081 . 81 .018 10.0 

3 .079 .40 .018 5. 1 

TABLE III 

VALVES OF STROUHAL NUMBER FOR VARIOUS TEST 

REYNOLDS NUMBERS 

R S RD Sn 

89 0.051 450 0.26 
96 .052 490 .265 

103 .052 525 .265 
128 .057 650 .29 
153 .060 780 · 31 
182 .147 
215 .189 
302 .204 
366 .2ll 
455 .212 

_I 
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Figure 2 .- Amplitude distribution moments. 
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Figure 3. - Representative signal sequence for statist i cal analyzer . 
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(a) R = 80; 
sid = 100. 

(d) R = 500; 
Sid = 3. 

(b) R = 220; 
sid = 10. 

(e) R = 500; 
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(c) R = 220; 
sid = 105. 

(f) R = 500; ~ 
sid = 105. 

Figure 18 .- Correlation figures. d = 0.158 centimeter; x/d = 6; Y/d = 1; 
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Figure 19 . - Distribution functions. d 0.190 centimeter. 
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Figure 20.- Shedding from a ring. d = 0.168 centimeter; D 1.59 centimeters; 
R = 100; n = 84. 1 
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Figure 21.- Vortex -street geomet r y . Calculated from data in reference 11. 
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Figure 22 . - Effect of downstream plate on wake frequencies. 
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